# Two uniqueness results in the inverse boundary value problem for the weighted p-Laplace equation 

Cătălin I. Cârstea* Ali Feizmohammadi ${ }^{\dagger}$


#### Abstract

In this paper we prove a general uniqueness result in the inverse boundary value problem for the weighted p-Laplace equation in the plane, with smooth weights. We also prove a uniqueness result in dimension 3 and higher, for real analytic weights that are subject to a smallness condition on one of their directional derivatives. Both results are obtained by linearizing the equation at a solution without critical points. This unknown solution is then recovered, together with the unknown weight.


## 1 Introduction

Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be a compact connected set with nonempty interior and a smooth boundary, let $\gamma \in C^{\infty}(\bar{\Omega})$ be a positive function, and finally let $p \in(1,2) \cup(2, \infty)$. We consider the boundary value problem

$$
\left\{\begin{array}{l}
\nabla \cdot\left(\gamma|\nabla u|^{p-2} \nabla u\right)=0,  \tag{1}\\
\left.u\right|_{\partial \Omega}=f
\end{array}\right.
$$

where $f, u$ are real valued functions. Equation (1) is known as the weighted $p$-Laplace equation and it is a quasilinear, degenerate elliptic equation. The forward problem for this equation is well studied and we have

[^0]Theorem 1 (e.g. [33, Theorem 1]). Let $f \in C^{1, \alpha}(\partial \Omega)$ for some $\alpha \in(0,1]$. There exist $\beta \in(0,1)$ and $C\left(\|f\|_{C^{1, \alpha}(\partial \Omega)}\right)>0$ nondecreasing such that equation (1) has a unique weak solution $u \in C^{1, \beta}(\bar{\Omega})$ and

$$
\begin{equation*}
\|u\|_{C^{1, \beta}(\bar{\Omega})} \leq C\left(\|f\|_{C^{1, \alpha}(\partial \Omega)}\right) \tag{2}
\end{equation*}
$$

It is therefore possible to define the Dirichlet-to-Neumann map associated to (1) by

$$
\begin{equation*}
\Lambda_{\gamma}(f)=\left.\left(\gamma|\nabla u|^{p-2} \partial_{\nu} u\right)\right|_{\partial \Omega}, \quad \forall f \in C^{1, \alpha}(\partial \Omega), \tag{3}
\end{equation*}
$$

where $u$ is the unique solution to (1) and $\nu$ is the exterior normal unit vector on $\partial \Omega$.

In [7], Calderón proposed the following question/inverse problem: can an elliptic coefficient $\gamma$ be recovered from the Dirichlet-to-Neumann map associated to the equation $\nabla \cdot(\gamma \nabla u)=0$ ? A positive answer for general smooth coefficients $\gamma$ was first provided in [42] in dimension 3 or higher, and by [35] in the plane. In the intervening decades, similar questions for other equations have been investigated in a large number of papers. It is beyond the purposes of our work to give a full account of the existing inverse problems literature. We will reference below those works that are most closely related to our own, in terms of subject matter or technique.

In this paper we are interested in the inverse problem of recovering the a priori unknown coefficient $\gamma$ in (11), given the knowledge of $\Lambda_{\gamma}$. This a natural analogue of the original problem of Calderón. We will prove two results. The first is the following general uniqueness result in the plane.

Theorem 2. Let $n=2$ and let $\gamma, \tilde{\gamma} \in C^{\infty}(\bar{\Omega})$ be strictly positive functions. If $\Lambda_{\gamma}=\Lambda_{\tilde{\gamma}}$, then $\gamma=\tilde{\gamma}$.

In dimensions 3 and higher we prove the following uniqueness result for real-analytic weights..

Theorem 3. Let $n \geq 3$ and let $\zeta \in \mathbb{R}^{n}$ be a unit vector. Suppose there exists a point $z \in \partial \Omega$ in a neighborhood of which $\partial \Omega$ is flat. There exists $\mu>0$, depending only on $\Omega$ and $n$, such that if $\gamma, \tilde{\gamma} \in C^{\omega}(\bar{\Omega})$ are strictly positive functions with $\|\zeta \cdot \nabla \gamma\|_{C^{0, \alpha}(\Omega)},\|\zeta \cdot \nabla \tilde{\gamma}\|_{C^{0, \alpha}(\Omega)}<\mu$, then $\Lambda_{\gamma}=\Lambda_{\tilde{\gamma}}$ implies $\gamma=\tilde{\gamma}$.

The study of inverse problems for non-linear equations is not new, but in recent years there has been a considerable increase in the interest for this topic. As examples, we can cite the papers [17], [21], [23], [24], [28], [29], [31, [30, [40] on semilinear equations, and [10], [9], 11], [14, [15], 8], [16], [20], [22], 25], 34, [37], 38], 39], 41] on quasilinear equations. By and
large, all these works rely on a so called second/higher linearization method, which first appeared in [21]. This method consists of of using Dirichlet data that depends on a small (or large) parameter $\epsilon$, typically of the form $\epsilon \phi$ (or $\lambda+\epsilon \phi$, with $\lambda$ a constant, if constants are a solution to the linear part of the equation). One then uses the asymptotic expansion of the Dirichlet-toNeumann map in terms of the parameter $\epsilon$ to obtain information about the coefficients of the equation. Sometimes this is presented as differentiating the equation with respect to the small parameter, then setting it to zero.

Our paper is not the first to take up the inverse boundary value problem for the weighted p-Laplacian. The works [6, 3, [4, [5] [19], [27, [36] all address aspects of the same problem. We note that a uniqueness result without additional constraints, such as monotonicity, has not yet been previously derived for the weighted p-Laplacian. Also, past boundary determination results have only yielded $\left.\gamma\right|_{\partial \Omega}$ and $\left.\partial_{\nu} \gamma\right|_{\partial \Omega}$, but not the rest of the derivatives of $\gamma$ on the boundary (see [36], [3]). For other degenerate equations, the only known results are those of [12, [13] where general uniqueness results are derived for the coefficients of porous medium equations.

The approach to the proofs of Theorems 2 and 3 also makes use of a linearization method. In equation (1) we use Dirichlet data of the form $f=\phi_{0}+\epsilon \phi$, with $\epsilon$ a small parameter. Let $u_{\epsilon}$ be the corresponding solution and, assuming we are justified in taking the derivative, let $\dot{u}=\left.\frac{\mathrm{d}}{\mathrm{d} \epsilon} u_{\epsilon}\right|_{\epsilon=0}$. Further assuming we can differentiate the equation, it is not hard to see that $\dot{u}$ should satisfy the anisotropic, linear equation

$$
\left\{\begin{array}{l}
\nabla \cdot(A \nabla \dot{u})=0,  \tag{4}\\
\left.\dot{u}\right|_{\partial \Omega}=\phi,
\end{array}\right.
$$

where $A$ is the matrix with the $u_{0}$-dependent coefficients

$$
\begin{equation*}
A_{j k}=\gamma\left|\nabla u_{0}\right|^{p-2}\left(\delta_{j k}+(p-2) \frac{\partial_{j} u_{0} \partial_{k} u_{0}}{\left|\nabla u_{0}\right|^{2}}\right) . \tag{5}
\end{equation*}
$$

The Dirichlet-to-Neumann map $\Lambda_{\gamma}$ determines the Dirichlet-to-Neumann $\operatorname{map} \Lambda_{A}$ for the equation (4).

In order to use already established results for the determination of the cofficient matrix $A$, we need it to be elliptic. Indeed, even the differentiability of $u_{\epsilon}$ w.r.t. $\epsilon$ is in question unless that is the case. We then see that the unknown $u_{0}$ must be guaranteed to have no critical points. In dimension 2, by results of Alessandrini and Sigalotti in [2], we can guarantee the absence of critical points by choosing Dirichlet data that has single local minimum and maximum points on $\partial \Omega$. In dimension 3 and higher something like this is unlikely to hold, as even for linear elliptic equations it is known that for
each Dirichlet data there is an open set of smooth coefficients that produce solutions with critical points (see [1). We can show however that, for coefficients $\gamma$ that vary slowly in one direction, there exists explicit Dirichlet data for which no critical points appear.

We can also point out here a simple corollary of our linearization result (Proposition 3 below), for weights that are constant in one direction.

Corollary 1. Let $n \geq 3$ and $\zeta \in \mathbb{R}^{n}$ be a unit vector. If $\gamma, \tilde{\gamma} \in C^{\infty}(\Omega)$ are such that $\zeta \cdot \gamma=\zeta \cdot \tilde{\gamma}=0$ and $\Lambda_{\gamma}=\Lambda_{\tilde{\gamma}}$, then $\gamma=\tilde{\gamma}$.

Proof. In this case $u_{0}=\zeta \cdot x$ is a solution of (11), with either weight. Then

$$
\begin{equation*}
A_{j k}=\gamma\left(\delta_{j k}+(p-2) \zeta_{j} \zeta_{k}\right), \quad \tilde{A}_{j k}=\tilde{\gamma}\left(\delta_{j k}+(p-2) \zeta_{j} \zeta_{k}\right) \tag{6}
\end{equation*}
$$

After a rescaling in the $\zeta$ direction, the linearized problem reduces to the classical Calderón problem with isotropic conductivities.

The linearization procedure is detailed in in section 2. In section 3 we give a proof of Theorem 2, By the well known result [35] of Nachman, we have uniqueness for the coefficient matrix $A$, up to diffeomorphism invariance. Making use of the particular structure of $A$, we then succeed in showing that the diffeomorphism relating $A$ and $\tilde{A}$ must be trivial and that $\gamma=\tilde{\gamma}$. In section (4) we give the proof of Theorem 3. Our approach is to use boundary determination results for equation (4) to obtain the values of all tangential directions of $A$ on the boundary, together with all their normal direction derivatives. From this information we are then able to inductively show uniqueness for the values of all the normal direction derivatives $\left.\partial_{\nu}^{k} u_{0}\right|_{\partial \Omega}$, $\left.\partial_{\nu}^{k} \gamma\right|_{\partial \Omega}, k=0,1,2, \ldots$. Since here $\gamma$ is assumed to be a real-analytic function, this is enough to recover it on $\Omega$.

## 2 Linearizing the $p$-Laplace equation

For each $\xi \in \mathbb{R}^{n} \backslash\{0\}$ let

$$
\begin{equation*}
J_{j}(\xi)=|\xi|^{p-2} \xi_{j}, \quad j=1, \ldots, n . \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial}{\partial \xi_{k}} J_{j}(\xi)=|\xi|^{p-2}\left(\delta_{j k}+(p-2) \frac{\xi_{j} \xi_{k}}{|\xi|^{2}}\right) . \tag{8}
\end{equation*}
$$

In what follows, we will repeatedly use the Taylor's formula

$$
\begin{equation*}
J_{j}(\zeta)=J_{j}(\xi)+\sum_{k=1}^{n}\left(\zeta_{k}-\xi_{k}\right) \int_{0}^{1} \partial_{\xi_{k}} J(\xi+t(\zeta-\xi)) \mathrm{d} t \tag{9}
\end{equation*}
$$

We plan to linearize equation (1) near some solution $u_{0}$, whose boundary data $\left.u_{0}\right|_{\partial \Omega}=\phi_{0}$ is known. As will become apparent below, we can only perform the linearization if $u_{0}$ does not have any critical points in $\Omega$. In dimension two plenty of such solutions exist, thanks to the following proposition due to Alessandrini and Sigalotti.

Proposition 1 (see [2, Theorem 5.1]). If $n=2$ there exists boundary data $\phi_{0} \in C^{\infty}(\partial \Omega)$ independent of $\gamma$ such that the corresponding solution $u_{0}$ of (11) is in $C^{\infty}(\bar{\Omega})$ and $\left|\nabla u_{0}(x)\right|>0$ for any $x \in \Omega$.

In higher dimensions, even for a linear elliptic equation with unknown coefficients it is impossible to guarantee the absence of critical points (see [1]). We can still show the existence of such a solution provided the weight $\gamma$ is sufficiently close to a constant.

Proposition 2. Let $\zeta \in \mathbb{R}^{n}$ be a unit vector. There exists $\mu>0$ so that if $\|\zeta \cdot \nabla \gamma\|_{C^{0, \alpha}(\Omega)}<\mu$, then there exists $u_{0} \in C^{\infty}(\bar{\Omega})$ which solves (1) with boundary data $\phi_{0}=\zeta \cdot x$, and is such that $\left|\nabla u_{0}(x)\right|>0$ for any $x \in \Omega$.

Proof. Without loss of generality, we assume that $\zeta=(1,0, \ldots, 0)$. We make the ansatz

$$
\begin{equation*}
u_{0}(x)=x_{1}+R,\left.\quad R\right|_{\partial \Omega}=0 . \tag{10}
\end{equation*}
$$

By (9) we have

$$
\begin{gather*}
\sum_{k} B_{j k}(\nabla R) \partial_{k} R=\gamma J_{j}\left(\nabla u_{0}\right)-\gamma \delta_{1 j},  \tag{11}\\
B_{j k}(\xi)=\gamma \int_{0}^{1}\left|e_{1}+t \xi\right|^{p-2}\left(\delta_{j k}+(p-2) \frac{\left(\delta_{1 j}+t \xi_{j}\right)\left(\delta_{1 k}+t \xi_{k}\right)}{\left|e_{1}+t \xi\right|^{2}}\right) \mathrm{d} t . \tag{12}
\end{gather*}
$$

Taking the divergence of the above we get

$$
\left\{\begin{array}{l}
\nabla \cdot(B(\nabla R) \nabla R)=-\partial_{1} \gamma,  \tag{13}\\
\left.R\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

Let $V \in C^{2, \alpha}(\bar{\Omega})$ be such that $\|V\|_{C^{2, \alpha}(\Omega)}<1 / 2$ and define the map $T(V)=$ $U$, where $U$ is the solution to

$$
\left\{\begin{array}{l}
\nabla \cdot(B(\nabla V) \nabla U)=-\partial_{1} \gamma,  \tag{14}\\
\left.U\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

Since $B(\nabla V) \in C^{1, \alpha}$ are uniformly elliptic coefficients, it follows that a unique solution $U \in C^{2, \alpha}(\bar{\Omega})$ exists (see [18, Theorem 6.14]). Furthermore, by [18, Theorem 6.6] we have

$$
\begin{equation*}
\|U\|_{C^{2, \alpha}(\Omega)} \leq C\left\|\partial_{1} \gamma\right\|_{C^{0, \alpha}(\Omega)} \tag{15}
\end{equation*}
$$

If the right hand side is less than $1 / 2$, by Shauder's fixed point theorem (see [18, Theorem 11.1]) it follows that $T$ has a fixed point on the ball of radius $1 / 2$ in $C^{2, \alpha}(\bar{\Omega})$. By uniqueness of solutions for (1), this must be $R$ and we conclude that

$$
\begin{equation*}
\|\nabla R\|_{L^{\infty}(\Omega)} \leq \frac{1}{2} \tag{16}
\end{equation*}
$$

so

$$
\begin{equation*}
\left|\nabla u_{0}(x)\right|>\frac{1}{2}, \quad \forall x \in \Omega \tag{17}
\end{equation*}
$$

Note that the nonvanishing of the gradient $\nabla u_{0}$ makes the equation satisfied by $u_{0}$ elliptic, so the smoothness of $u_{0}$ follows.

In what follows we will assume that $u_{0}$ is as in the preceding two propositions. Let $A$ be the matrix with coefficients

$$
\begin{equation*}
A_{j k}=\gamma\left|\nabla u_{0}\right|^{p-2}\left(\delta_{j k}+(p-2) \frac{\partial_{j} u_{0} \partial_{k} u_{0}}{\left|\nabla u_{0}\right|^{2}}\right) . \tag{18}
\end{equation*}
$$

Proposition 3. Under the assumptions of either Proposition 1 or Proposition 图, we have that the Dirichlet-to-Neumann map $\Lambda_{\gamma}$ for the weighted p-Laplace equation (1) determines the Dirichlet-to-Neumann map $\Lambda_{A}$ for the linear equation $\nabla \cdot(A \nabla u)=0$, on the same domain $\Omega$.

Proof. For $\phi \in C^{\infty}(\partial \Omega)$, and $\epsilon \in \mathbb{R}$ small, let $u_{\epsilon}$ be the solution of

$$
\left\{\begin{array}{l}
\nabla \cdot\left(\gamma\left|\nabla u_{\epsilon}\right|^{p-2} \nabla u_{\epsilon}\right)=0,  \tag{19}\\
\left.u_{\epsilon}\right|_{\partial \Omega}=\left.u_{0}\right|_{\partial \Omega}+\epsilon \phi .
\end{array}\right.
$$

We make the Ansatz

$$
\begin{equation*}
u_{\epsilon}=u_{0}+R_{\epsilon} . \tag{20}
\end{equation*}
$$

By Theorem $\mathbb{1}$ and the theorem of Arzelà-Ascoli, it follows that (on a subsequence) we have that $R_{\epsilon} \rightarrow R_{0}$ in $C^{1}(\Omega)$. Since then $u_{0}+R_{0}$ would be a weak solution of the same boundary value problem $u_{0}$ satisfies, it follows that $R_{\epsilon} \rightarrow 0$ in $C^{1}(\Omega)$. Since the limit is the same for every subsequence, it follows that in fact we do not need to pass to a subsequence.

By Taylor's formula we have that

$$
\begin{equation*}
\sum_{k} \partial_{k} R_{\epsilon} \int_{0}^{1} \partial_{\xi_{k}} J_{j}\left(\nabla u_{0}+t \nabla R_{\epsilon}\right) \mathrm{d} t=J_{j}\left(\nabla u_{\epsilon}\right)-J_{j}\left(\nabla u_{0}\right) . \tag{21}
\end{equation*}
$$

Let

$$
\begin{equation*}
A_{j k}^{\epsilon}=\gamma \int_{0}^{1} \partial_{\xi_{k}} J_{j}\left(\nabla u_{0}+t \nabla R_{\epsilon}\right) \mathrm{d} t \tag{22}
\end{equation*}
$$

Since $R_{\epsilon} \rightarrow 0$ in $C^{1}$, it follows that $\left|\nabla u_{0}+t \nabla R_{\epsilon}\right|$ is uniformly bounded and uniformly bounded away from zero. This implies that $A_{j k}^{\epsilon}$ is a set of elliptic coefficients, with ellipticity bounds independent of $\epsilon$. Taking gradients in (21) we get that $R_{\epsilon}$ satisfies

$$
\left\{\begin{array}{l}
\nabla \cdot\left(A^{\epsilon} \nabla R_{\epsilon}\right)=0,  \tag{23}\\
\left.R_{\epsilon}\right|_{\partial \Omega}=\epsilon \phi,
\end{array}\right.
$$

It follows that

$$
\begin{equation*}
\left\|R_{\epsilon}\right\|_{C^{1, \beta}(\Omega)} \leq C \epsilon . \tag{24}
\end{equation*}
$$

We can again invoke the theorem of Arzela-Ascoli to conclude that there must exist $\dot{u} \in C^{1}(\Omega)$ such that $\epsilon^{-1} R_{\epsilon} \rightarrow \dot{u}$ in $C^{1}(\Omega)$. Taking the limit in (23) we see that $\dot{u}$ must be a weak solution of

$$
\left\{\begin{array}{l}
\nabla \cdot(A \nabla \dot{u})=0,  \tag{25}\\
\left.\dot{u}\right|_{\partial \Omega}=\phi,
\end{array}\right.
$$

Returning to (21), dividing by $\epsilon$ and taking the limit $\epsilon \rightarrow 0$, we have that

$$
\begin{align*}
\nu \cdot A \nabla \dot{u}=\lim _{\epsilon \rightarrow 0} \frac{\nu \cdot J\left(\nabla u_{\epsilon}\right)-\nu \cdot J\left(\nabla u_{0}\right)}{\epsilon} & \\
& =\lim _{\epsilon \rightarrow 0} \frac{\Lambda_{\gamma}\left(\left.u_{0}\right|_{\partial \Omega}+\epsilon \phi\right)-\Lambda_{\gamma}\left(\left.u_{0}\right|_{\partial \Omega}\right)}{\epsilon} . \tag{26}
\end{align*}
$$

We see then that the Neumann data for the equation (25) is determined by the map $\Lambda_{\gamma}$.

## 3 Proof of Theorem 2

Suppose $n=2$ and we have $\gamma, \tilde{\gamma}$ as above such that $\Lambda_{\gamma}=\Lambda_{\tilde{\gamma}}$. We use notation such as $u_{\epsilon}, \tilde{u}_{\epsilon}$ to denote the corresponding solutions to (19), etc.

Observe that one consequence of the identity of the DN maps is

$$
\begin{equation*}
\int_{\Omega} \gamma\left|\nabla u_{0}\right|^{p} \mathrm{~d} x=\int_{\Omega} \tilde{\gamma}\left|\nabla \tilde{u}_{0}\right|^{p} \mathrm{~d} x . \tag{27}
\end{equation*}
$$

By Proposition 3 we have that $\Lambda_{A}=\Lambda_{\tilde{A}}$. From [35, Theorem 2] it follows that there must exist a diffeomorphism $\Phi: \bar{\Omega} \rightarrow \bar{\Omega}$ such that $\left.\Phi\right|_{\partial \Omega}=I d$ and

$$
\begin{equation*}
\tilde{A}(x)=\frac{1}{|D \Phi|}(D \Phi)^{T} A D \Phi \circ \Phi^{-1}(x) \tag{28}
\end{equation*}
$$

Note that

$$
\begin{align*}
& \operatorname{det}\left(\delta_{j k}+(p-2) \frac{\partial_{j} u_{0} \partial_{k} u_{0}}{\left|\nabla u_{0}\right|^{2}}\right) \\
&=\left(1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right)\left(1+(p-2) \frac{\left(\partial_{2} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right) \\
&-(p-2)^{2} \frac{\left(\partial_{1} u_{0} \partial_{2} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{4}}=p-1 . \tag{29}
\end{align*}
$$

Taking determinants on both sides of (28) we obtain

$$
\begin{equation*}
\left(\tilde{\gamma}\left|\nabla \tilde{u}_{0}\right|^{p-2}\right)^{2}=\left(\gamma\left|\nabla u_{0}\right|^{p-2}\right)^{2}|D \Phi|^{-2}|D \Phi|^{2} \circ \Phi^{-1} \tag{30}
\end{equation*}
$$

so

$$
\begin{equation*}
\tilde{\gamma}\left|\nabla \tilde{u}_{0}\right|^{p-2}=\gamma\left|\nabla u_{0}\right|^{p-2} \circ \Phi^{-1} . \tag{31}
\end{equation*}
$$

Another consequence of $\Lambda_{A}=\Lambda_{\tilde{A}}$ is that for each $\phi$ we have $\dot{\tilde{u}}=\dot{u} \circ \Phi^{-1}$. Incidentally, for $\phi=\left.u_{0}\right|_{\partial \Omega}$ the solution to the linear equation is $\dot{u}=u_{0}$. Therefore

$$
\begin{equation*}
\tilde{u}_{0}=u_{0} \circ \Phi^{-1} . \tag{32}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
\nabla u_{0}=D \Phi\left(\nabla \tilde{u}_{0} \circ \Phi\right), \tag{33}
\end{equation*}
$$

which we can use in (28), together with (31), to get

$$
\begin{align*}
\tilde{A}=\tilde{\gamma}\left|\nabla \tilde{u}_{0}\right|^{p-2} & \frac{1}{|D \Phi| \circ \Phi^{-1}}\left(\left[(D \Phi)^{T} D \Phi\right] \circ \Phi^{-1}+(p-2) \frac{\left|\nabla \tilde{u}_{0}\right|^{2}}{\left|\nabla u_{0}\right|^{2} \circ \Phi^{-1}}\right. \\
& \left.\times\left[(D \Phi)^{T} D \Phi\right] \circ \Phi^{-1} \frac{\nabla \tilde{u}_{0} \otimes \nabla \tilde{u}_{0}}{\left|\nabla \tilde{u}_{0}\right|^{2}}\left[(D \Phi)^{T} D \Phi\right] \circ \Phi^{-1}\right) \tag{34}
\end{align*}
$$

Let
$F=\left[\frac{(D \Phi)^{T} D \Phi}{|D \Phi|}\right] \circ \Phi^{-1}, P=\frac{\nabla \tilde{u}_{0} \otimes \nabla \tilde{u}_{0}}{\left|\nabla \tilde{u}_{0}\right|^{2}}, \alpha=|D \Phi| \circ \Phi^{-1} \frac{\left|\nabla \tilde{u}_{0}\right|^{2}}{\left|\nabla u_{0}\right|^{2} \circ \Phi^{-1}}$.
Note that $F, P$ are symmetric matrices, and that $P^{2}=P$. We have

$$
\begin{equation*}
F+\alpha(p-2) F P F=I+(p-2) P . \tag{36}
\end{equation*}
$$

As both $I+(p-2) P$ and $F$ are invertible, it follows that both $I+\alpha(p-2) P F$ and $I+\alpha(p-2) F P$ are also invertible.

If we multliply (35) by $P$ on the left we get

$$
\begin{equation*}
P F+\alpha(p-2) P F P F=(p-1) P \tag{37}
\end{equation*}
$$

so

$$
\begin{equation*}
P F=(p-1)(I+\alpha(p-2) P F)^{-1} P, \tag{38}
\end{equation*}
$$

since the inverse exists, and therefore

$$
\begin{equation*}
P F=P F P . \tag{39}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
F P+\alpha(p-2) F P F P=(p-1) P \tag{40}
\end{equation*}
$$

so

$$
\begin{equation*}
F P=(p-1) P(I+\alpha(p-2) F P)^{-1} \tag{41}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
F P=P F P=P F . \tag{42}
\end{equation*}
$$

Since $F$ and $P$ commute, they can be simultaneously diagonalized, and we can write

$$
\begin{equation*}
F=\theta P+\eta(I-P), \quad \theta, \eta \text { scalars. } \tag{43}
\end{equation*}
$$

It is easy to see that $\eta=1$, while $\theta$ must satisfy the equation

$$
\begin{equation*}
\theta+\alpha(p-2) \theta^{2}=p-1 \tag{44}
\end{equation*}
$$

Note that

$$
\begin{equation*}
1=\frac{|D \Phi|^{2}}{|D \Phi|^{2}} \circ \Phi^{-1}=\operatorname{det} F=\theta \eta=\theta . \tag{45}
\end{equation*}
$$

It follows that $F=I$
Suppose a non-trivial diffeomorphism such as $\Phi$ exists. Let $\sigma$ be a scalar conductivity on $\Omega$ and let

$$
\begin{equation*}
\sigma_{*}(y)=\frac{\sigma}{|D \Phi|}(D \Phi)^{T} D \Phi \circ \Phi^{-1}(y)=\sigma \circ \Phi^{-1}(y) F(y)=\sigma \circ \Phi^{-1}(y) . \tag{46}
\end{equation*}
$$

This new conductivity is also scalar and gives the same DN map as $\sigma$. This violates the known uniqueness results for the Calderón problem in the plane. So $\Phi$ must be trivial. Therefore $u_{0}=\tilde{u}_{0}$ and $\gamma=\tilde{\gamma}$.

## 4 Proof of Theorem 3

As in the previous section, we will denote by $u_{0}, \tilde{u}_{0}, A, \tilde{A}$, etc. the functions corresponding to the coefficients $\gamma$ and $\tilde{\gamma}$ respectively. By Proposition 3 we have that $\Lambda_{A}=\Lambda_{\tilde{A}}$.

It is an immediate consequence of [32, Proposition 1.3] (or [26, Theorem 1.3]) that there must exist a neighborhood of $U$ of $\partial \Omega$ and a smooth diffeomorphism $\Phi: U \cap \bar{\Omega} \rightarrow U \cap \bar{\Omega}$, with $\left.\Phi\right|_{\partial \Omega}=I d$, such that

$$
\begin{equation*}
\left.\partial_{\nu}^{j} \tilde{A}\right|_{\partial \Omega}=\left.\partial_{\nu}^{j} \frac{1}{|D \Phi|}(D \Phi)^{T} A D \Phi\right|_{\partial \Omega}, \quad j=0,1,2, \ldots \tag{47}
\end{equation*}
$$

Let $z \in \partial \Omega$. Unless otherwise specified, all the following computations will be pointwise, at this point $z$. We wish to proceed inductively in the order of differentiation in (47).
$0^{\text {th }}$ order: We have that

$$
\begin{equation*}
\tilde{A}(z)=\frac{1}{|D \Phi|(z)}(D \Phi)^{T}(z) A(z) D \Phi(z) . \tag{48}
\end{equation*}
$$

If $\tau$ is any unit tangent vector to $\partial \Omega$ at $z$, we must have that $D \Phi(z) \tau=\tau$. Since $\left.u_{0}\right|_{\partial \Omega}=\left.\tilde{u}_{0}\right|_{\partial \Omega}$, we also have that $\tau \cdot \nabla u_{0}(z)=\tau \cdot \nabla \tilde{u}_{0}(z)$. Therefore

$$
\begin{equation*}
\tau \cdot \tilde{A}(z) \tau=\tilde{\gamma}(z)\left|\nabla \tilde{u}_{0}\right|^{p-2}(z)\left(1+(p-2) \frac{\left(\tau \cdot \nabla u_{0}\right)^{2}(z)}{\left|\nabla \tilde{u}_{0}\right|^{2}(z)}\right) . \tag{49}
\end{equation*}
$$

On the other hand, by (48) we have

$$
\begin{equation*}
\tau \cdot \tilde{A}(z) \tau=\frac{1}{|D \Phi|(z)} \gamma(z)\left|\nabla u_{0}\right|^{p-2}(z)\left(1+(p-2) \frac{\left(\tau \cdot \nabla u_{0}\right)^{2}(z)}{\left|\nabla u_{0}\right|^{2}(z)}\right) . \tag{50}
\end{equation*}
$$

We can vary $\tau$ in the tangent space to the boundary at $z$, which is at least two dimensional. By choosing $\tau \perp \nabla u_{0}(z)$ we can separately identify

$$
\begin{equation*}
\tilde{\gamma}(z)\left|\nabla \tilde{u}_{0}\right|^{p-2}(z)=\frac{1}{|D \Phi|(z)} \gamma(z)\left|\nabla u_{0}\right|^{p-2}(z) . \tag{51}
\end{equation*}
$$

By possibly shifting the point $z$, or by slightly rotating the vector $\zeta$ in the statement of Proposition 2, we can make sure that $\nabla u_{0}(z)$ is not normal to the boundary. Choosing $\tau \not \perp \nabla u_{0}(z)$ we get

$$
\begin{equation*}
\frac{1}{\left|\nabla \tilde{u}_{0}\right|^{2}}(z)=\frac{1}{\left|\nabla u_{0}\right|^{2}}(z) . \tag{52}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left|\nabla u_{0}\right|(z)=\left|\nabla \tilde{u}_{0}\right|(z), \tag{53}
\end{equation*}
$$

and, as we already know that $\tau \cdot \nabla u_{0}(z)=\tau \cdot \nabla \tilde{u}_{0}(z)$ for all $\tau$ as above, we also conclude that

$$
\begin{equation*}
\partial_{\nu} u_{0}(z)=\partial_{\nu} \tilde{u}_{0}(z) . \tag{54}
\end{equation*}
$$

As $\Lambda_{\gamma}\left(\left.u_{0}\right|_{\partial \Omega}\right)=\Lambda_{\tilde{\gamma}}\left(\left.u_{0}\right|_{\partial \Omega}\right)$, we get

$$
\begin{equation*}
\gamma(z)=\tilde{\gamma}(z) . \tag{55}
\end{equation*}
$$

This further implies that

$$
\begin{equation*}
|D \Phi|(z)=1, \tag{56}
\end{equation*}
$$

Since now $A(z)=\tilde{A}(z)$ and $D \Phi$ acts as the identity in the tangent space to $\partial \Omega$ at $z$, equation (48) can only hold if

$$
\begin{equation*}
D \Phi(z)=I . \tag{57}
\end{equation*}
$$

$1^{\text {st }}$ order: We have that

$$
\begin{equation*}
\left(\partial_{\nu} \tilde{A}\right)(z)=\left(\partial_{\nu} \frac{1}{|D \Phi|}(D \Phi)^{T} A D \Phi\right)(z) . \tag{58}
\end{equation*}
$$

From this point onward, we will use the assumption that $\partial \Omega$ is flat in a neighborhood of $z$. For ease of computation, we will rotate our coordinates so that $\nu=e_{1}$ and locally $\partial \Omega \cap U \subset\left\{x_{1}=0\right\}$. We also find it notationally convenient to introduce the tangential gradient $\nabla^{\prime}=\nabla-\partial_{1} e_{1}$. By possibly shifting the point $z$, or by slightly changing the vector $\zeta$ in the statement of Proposition 2, we can make sure that $\partial_{1} u_{0}(z) \neq 0$.

In the previous step we have shown that $D \Phi(z)=I$. It follows that

$$
\begin{equation*}
\partial_{j} \partial_{k} \Phi^{l}(z)=0, \quad \text { unless } j=k=1 . \tag{59}
\end{equation*}
$$

Rewriting (58) with this information, we obtain that at $z$

$$
\begin{equation*}
\partial_{1} \tilde{A}_{j k}=\partial_{1} A_{j k}+\left(A_{j 1} \partial_{1}^{2} \Phi^{k}+A_{1 k} \partial_{1}^{2} \Phi^{j}\right)-A_{j k} \partial_{1}^{2} \Phi^{1} \tag{60}
\end{equation*}
$$

In preparation for using the above equations, and denoting by $a_{11}, a_{j j}$, $a_{j 1}$ terms made up of quantities for which uniqueness has already been shown at the previous step, we compute

$$
\begin{align*}
& \partial_{1} A_{11}=\partial_{1} \gamma\left|\nabla u_{0}\right|^{p-2}\left(1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right) \\
&+\partial_{1}^{2} u_{0} \gamma \partial_{1} u_{0}\left|\nabla u_{0}\right|^{p-4}(p-2)\left(3+(p-4) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right)+a_{11} . \tag{61}
\end{align*}
$$

For $j \neq 1$

$$
\begin{align*}
& \partial_{1} A_{j j}=\partial_{1} \gamma\left|\nabla u_{0}\right|^{p-2}\left(1+(p-2) \frac{\left(\partial_{j} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right) \\
& \quad+\partial_{1}^{2} u_{0} \gamma \partial_{1} u_{0}\left|\nabla u_{0}\right|^{p-4}(p-2)\left(1+(p-4) \frac{\left(\partial_{j} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right)+a_{j j} . \tag{62}
\end{align*}
$$

Also

$$
\begin{align*}
& \partial_{1} A_{j 1}=\partial_{1} \gamma\left|\nabla u_{0}\right|^{p-2}(p-2) \frac{\partial_{j} u_{0} \partial_{1} u_{0}}{\left|\nabla u_{0}\right|^{2}} \\
&+\partial_{1}^{2} u_{0} \gamma \partial_{j} u_{0}\left|\nabla u_{0}\right|^{p-4}(p-2)\left(1+(p-4) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right)+a_{j 1} . \tag{63}
\end{align*}
$$

Since $\nabla \cdot\left(\gamma\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right)=0$, at $z$ we have that

$$
\begin{equation*}
\partial_{1}\left[\gamma\left|\nabla u_{0}\right|^{p-2} \partial_{1} u_{0}\right]=-\nabla^{\prime} \cdot\left[\gamma\left|\nabla u_{0}\right|^{p-2} \nabla^{\prime} u_{0}\right]=\partial_{1}\left[\tilde{\gamma}\left|\nabla \tilde{u}_{0}\right|^{p-2} \partial_{1} \tilde{u}_{0}\right], \tag{64}
\end{equation*}
$$

by the previous step. Let $\xi_{1}=\partial_{1}(\gamma-\tilde{\gamma})(z), \xi_{2}=\partial_{1}^{2}\left(u_{0}-\tilde{u}_{0}\right)(z)$. It follows that

$$
\begin{equation*}
\Theta_{11} \xi_{1}+\Theta_{12} \xi_{2}=0 \tag{65}
\end{equation*}
$$

where

$$
\begin{gather*}
\Theta_{11}=\partial_{1} u_{0}\left|\nabla u_{0}\right|^{p-2}  \tag{66}\\
\Theta_{12}=\gamma\left|\nabla u_{0}\right|^{p-2}\left(1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right) . \tag{67}
\end{gather*}
$$

Let $\xi_{3}=\partial_{1}^{2} \Phi^{1}(z)$. Taking $j=k=1$ in (60), we obtain the equation

$$
\begin{equation*}
\Theta_{21} \xi_{1}+\Theta_{22} \xi_{2}+\Theta_{23} \xi_{3}=0 \tag{68}
\end{equation*}
$$

where

$$
\begin{gather*}
\Theta_{21}=\left|\nabla u_{0}\right|^{p-2}\left(1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right)  \tag{69}\\
\Theta_{22}=\gamma \partial_{1} u_{0}\left|\nabla u_{0}\right|^{p-4}(p-2)\left(3+(p-4) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right)  \tag{70}\\
\Theta_{23}=\gamma\left|\nabla u_{0}\right|^{p-2}\left(1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right) . \tag{71}
\end{gather*}
$$

Taking $k=j$ in (60), we obtain the equation

$$
\begin{equation*}
\Theta_{31} \xi_{1}+\Theta_{32} \xi_{2}+\Theta_{33} \xi_{3}=-2 \partial_{1}^{2} \Phi^{j} \gamma\left|\nabla u_{0}\right|^{p-2}(p-2) \frac{\partial_{j} u_{0} \partial_{1} u_{0}}{\left|\nabla u_{0}\right|^{2}} \tag{72}
\end{equation*}
$$

where

$$
\begin{gather*}
\Theta_{31}=\left|\nabla u_{0}\right|^{p-2}\left(1+(p-2) \frac{\left(\partial_{j} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right),  \tag{73}\\
\Theta_{32}=\gamma \partial_{1} u_{0}\left|\nabla u_{0}\right|^{p-4}(p-2)\left(1+(p-4) \frac{\left(\partial_{j} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right),  \tag{74}\\
\Theta_{33}=-\gamma\left|\nabla u_{0}\right|^{p-2}\left(1+(p-2) \frac{\left(\partial_{j} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right), \tag{75}
\end{gather*}
$$

Under our assumptions, we are still free to rotate the coordinate axes, as long as the normal direction remains that of $x_{1}$. We can therefore arrange that $\partial_{j} u_{0}(z)=0$. In this case we then have the system

$$
\left\{\begin{array}{l}
\Theta_{11} \xi_{1}+\Theta_{12} \xi_{2}=0  \tag{76}\\
\Theta_{21} \xi_{1}+\Theta_{22} \xi_{2}+\Theta_{23} \xi_{3}=0 \\
\Theta_{31} \xi_{1}+\Theta_{32} \xi_{2}+\Theta_{33} \xi_{3}=0
\end{array}\right.
$$

Denoting $\lambda(z)=\gamma^{2}(z)\left|\nabla u_{0}\right|^{3 p-8}(z)$ we compute the determinant

$$
\begin{align*}
& \left|\begin{array}{ccc}
\Theta_{11} & \Theta_{12} & 0 \\
\Theta_{21} & \Theta_{22} & \Theta_{23} \\
\Theta_{31} & \Theta_{32} & \Theta_{33}
\end{array}\right| \\
& =\lambda(z)\left|\begin{array}{ccc}
\partial_{1} u_{0} & \left|\nabla u_{0}\right|^{2}\left(1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right) & 0 \\
1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}} & (p-2) \partial_{1} u_{0}\left(3+(p-4) \frac{\left(\lambda_{1}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right) & 1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}} \\
1 & (p-2) \partial_{1} u_{0} & -1
\end{array}\right| \\
& =\lambda(z)\left|\begin{array}{ccc}
\partial_{1} u_{0} & \left|\nabla u_{0}\right|^{2}\left(1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{2}\right|^{2}}\right) & 0 \\
0 & (p-2) \partial_{1} u_{0}\left(3+(p-4) \frac{\left(\frac{1}{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right) & 1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}} \\
2 & (p-2) \partial_{1} u_{0} & -1
\end{array}\right| \\
& =\lambda(z)\left[2\left|\nabla u_{0}\right|^{2}\left(1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right)^{2}\right. \\
& \left.-(p-2)\left(\partial_{1} u_{0}\right)^{2}\left(3+(p-4) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right)\right] \\
& =\lambda(z)\left[2\left|\nabla u_{0}\right|^{2}+(p-2)\left(\partial_{1} u_{0}\right)^{2}+p(p-2) \frac{\left(\partial_{1} u_{0}\right)^{4}}{\left|\nabla u_{0}\right|^{2}}\right] \neq 0, \tag{77}
\end{align*}
$$

where the conclusion holds because, since $p>1$, both $p-2>-1$ and $p(p-2)>-1$. It follows that

$$
\begin{equation*}
\partial_{1} \gamma(z)=\partial_{1} \tilde{\gamma}(z), \quad \partial_{1}^{2} u_{0}(z)=\partial_{1}^{2} \tilde{u}_{0}(z), \quad \partial_{1}^{2} \Phi^{1}(z)=0 . \tag{78}
\end{equation*}
$$

Returning to (60), with $k=1$, we are left with

$$
\begin{equation*}
A_{11} \partial_{1}^{2} \Phi^{j}=0 \tag{79}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\partial_{1}^{2} \Phi^{j}(z)=0, \tag{80}
\end{equation*}
$$

for all directions $j$ that are orthogonal to the projection of $\nabla u_{0}$ into the tangent plane. If we choose our coordinates so that the direction of $x_{l}$ is the same as that of the just mentioned projection, then $A_{l 1}(z) \neq 0$, so (60), with $j=k=l$ gives

$$
\begin{equation*}
\partial_{1}^{2} \Phi^{l}(z)=0 . \tag{81}
\end{equation*}
$$

Therefore we have that

$$
\begin{equation*}
\partial_{j} \partial_{k} \Phi(z)=0, \quad j, k=1, \ldots, n . \tag{82}
\end{equation*}
$$

$m^{\text {th }}$ order: For multi-indices $\alpha \in \mathbb{N}^{n}$, suppose that we know that

$$
\begin{gather*}
\partial^{\alpha} \gamma(z)=\partial^{\alpha} \tilde{\gamma}(z), \quad \alpha_{1}=0,1, \ldots, m-1,  \tag{83}\\
\partial^{\alpha} u_{0}(z)=\partial^{\alpha} \tilde{u}_{0}(z), \quad \alpha_{1}=0,1, \ldots, m  \tag{84}\\
\partial^{\alpha} D \Phi(z)=\partial^{\alpha} I, \quad \alpha_{1}=0,1, \ldots, m-1 . \tag{85}
\end{gather*}
$$

We have that

$$
\begin{equation*}
\left(\partial_{1}^{m} \tilde{A}\right)(z)=\left(\partial_{1}^{m} \frac{1}{|D \Phi|}(D \Phi)^{T} A D \Phi\right)(z) \tag{86}
\end{equation*}
$$

Using our induction assumptions, we can rewrite this as

$$
\begin{equation*}
\partial_{1}^{m} \tilde{A}_{j k}=\partial_{1}^{m} A_{j k}+\left(A_{j 1} \partial_{1}^{m+1} \Phi^{k}+A_{1 k} \partial_{1}^{m+1} \Phi^{j}\right)-A_{j k} \partial_{1}^{m+1} \Phi^{1} . \tag{87}
\end{equation*}
$$

Denoting by $a_{j k}$ terms made up of quantities whose uniqueness follows from the induction hypotheses, we have that

$$
\begin{align*}
& \partial_{1}^{m} A_{j k}=\partial_{1}^{m} \gamma(z)\left|\nabla u_{0}\right|^{p-2}\left(\delta_{j k}+(p-2) \frac{\partial_{j} u_{0} \partial_{k} u_{0}}{\left|\nabla u_{0}\right|^{2}}\right) \\
& \quad+\partial_{1}^{m+1} u_{0}(p-2) \gamma(z)\left|\nabla u_{0}\right|^{p-4} \\
& \times\left(\delta_{j k} \partial_{1} u_{0}+(p-4) \frac{\partial_{j} u_{0} \partial_{k} u_{0}}{\left|\nabla u_{0}\right|^{2}} \partial_{1} u_{0}+\delta_{1 j} \partial_{k} u_{0}+\delta_{1 k} \partial_{j} u_{0}\right)+a_{j k} . \tag{88}
\end{align*}
$$

Since $\nabla \cdot\left(\gamma\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right)=0$, at $z$ we have that

$$
\begin{align*}
& \partial_{1}^{m}\left[\gamma\left|\nabla u_{0}\right|^{p-2} \partial_{1} u_{0}\right] \\
& \quad=-\partial_{1}^{m-1} \nabla^{\prime} \cdot\left[\gamma\left|\nabla u_{0}\right|^{p-2} \nabla^{\prime} u_{0}\right]=\partial_{1}^{m}\left[\tilde{\gamma}\left|\nabla \tilde{u}_{0}\right|^{p-2} \partial_{1} \tilde{u}_{0}\right] . \tag{89}
\end{align*}
$$

This can be rewritten as

$$
\begin{align*}
& \partial_{1}^{m}(\gamma-\tilde{\gamma}) \partial_{1} u_{0}\left|\nabla u_{0}\right|^{p-2} \\
&+\partial_{1}^{m+1}\left(u_{0}-\tilde{u}_{0}\right) \gamma\left|\nabla u_{0}\right|^{p-2}\left(1+(p-2) \frac{\left(\partial_{1} u_{0}\right)^{2}}{\left|\nabla u_{0}\right|^{2}}\right)=0 . \tag{90}
\end{align*}
$$

If we set $\xi_{1}=\partial_{1}^{m}(\gamma-\tilde{\gamma})(z), \xi_{2}=\partial_{1}^{m+1}\left(u_{0}-\tilde{u}_{0}\right), \xi_{3}=\partial_{1}^{m+1} \Phi^{1}$, and we choose a direction $j$ that is orthogonal to the projection of $\nabla u_{0}(z)$ into the tangent space to $\partial \Omega$ at $z$, we obtain the same system

$$
\left\{\begin{array}{l}
\Theta_{11} \xi_{1}+\Theta_{12} \xi_{2}=0  \tag{91}\\
\Theta_{21} \xi_{1}+\Theta_{22} \xi_{2}+\Theta_{23} \xi_{3}=0 \\
\Theta_{31} \xi_{1}+\Theta_{32} \xi_{2}+\Theta_{33} \xi_{3}=0
\end{array}\right.
$$

Since with our assumptions

$$
\left|\begin{array}{ccc}
\Theta_{11} & \Theta_{12} & 0  \tag{92}\\
\Theta_{21} & \Theta_{22} & \Theta_{23} \\
\Theta_{31} & \Theta_{32} & \Theta_{33}
\end{array}\right| \neq 0
$$

it follows that

$$
\begin{equation*}
\partial_{1}^{m} \gamma(z)=\partial_{1}^{m} \gamma(z), \quad \partial_{1}^{m+1} u_{0}(z)=\partial_{1}^{m+1} u_{0}(z), \quad \partial_{1}^{m+1} \Phi^{1}(z)=0 . \tag{93}
\end{equation*}
$$

Setting $k=1$ in (87), we have

$$
\begin{equation*}
A_{11} \partial_{1}^{m+1} \Phi^{j}=0 \tag{94}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\partial_{1}^{m+1} \Phi^{j}(z)=0, \tag{95}
\end{equation*}
$$

for all directions $j$ that are orthogonal to the projection of $\nabla u_{0}$ into the tangent plane. If we choose our coordinates so that the direction of $x_{l}$ is the same as that of the just mentioned projection, then $A_{l 1}(z) \neq 0$, so (87), with $j=k=l$ gives

$$
\begin{equation*}
\partial_{1}^{m+1} \Phi^{l}(z)=0 . \tag{96}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\partial^{\alpha} D \Phi(z)=\partial^{\alpha} I, \quad \alpha_{1}=0,1, \ldots, m . \tag{97}
\end{equation*}
$$

This completes the induction step.

Acknowledgments: C.C. was supported by NSTC grant number 112-2115-M-A49-002.

## References

[1] G. S. Alberti, G. Bal, and M. Di Cristo. Critical points for elliptic equations with prescribed boundary conditions. Archive for Rational Mechanics and Analysis, 226:117-141, 2017.
[2] G. Alessandrini and M. Sigalotti. Geometric properties of solutions to the anisotropic p-laplace equation in dimension two. Annales Fennici Mathematici, 26(1):249-266, 2001.
[3] T. Brander. Calderón problem for the p-Laplacian: First order derivative of conductivity on the boundary. Proceedings of the American Mathematical Society, 144(1):177-189, 2016.
[4] T. Brander, B. Harrach, M. Kar, and M. Salo. Monotonicity and enclosure methods for the p-Laplace equation. SIAM Journal on Applied Mathematics, 78(2):742-758, 2018.
[5] T. Brander, J. Ilmavirta, and M. Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems \& Imaging, 12(1):91-123, 2018.
[6] T. Brander, M. Kar, and M. Salo. Enclosure method for the p-Laplace equation. Inverse Problems, 31(4):045001, 2015.
[7] A. P. Calderón. On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pages 65-73. Soc. Brasil. Mat., Rio de Janeiro, 1980.
[8] C. I. Cârstea. On an inverse boundary value problem for a nonlinear time harmonic Maxwell system. Journal of Inverse and Ill-posed Problems, 30(3):395-408, 2022.
[9] C. I. Cârstea and A. Feizmohammadi. A density property for tensor products of gradients of harmonic functions and applications. arXiv preprint arXiv:2009.11217, 2020.
[10] C. I. Cârstea and A. Feizmohammadi. An inverse boundary value problem for certain anisotropic quasilinear elliptic equations. Journal of Differential Equations, 284:318-349, 2021.
[11] C. I. Cârstea, A. Feizmohammadi, Y. Kian, K. Krupchyk, and G. Uhlmann. The Calderón inverse problem for isotropic quasilinear conductivities. Advances in Mathematics, 391:107956, 2021.
[12] C. I. Cârstea, T. Ghosh, and G. Nakamura. An inverse boundary value problem for the inhomogeneous porous medium equation. arXiv preprint arXiv:2105.01368, 2021.
[13] C. I. Cârstea, T. Ghosh, and G. Uhlmann. An inverse problem for the porous medium equation with partial data and a possibly singular absorption term. SIAM Journal on Mathematical Analysis, 55(1):162185, 2023.
[14] C. I. Cârstea and M. Kar. Recovery of coefficients for a weighted pLaplacian perturbed by a linear second order term. Inverse Problems, 37(1):015013, 2020.
[15] C. I. Cârstea, G. Nakamura, and M. Vashisth. Reconstruction for the coefficients of a quasilinear elliptic partial differential equation. Applied Mathematics Letters, 2019.
[16] H. Egger, J.-F. Pietschmann, and M. Schlottbom. Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem. Inverse Problems, 30(3):035009, 2014.
[17] A. Feizmohammadi and L. Oksanen. An inverse problem for a semilinear elliptic equation in Riemannian geometries. Journal of Differential Equations, 269(6):4683-4719, 2020.
[18] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order, volume 224. Springer, 1998.
[19] C.-Y. Guo, M. Kar, and M. Salo. Inverse problems for p-Laplace type equations under monotonicity assumptions. Rend. Istit. Mat. Univ. Trieste, 48:79-99, 2016.
[20] D. Hervas and Z. Sun. An inverse boundary value problem for quasilinear elliptic equations. Communications in Partial Differential Equations, 27(11-12):2449-2490, 2002.
[21] V. Isakov. On uniqueness in inverse problems for semilinear parabolic equations. Archive for Rational Mechanics and Analysis, 124(1):1-12, 1993.
[22] V. Isakov. Uniqueness of recovery of some quasilinear partial differential equations. Communications in Partial Differential Equations, 26(11-12):1947-1973, 2001.
[23] V. Isakov and A. I. Nachman. Global uniqueness for a two-dimensional semilinear elliptic inverse problem. Transactions of the American Mathematical Society, 347(9):3375-3390, 1995.
[24] V. Isakov and J. Sylvester. Global uniqueness for a semilinear elliptic inverse problem. Communications on Pure and Applied Mathematics, 47(10):1403-1410, 1994.
[25] H. Kang and G. Nakamura. Identification of nonlinearity in a conductivity equation via the Dirichlet-to-Neumann map. Inverse Problems, 18(4):1079, 2002.
[26] H. Kang and K. Yun. Boundary determination of conductivities and riemannian metrics via local dirichlet-to-neumann operator. SIAM journal on mathematical analysis, 34(3):719-735, 2002.
[27] M. Kar and J.-N. Wang. Size estimates for the weighted p-Laplace equation with one measurement. Discrete \& Continuous Dynamical SystemsB, 22(11):0, 2017.
[28] K. Krupchyk and G. Uhlmann. Partial data inverse problems for semilinear elliptic equations with gradient nonlinearities. Mathematical Research Letters, 27(6), 2020.
[29] K. Krupchyk and G. Uhlmann. A remark on partial data inverse problems for semilinear elliptic equations. Proceedings of the American Mathematical Society, 148(2):681-685, 2020.
[30] M. Lassas, T. Liimatainen, Y.-H. Lin, and M. Salo. Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations. Revista Matemática Iberoamericana, 37(4):1553-1580, 2020.
[31] M. Lassas, T. Liimatainen, Y.-H. Lin, and M. Salo. Inverse problems for elliptic equations with power type nonlinearities. Journal de mathématiques pures et appliquées, 145:44-82, 2021.
[32] J. M. Lee and G. Uhlmann. Determining anisotropic real-analytic conductivities by boundary measurements. Communications on Pure and Applied Mathematics, 42(8):1097-1112, 1989.
[33] G. M. Lieberman. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Analysis: Theory, Methods \& Applications, 12(11):1203-1219, 1988.
[34] C. Munoz and G. Uhlmann. The Calderón problem for quasilinear elliptic equations. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2020.
[35] A. Nachman. Global uniqueness for a two-dimensional inverse boundary value problem. Annals of Mathematics, 143(1):71-96, 1996.
[36] M. Salo and X. Zhong. An inverse problem for the p-Laplacian: boundary determination. SIAM journal on mathematical analysis, 44(4):24742495, 2012.
[37] R. Shankar. Recovering a quasilinear conductivity from boundary measurements. Inverse problems, 37(1):015014, 2020.
[38] Z. Sun. On a quasilinear inverse boundary value problem. Mathematische Zeitschrift, 221(1):293-305, 1996.
[39] Z. Sun. Anisotropic inverse problems for quasilinear elliptic equations. In Journal of Physics: Conference Series, volume 12, page 015. IOP Publishing, 2005.
[40] Z. Sun. An inverse boundary-value problem for semilinear elliptic equations. Electronic Journal of Differential Equations (EJDE)[electronic only], 2010:Paper-No, 2010.
[41] Z. Sun and G. Uhlmann. Inverse problems in quasilinear anisotropic media. American Journal of Mathematics, 119(4):771-797, 1997.
[42] J. Sylvester and G. Uhlmann. A global uniqueness theorem for an inverse boundary value problem. Annals of Mathematics, pages 153-169, 1987.


[^0]:    *Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.; email: catalin.carstea@gmail.com
    ${ }^{\dagger}$ Department of Mathematics, University of Toronto, Mississauga, ON L5L 1C6, Canada; email: ali.feizmohammadi@utoronto.ca

