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We present a complete analytical solution of the mean-field Hubbard model of undoped and
doped graphene rectangulenes. These are non-chiral ribbons of arbitrary length and width, whose
dimensions range from simple short acene molecules all the way up to the bulk limit. We rewrite
the Hubbard model in the basis of bulk and edge non-interacting eigen-states, and provide explicit
expressions for the Coulomb matrix elements. We present a general mean-field decoupling of the
Hamiltonian, and discuss in detail the paramagnetic, ferromagnetic and antiferromagnetic mean-
field solutions. We calculate the eigen-energies, occupations, spin densities and addition energies of
rectangulenes with lengths and widths ranging from a nanometer to several hundreds of them. We
rewrite the exact mean-field tight-binding Hamiltonian back in the site-occupation basis, that can
be used to model electronic, thermo-electric, transport and optical properties of experimental-size
graphene flakes.

I. INTRODUCTION

The experimental demonstration of the ability to iso-
late single graphene sheets [1] promoted the vision that
atomic-scale two-dimensional nanoelectronics and nano-
optics could be a viable future technology [2]. Ele-
mentary units of the graphene lego would then range
from simple graphenoid molecules such as acenes [3, 4],
graphene nanoribbons (GNR) and all the way up to
graphene flakes.

Part of the interest in graphene nanostructures stems
from the old prediction by Dresselhaus and coworkers
that GNRs having zigzag terminations could host edge
states[5]. GNRs’ peculiar electronic and magnetic struc-
ture were the subject of intense theoretical work for the
first years after the discovery of graphene [6–14].

Parallel efforts to fabricate GNRs by unzipping car-
bon nanotubes were only partially successful because the
graphene edges were quite defective [15]. However, GNRs
having atomically-precise edges were finally synthesized
by bottom-up techniques [16]. This breakthrough opened
the door to a plethora of subsequent developments in
GNR fabrication and characterization [17–21].

The topological nature of edge states [22] and the
connection between GNRs and the Schrieffer-Heeger-Su
(SSH) model [23, 24] has also been uncovered and ana-
lyzed both theoretically [25] and experimentally [26, 27].
GNR edge states are predicted to be magnetic [10, 28, 29],
so that magnetism at the edge has been paid attention
throughout these years [30, 31]. GNRs have been ex-
plored in optics for their potential utility as plasmon
waveguides [32, 33]. Recently, single armchair GNRs
of precise width have been deposited onto ultra-clean
graphene gaps, therefore creating all-carbon single elec-
tron transistors displaying quantum dot behavior [34–36].
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GNRs are theoretically well-described by both Den-
sity Functional Theory (DFT) [10, 11] and the mean-field
(MF) Hubbard model [12, 37]. These two approaches es-
timate successfully many of the electronic, magnetic and
optical properties of GNRs. However, both approaches
are numerically costly for large-size GNRs, which limits
the ability to simulate them to narrow widths and short
lengths, which are usually much smaller than the size of
the experimental samples.
We view in this article finite-length GNRs rather as

graphene rectangles, so that we have named them rect-
angulenes. We have recently been able to solve analyti-
cally the tight-binding model of non-chiral rectangulenes
of arbitrary length and width by mapping the model to a
wave-guide of finite-length SSH chains [38]. This solution
has allowed us to unveil explicitly the bulk-boundary cor-
respondence [39] in graphene. We have also provided a
detailed mapping between DFT-simulated rectangulenes
and a simple two-site Hubbard model of the edge states
of narrow ribbons.
We expand here our previous development to a full an-

alytical solution of the MF Hubbard model of graphene
rectangulenes. This new development allows us to simu-
late undoped and doped rectangulenes of any given size,
ranging from graphenoid molecules all the way to lengths
and widths of several hundreds of nanometers or even mi-
crometers, that we regard as the bulk limit.
Our solution is relevant because it addresses current is-

sues in different fields of physics, chemistry and materials
science. It is also important because it allows us to ad-
dress theoretically the typical graphene sizes happening
in experimental samples. The solution therefore opens
the way to accurate and realistic theoretical descriptions
of an array of electronic, magnetic, transport, thermo-
electric and optical phenomena of real-life graphene de-
vices. The solution can also be extended in the future
to more sophisticated descriptions of strong correlations
like the GW approximation [40] or Dynamical Mean Field
theory [41].
We perform a basis change from site creation and de-
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struction operators to the basis of bulk and edge eigen-
states. One of the central results of this article concerns
the Coulomb integrals, because they can all be deter-
mined analytically. The resulting Hamiltonian is there-
fore fully known with explicit expressions in terms of U/t.
Former DFT and MF calculations were numerically very
costly for sizes of about 50 nm, while simulations for sizes
larger than 100-200 nm were beyond the power of today’s
computers. However, we demonstrate that our analyti-
cal MF solution delivers all the physics that had to be
previously computed numerically. We illustrate this by
performing the popular MF paramagnetic, ferromagnetic
and antiferromagnetic solutions (PM, FM and AFM, re-
spectively). The figures shown in this article have been
plotted with the aid of a simple matlab script running in
a laptop. Site occupation calculations lasted the longest,
with rectangulenes of size 200 nm× 400 nm taking four
to five minutes.

The layout of this article is as follows. Section II sum-
marizes the key results of our previous solution on the
non-interacting tight-binding model [38], and introduces
the notation and terminology needed henceforth. Section
III explains the change from the original site creation and
destruction operators to the basis of bulk and edge eigen-
states, and determines all the Coulomb integrals. The fi-
nal result in the section is the complete reformulation of
the Hubbard model in the eigen-state basis. Section IV
develops the generic MF decomposition and then shows
the PM, FM and AFM solutions. We compute eigen-
energies, addition energies and site charge and spin oc-
cupations. These occupations allow us to rewrite the MF
Hamiltonian in the site-basis. We introduce the edge-only
doping regime and use it to analyse the impact of doping
the rectangulenes. We also discuss how to release this
approximation to address larger doping regimes. Section
V summarizes our results and closes this article.

II. SOLUTION OF THE TIGHT-BINDING
MODEL OF A GRAPHENE RECTANGULENE

We summarize below key results of our solution of the
tight-binding Hamiltonian of the rectangulene drawn in
figure (1) (a). The figure shows that the rectangulene is
pierced by small rectangles that constitute the different
unit cells. Cell coordinates are R = (Rx, Ry), where Rx
and Ry are integer numbers running from 1 to Mx and
from 1 to My, respectively. The width along the Y-axis
can also be characterized by the number of horizontal
bonds N = 2My − 1. The unit cell, depicted in Figure
(1) (b), contains two A-atoms and two B-atoms, that
we label A1, A2, B1 and B2, respectively. We measure
lengths along the X- and Y-axes in units of

√
3 c and

c, respectively, where c = 2.46 Å is graphene’s lattice
constant. The atoms’ coordinates are then

FIG. 1. (a) Rectangulene with dimensions Mx × My. A/B
atoms are indicated by dark/bright red circles. Fake atoms
are indicated by blue circles. Each unit cell is surrounded
with a grey dotted box. (b) Each unit cell contains two A
and two B atoms, whose internal coordinates are written in
Eq. (1).

rA1
=

(
0
0

)
, rB1

=

(
−2/3
0

)
rA2

=

(
−1/2
−1/2

)
, rB2

=

(
−1/6
−1/2

) (1)

We introduce for later use the unit cell basis states

|Ri⟩ = (|R,Ai⟩ , |R,Bi⟩) , i = 1, 2 (2)

The rectangulene boundary conditions determine the
set of eigen-states of the rectangulene. These corre-
spond to the allowed k̄ = (k̄x, k̄y) = (

√
3 kx c, ky c) wave-

vectors. Notice that we have introduced here dimension-
less units for consistency with our choice of real-space
unit lengths, as well as because the algebraic expressions
are simpler. Figure (2) summarizes the k-vector grid,
that covers a rectangular area in reciprocal space, where
k̄x ∈ (0, 2π] and k̄y ∈ (0, π]. The segment k̄x ∈ (π, 2π]
with k̄y = π is excluded to avoid state double-counting.
The k̄y quantization condition is seen in the figure as
horizontal red lines at values given by

k̄y = k̄m = π
m

My
, m = 1, , 2, , ...,My (3)

For a given k̄m, there exist a set of 2Mx k̄x wave-vectors
that we denote k̄mα where α = 1, 2, ..., 2Mx. These
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FIG. 2. Two-dimensional plot of the mesh of allowed k̄-
vectors for a rectangulene with dimensions (Mx, My ) =
( 10, 11 ). The red lines correspond to the k̄y quantized values.
Blue lines correspond to solving Eq. (7) for k̄y as a function
of k̄x. Black dots at the intersections between blue and red
lines correspond to bulk states. Green dots correspond to
edge states.

occur at the intersections of the red and blue lines in
Figure (2). The resulting black and green dots in the
figure mark the allowed (k̄x, k̄y) = (k̄mα, k̄m) that define
the eigen-states of the rectangulene. We find a critical
y-wavevector

k̄cm = 2 cos−1 Mx

2Mx + 1
≳

2

3
π (4)

so that all k̄m smaller or larger than k̄cm have either 2Mx

or 2Mx − 1 k̄mα real wave-vectors, respectively. These
corresponds to bulk rectangulene states, and are marked
by black dots in Figure (2). The missing k̄mα=2Mx wave-
vector whenever k̄m > k̄cm is sketched as a green dot in
the figure and is found by letting k̄mα=2Mx

= 2π − i qm
become complex. The corresponding eigen-state is an
edge state at the zigzag edges whose decay length is q−1

m .
As a consequence, the number of allowed k-vectors is
equal to the number of unit cells in the rectangulene,
2Mx × (My − 1/2) = Mx ×N , and the number of edge
states is

N edge = Floor

((
1− 2

π
cos−1 Mx

2Mx + 1

)
My

)
(5)

The explicit values of the bulk k̄mα wave-vectors
are found by replacing k̄y by k̄m in the equations for
graphene’s order parameter, Bloch Hamiltonian compo-

nent and Bloch phase:

∆y = 2 cos (k̄y/2) (6)

fxy = fRxy + i f Ixy = 1 +∆y e
i k̄x

2

tan θxy =
f I

fR
=

∆y sin (k̄x/2)

1 + ∆y cos (k̄x/2)

and solving for k̄x the equation

Mx k̄x + θxy = απ (7)

where k̄x ∈ (0, 2π) and α is an integer number. Alterna-
tively, Equation (7) can be seen as an implicit equation
for k̄y as a function of k̄x, that we plot as blue lines in
Figure (2). Then, the grid of allowed (k̄mα, k̄m) is given
by the all the intersections of the red and blue lines. The
remaining edge wave-vector is the solution of the equa-
tion

tanh (Mx qm) =
∆m sinh (qm/2)

1−∆m cosh (qm/2)
(8)

where ∆m = 2 cos (k̄m/2).
The rectangulene bulk and edge eigen-energies are

found by inserting the grid of allowed wave-vectors into
graphene’s bulk dispersion relation. We find

ϵBmατ = τ ϵBmα = τ
√

1 + ∆2
m + 2∆m cos (k̄mα/2) (9)

ϵEmτ = τ ϵEm =
√
1 + ∆2

m − 2∆m cosh (qm/2)

The band index τ = ±1 labels the two eigen-states ex-
isting for each wave-vector, so that the number of eigen-
states is equal to the number of atoms 2MxN .
The explicit expressions for the rectangulene bulk and

edge states are

|ϕmατ ⟩ =

Mx,y∑
Rx,y=1

∑
i=1,2

|Ri⟩ 2 fm,i(Ry) ϕmα,i(Rx)

(MxMy Λ
ϕ
mα)1/2

(10)

|ψmτ ⟩ =

Mx,y∑
Rx,y=1

∑
i=1,2

|Ri⟩ 2 fm,i(Ry) ψm,i(Rx)

(MxMy Λ
ψ
m)1/2

with

Mx = 4Mx + 1 (11)

fm,i(Ry) = sin (k̄m (Ry − di))

ϕmα,i(Rx) =

(
ϕAmα,i
ϕBmα,i

)
=

(
−τ (−1)α sin (k̄mα (Rx − di))
sin (k̄mα (Mx + 1− (Rx + di)))

)
ψm,i(Rx) =

(
ψA
m,i

ψB
m,i

)
= (−1)2di

(
−τ sinh (qm (Rx − di))

sinh (qm (Mx + 1− (Rx + di)))

)
where d1 = 0 and d2 = 1/2, and the normalization factors
are

Λϕmα = F 1
mα − δk̄m,π F

2
mα/Mx (12)

Λψm = G1
m sinh (Mx qm/2)
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We have introduced here the following functions

F 1(k) = 1− sin (Mx k/2)

Mx sin(k/2)
(13)

F 2(k) = 1− cos (Mx k/2)

Mx cos (k/2)

G1(q) =
1

Mx sinh (q/2)
− 1

sinh (Mx q/2)

G2(q) =
1

Mx cosh (q/2)
− 1

cosh (Mx q/2)

where F 1
mα = F 1(k̄mα), G

1
m = G1(qm) and so forth.

We close this section by noting that the solution out-
lined above can also be understood by realizing that
we have decomposed the rectangulene as a wave-guide
of open-ended SSH chains having 2Mx sites each and
topological order parameter ∆m. Those chains having
∆m < 1 or ∆m > 1 are topological or trivial because their
winding number is 1 or 0, respectively [24]. The bulk-
boundary correspondence [39] is explicitly established by
noting that the winding number condition enters into the
k̄mα and qm quantization equations (7) and (8).

III. HUBBARD MODEL OF A GRAPHENE
RECTANGULENE

A. Transformation to the eigen-state basis

The mean-field solution to the Hubbard model of a
rectangulene is initiated by expanding site-creation and
annihilation operators in the basis of rectangulene eigen-
states(

âRiσ
b̂Riσ

)
=

∑
mατ

(
⟨R,Ai |ϕmατ ⟩
⟨R,Bi |ϕmατ ⟩

)
ϕ̂mατσ + (14)

+
∑
mτ

(
⟨R,Ai |ψmτ ⟩
⟨R,Bi |ψmτ ⟩

)
ψ̂mτσ

We split the site number operators into bulk and edge
pieces,

n̂Riσ = n̂BRiσ + n̂ERiσ (15)

n̂BRiσ =
∑
mα

4 f2m,i

MxMy Λ
ϕ
mα

(
(ϕAmα,i)

2

(ϕBmα,i)
2

)
n̂Bmασ

n̂ERiσ =
∑
m

4 f2m,i

MxMy Λ
ψ
m

(
(ψA
m,i)

2 (n̂Emσ − P̂mσ)

(ψB
m,i)

2(n̂Emσ + P̂mσ)

)

where we have dropped cross bulk-edge, bulk (m, α) ↔
(m′, α′), bulk (m, α, τ) ↔ (m, α, τ ′) and edge m ↔ m′

terms, but have kept interband edge states (m, τ) ↔
(m, τ ′) because they are degenerate. Furthermore, we
have introduced the following band-summed and band-

mixing operators

n̂Bmασ =
∑
τ=±

n̂mατσ =
∑
τ=±

ϕ̂†mατσ ϕ̂mατσ (16)

n̂Emσ =
∑
τ=±

n̂mτσ =
∑
τ=±

ψ̂†
mτσ ψ̂mτσ

P̂mσ =
∑
τ=±

P̂mτσ =
∑
τ=±

ψ̂†
mτσ ψ̂mτ̄σ

where τ̄ = −τ .
The second-quantized version of the rectangulene non-

interacting tight-binding Hamiltonian is simply

Ĥ0 =
∑
mατσ

τ ϵBmα n̂
B
mατσ +

∑
mτσ

τ ϵEm n̂
E
mτσ (17)

The full rectangulene’s Hubbard Hamiltonian is:

Ĥ = Ĥ0 + V̂ ee = Ĥ0 + U
∑
Ri

n̂Ri↑n̂Ri↓ (18)

B. Coulomb integrals

Using Eq. (15), we decompose the interacting term
in the Hamiltonian into bulk, edge and crossed contribu-
tions as follows:

V̂ ee = V̂ B + V̂ E + V̂ BE (19)

V̂ B =
∑

mm′αα′

UBmα,m′α′ n̂Bmα↑n̂
B
m′α′↓

V̂ E =
∑
mm′

UEm,m′

(
n̂Em↑n̂

E
m′↓ + P̂m↑P̂m′↓

)
V̂ BE =

∑
mm′ασ

UBEmα,m′ n̂Bmασn̂
E
m′σ̄

with σ̄ = −σ. The Coulomb matrix elements are

UBmα,m′α′ =
C

Λϕmα Λ
ϕ
m′α′

∑
i=1,2

Uym,m′,i U
B,x
mα,m′α′,i(20)

UEm,m′ =
C

Λψm Λψm′

∑
i=1,2

Uym,m′,i U
E,x
m,m′,i

UBEmα,m′ =
C

Λϕmα Λ
ψ
m′

∑
i=1,2

Uym,m′,i U
BE,x
mα,m′,i

where

C =
32U

M2
xM

2
y

(21)

UB,xmα,m′α′,i =
∑
Rx

(
ϕAmα,i(Rx) ϕ

A
m′α′,i(Rx)

)2
UE,xm,m′,i =

∑
Rx

(
ψA
m,i(Rx) ψ

A
m′,i(Rx)

)2
UBE,xmα,m′,i =

∑
Rx

(
ϕAmα,i(Rx) ψ

A
m′,i(Rx)

)2
Uym,m′,i =

∑
Ry

(fm,i(Ry) fm′,i(Ry))
2
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The above sums can be evaluated analytically. So after
some straightforward but lengthy algebra we find that

UBmα,m′α′ = D
δ+mm′ C

B,+
mα,m′α′ + δ−mm′ C

B,−
mα,m′α′/Mx

Λϕmα Λ
ϕ
m′α′

UEm,m′ = D
δ+mm′ C

E,+
m,m′ + δ−mm′ C

E,−
m,m′/Mx

G1
mG

1
m′

UBEmα,m′ = 2D
δ+mm′ C

BE,+
mα,m′ + δ−mm′ C

BE,−
mα,m′/Mx

ΛmαG1
m′

We have introduced the following short-hand notation to
simplify the expressions above

D =
U

2MxMy
(22)

δ+mm′ = 1 +
1

2

(
δm,m′ + δm,My

δm′,My

)
δ−mm′ =

1

2
δm+m′,My

−
(
δm,My

+ δm′,My

)
The formulae for the coefficients CB , CE and CBE are
rather cumbersome and we relegate them to the ap-
pendix. We have also found the important sum rules

U

2
= UBmα + UEBmα (23)

= UEm + UBEm

where the summed Coulomb integrals

UBmα =
∑
m′α′

UBmα,m′α′ (24)

UBEmα =
∑
m′

UBEmα,m′

give a measure of the relevance of bulk and edge contri-
butions to the renormalization of the dispersion relation
of bulk states. Conversely, the sums

UEm =
∑
m′

UEm,m′ (25)

UEBm =
∑
m′α′

UBEm′α′,m

give a measure of the contributions of edge and bulk
states to the renormalization of the dispersion relation
of edge states. We plot the values of these different
Coulomb integrals as a function of k̄m in Figure (3), for a
rectangulene with dimensions (Mx, My) = (30, 41), e.g.:
12.8 × 10.1 nm. Interestingly, UB is almost constant and
approximately equal to 0.5U for all k̄y wave-numbers.
Similarly, UEB is rather small but non-zero. In contrast,
UE and UBE are both different from zero and feature a
strong dependence with k̄m. We believe that the most
important message here however is that bulk states have
a much larger contribution to the edge-state dispersion
relation than the proper edge states.

FIG. 3. Coulomb integrals UB
mα, UEB

mα , UBE
m and UE

m in units of
U (black, blue, red and green dots, respectively) as a function
of the wave-number k̄m for a rectangulene with dimensions
(Mx, My) = (30, 41).

C. Bulk and edge Hubbard Hamiltonians

We rewrite the Hubbard Hamiltonian is its final form

Ĥ = ĤB + ĤE + V̂ BE (26)

where the bulk and edge Hamiltonians are as follows

ĤB =
∑
mατσ

τ ϵBmα n̂
B
mατσ +

∑
mα,m′α′

UBmα,m′α′ n̂Bmα↑n̂
B
m′α′↓

(27)

ĤE =
∑
mτσ

τ ϵEm n̂
E
mτσ +

∑
mm′

UEmm′

(
n̂Em↑n̂

E
m′↓ + P̂m↑P̂m′↓

)

D. Occupations and magnetization

The sublattice- and spin-resolved total occupations are(
NA
σ

NB
σ

)
=

1

2

∑
mα

(
⟨n̂Bmασ⟩
⟨n̂Bmασ⟩

)
+

1

2

∑
m

(
⟨n̂Emσ⟩+ ⟨P̂mσ⟩
⟨n̂Emσ⟩ − ⟨P̂mσ⟩

)
(28)

where Nσ = NA
σ +NB

σ and N = NB +NE = N↑ +N↓.
The magnetization per edge state can have contributions
from both bulk and edge states

m =
N↑ −N↓

N edge
= mB +mE (29)

mB =
1

N edge

∑
mασ

σ ⟨n̂Bmασ⟩

mE =
1

N edge

∑
mσ

σ ⟨n̂Emσ⟩
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although for low enough doping levels, only edge states
contribute. The sublattice-unbalanced magnetization

mst =
1

N edge

∑
σ

σ
(
NB
σ −NA

σ

)
=

1

N edge

∑
mσ

σ ⟨P̂mσ⟩

(30)

is a measure of the staggered magnetization across edges.
Fernandez-Rossier introduced [12] a spin dipole operator

which is in essence the band-mixing operator P̂mσ defined
in the present article.

IV. MEAN-FIELD SOLUTIONS OF THE
HUBBARD MODEL OF A GRAPHENE

RECTANGULENE

A. Bulk states

We apply first a mean-field approximation to the bulk
piece of the Hamiltonian, where nBmατσ = ⟨n̂Bmατσ⟩. We
find

ĤB
MF =

∑
mατσ

ξBmατσ n̂
B
mατσ (31)

ξBmατσ = τ ϵBmα +
∑
m′α′

UBmα,m′α′ nBm′α′σ̄ +
∑
m′

UBEmα,m′ nEm′σ̄

where the dispersion relation is spin-split because of the
bulk-edge cross-terms. The bulk contribution to the total
energy is

EBT =
∑
mατσ

ξBmατσ nmατσ − EBdc (32)

EBdc =
∑

mm′αα′

UBmα,m′α′ nBmα↑ n
B
m′α′↓

We shall assume for now that the rectangulene is in the
edge-only doping regime, where doping is low enough
that missing/extra electrons only affect edge states. As
a consequence, bulk states will always be half-filled,
nmα−σ = 1 and nmα+σ = 0. Hence the number of elec-
trons residing in bulk states is NB = 2(MxN −N edge),
where the number of edge states N edge is given in Eq.
(5). The bulk dispersion relation simplifies to

ξBmατσ = τ ϵBmα + UBmα +
∑
m′

UBEmα,m′ nEm′σ̄ (33)

And the contribution of bulk states to the rectangulene
total energy is

EBT =
∑
mα

(
ξBmα−↑ + ξBmα−↓ − UBmα

)
(34)

We also have that the bulk contribution to the magneti-
zation is identically zero, mB = 0.
The apparently anodyne result in Eq. (33) when paired

with the sum rule in Eq. (25) amounts to a huge sim-
plification that enables us to carry out calculations for
huge rectangulenes, because the number of Coulomb ma-
trix elements to be calculated and stored is reduced from
M2
x N

2 to MxNN
edge.

B. Edge states

We perform now a mean-field approximation to the
edge piece of the Hamiltonian so that nEmτσ = ⟨n̂Emτσ⟩
and Pmτσ = ⟨P̂mτσ⟩. We also have the band-summed
relationships nEmσ = nEm−σ + nEm+σ and Pmσ = Pm−σ +
Pm+σ. The edge mean-field Hamiltonian becomes

ĤE
MF =

∑
mτσ

ξEmτσ n̂
E
mτσ +

∑
mσ

UEm,m′ Pm′σ̄ P̂mσ (35)

ξEmτσ = τ ϵEm + UBEm +
∑
m′

UEm,m′ nEm′σ̄

Diagonalization of the mean-field edge Hamiltonian pro-
vides us with the edge eigen-energies ξEmτσ and edge
eigen-states. The edge states’ occupations are deter-
mined by the equation of state

nEmσ = nF (ξ
E
m+σ) + nF (ξ

E
m−σ) (36)

where nF is the Fermi function. The order parameter
Pmσ is determined by solving the self-consistency equa-
tions adequate to each mean-field solution, as discussed
below.
We introduce the edge filling δE by taking half-filling

as a reference:

δE = NE − 2N edge =
∑
mσ

nEmσ − 2N edge (37)

The edge contribution to the rectangulene total energy
is determined by the equation

EET =
∑
mτσ

ξEmτσ n
E
mτσ − EEdc (38)

EEdc =
∑
mm′

UEm,m′

(
nEm↑ n

E
m′↓ + Pm↑ Pm′↓

)
+
∑
m

UBEm nEm

C. Paramagnetic solution

The PMmean-field solution is found by setting nEmτ↑ =

nEmτ↓ = nEmτ/2 and Pmτσ = 0. Then the edge and bulk
dispersion relations do not depend on the spin degree of
freedom

ξEmτ = τ ϵEm + UBEm +
1

2

∑
m′

UEmm′ nEm′ (39)

ξBmατ = τ ϵBmα + UBmα +
1

2

∑
m′

UBEmαm′nEm′

Finally, the edge double-counting contribution to the to-
tal energy is

EEdc =
1

4

∑
mm′

UEm,m′ nEm n
E
m′ +

∑
m

UBEm nEm (40)
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D. Ferromagnetic solution

The FM mean-field solution is found by setting nEmτ↑ ̸=
nEmτ↓ and Pmτσ = 0. Then the edge and bulk dispersion
relations are

ξEmτσ = τ ϵEm + UBEm +
∑
m′

UEmm′ nEm′σ̄ (41)

ξBmατσ = τ ϵBmα + UBmα +
∑
m′

UBEmαm′nEm′σ̄

and the edge double-counting term is

EEdc =
∑
mm′

UEm,m′ nEm↑ n
E
m′↓ +

∑
m

UBEm nEm (42)

As shown in our previous work [38], a FM coupling
between edge states only occurs for long enough rect-
angulenes, that is when the UEm term dominates over
the ϵEm term. If this is the case, the equation of state
can be solved at zero temperature and arbitrary dop-
ing δE . For positive doping values, the majority spin
states ↑ are completely filled with nEm↑ = 2. As UEm
increases with m (see Fig. 3), the minority spinstates
↓ are filled following the order of m. As m runs from
mE

min = My − N edge to mE
max = My − 1, we define a

critical mE
c = mE

min + floor(δE/2), so:

nEmE
min:m

E
c −1,↓ = 2 (43)

nEmE
c ,↓

= δE − 2 floor(δE/2)

nEm=mE
c +1:mE

max,↓
= 0

The dispersion relations can then be written explicitly as

ξEmτ↓ = τ ϵm +
U

2
+ UEm (44)

ξEmτ↑ = τ ϵm +
U

2
+

 mE
c −1∑

m′=mE
min

−
mE

max∑
m′=mc+1

 UEm,m′ +

+UEm,mE
c
(nEmE

c ,↓
− 1)

ξBmατ↓ = τ ϵBmα +
U

2
+ UBEmα

ξBmατ↑ = τ ϵBmα +
U

2
+

 mc∑
m′=1

−
Nedge∑

m′=mc+2

 UBEmα,m′ +

+UBEmα,mE
c
(nEmE

c ,↓
− 1)

Similarly, the FM total energy has the following analyti-
cal expression

ET =
∑
mασ

ξBmα−σ +
∑
mτσ

ξEmτσ n
E
mτσ − U

2
(1 + δE)

−
∑
mα

UBEmα −
∑
mm′

UEm,m′ nEm′↓ (45)

E. Antiferromagnetic solution

The AFM solution is selected by letting the order pa-
rameter Pmτσ be different from zero. In this case the
edge Hamiltonian looks

ĤE
MF =

∑
mτσ

(τ ϵEm +Hmσ) n̂
E
mτσ +

∑
mσ

∆mσP̂mσ(46)

Hmσ = UBEm +
∑
m′

UEm,m′ nEm′σ̄

∆mσ =
∑
m′

UEm,m′ Pm′σ̄

The above Hamiltonian can be rewritten in the following
BCS form∑
mσ

(
ψ̂†
m+σ ψ̂

†
m−σ

) (Hmσ + ϵm ∆mσ

∆mσ Hmσ − ϵm

) (
ψ̂m+σ

ψ̂m−σ

)
(47)

and can be diagonalized by a Bogoliubov transformation
so that

ĤE
MF =

∑
mασ

ξEmτσ γ̂
†
mασ γ̂mασ (48)

ξEmτσ = ξEmτ = Hmσ + τ Rm = Hmσ + τ
√
ϵ2m +∆2

m

where we have considered Pmσ = σPm, so ∆2
mσ=∆2

m in-
dependent of the spin. Therefore, the edge eigen-energies
are spin-degenerate. The eigen-state operators and Bo-
goliubov coherence factors are(
γ̂m+σ

γ̂m−σ

)
=

(
u+mσ sign(∆mσ)u

−
mσ

−sign(∆mσ)u
−
mσ u+mσ

)(
ψ̂m+σ

ψ̂m−σ

)
u±mσ =

1√
2

(
1± ϵEm

Rm

)1/2

(49)

Finally, the order parameter can be determined by the
conventional BCS self-consistency equations

Pmσ =
∆mσ

Rm

(
nF (ξ

E
m+σ)− nF (ξ

E
m−σ)

)
(50)

Just like for the FM solution, the AFM coupling be-
tween edge states only occurs for long enough rectangu-
lenes [38]. If this is the case, the equation of state can
be solved at zero temperature for the AFM solution sim-
ilarly to the FM case. We find that the occupations are
nEm,−σ = 1 and

nEmE
min:m

E
c −1,+σ = 1 (51)

nEmE
c ,+σ

=
δE

2
− floor(δE/2)

nEmE
c +1:mE

max,+σ
= 0

As a consequence,

Hmσ =
U

2
+

mc−1∑
m′=mE

min

UEm,m′ + UEm,mc
nEmc+σ̄ (52)
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FIG. 4. Zero-temperature AFM order parameter Pm of an
undoped rectangulene of width N = 1501, that corresponds
to 184,7 nm and hosts 500 states. Black, red and green dots
correspond to lengths Mx = 10, 100 and 1000 (4.26, 42,6 and
426 nm, respectively). Dashed lines show the fitting of the

results to tanh4
(
Mx

(
k̄m
π

− 2
3

))

The order parameter Pm(Mx, My) must be determined
by solving numerically equation (50). We find that
the absolute value of the order parameter does not de-
pend on the rectangulene’s width My. We plot Pm(Mx)
as a function of k̄m in Figure 4 for several undoped
rectangulene’s lengths Mx, and at zero temperature.
We find that Pm can be approximated by the function

tanh4
(
Mx

(
k̄m
π − 2

3

))
to a high accuracy. Furthermore,

for large enough Mx > 50− 100, the order parameter of
a doped rectangulene can be approximated as follows:

PmE
min:m

E
c −1 = 0 (53)

PmE
c

= 1 + floor(δE/2)− δE/2

PmE
c +1:mE

max
= 1

so that

∆mσ = −σ

PmE
c
UEm,mE

c
+

mE
max∑

m′=mE
c +1

UEm,m′

 (54)

Fernandez-Rossier proposed a phenomenological BCS-
like description of band mixing [12] that is consistent with
our results above. Similarly, MacDonald and coworkers
developed a phenomenological BCS model of inter-edge
mixing that is also consistent with our results [14].

F. Beyond the edge-only doping regime

The edge-only doping regime is too restrictive an ap-
proximation in several instances. Examples are gate-

FIG. 5. Electronic structure of a (Mx, My ) = (10, 15) rect-
angulene as a function of the ky wave-number at an edge
filling (a) δE = 0 and (b) δE = 4 electrons. This rectangu-
lene has dimensions 4.3 nm × 3.7 nm, and hosts 8 edge states.
The left column plots the non-interacting (top) and mean-field
PM electronic structure. The central/right columns plot the
mean-field FM/AFM electronic structure for spin-up (top)
and spin-down (bottom).

or voltage-biased finite-length 7-AGNR [36] or bulk-size
rectangulenes where the Dirac-point gap is negligible.
Fortunately, the approximation can be released to in-
clude low-lying bulk states within the self-consitency pro-
cedure. This can be achieved by choosing a small energy
cutoff Ec so that occupations of bulk states with ener-
gies |ξBmατσ − µ| smaller than Ec are determined self-
consistently, while those above this energy cutoff are
frozen at 0 or 1.

G. Dispersion relations

The analysis above opens the door to determine eas-
ily the electronic structure on rectangulenes of any size
in the edge-only doping regime. We will take below a
hopping integral t = 2.7 eV, and a Hubbard-U parame-
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FIG. 6. Same as in Figure 5, now for a (Mx, My ) =
(950, 901) rectangulene whose dimensions are 404.7 nm ×
221.6 nm, and host 600 edge states. This rectangulene is
made of about 3.5 million atoms.

ter equal to 0.8 t, that we found to fit well our previous
Density Functional Theory results [38].

A first simple example of a small nano-structure is
shown in Figure 5. This rectangulene hosts 8 edge states,
that can be easily spotted in the figure. We find the AFM
phase to be more stable at zero doping than the FM phase
by 2.42 meV, while they are essentially degenerate when
doped with 4 electrons. We find that four-electron dop-
ing leaves the rectangulene still in the edge-only doping
regime. This electronic structure follows the well-known
trends of undoped and doped infinite-length zigzag GNRs
[14]. However, the states here might be better regarded
as molecular orbitals rather than Bloch states, and the
figure shows explicitly the discrete spectrum of mean-
field eigen-energies.

A second example is shown in Figure 6, that corre-
sponds to a bulk-like graphene sheet with edges. Here
we show only the undoped-sheet dispersion relation, that
features both the bulk Dirac cone as well as the quasi-
continuum 1-dimensional spectrum corresponding to the
edge branches. We find here that the energy gap at the
bulk Dirac point is smaller than the lowest edge eigen-
energy, so that the edge-only doping regime does not exist
for this rectangulene.

Overall, we find that the edge states are always double-
degenerate. There exist branch-degeneracy (τ = ±) but
spin-degeneracy lifting for the FM solution. In contrast,
there is spin-degeneracy but branch-degeneracy lifting for
the AFM solution.

H. Addition energies

Recently, single Mx = 5 rectangulenes have been de-
posited onto ultraclean graphene nanogaps, and the dif-
ferential conductance as a function of both bias and gate
voltage. has been measured. Neat sequences of Coulomb

blockade diamonds have been observed [34–36], whereby
the device addition energies have been extracted.
The addition energy of a rectangulene having a total

of N electrons is

Eadd(N ) = ET (N + 1) + ET (N − 1)− 2ET (N ) (55)

Our exact solution enables us to compute these addition
energies for arbitrary dopings. The edge-only doping ap-
proximation restricts the validity of the calculations to
low dopings and lengths Mx sufficiently small that bulk
states have all higher energies than the edge states to be
addressed. This approximation can however be released
easily as explained in section IVF above.
We have checked that Eadd depends on the rectangu-

lene’s width My but not on its length Mx. Koopman’s
theorem is verified as follows. The FM/AFM solutions
have branch/spin degeneracy meaning that Eadd(N =
even) = 0, and we have checked that this is the case. We
then find that

Eadd(δE = odd) = ξEm+1τ − ξEmτ (56)

(57)

for the AFM solution, while τ is replaced by σ for the
FM solution. Additionally, we find that Eadd is the same
for the FM and the AFM solutions. We list in Table I
the addition energies of a rectangulene with My = 13
(e.g.: width 3.2 nm), that can host up to 8 electrons
in edge states. The edge-only doping regime restricts in
this case the rectangulene’s lengths to values Mx < 40,
corresponding to lengths of about 17 nm.

TABLE I. Addition energies of a rectangulene of width My =
13.

δE 0 1 2 3 4 5 6 7

Eadd (meV) 82 0 86 0 59 0 37 0

FIG. 7. Energy differences (a) EPM
T −EAFM

T and (b) EFM
T −

EAFM
T for a mesh of Mx and My values. Dashed lines indicate

the appearance of new edge states. Panel (c) shows EFM
T −

EAFM
T in a smaller mesh with more detail..

I. Energy differences among phases

Jung and MacDonald analyzed phase stabilities of
narrow infinite-length zigzag GNRs as a function of
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doping[14]. We discuss here energy differences of un-
doped rectangulenes as a function of width and length
(see Fig. 7). Overall, we find that the magnetic en-
ergy, measured as the energy difference EPMT −EAFMT is
roughly independent ofMx, especially forMx larger than
about 20. This is expected because for large enough Mx,
the tails of the edge wavefunctions decay enough that
tails at opposite edges do not overlap. It is in contrast
roughly proportional to My, e.g.: to the number of edge
states. We also find that the energy difference among
the FM and AFM phases EFMT − EAFMT decays quickly
with Mx so that the edge states at opposite edges be-
come independent for Mx larger than about 40-60. For
the My dependence, we find that EFMT −EAFMT presents
oscillations related to the change in the number of edge
states of the system.

FIG. 8. Edge magnetization for a rectangulene with dimen-
sions (a) (Mx, My) = (5, 46) that correspond to a rectangu-
lene with dimensions 2.1 nm × 11.3 nm and hosts 26 edge
states; (b) (Mx My) = (15, 5) that correspond to 6.4 nm ×
1.2 nm and hosts two edge states.

J. AFM-phase site-charge and -spin occupations

The site-charge occupation can be split into bulk and
edge contributions in the edge-only doping regime as fol-
lows:

nRi = nBRi + nERi (58)

nBRi =
∑
mα

8 f2m,i

MxMy Λ
ϕ
mα

(
(ϕAmα,i)

2

(ϕBmα,i)
2

)
(59)

nERi =
∑
m

8 f2m,i

MxMy Λ
ψ
m

(
(ψA
m,i)

2

(ψB
m,i)

2

)
nEm

while the site spin densities are

ME
Ri =

∑
m

8 f2m,i

MxMy Λ
ψ
m

(
(−ψA

m,i)
2

(ψB
m,i)

2

)
Pm

These occupations can be computed numerically. Some
care must be taken to handle numerical divergencies in
the edge summations where hyperbolic sine functions ap-
pear.

We plot the edge magnetization of two rectangulenes
in Figure 8.The first corresponds to a wide but short one,
that hosts a sizeable number of edge states. The second
one is a long 9-armchair GNR that hosts two edge states.

K. There and back again: real-space tight-binding
Hamiltonian

The real-space mean-field Hubbard Hamiltonian

ĤMF =
∑
Riσ

∑
a=A,B

ϵaRiσn̂
a
Riσ −

−t
∑

<Riσ,R′i′σ′>

(
â†Riσ b̂

†
R′i′σ′ + c.c.

)
(60)

ϵaRiσ = (ϵ0 + U naRiσ̄)

incorporates already electron correlations and edge
physics. This Hamiltonian can be used to address more
complex phenomena by adding to it additional pieces.
Site/hopping disorder can be addressed by replacing ϵ0
/ t by a random distribution of on-site energies/hopping
integrals. Similarly, a Peierls phase can be attached to
the hopping integrals to investigate Hall physics. Cou-
pling to a gauge vector can be included to analyse the
optical response of the rectangulene to light.

V. CONCLUSIONS

We have presented in this article a full analytical so-
lution of the mean-field Hubbard model of non-chiral
graphene rectangulenes of arbitrary length and width. A
central aspect of the article has been the determination
of the bulk, edge and cross Coulomb integrals of the rect-
angulene, that are written here for the first time. This
solution is not only an algebraic curiosity, but rather is
a powerful and flexible platform that enables us to ad-
dress a wide range of experimental issues in STM, trans-
port, magnetic, Hall and optical phenomena of real-life
graphene rectangulenes. It can also be used to address
strong electron correlations, by including GW on top of
it, or any other perturbative approach.
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APPENDIX

We write in this appendix the explicit expressions for
some coefficients appearing in the Coulomb integrals in

section III B. We use the short-hands k± = (kαm±kα′

m′)/2,
q± = (qm ± qm′)/2, F± = F (kmα ± km′α′) and so forth.

CB,+mα,m′α′ = 2F 1
mα + 2F 1

m′α′ − F 1
+ − F 1

−

CB,−mα,m′α′ = 2F 2
mα + 2F 2

m′α′ − F 2
+ − F 2

−

CE,+m,m′ = (coth (Mxqm/2) + coth (Mxqm′/2))G1
+ + (coth (Mxqm/2)− coth (Mxqm′/2))G1

− −

− 2

sinh (Mxqm/2)
G1
m′ −

2

sinh (Mxqm′/2)
G1
m

CE,−m,m′ = (coth (Mxqm/2)× coth (Mxqm′/2) + 1)G2
+ + (coth (Mxqm/2)× coth (Mxqm′/2)− 1)G2

− −

−2
coth (Mxqm/2)

sinh (Mxqm′/2)
G2
m − 2

coth (Mxqm′/2)

sinh (Mxqm/2)
G2
m′

CBE,+mα,m′ = G1
m′ +

1− F 1
mα

sinh (Mxqm′/2)
−

−2
sinh (qm′/2) cos (Mxk̄mα/2) cos (k̄mα/2) + cosh (qm′/2) coth (Mxqm′/2) sin (Mxk̄mα/2) sin (k̄mα/2)

Mx (cosh qm′ − cos k̄mα)

CBE,−mα,m′ = 1 + coth (Mxqm′/2)G2
m′ −

F 2
mα

sinh (Mxqm′)
−

−2
coth (Mxqm′/2) cosh (qm′/2) cos (Mxk̄mα/2) cos (k̄mα/2) + sinh (qm′/2) sin (Mxk̄mα/2) sin (k̄mα/2)

cosh qm′ + cos k̄mα
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