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Two uniqueness results in the inverse

boundary value problem for the weighted

p-Laplace equation

Cătălin I. Cârstea∗ Ali Feizmohammadi†

Abstract

In this paper we prove a general uniqueness result in the inverse

boundary value problem for the weighted p-Laplace equation in the

plane, with smooth weights. We also prove a uniqueness result in

dimension 3 and higher, for real analytic weights that are subject to

a smallness condition on one of their directional derivatives. Both

results are obtained by linearizing the equation at a solution without

critical points. This unknown solution is then recovered, together with

the unknown weight.

1 Introduction

Let Ω ⊂ R
n, n ≥ 2, be a compact connected set with nonempty interior and

a smooth boundary, let γ ∈ C∞(Ω̄) be a positive function, and finally let
p ∈ (1, 2) ∪ (2,∞). We consider the boundary value problem

{

∇ · (γ|∇u|p−2∇u) = 0,

u|∂Ω = f,
(1)

where f , u are real valued functions. Equation (1) is known as the weighted
p-Laplace equation and it is a quasilinear, degenerate elliptic equation. The
forward problem for this equation is well studied and we have
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Theorem 1 (e.g. [33, Theorem 1]). Let f ∈ C1,α(∂Ω) for some α ∈ (0, 1].
There exist β ∈ (0, 1) and C(‖f‖C1,α(∂Ω)) > 0 nondecreasing such that equa-
tion (1) has a unique weak solution u ∈ C1,β(Ω̄) and

‖u‖C1,β(Ω̄) ≤ C(‖f‖C1,α(∂Ω)). (2)

It is therefore possible to define the Dirichlet-to-Neumann map associated to
(1) by

Λγ(f) =
(

γ|∇u|p−2∂νu
)
∣

∣

∂Ω
, ∀ f ∈ C1,α(∂Ω), (3)

where u is the unique solution to (1) and ν is the exterior normal unit vector
on ∂Ω.

In [7], Calderón proposed the following question/inverse problem: can
an elliptic coefficient γ be recovered from the Dirichlet-to-Neumann map
associated to the equation ∇ · (γ∇u) = 0? A positive answer for general
smooth coefficients γ was first provided in [42] in dimension 3 or higher, and
by [35] in the plane. In the intervening decades, similar questions for other
equations have been investigated in a large number of papers. It is beyond the
purposes of our work to give a full account of the existing inverse problems
literature. We will reference below those works that are most closely related
to our own, in terms of subject matter or technique.

In this paper we are interested in the inverse problem of recovering the a
priori unknown coefficient γ in (1), given the knowledge of Λγ. This a natural
analogue of the original problem of Calderón. We will prove two results. The
first is the following general uniqueness result in the plane.

Theorem 2. Let n = 2 and let γ, γ̃ ∈ C∞(Ω̄) be strictly positive functions.
If Λγ = Λγ̃, then γ = γ̃.

In dimensions 3 and higher we prove the following uniqueness result for
real-analytic weights..

Theorem 3. Let n ≥ 3 and let ζ ∈ R
n be a unit vector. Suppose there exists

a point z ∈ ∂Ω in a neighborhood of which ∂Ω is flat. There exists µ > 0,
depending only on Ω and n, such that if γ, γ̃ ∈ Cω(Ω̄) are strictly positive
functions with ‖ζ · ∇γ‖C0,α(Ω), ‖ζ · ∇γ̃‖C0,α(Ω) < µ, then Λγ = Λγ̃ implies
γ = γ̃.

The study of inverse problems for non-linear equations is not new, but
in recent years there has been a considerable increase in the interest for this
topic. As examples, we can cite the papers [17], [21], [23], [24], [28], [29],
[31], [30], [40] on semilinear equations, and [10], [9], [11], [14], [15], [8], [16],
[20], [22], [25], [34], [37], [38], [39], [41] on quasilinear equations. By and
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large, all these works rely on a so called second/higher linearization method,
which first appeared in [21] . This method consists of of using Dirichlet data
that depends on a small (or large) parameter ǫ, typically of the form ǫφ (or
λ + ǫφ, with λ a constant, if constants are a solution to the linear part of
the equation). One then uses the asymptotic expansion of the Dirichlet-to-
Neumann map in terms of the parameter ǫ to obtain information about the
coefficients of the equation. Sometimes this is presented as differentiating
the equation with respect to the small parameter, then setting it to zero.

Our paper is not the first to take up the inverse boundary value problem
for the weighted p-Laplacian. The works [6], [3], [4], [5], [19], [27], [36] all
address aspects of the same problem. We note that a uniqueness result with-
out additional constraints, such as monotonicity, has not yet been previously
derived for the weighted p-Laplacian. Also, past boundary determination
results have only yielded γ|∂Ω and ∂νγ|∂Ω, but not the rest of the derivatives
of γ on the boundary (see [36], [3]). For other degenerate equations, the
only known results are those of [12], [13] where general uniqueness results
are derived for the coefficients of porous medium equations.

The approach to the proofs of Theorems 2 and 3 also makes use of a
linearization method. In equation (1) we use Dirichlet data of the form
f = φ0 + ǫφ, with ǫ a small parameter. Let uǫ be the corresponding solution
and, assuming we are justified in taking the derivative, let u̇ = d

dǫ
uǫ

∣

∣

ǫ=0
.

Further assuming we can differentiate the equation, it is not hard to see that
u̇ should satisfy the anisotropic, linear equation

{

∇ · (A∇u̇) = 0,

u̇|∂Ω = φ,
(4)

where A is the matrix with the u0-dependent coefficients

Ajk = γ|∇u0|
p−2

(

δjk + (p− 2)
∂ju0∂ku0

|∇u0|2

)

. (5)

The Dirichlet-to-Neumann map Λγ determines the Dirichlet-to-Neumann
map ΛA for the equation (4).

In order to use already established results for the determination of the
cofficient matrix A, we need it to be elliptic. Indeed, even the differentiability
of uǫ w.r.t. ǫ is in question unless that is the case. We then see that the
unknown u0 must be guaranteed to have no critical points. In dimension 2,
by results of Alessandrini and Sigalotti in [2], we can guarantee the absence
of critical points by choosing Dirichlet data that has single local minimum
and maximum points on ∂Ω. In dimension 3 and higher something like this
is unlikely to hold, as even for linear elliptic equations it is known that for
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each Dirichlet data there is an open set of smooth coefficients that produce
solutions with critical points (see [1]). We can show however that, for coeffi-
cients γ that vary slowly in one direction, there exists explicit Dirichlet data
for which no critical points appear.

We can also point out here a simple corollary of our linearization result
(Proposition 3 below), for weights that are constant in one direction.

Corollary 1. Let n ≥ 3 and ζ ∈ R
n be a unit vector. If γ, γ̃ ∈ C∞(Ω) are

such that ζ · γ = ζ · γ̃ = 0 and Λγ = Λγ̃, then γ = γ̃.

Proof. In this case u0 = ζ · x is a solution of (1), with either weight. Then

Ajk = γ (δjk + (p− 2)ζjζk) , Ãjk = γ̃ (δjk + (p− 2)ζjζk) . (6)

After a rescaling in the ζ direction, the linearized problem reduces to the
classical Calderón problem with isotropic conductivities.

The linearization procedure is detailed in in section 2. In section 3 we give
a proof of Theorem 2. By the well known result [35] of Nachman, we have
uniqueness for the coefficient matrix A, up to diffeomorphism invariance.
Making use of the particular structure of A, we then succeed in showing that
the diffeomorphism relating A and Ã must be trivial and that γ = γ̃. In
section 4 we give the proof of Theorem 3. Our approach is to use boundary
determination results for equation (4) to obtain the values of all tangential
directions of A on the boundary, together with all their normal direction
derivatives. From this information we are then able to inductively show
uniqueness for the values of all the normal direction derivatives ∂k

νu0|∂Ω,
∂k
νγ|∂Ω, k = 0, 1, 2, . . . . Since here γ is assumed to be a real-analytic function,

this is enough to recover it on Ω.

2 Linearizing the p-Laplace equation

For each ξ ∈ R
n \ {0} let

Jj(ξ) = |ξ|p−2ξj, j = 1, . . . , n. (7)

Then
∂

∂ξk
Jj(ξ) = |ξ|p−2

(

δjk + (p− 2)
ξjξk
|ξ|2

)

. (8)

In what follows, we will repeatedly use the Taylor’s formula

Jj(ζ) = Jj(ξ) +
n
∑

k=1

(ζk − ξk)

1
∫

0

∂ξkJ(ξ + t(ζ − ξ)) dt. (9)
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We plan to linearize equation (1) near some solution u0, whose boundary data
u0|∂Ω = φ0 is known. As will become apparent below, we can only perform
the linearization if u0 does not have any critical points in Ω. In dimension
two plenty of such solutions exist, thanks to the following proposition due to
Alessandrini and Sigalotti.

Proposition 1 (see [2, Theorem 5.1]). If n = 2 there exists boundary data
φ0 ∈ C∞(∂Ω) independent of γ such that the corresponding solution u0 of
(1) is in C∞(Ω̄) and |∇u0(x)| > 0 for any x ∈ Ω.

In higher dimensions, even for a linear elliptic equation with unknown
coefficients it is impossible to guarantee the absence of critical points (see [1]).
We can still show the existence of such a solution provided the weight γ is
sufficiently close to a constant.

Proposition 2. Let ζ ∈ R
n be a unit vector. There exists µ > 0 so that

if ‖ζ · ∇γ‖C0,α(Ω) < µ, then there exists u0 ∈ C∞(Ω̄) which solves (1) with
boundary data φ0 = ζ · x, and is such that |∇u0(x)| > 0 for any x ∈ Ω.

Proof. Without loss of generality, we assume that ζ = (1, 0, . . . , 0). We make
the ansatz

u0(x) = x1 +R, R|∂Ω = 0. (10)

By (9) we have

∑

k

Bjk(∇R)∂kR = γJj(∇u0)− γδ1j , (11)

Bjk(ξ) = γ

1
∫

0

|e1 + tξ|p−2

(

δjk + (p− 2)
(δ1j + tξj)(δ1k + tξk)

|e1 + tξ|2

)

dt. (12)

Taking the divergence of the above we get

{

∇ · (B(∇R)∇R) = −∂1γ,

R|∂Ω = 0.
(13)

Let V ∈ C2,α(Ω̄) be such that ‖V ‖C2,α(Ω) < 1/2 and define the map T (V ) =
U , where U is the solution to

{

∇ · (B(∇V )∇U) = −∂1γ,

U |∂Ω = 0.
(14)
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Since B(∇V ) ∈ C1,α are uniformly elliptic coefficients, it follows that a
unique solution U ∈ C2,α(Ω̄) exists (see [18, Theorem 6.14]). Furthermore,
by [18, Theorem 6.6] we have

‖U‖C2,α(Ω) ≤ C‖∂1γ‖C0,α(Ω). (15)

If the right hand side is less than 1/2, by Shauder’s fixed point theorem
(see [18, Theorem 11.1]) it follows that T has a fixed point on the ball of
radius 1/2 in C2,α(Ω̄). By uniqueness of solutions for (1), this must be R
and we conclude that

‖∇R‖L∞(Ω) ≤
1

2
, (16)

so

|∇u0(x)| >
1

2
, ∀x ∈ Ω. (17)

Note that the nonvanishing of the gradient ∇u0 makes the equation sat-
isfied by u0 elliptic, so the smoothness of u0 follows.

In what follows we will assume that u0 is as in the preceding two propo-
sitions. Let A be the matrix with coefficients

Ajk = γ|∇u0|
p−2

(

δjk + (p− 2)
∂ju0∂ku0

|∇u0|2

)

. (18)

Proposition 3. Under the assumptions of either Proposition 1 or Propo-
sition 2, we have that the Dirichlet-to-Neumann map Λγ for the weighted
p-Laplace equation (1) determines the Dirichlet-to-Neumann map ΛA for the
linear equation ∇ · (A∇u) = 0, on the same domain Ω.

Proof. For φ ∈ C∞(∂Ω), and ǫ ∈ R small, let uǫ be the solution of

{

∇ · (γ|∇uǫ|
p−2∇uǫ) = 0,

uǫ|∂Ω = u0|∂Ω + ǫφ.
(19)

We make the Ansatz
uǫ = u0 +Rǫ. (20)

By Theorem 1 and the theorem of Arzelà-Ascoli, it follows that (on a sub-
sequence) we have that Rǫ → R0 in C1(Ω). Since then u0 + R0 would be
a weak solution of the same boundary value problem u0 satisfies, it follows
that Rǫ → 0 in C1(Ω). Since the limit is the same for every subsequence, it
follows that in fact we do not need to pass to a subsequence.
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By Taylor’s formula we have that

∑

k

∂kRǫ

1
∫

0

∂ξkJj(∇u0 + t∇Rǫ) dt = Jj(∇uǫ)− Jj(∇u0). (21)

Let

Aǫ
jk = γ

1
∫

0

∂ξkJj(∇u0 + t∇Rǫ) dt. (22)

Since Rǫ → 0 in C1, it follows that |∇u0 + t∇Rǫ| is uniformly bounded and
uniformly bounded away from zero. This implies that Aǫ

jk is a set of elliptic
coefficients, with ellipticity bounds independent of ǫ. Taking gradients in
(21) we get that Rǫ satisfies

{

∇ · (Aǫ∇Rǫ) = 0,

Rǫ|∂Ω = ǫφ,
(23)

It follows that
‖Rǫ‖C1,β(Ω) ≤ Cǫ. (24)

We can again invoke the theorem of Arzela-Ascoli to conclude that there
must exist u̇ ∈ C1(Ω) such that ǫ−1Rǫ → u̇ in C1(Ω). Taking the limit in
(23) we see that u̇ must be a weak solution of

{

∇ · (A∇u̇) = 0,

u̇|∂Ω = φ,
(25)

Returning to (21), dividing by ǫ and taking the limit ǫ → 0, we have that

ν · A∇u̇ = lim
ǫ→0

ν · J(∇uǫ)− ν · J(∇u0)

ǫ

= lim
ǫ→0

Λγ(u0|∂Ω + ǫφ)− Λγ(u0|∂Ω)

ǫ
. (26)

We see then that the Neumann data for the equation (25) is determined by
the map Λγ.

3 Proof of Theorem 2

Suppose n = 2 and we have γ, γ̃ as above such that Λγ = Λγ̃. We use
notation such as uǫ, ũǫ to denote the corresponding solutions to (19), etc.
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Observe that one consequence of the identity of the DN maps is
∫

Ω

γ|∇u0|
p dx =

∫

Ω

γ̃|∇ũ0|
p dx. (27)

By Proposition 3 we have that ΛA = ΛÃ. From [35, Theorem 2] it follows
that there must exist a diffeomorphism Φ : Ω̄ → Ω̄ such that Φ|∂Ω = Id and

Ã(x) =
1

|DΦ|
(DΦ)TADΦ ◦ Φ−1(x). (28)

Note that

det

(

δjk + (p− 2)
∂ju0∂ku0

|∇u0|2

)

=

(

1 + (p− 2)
(∂1u0)

2

|∇u0|2

)(

1 + (p− 2)
(∂2u0)

2

|∇u0|2

)

− (p− 2)2
(∂1u0∂2u0)

2

|∇u0|4
= p− 1. (29)

Taking determinants on both sides of (28) we obtain

(

γ̃|∇ũ0|
p−2
)2

=
(

γ|∇u0|
p−2
)2

|DΦ|−2|DΦ|2 ◦ Φ−1, (30)

so
γ̃|∇ũ0|

p−2 = γ|∇u0|
p−2 ◦ Φ−1. (31)

Another consequence of ΛA = ΛÃ is that for each φ we have ˙̃u = u̇ ◦Φ−1.
Incidentally, for φ = u0|∂Ω the solution to the linear equation is u̇ = u0.
Therefore

ũ0 = u0 ◦ Φ
−1. (32)

It then follows that
∇u0 = DΦ (∇ũ0 ◦ Φ) , (33)

which we can use in (28), together with (31), to get

Ã = γ̃|∇ũ0|
p−2 1

|DΦ| ◦ Φ−1

(

[

(DΦ)TDΦ
]

◦ Φ−1 + (p− 2)
|∇ũ0|

2

|∇u0|2 ◦ Φ−1

×
[

(DΦ)TDΦ
]

◦ Φ−1∇ũ0 ⊗∇ũ0

|∇ũ0|2
[

(DΦ)TDΦ
]

◦ Φ−1

)

. (34)
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Let

F =

[

(DΦ)TDΦ

|DΦ|

]

◦Φ−1, P =
∇ũ0 ⊗∇ũ0

|∇ũ0|2
, α = |DΦ|◦Φ−1 |∇ũ0|

2

|∇u0|2◦ Φ−1
. (35)

Note that F , P are symmetric matrices, and that P 2 = P . We have

F + α(p− 2)FPF = I + (p− 2)P. (36)

As both I+(p−2)P and F are invertible, it follows that both I+α(p−2)PF
and I + α(p− 2)FP are also invertible.

If we multliply (35) by P on the left we get

PF + α(p− 2)PFPF = (p− 1)P, (37)

so
PF = (p− 1)(I + α(p− 2)PF )−1P, (38)

since the inverse exists, and therefore

PF = PFP. (39)

On the other hand

FP + α(p− 2)FPFP = (p− 1)P, (40)

so
FP = (p− 1)P (I + α(p− 2)FP )−1, (41)

and therefore
FP = PFP = PF. (42)

Since F and P commute, they can be simultaneously diagonalized, and we
can write

F = θP + η(I − P ), θ, η scalars. (43)

It is easy to see that η = 1, while θ must satisfy the equation

θ + α(p− 2)θ2 = p− 1. (44)

Note that

1 =
|DΦ|2

|DΦ|2
◦ Φ−1 = detF = θη = θ. (45)

It follows that F = I
Suppose a non-trivial diffeomorphism such as Φ exists. Let σ be a scalar

conductivity on Ω and let

σ∗(y) =
σ

|DΦ|
(DΦ)TDΦ ◦ Φ−1(y) = σ ◦ Φ−1(y)F (y) = σ ◦ Φ−1(y). (46)

This new conductivity is also scalar and gives the same DN map as σ. This
violates the known uniqueness results for the Calderón problem in the plane.
So Φ must be trivial. Therefore u0 = ũ0 and γ = γ̃.
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4 Proof of Theorem 3

As in the previous section, we will denote by u0, ũ0, A, Ã, etc. the functions
corresponding to the coefficients γ and γ̃ respectively. By Proposition 3 we
have that ΛA = ΛÃ.

It is an immediate consequence of [32, Proposition 1.3] (or [26, Theo-
rem 1.3]) that there must exist a neighborhood of U of ∂Ω and a smooth
diffeomorphism Φ : U ∩ Ω̄ → U ∩ Ω̄, with Φ|∂Ω = Id, such that

∂j
νÃ
∣

∣

∣

∂Ω
= ∂j

ν

1

|DΦ|
(DΦ)TADΦ

∣

∣

∣

∣

∂Ω

, j = 0, 1, 2, . . . . (47)

Let z ∈ ∂Ω. Unless otherwise specified, all the following computations
will be pointwise, at this point z. We wish to proceed inductively in the
order of differentiation in (47).

0th order: We have that

Ã(z) =
1

|DΦ|(z)
(DΦ)T (z)A(z)DΦ(z). (48)

If τ is any unit tangent vector to ∂Ω at z, we must have that DΦ(z)τ = τ .
Since u0|∂Ω = ũ0|∂Ω, we also have that τ · ∇u0(z) = τ · ∇ũ0(z). Therefore

τ · Ã(z)τ = γ̃(z)|∇ũ0|
p−2(z)

(

1 + (p− 2)
(τ · ∇u0)

2(z)

|∇ũ0|2(z)

)

. (49)

On the other hand, by (48) we have

τ · Ã(z)τ =
1

|DΦ|(z)
γ(z)|∇u0|

p−2(z)

(

1 + (p− 2)
(τ · ∇u0)

2(z)

|∇u0|2(z)

)

. (50)

We can vary τ in the tangent space to the boundary at z, which is at least
two dimensional. By choosing τ ⊥ ∇u0(z) we can separately identify

γ̃(z)|∇ũ0|
p−2(z) =

1

|DΦ|(z)
γ(z)|∇u0|

p−2(z). (51)

By possibly shifting the point z, or by slightly rotating the vector ζ in the
statement of Proposition 2, we can make sure that ∇u0(z) is not normal to
the boundary. Choosing τ 6⊥ ∇u0(z) we get

1

|∇ũ0|2
(z) =

1

|∇u0|2
(z). (52)
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It follows that
|∇u0|(z) = |∇ũ0|(z), (53)

and, as we already know that τ · ∇u0(z) = τ · ∇ũ0(z) for all τ as above, we
also conclude that

∂νu0(z) = ∂ν ũ0(z). (54)

As Λγ(u0|∂Ω) = Λγ̃(u0|∂Ω), we get

γ(z) = γ̃(z). (55)

This further implies that
|DΦ|(z) = 1, (56)

Since now A(z) = Ã(z) and DΦ acts as the identity in the tangent space to
∂Ω at z, equation (48) can only hold if

DΦ(z) = I. (57)

1st order: We have that

(∂νÃ)(z) =

(

∂ν
1

|DΦ|
(DΦ)TADΦ

)

(z). (58)

From this point onward, we will use the assumption that ∂Ω is flat in a
neighborhood of z. For ease of computation, we will rotate our coordinates
so that ν = e1 and locally ∂Ω ∩ U ⊂ {x1 = 0}. We also find it notationally
convenient to introduce the tangential gradient ∇′ = ∇− ∂1e1. By possibly
shifting the point z, or by slightly changing the vector ζ in the statement of
Proposition 2, we can make sure that ∂1u0(z) 6= 0.

In the previous step we have shown that DΦ(z) = I. It follows that

∂j∂kΦ
l(z) = 0, unless j = k = 1. (59)

Rewriting (58) with this information, we obtain that at z

∂1Ãjk = ∂1Ajk + (Aj1∂
2
1Φ

k + A1k∂
2
1Φ

j)− Ajk∂
2
1Φ

1. (60)

In preparation for using the above equations, and denoting by a11, ajj,
aj1 terms made up of quantities for which uniqueness has already been shown
at the previous step, we compute

∂1A11 = ∂1γ|∇u0|
p−2

(

1 + (p− 2)
(∂1u0)

2

|∇u0|2

)

+ ∂2
1u0γ∂1u0|∇u0|

p−4(p− 2)

(

3 + (p− 4)
(∂1u0)

2

|∇u0|2

)

+ a11. (61)
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For j 6= 1

∂1Ajj = ∂1γ|∇u0|
p−2

(

1 + (p− 2)
(∂ju0)

2

|∇u0|2

)

+ ∂2
1u0γ∂1u0|∇u0|

p−4(p− 2)

(

1 + (p− 4)
(∂ju0)

2

|∇u0|2

)

+ ajj. (62)

Also

∂1Aj1 = ∂1γ|∇u0|
p−2(p− 2)

∂ju0∂1u0

|∇u0|2

+ ∂2
1u0γ∂ju0|∇u0|

p−4(p− 2)

(

1 + (p− 4)
(∂1u0)

2

|∇u0|2

)

+ aj1. (63)

Since ∇ · (γ|∇u0|
p−2∇u0) = 0, at z we have that

∂1
[

γ|∇u0|
p−2∂1u0

]

= −∇′ ·
[

γ|∇u0|
p−2∇′u0

]

= ∂1
[

γ̃|∇ũ0|
p−2∂1ũ0

]

, (64)

by the previous step. Let ξ1 = ∂1(γ − γ̃)(z), ξ2 = ∂2
1(u0 − ũ0)(z). It follows

that
Θ11ξ1 +Θ12ξ2 = 0, (65)

where
Θ11 = ∂1u0|∇u0|

p−2, (66)

Θ12 = γ|∇u0|
p−2

(

1 + (p− 2)
(∂1u0)

2

|∇u0|2

)

. (67)

Let ξ3 = ∂2
1Φ

1(z). Taking j = k = 1 in (60), we obtain the equation

Θ21ξ1 +Θ22ξ2 +Θ23ξ3 = 0, (68)

where

Θ21 = |∇u0|
p−2

(

1 + (p− 2)
(∂1u0)

2

|∇u0|2

)

(69)

Θ22 = γ∂1u0|∇u0|
p−4(p− 2)

(

3 + (p− 4)
(∂1u0)

2

|∇u0|2

)

(70)

Θ23 = γ|∇u0|
p−2

(

1 + (p− 2)
(∂1u0)

2

|∇u0|2

)

. (71)

Taking k = j in (60), we obtain the equation

Θ31ξ1 +Θ32ξ2 +Θ33ξ3 = −2∂2
1Φ

jγ|∇u0|
p−2(p− 2)

∂ju0∂1u0

|∇u0|2
, (72)
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where

Θ31 = |∇u0|
p−2

(

1 + (p− 2)
(∂ju0)

2

|∇u0|2

)

, (73)

Θ32 = γ∂1u0|∇u0|
p−4(p− 2)

(

1 + (p− 4)
(∂ju0)

2

|∇u0|2

)

, (74)

Θ33 = −γ|∇u0|
p−2

(

1 + (p− 2)
(∂ju0)

2

|∇u0|2

)

, (75)

Under our assumptions, we are still free to rotate the coordinate axes, as
long as the normal direction remains that of x1. We can therefore arrange
that ∂ju0(z) = 0. In this case we then have the system















Θ11ξ1 +Θ12ξ2 = 0,

Θ21ξ1 +Θ22ξ2 +Θ23ξ3 = 0,

Θ31ξ1 +Θ32ξ2 +Θ33ξ3 = 0.

(76)

Denoting λ(z) = γ2(z)|∇u0|
3p−8(z) we compute the determinant

∣

∣

∣

∣

∣

∣

∣

∣

Θ11 Θ12 0

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

∣

∣

∣

∣

∣

∣

∣

∣

= λ(z)

∣

∣

∣

∣

∣

∣

∣

∂1u0 |∇u0|2
(

1 + (p− 2) (∂1u0)
2

|∇u0|2

)

0

1 + (p − 2) (∂1u0)
2

|∇u0|2
(p− 2)∂1u0

(

3 + (p − 4) (∂1u0)
2

|∇u0|2

)

1 + (p − 2) (∂1u0)
2

|∇u0|2

1 (p− 2)∂1u0 −1

∣

∣

∣

∣

∣

∣

∣

= λ(z)

∣

∣

∣

∣

∣

∣

∣

∂1u0 |∇u0|2
(

1 + (p − 2)
(∂1u0)

2

|∇u0|2

)

0

0 (p − 2)∂1u0

(

3 + (p− 4)
(∂1u0)

2

|∇u0|2

)

1 + (p − 2)
(∂1u0)

2

|∇u0|2

2 (p − 2)∂1u0 −1

∣

∣

∣

∣

∣

∣

∣

= λ(z)

[

2|∇u0|
2

(

1 + (p− 2)
(∂1u0)

2

|∇u0|2

)2

−(p− 2)(∂1u0)
2

(

3 + (p− 4)
(∂1u0)

2

|∇u0|2

)]

= λ(z)

[

2|∇u0|
2 + (p− 2)(∂1u0)

2 + p(p− 2)
(∂1u0)

4

|∇u0|2

]

6= 0, (77)
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where the conclusion holds because, since p > 1, both p − 2 > −1 and
p(p− 2) > −1. It follows that

∂1γ(z) = ∂1γ̃(z), ∂2
1u0(z) = ∂2

1 ũ0(z), ∂2
1Φ

1(z) = 0. (78)

Returning to (60), with k = 1, we are left with

A11∂
2
1Φ

j = 0, (79)

which implies that
∂2
1Φ

j(z) = 0, (80)

for all directions j that are orthogonal to the projection of ∇u0 into the
tangent plane. If we choose our coordinates so that the direction of xl is the
same as that of the just mentioned projection, then Al1(z) 6= 0, so (60), with
j = k = l gives

∂2
1Φ

l(z) = 0. (81)

Therefore we have that

∂j∂kΦ(z) = 0, j, k = 1, . . . , n. (82)

mth order: For multi-indices α ∈ N
n, suppose that we know that

∂αγ(z) = ∂αγ̃(z), α1 = 0, 1, . . . , m− 1, (83)

∂αu0(z) = ∂αũ0(z), α1 = 0, 1, . . . , m, (84)

∂αDΦ(z) = ∂αI, α1 = 0, 1, . . . , m− 1. (85)

We have that
(

∂m
1 Ã
)

(z) =

(

∂m
1

1

|DΦ|
(DΦ)TADΦ

)

(z). (86)

Using our induction assumptions, we can rewrite this as

∂m
1 Ãjk = ∂m

1 Ajk + (Aj1∂
m+1
1 Φk + A1k∂

m+1
1 Φj)− Ajk∂

m+1
1 Φ1. (87)

Denoting by ajk terms made up of quantities whose uniqueness follows
from the induction hypotheses, we have that

∂m
1 Ajk = ∂m

1 γ(z)|∇u0|
p−2

(

δjk + (p− 2)
∂ju0∂ku0

|∇u0|2

)

+ ∂m+1
1 u0(p− 2)γ(z)|∇u0|

p−4

×

(

δjk∂1u0 + (p− 4)
∂ju0∂ku0

|∇u0|2
∂1u0 + δ1j∂ku0 + δ1k∂ju0

)

+ ajk. (88)
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Since ∇ · (γ|∇u0|
p−2∇u0) = 0, at z we have that

∂m
1

[

γ|∇u0|
p−2∂1u0

]

= −∂m−1
1 ∇′ ·

[

γ|∇u0|
p−2∇′u0

]

= ∂m
1

[

γ̃|∇ũ0|
p−2∂1ũ0

]

. (89)

This can be rewritten as

∂m
1 (γ − γ̃)∂1u0|∇u0|

p−2

+ ∂m+1
1 (u0 − ũ0)γ|∇u0|

p−2

(

1 + (p− 2)
(∂1u0)

2

|∇u0|2

)

= 0. (90)

If we set ξ1 = ∂m
1 (γ− γ̃)(z), ξ2 = ∂m+1

1 (u0− ũ0), ξ3 = ∂m+1
1 Φ1, and we choose

a direction j that is orthogonal to the projection of ∇u0(z) into the tangent
space to ∂Ω at z, we obtain the same system















Θ11ξ1 +Θ12ξ2 = 0,

Θ21ξ1 +Θ22ξ2 +Θ23ξ3 = 0,

Θ31ξ1 +Θ32ξ2 +Θ33ξ3 = 0.

(91)

Since with our assumptions
∣

∣

∣

∣

∣

∣

∣

∣

Θ11 Θ12 0

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

∣

∣

∣

∣

∣

∣

∣

∣

6= 0, (92)

it follows that

∂m
1 γ(z) = ∂m

1 γ(z), ∂m+1
1 u0(z) = ∂m+1

1 u0(z), ∂m+1
1 Φ1(z) = 0. (93)

Setting k = 1 in (87), we have

A11∂
m+1
1 Φj = 0, (94)

which implies that
∂m+1
1 Φj(z) = 0, (95)

for all directions j that are orthogonal to the projection of ∇u0 into the
tangent plane. If we choose our coordinates so that the direction of xl is the
same as that of the just mentioned projection, then Al1(z) 6= 0, so (87), with
j = k = l gives

∂m+1
1 Φl(z) = 0. (96)

Therefore
∂αDΦ(z) = ∂αI, α1 = 0, 1, . . . , m. (97)

This completes the induction step.
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mathématiques pures et appliquées, 145:44–82, 2021.

[32] J. M. Lee and G. Uhlmann. Determining anisotropic real-analytic con-
ductivities by boundary measurements. Communications on Pure and
Applied Mathematics, 42(8):1097–1112, 1989.

18



[33] G. M. Lieberman. Boundary regularity for solutions of degenerate el-
liptic equations. Nonlinear Analysis: Theory, Methods & Applications,
12(11):1203–1219, 1988.

[34] C. Munoz and G. Uhlmann. The Calderón problem for quasilinear el-
liptic equations. Annales de l’Institut Henri Poincaré C, Analyse non
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