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Ground-state properties of dipolar Bose-Einstein condensates with spin-orbit coupling
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We study the ground-state properties of dipolar spin-1/2 Bose-Einstein condensates with quantum
fluctuations and Rashba spin-orbit coupling (SOC). The combined effects of dipole-dipole interac-
tion (DDI), SOC, and Lee-Huang-Yang (LHY) correction induced by quantum fluctuations on the
ground-state structures and spin textures of the system are analyzed and discussed. For the non-
rotating case and fixed nonlinear interspecies contact interaction strengths, our results show that
structural phase transitions can be achieved by adjusting the strengths of the DDI and LHY cor-
rection. In the absence of SOC, a ground-state phase diagram is given with respect to the DDI
strength and the LHY correction strength. We find that the system exhibits rich quantum phases
including square droplet lattice phase, annular phase, loop-island structure, stripe-droplet coex-
istence phase, toroidal stripe phase, and Thomas-Fermi (TF) phase. For the rotating case, the
increase of DDI strength can lead to a quantum phase transition from superfluid phase to super-
solid phase. In the presence of SOC, the quantum droplets display obvious stretching and hidden
vortex-antivortex clusters are formed in each component. In particular, weak or moderate SOC
favors the formation of droplets while for strong SOC the ground state of the system develops into
a stripe phase with hidden vortex-antivortex clusters. Furthermore, the system sustains exotic spin
textures and topological excitations, such as composite skyrmion-antiskyrmion-meron-antimeron
cluster, meron-antimeron string cluster, antimeron-meron-antimeron chain cluster, and peculiar
skyrmion-antiskyrmion-meron-antimeron necklace with a meron-antimeron necklace embedded in-
side and a central spin Neel domain wall.

Keywords : Dipolar Bose-Einstein condensate, spin-orbit
coupling, quantum fluctuations, quantum droplets, topo-
logical defects

I. INTRODUCTION

Dipolar Bose-Einstein condensates (BECs) possess
dipole-dipole interaction (DDI) besides the usual s-
wave contact interaction. The DDI is long-range and
anisotropic, which has important influence on the static
structures, dynamic properties and stability of ultracold
quantum gases. Recent experimental progress on dipo-
lar BECs of chromium [1], dysprosium [2] and erbium
[3] atoms with large magnetic dipole moments provides
a unique opportunity to explore novel quantum phases
and quantum effects [4]. Previous studies have shown
that the spontaneous breaking of both gauge symmetry
and translational symmetry can yield superfluidity and
crystal periodic order in the dipolar BECs [5, 6]. How-
ever, the attractive component of the DDI tends to desta-
bilize the condensate, leading to the system developing
towards collapse. It is possible to stabilize the system
by taking account of Lee-Huang-Yang (LHY) correction
which is first-order correction to the mean field energy(
∼ n5/2

)
[7]. In the presence of LHY correction induced

by quantum fluctuations, a new quantum phase, that is,
quantum droplet(QD) phase, is expected to appear. The
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QDs in ultracold quantum gases of bosonic atoms are
different from those in superfluid helium[8, 9], where the
former have a larger volume (two orders of magnitude)
and a more dilute density (eight orders of magnitude).
Recently, stable QDs in dipolar BECs of dysprosium [10]
or erbium [11] atoms have been observed experimentally.
These experiments demonstrate that the quantum fluc-
tuations can effectively balance the attraction caused by
the DDI and lead to the generation of droplets, which
has attracted much attention and interest. Afterwards,
the QDs in dipolar BECs were extensively investigated
[12–16] and opened up a new way for the study of su-
persolids [17–22]. For instance, Chomaz et al. realized
a long-lived supersolid state in dipolar BECs, and ob-
served the coexistence of density modulation and global
phase coherence [19]. In addition, the quantum droplet
states were also predicted or observed in various cold
atoms systems, such as binary boson mixtures [23–30],
heteronuclear mixtures [31], Bose-Fermi mixtures [32],
spinor BECs [33, 34], and mixtures of bosonic atoms
and molecules with p-wave interaction [35]. However,
whether there exist QDs and phase transition from super-
fluid phase to supersolid phase in dipolar spin-1/2 BECs
with attractive interspecies interactions and LHY correc-
tion is still unknown and deserves further investigation.
In particular, how to effectively determine the supersolid
phase in dipolar spinor BECs is an intriguing issue.

On the other hand, the spin-orbit coupling (SOC) is
an interaction between the spin and momentum of a
quantum particle, which is ubiquitous in physical sys-
tems [36]. The spin-orbit-coupled BECs provide us a
brand-new platform to investigate the novel quantum
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phenomena and exotic states of matter due to its good
experimental controllability. In the past few years, cold-
atom experiments have been successfully realized syn-
thetic one-dimensional (1D) [36], 2D [37] and 3D [38]
types of SOC, which are crucial in studying the exotic
properties of different dimensional topological matters.
In addition, based on the symmetry of interaction, there
are three typical types of 2D SOCs in systems including
Rashba SOC [39], Dresselhaus SOC [40], and Rashba–
Dresselhaus type SOC [41]. The SOC destroys the spa-
tial symmetry and Galilean invariance, thus affecting
the structure and superfluid properties of the conden-
sates [42, 43]. In this context, the competition between
the SOC and the contact interaction can lead to rich
quantum phases, topological structures and distinctive
physical properties, such as plane-wave phase [42, 44],
heliciform-stripe phase [45], topological superfluid phase
[37], supersolid phase [46], lattice phase [47], checker-
board phase [48], half-quantum vortex [49], soliton ex-
citation [50–53], quantum beating [54], and skyrmion
[55, 56], etc. Furthermore, the effect of SOC on QDs
has recently attracted considerable attention. In ultra-
cold Bose-Fermi mixtures, it was showed that SOC could
independently promote the formation of QDs [57]. And
multi-dimensional solitons and QDs were found in spin-
orbit coupled binary BECs with LHY correction [58, 59].
To the best of our knowledge, however, there is seldom
research on spinor (multi-component) BECs that simul-
taneously contain DDI, SOC and LHY correction. Such
a physical system can be achieved under the current cold-
atom experimental techniques [60].

In this paper, we consider quasi-2D dipolar spin-1/2
BEC with quantum fluctuations and Rashba SOC in a
harmonic trap. The effects of LHY corrections, DDI,
SOC and rotation on the ground-state properties of the
system are analyzed. A ground-state phase diagram
is presented as a function of DDI strength and LHY
correction strength in the absence of SOC. For given
interspecies interaction strengths, we can obtain the
formation region of the droplet phase (the equilibrium
region of repulsion and attraction). In addition, we
calculate the average energy of per atom for different
quantum phases, which is helpful to further understand
the changing process between different quantum phases
of the system. Furthermore, in order to explore the
supersolid properties of the system induced by LHY
correction and DDI, we analyze the structural phase
transitions of superfluid and supersolid exhibited in
the rotating case by investigating the ratio of the
moment of inertia to the rigid value and the non-
classical rotational inertia fraction. In the presence
of SOC, the droplets become evidently stretched and
hidden vortex-antivortex pairs or clusters appear in
the system. For a non-droplet phase, the inclusion
of SOC tends to make the system form a droplet
phase. Moreover, the system displays rich exotic spin
textures and topological structures including compos-
ite skyrmion-antiskyrmion-meron-antimeron cluster,

meron(half-skyrmion)-antimeron(half-antiskyrmion)
string cluster, complicated antimeron-meron-antimeron
chain cluster, and skyrmion-antiskyrmion-meron-
antimeron necklace with a meron-antimeron necklace
embedded inside and a central spin Neel domain wall.
The paper is organized as follows. In Section 2, we for-

mulate the theoretical model and methods. In Section 3,
the ground-state structures are predicted and analyzed.
In the absence of SOC, the effects of LHY corrections
and DDI on the ground-state properties of the system
are revealed, and the structural phase transition from
superfluid to supersolid is demonstrated in terms of the
moment of inertia and the nonclassical rotational inertia
fraction. In the presence of SOC, the effect of SOC and
the typical spin textures of the system are unveiled. In
Section 4, the main conclusions of the paper are summa-
rized.

II. THEORETICAL MODEL

We consider a quasi-2D system of Rashba-type spin-
orbit-coupled dipolar BECs with LHY corrections in
a harmonic trap. The dynamics of the system can
be described by the following nonlinear coupled Gross-
Pitaevskii (GP) equations [4, 7, 13, 23, 36, 42, 61]

i~
∂Ψ1

∂t
=

(

−
~
2

2m
∇2 + V (r) + g11|Ψ1|

2 − g12|Ψ2|
2

)

Ψ1

+

(

C
11

dd

∫

Udd|Ψ1(r′

, t)|2dr′ + C
12

dd

∫

Udd|Ψ2(r′

, t)|2dr′

)

Ψ1

+ GLHY |Ψ1|
3Ψ1 + ~ (κx∂x − iκy∂y) Ψ2, (1)

i~
∂Ψ2

∂t
=

(

−
~
2

2m
∇2 + V (r) + g22|Ψ2|

2 − g21|Ψ1|
2

)

Ψ2

+

(

C
21

dd

∫

Udd|Ψ1(r′

, t)|2dr′ + C
22

dd

∫

Udd|Ψ2(r′

, t)|2dr′

)

Ψ2

+ GLHY |Ψ2|
3Ψ2 − ~ (κx∂x + iκy∂y) Ψ1, (2)

where m is the atomic mass, Ψj (j = 1, 2) is the compo-
nent wave function, with 1 and 2 corresponding to spin-
up and spin-down, respectively. V (r) = 1

2
m[ω2

⊥(x
2 +

y2) + ω2
zz

2] is the external trapping potential. The co-
efficients gjj = 4πaj~

2/m (j = 1, 2) and g12 = g21 =
4πa12~

2/m represent the intra- and interspecies coupling
strengths, where aj (j = 1, 2) and a12 denote the s-
wave scattering lengths between intra- and intercompo-
nent atoms. Here we consider a11 = a22 = as, i.e., the
two component atoms have the same intraspecies s-wave
scattering lengths. κx and κy characterize the Rashba
SOC strengths in the x and y directions.
The long-range nonlocal DDI can be expressed as [4]

Udd (r − r′) =
1− 3 cos2 θ

|r − r′|3
, (3)

with θ being the angle between the polarization direction
and the relative position of the atoms. Cjj

dd = µ0µ
2
j/4π

(j = 1, 2) and C12
dd = C21

dd = µ0µ1µ2/4π are the magnetic
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DDI constants of intraspecies and interspecies compo-
nents, respectively. µ0 denotes the permeability of vac-
uum, and µj (j = 1, 2) is the magnetic dipole moment of
the jth component atom. Here µ1 = µ2 = µ is assumed,
which means C11

dd = C22
dd = C12

dd = C21
dd = Cdd = µ0µ

2/4π.
The 3D dipolar length is defined as add = µ0µ

2
jm/12π~

2

and the ratio of DDI to the s-wave interaction strength
is given by εdd = add/as.
In Eq.(1) and Eq.(2), quantum fluctuations for

the mean-field energy of the system are introduced
by a LHY correction with coefficient GLHY =
128

√
π~2a5/2

s

3m

(
1 + 3

2
ε2dd

)
[62]. In the present work, we as-

sume that the strength of SOC is relatively weak and
does not affect the form of the LHY correction [58, 63].
Meanwhile, we omit the direct effect of intercomponent
interaction on the LHY correction, but take into account
its indirect influence on the LHY correction, as shown in
the coupled nonlinear GP equations of the binary BECs.
This treatment does not lead to essential changes in the
physical properties of the system because in general the
effect of LHY correction on the system is primarily at-
tributed to the quartic nonlinearities in form [23, 29, 64].
Another reason for our choice of this approach is that
the analytical solution and numerical calculation of the
LHY correction term for spin-orbit coupled dipolar BEC
mixtures become rather difficult due to the complexity
of the derivation process and calculation formula for the
strict LHY expression of the present system. As a mat-
ter of fact, a simplified treatment scheme similar to our
method has been successfully applied to the investigation
of vortical droplets in two-component swirling superflu-
ids [61]. Here we are interested in a quasi-2D system
with strong confinement in the z direction. In this case,
we separate the degrees of freedom of the wave function
as Ψ1,2(r, t) = ψ1,2(x, y, t)φ1,2(z), and integrate the z

dependence. φ1,2(z) = ( 1√
πaz

)1/2 exp(−z2

2a2
z
) denotes the

single-particle ground-state wave function in a harmonic
potential with az =

√
~/mωz. The normalization con-

dition of the system reads
∫ [

|ψ1|2 + |ψ2|2
]
dxdy = N ,

where N is the number of atoms.
In order to perform numerical calculation and simula-

tion, we introduce the notations t̃ = ω⊥t, x̃ = x/a0, ỹ =

y/a0, Ṽ (x, y) = V (x, y)/~ω⊥, ψ̃j = ψja0/
√
N(j = 1, 2),

and a0 =
√
~/mω⊥. Then we obtain the dimensionless

2D coupled GP equations

i∂tψ1 =

(
−1

2
∇2 + V + β11|ψ1|2 − β12|ψ2|2

)
ψ1

+ cddF
−1
2D

[
ñ(k, t)F (kaz/

√
2)
]
ψ1 + gLHY |ψ1|3ψ1

+ (κx∂x − iκy∂y)ψ2, (4)

i∂tψ2 =

(
−1

2
∇2 + V + β22|ψ2|2 − β21|ψ1|2

)
ψ2

+ cddF
−1
2D

[
ñ(k, t)F (kaz/

√
2)
]
ψ2 + gLHY |ψ2|3ψ2

− (κx∂x + iκy∂y)ψ1, (5)

where the tildes are omitted for simplicity in our follow-
ing discussion. In other words, for the convenience of
discussion, we retain the same symbols as the dimen-
sional variables unless otherwise indicated. Here β11 =
β22 = 2

√
2πasN/az and β12 = β21 = 2

√
2πa12N/az

are the dimensionless intra- and intercomponent inter-
action strengths. The 2D dimensionless LHY correction

coefficient is given by gLHY =
128

√
2a5/2

s N3/2

3
√
5π1/4a0a

3/2
z

(
1 + 3

2
ε2dd

)
.

cdd = µ0µ
2mN/

(
3
√
2π~2az

)
represents the dipolar cou-

pling efficient, and F2D denotes the 2D Fourier trans-
form operator with ñ(k, t) = F2D[n(r, t)] [65]. The

function F (q) with q ≡ kaz/
√
2 is the k-space DDI

for the quasi-2D geometry, which consists of two parts,
originating from polarization perpendicular or parallel
to the direction of the dipole tilt. More specifically,
F (q) = cos2(α)F⊥(q) + sin2(α)F‖(q) with α being the
angle between the z-axis and the polarization vector

d̂. Here F⊥(q) = 2 − 3
√
πqeq

2

erfc(q) (⊥-configuration),

F‖(q) = −1+3
√
π(q2d/q)e

q2erfc(q) (‖-configuration), qd is
the wave vector along the direction of the projection of d̂
onto the x-y plane, and erfc denotes the complementary
error function [66, 67]. We consider that the polariza-
tion is vertical to the condensate plane, i.e., α = 0, and

therefore F⊥(q) = 2− 3
√
πqeq

2

erfc(q).
In order to describe the topological properties of the

system, we use a nonlinear Sigma model [68, 69], in which
a normalized complex-valued spinor χ = [χ1, χ2]

T with
|χ1|2 + |χ2|2 = 1 is introduced. The corresponding two-
component wave function can be written as ψ1 =

√
ρχ1

and ψ2 =
√
ρχ2, where ρ = |ψ1|2 + |ψ2|2 is the total

density of the system. The spin density is given by S =
χσχ, where σ = (σx, σy , σz) are the Pauli matrices, and
the components of S are expressed as

Sx = χ∗
1χ2 + χ∗

2χ1, (6)

Sy = i(χ∗
2χ1 − χ∗

1χ2), (7)

Sz = |χ1|2 − |χ2|2, (8)

with |S|2 = S2
x + S2

y + S2
z = 1. The spacial distribution

of the topological structure of the system is described by
the topological charge density

q(x, y) =
1

4π
S ·

(
∂S

∂x
× ∂S

∂y

)
, (9)

and the topological charge Q is defined as

Q =

∫
q(x, y)dxdy. (10)

III. RESULTS AND DISCUSSION

For such a complex system, there is no analytical solu-
tion. In what follows, we numerically solve the 2D non-
linear coupled GP equations (4) and (5) to obtain the
ground state of the system by using the imaginary-time
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propagation method [44, 70]. In our simulation, we con-
sider two-component BECs of 164Dy atoms and choose
the parameters of the attractive interspecies interactions
as β12 = β21 = 100. It is shown that the system can
exhibit rich and exotic quantum phases due to the com-
petition among multiple parameters.

A. The effects of LHY corrections and DDI

We first study the effects of LHY corrections and DDI
on the ground-state properties of the system without
SOC in the nonrotating case. In Fig. 1 we present
a ground-state phase diagram with respect to the DDI
strength cdd and the LHY correction strength gLHY .
There are six different quantum phases marked by A–
F and a collapse region, which differs in terms of their
density profiles. For other interaction strengths, our sim-
ulation results show that there are similar phase diagrams
and ground-state configurations. In the following discus-
sion, we will give a detailed description for individual
quantum phases. Due to the attractive interspecies in-
teraction, the two-component density distributions are
the same, so we only need to plot the density profile of
component 1. The typical density distributions of the
six different phases A–F in Fig. 1 are shown in the first
row of Figs. 2(a)-2(f), respectively. The correspond-
ing momentum distributions, i.e., the k-space densities
of component 1 are displayed in the second row of Fig.
2.

FIG. 1: (Color online) Ground-state phase diagram spanned
by the DDI strength cdd and the LHY correction strength
gLHY for two-component dipolar BECs with quantum fluc-
tuations, where β12 = β21 = 100. There are six different
quantum phases marked by A-F and a collapse regime.

The phase diagram includes seven different regions.
The bottom red region in Fig. 1 represents system col-
lapse, where the attractive force originated from the in-
terspecies attractive interaction and the DDI is domi-
nant, and the repulsive force is not strong enough to sta-
bilize the system [71]. Recently, relevant research demon-
strated that the LHY quartic term induced by quantum

fluctuations was sufficient for the stabilization of ultra-
cold 2D Bose gas against the collapse [72]. The other six
regions denote six different ground-state quantum phases
labelled by A–F. For a fixed DDI strength within a large
range, when the LHY correction strength increases, the
system sustains A phase which is displayed by the re-
gion A in Fig. 1. In this phase, the density distribution
shows an evident quantum droplet lattice (see Fig. 2(a)).
At the same time, the momentum distribution is concen-
trated at several discrete points, where the central high
density point is surrounded by some low density points,
which indicates that the atoms are condensed in discrete
narrow momentum regimes with very finite momentums.
In addition, the momentum distribution exhibits excel-
lent crystal order with axial symmetry concerning the kx
axis and the ky axis. We may call the A phase in Fig.
1 as droplet lattice phase. Physically, sufficiently large
repulsive force stemming from the LHY corrections of
the system is the key factor for the droplets to be in a
stable state, which is balanced with the attractive force
induced by the DDI and intercomponent attractive inter-
action. For fixed contact interaction strengths, there is
a significant competitive relationship between the LHY
correction strength and the DDI strength on the ground-
state structure of the system.

FIG. 2: (Color online) Ground-state quantum phases of two-
component dipolar BECs with LHY corrections, where (a)-
(f) correspond to the A-F phases in Fig.1, respectively. The
first row denotes the density distribution of component 1, and
the second row corresponds to the momentum distribution of
component 1. (a) cdd = 300, gLHY = 1300, (b) cdd = 300,
gLHY = 1600, (c) cdd = 500, gLHY = 3700, (d) cdd = 900,
gLHY = 7200, (e) cdd = 900, gLHY = 7700, and (f) cdd = 300,
gLHY = 3300. The unit length is a0.

For relatively weak DDI, when the LHY correction
strength slightly increases, the A phase transforms to
the B phase as shown in Fig. 1 and Fig. 2(b). The
B phase is an annular condensate (annular phase), where
the density distribution of the system exhibits a typi-
cal annular structure, and the momentum distribution
is concentrated at a central point surrounded by a low-
density ring (Fig. 2(b)). For moderate DDI intensity,
with the increase of LHY correction strength, the C phase
or the D phase emerges as the ground state of the system,
which is displayed in Fig. 1 and Figs. 2(c)-2(d). The C
phase is a droplet-stripe phase, where the central quan-
tum droplet is surrounded by a peripheral toroidal stripe
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(see Fig. 2(c)). Intriguingly, the D phase denotes an ex-
otic coexistence phase of a droplet lattice and an annular
stripe, where the central region embraced by a circular
density stripe holds a square droplet lattice (Fig. 2(d)).
From the momentum distributions in Figs. 2(c)-2(d),
there is only a discrete point near the origin of momen-
tum space, which implies that the atoms are essentially
condensed at zero momentum. In particular, the coex-
istence phase of droplet lattice and annular stripe (the
D phase) has not been reported elsewhere so far, and it
allows to be tested and observed in the future cold atom
experiments. In the case of strong DDI, with the increase
of LHY correction strength, the A phase transforms to
the E phase as indicated by the region E in Fig.1. The
typical density and momentum distributions of this phase
given in Fig. 2(e), where the ground-state density forms
two concentric layered annular stripes. We can call the
E phase as annular stripe phase. When the repulsive
force induced by LHY correction is much greater than
the attractive force caused by DDI, the system supports
typical Thomas-Fermi (TF) phase (plane-wave phase)
as shown in Fig. 1 and Fig. 2(f). Recently, the TF
phase has also been observed in nonrotating spin-orbit
coupled BECs [42, 44, 45], where the formation of this
phase is mainly attributed to the competition between
the SOC and the interatomic contact interaction. From
Fig.1, one can see that, for an appropriate regime of the
DDI strength, the phase transitions of B→C→D→E→F
phases can be achieved by varying the LHY correction
strength. In addition, for large DDI strength, the col-
lapse area in the phase diagram significantly expands.
The physical reason is that the system needs sufficient
repulsion to maintain stability under the strong attrac-
tion caused by the DDI. Particularly, it is expected that
a supersolid phase can be formed in the system due to
the existence of QDs with high atomic density (e.g., see
the A, C and D phases), and the finite nonclassical rota-
tional inertia of the system [21] will be examined in the
following sections to further discuss the properties of the
system.

With regard to the droplet lattice phase (the A phase),
we now study the relation between the number of droplets
nd and the LHY correction strength gLHY , as shown
in Fig. 3. As cdd and gLHY increase together (this is
equivalent to an increase of the number of atoms N), the
number of droplets nd gradually increases and shows an
approximate linear dependence on the LHY correction
coefficient gLHY . Obviously, increasing the LHY correc-
tion strength or increasing the number of atoms results
in growth of the microscopic droplet lattice. Physically,
with the increase of LHY correction strength, or equiv-
alently, with the increase of the number of atoms, the
original droplets tend to redistribute and reorganize into
more droplets to decrease the system energy and the con-
finement energy in the z direction. Recently, the linear
dependence between the number of droplets and the num-
ber of atoms has been observed and verified in the quan-
tum ferrofluid experiment of dysprosium atomic BEC

FIG. 3: (Color online) The number of droplets nd with re-
spect to the LHY correction coefficient gLHY . The param-
eters of the five marked red dots from left to right are (1)
cdd = 300, gLHY = 1300, (2) cdd = 600, gLHY = 3350, (3)
cdd = 1100, gLHY = 8000, (4) cdd = 1500, gLHY = 12500, and
(5) cdd = 2100, gLHY = 20000, respectively. The five insets
pointed by the arrows represent the density distributions at
these five different dots. At the same time, the inset in the up-
per left corner shows the number of droplets nd as a function
of the number of atoms N , corresponding to the five different
dots mentioned above. The blue dashed lines are fitted linear
curves.

with DDI and quantum fluctuations [10]. Our numeri-
cal simulation shows that no QDs are generated in the
system when the number of atoms is less than a certain
critical value. The main reason is that the effective repul-
sive force resulted from the LHY corrections is too weak
to meet the formation condition of QD. In addition, the
droplets exhibit regular patterns (such as square droplet
lattice, droplet necklace and triangular droplet lattice)
reflecting the symmetry of the system. Furthermore, the
linear relation between the number of droplets and the
number of atoms in Fig. 3 is consistent with recent exper-
imental observations [10], which indirectly demonstrates
the rationality and validity of our theoretical model.

FIG. 4: (Color online) Energy per atom E as a function of
(a) gLHY for cdd = 500 and (b) cdd for gLHY = 6000. The
vertical dotted lines separate different phases.

For a given set of parameter values, the ground state of
the system corresponds to the minimum of system energy.
The energy per atom for a stationary state in the absence



6

of SOC is given by

E =

∫
dxdy

[ ∑

j=1,2

ψ∗
j

(
− 1

2
∇2 + V +

1

2
Φ

+
2

5
gLHY |ψj |3

)
ψj +

1

2
β11|ψ1|4 +

1

2
β22|ψ2|4

− β12|ψ1|2|ψ2|2
]
, (11)

with Φ = cddF
−1
2D

[
ñ(k, t)F (kaz/

√
2)
]
. Fig. 4(a) and

Fig. 4(b) show the energy per atom as a function of
gLHY for cdd = 500 and that of cdd for gLHY = 6000,
respectively, where A-F and collapse correspond to the
different quantum phases and the system collapse region
in Fig. 1. In the stable quantum phase region, as the
LHY correction strength increases, the energy per atom
tends to increase overall (Fig. 4(a)), and finally the in-
creasing inclination slows down. The reason is that the
increase of the LHY correction strength enhances the ef-
fective repulsive energy of atoms. In Fig. 4(b), the energy
per atom gradually increases with the increasing of cdd
for the F and E phases, while it non-monotonically de-
creases with the increasing of cdd for the D and A phases.
This feature can be understood. In the F and E phases,
the effective two-body interactions in each component are
repulsive as the DDI is tuned positive by the oblate TF
density distribution and the toroidal stripe density profile
of the condensate (e.g., see Fig. 2(f) and Fig. 2(e)). In
other words, the oblate TF density distribution and the
toroidal stripe density profile boost the repulsive side-by-
side interaction of the magnetic dipoles [13, 16, 73]. By
comparison, in the D and A phases, the effective two-
body interactions in each component become attractive
in view of the prolate shape of the droplets for the 3D
case [13, 16], where the z confinement becomes impor-
tant as cdd further increases. Moreover, the energy con-
version process and angular momentum of rotating su-
perfluid droplets can well reflect the structural charac-
teristics of the system [74], which is of great significance
for us to further study the properties of superfluids and
supersolids.

B. Moment of inertia

Next, we investigate the moment of inertia by adding

the term −ΩL̂zψ to Eq.(4) and Eq.(5) and calculat-
ing the angular momentum. Without loss of general-
ity, we introduce a relatively small rotation frequency
Ω = 0.5. The moment of inertia per atom Θ rela-
tive to the z axis can be defined through the relation-
ship 〈Lz〉 = ΩΘ. Then one can get Θ by calculating
the mean angular momentum per atom. If the moment
of inertia becomes large and even approaches the rigid
value, Θrig =

∫
dxdy

(
x2 + y2

)
n (x, y), we can show

that the density profile is not rotationally invariant as
a consequence of the mechanical drag caused by the ro-
tation [21]. In the meantime, the moment of inertia

fixes the nonclassical rotational inertia (NCRI) fraction
fNCRI = 1−Θ/Θrig in the isotropic harmonic potential
with ωx = ωy [20, 21]. The NCRI can be used as a direct
strong evidence to describe superfluidity under rotation.
In Fig. 5, we report our calculation results for the ra-
tio of the moment of inertia per atom Θ and the rigid
value Θrig, and give the density and phase distributions
corresponding to different stages. When gLHY = 5000,
we find that the ratio Θ/Θrig of the system jumps three
times in Fig. 5(a). The first jump occurs at cdd ≈ 250,
which is due to the increase of vortex number and the
transition of vortex structure (from vortex necklace to
triangular vortex lattice) caused by the increase of DDI
strength. The increase of the vortex number in the sys-
tem leads to a significant enlargement of the average an-
gular momentum per atom. The second transition oc-
curs at cdd ≈ 510, where the triangular vortex lattice
composed of seven vortices suddenly transforms into a
compact vortex necklace comprised of five vortices with
closer and larger vortex cores, and the ratio Θ/Θrig ev-
idently decreases. These jumps belong to the structural
phase transitions within the superfluid. When the DDI
strength becomes larger, the ground state of the rotating
system enters the supersolid phase (corresponding to re-
gions A, C and D in Fig.1 under the nonrotating case) as
shown in Fig. 5(a), and we can see that the ratio Θ/Θrig

has an evident higher jump and is numerically close to
1, i.e., the moment of inertia per atom Θ approaches
the rigid value Θrig. Specifically, the ratio Θ/Θrig sig-
nificantly increases at cdd ≈ 590, indicating a phase
transition of the system from superfluid phase to super-
solid phase. Essentially, here the supersolid phase is a
quantum droplet lattice phase containing hidden vortices
[75, 76], which possesses both superfluid and solid charac-
teristics. From Fig. 5(b), it is shown that the correspond-
ing NCRI fraction fNCRI and the ratio Θ/Θrig maintain
synchronous jumps, and fNCRI < 1 manifests the super-
fluid property of the system [20]. There is a visible jump
of physical quantity fNCRI at the transition boundary
between the superfluid phase and the supersolid phase,
which demonstrates the first-order phase transition of the
system [22, 77–79]. Obviously, the fNCRI reaches its low-
est value when the system is in the supersolid phase (Fig.
5(b)), where the system exhibits both fluid and solid be-
haviors. In a recent cold-atom supersolid experiment,
Modugno et al. observed that the supersolid phase in a
single-component dipolar BEC features a significantly in-
creased moment of inertia relative to an ordinary scalar
BEC [20]. Therefore, our theoretical predictions are ex-
pected to be tested, confirmed, and further studied in the
future dipolar supersolid experiments.

For the case of gLHY = 9000, the ratio Θ/Θrig and the
NCRI fraction fNCRI versus cdd are shown in Fig.5(c)
and Fig. 5(d), where the change trends are similar to
those in Fig. 5(a) and Fig. 5(b), respectively. In
this case, the first-order phase transition from super-
fluid phase to supersolid phase occurs at cdd ≈ 820,
where Θ/Θrig and fNCRI simultaneously undergo a sud-



7

FIG. 5: (Color online) (a) and (c) The ratio of the moment of inertia per atom Θ and the rigid value Θrig in rotating two-
component dipolar BECs with LHY corrections, as a function of cdd. The insets are the typical density distributions and phase
distributions for different stages of the system. (a) gLHY = 5000, Ω = 0.5, and (c) gLHY = 9000, Ω = 0.5. (b) and (d) The
corresponding nonclassical rotational inertia fraction as a function of cdd.

den change. The configuration of the typical supersolid
phase (see Fig. 5(c)) is also a quantum droplet lattice
phase with hidden vortices (to be exactly, a quantum
droplet lattice phase with a hidden vortex necklace plus
a hidden triangular vortex lattice). As cdd increases, the
moment of inertia eventually approaches a steady value
close to the rigid value, reflecting the crystalline nature of
the QDs. Compared to the nonrotating case, for the su-
persolid phase, the distribution of droplets in the system
(see Fig. 3 and Fig. 5(c)) is basically not broken under
the action of rotation due to the partial rigid body nature
of the droplets. In addition, each droplet in the super-
solid phase is essentially itself superfluid, which is the
reason why the rigid body value is not exactly achieved.
Nevertheless, compared to the distance between droplets
(Fig. 5(c)), the size of each droplet is so small that the
difference between the moment of inertia per atom in the
supersolid phase and the rigid body value can be almost
negligible.

C. The effect of SOC

Then we study the effect of SOC on the ground-state
structure of the system in the absence of rotation, and
the main results are illustrated in Fig. 6, where the first
and fourth rows are the density distributions, the second
and fifth rows denote the phase distributions, and the
third and sixth rows represent the corresponding momen-
tum distributions (i.e., the k-space densities of the sys-
tem)). The SOC strength for the top three rows of Fig.
6 is κx = κy = 2 and that for the bottom three rows is
κx = κy = 6. The relevant parameters in Figs. 6(a)-6(f)

are the same as those in Figs. 2(a)-2(f). In this case, the
system still exhibits a miscible phase, which is due to the
fact that here the interspecies interactions are attractive
while those in Ref. [80] are repulsive, thus we only show
the density profile of component 1. In the phase distri-
butions, the value of the phase varies continuously from
−π to π, where the end point of the boundary between a
π phase line and a −π phase line represents a quantum
vortex (anticlockwise rotation) or antivortex (clockwise
rotation). It is well known that there are three fundamen-
tal types of vortices in cold atom physics: visible vortex,
ghost vortex, and hidden vortex [70, 75, 76, 81, 82]. The
visible vortex is the conventional quantized vortex that is
visible in both the density distribution and the phase pro-
file and carries angular momentum [75, 81]. For the ghost
vortex, it shows up in the phase distribution as a phase
singularity but has no visible vortex core in the density
distribution and carries no angular momentum [82]. In
contrast, the hidden vortex is visible in the phase distri-
bution but invisible in the density profile and it carries
angular momentum [70, 75, 76]. Only after including the
hidden vortices can the well-known Feynman rule be sat-
isfied. Comparing Fig. 6 with Fig. 2, one can clearly see
the influence of SOC on the quantum phases of the sys-
tem. For relatively weak 2D SOC, e.g., κx = κy = 2 (the
top three rows), when cdd = 300 and gLHY = 1300 quan-
tum droplets are stretched along the azimuth direction,
while four hidden vortex-antivortex pairs are generated
around the QDs (see Fig. 6(a1)). Obviously, the intro-
duction of SOC breaks the spatial symmetry of the sys-
tem, leading to the stretching of droplets. The momen-
tum distribution shifts towards the negative direction of
ky as a whole, and some low density points are stretched
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into narrow stripe shapes. Thus the ground state of the
system becomes a square stretched droplet lattice phase
with hidden vortex-antivortex pairs. Compared with Fig.
2(b), due to the SOC effect, the ground state evolves from
an annular phase into a triangular droplet lattice phase
with hidden vortex-antivortex cluster (Fig. 6(b1)). At
the same time, the k-space density is principally concen-
trated at two discrete points, which means that the atoms
are mainly condensed at two finite momenta.

FIG. 6: (Color online) Ground-state structures of dipolar
spin-1/2 BECs with Rashba SOC and LHY corrections. The
SOC strengths are (a1)-(f1) κx = κy = 2 and (a2)-(f2)
κx = κy = 6, respectively. The other parameters in columns
(a)-(f) (from left to right) are the same as those in Figs.2(a)-
2(f). The first and fourth rows denote the density distribu-
tions of component 1, the second and fifth rows represent the
phase distributions of component 1, and the third and sixth
rows are the corresponding momentum distributions.

From Fig. 6(c1), the QDs disappear and merge into
three distinct elongated density stripes along the y di-
rection, with phase and momentum distributions simi-
lar to those in Fig. 6(b1). Hence the quantum phase in
Fig. 6(c1) is a stripe phase with hidden vortex-antivortex
cluster. However, for the D and E phases in Fig. 2, with
the inclusion of weak SOC, the ground state of the sys-
tem transforms into a droplet-stripe (annular stripe) co-
existing phase with hidden vortex-antivortex cluster as
shown in Figs. 6(d1) and 6(e1), where the momentum
distributions become irregular. Finally, for the F phase
(TF phase) in Fig. 2(f), the weak SOC does not cause
substantial changes to the quantum phase structure of
the system, and the ground state remains the TF phase
(see Fig. 6(f1)). The small difference is that the momen-
tum distribution in the k-space is concentrated at a point

in the negative direction of the ky axis. Relevant studies
show that the spin-orbit coupled system has an additional
Zeeman term proportional to the velocity of the moving
frame under the Galilean transformation [42, 43]. This is
a key feature of SOC that breaks Galilean invariance of
the BECs. From the third row in Fig. 6, it can be seen
that the momentum distribution of the system is mainly
concentrated in the region of ky < 0. The physical reason
is that the Galilean invariance in the spin-orbit coupled
superfluid is broken, resulting in an uneven distribution
of atomic velocity (momentum distribution) [43, 80].
When the SOC strength is large, e.g., κx = κy = 6

(the bottom three rows in Fig. 6), the effect of SOC
on the quantum phases of the system is more pro-
nounced. As shown in Fig. 6(a2), the droplets are sig-
nificantly stretched and adhered to each other, and the
system tends to form a stripe phase with hidden vortex-
antivortex cluster. The momentum distribution shows
a special combination structure of a chain of scattered
points and several stripes. In Figs. 6(b2)-6(e2), all the
ground states become various stripe phases with hid-
den vortex-antivortex cluster, where the hidden vortex-
antivortex pairs are mainly arranged along the directions
of the stripes. In particular, the momentum distribu-
tions in Figs. 6(b2) and 6(c2) exhibit a discrete point
chain and two parallel discrete point chains, respectively.
Obviously, in view of the presence of these complicated
topological defects, the stripe structures in Figs. 6(a2)-
6(e2) are different from the conventional stripe phases in
spin-orbit coupled BECs [36, 42, 44] due to the compre-
hensive competition among SOC, DDI, s-wave contact
interaction, and LHY correction. In Fig. 6(f2), it is
demonstrated that strong SOC tends to make the TF
phase develop towards the stripe phase. The main phys-
ical reason is that SOC spontaneously breaks the space-
spin rotation symmetry, making the system prone to ex-
hibiting stripe distribution. In a word, for the present
system, our results indicate that weak or moderate SOC
is usually beneficial for promoting the formation of QDs,
but strong SOC may destroy the QDs and lead to the
generation of stripe phase.

D. Spin textures

Now we analyze the topological charge densities and
spin textures of dipolar BECs with SOC and LHY cor-
rections in order to further elucidate the ground-state
properties. In Fig. 7, we show the topological charge
densities (column 1) and the spin textures (column 2) of
the system in the left two columns, and the local ampli-
fications of the spin textures are displayed in the right
three columns. The ground states for Figs. 7(a)-7(d) are
given in Figs. 6(a1), 6(c1), 6(d1) and 6(e1), respectively.
For the sake of discussion, we use circle, triangle, square,
and hexagon to denote a skyrmion [83], an antiskyrmion,
a half-skyrmion (meron) [84], and a half-antiskyrmion
(antimeron), respectively.
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FIG. 7: (Color online) Topological charge densities and spin textures of dipolar spin-1/2 BECs with SOC and LHY corrections
in a harmonic trap, where the corresponding ground states for (a)-(d) are given in Figs. 6(a1), 6(c1), 6(d1) and 6(e1),
respectively. The arrows in the spin texture represent the transverse spin vector (Sx, Sy) and the color of each arrow indicates
the magnitude of Sz. The first column (from left to right) denotes topological charge density, the second column is spin texture,
and the right three columns represent the local amplifications of the spin texture. The circle, triangle, square, and hexagon
denote a skyrmion, an antiskyrmion, a half-skyrmion (meron), and a half-antiskyrmion (antimeron), respectively. The unit
length is a0.

Our computation results show that the local topologi-
cal charges in Figs. 7(a3)-7(a5) approach Q = 1, Q = −1
and Q = 0.5, respectively, which indicates that the local
topological defects in Figs. 7(a3)-7(a5) are skyrmion,
antiskyrmion and meron. The local topological charges
at the corresponding right-side symmetric positions are
Q = −1, Q = 1 and Q = −0.5, respectively, meaning
that the corresponding topological defects at the right-
side symmetric positions are antiskyrmion, skyrmion and
antimeron, respectively. Meanwhile, the spin texture is
symmetric concerning the y = 0 axis and antisymmet-
ric concerning the x = 0 axis. Thus the topological
structure in Fig. 7(a2) is an exotic composite skyrmion-
antiskyrmion-meron-antimeron cluster composed of four
skyrmion-antiskyrmion pairs and three meron-antimeron
pairs. The spin defect in Fig. 7(b2) is a meron-antimeron
string cluster consists of two meron strings and two an-
timeron strings, where the local enlargements of the

spin texture are exhibited in Figs. 7(b3)-7(b5). In-
triguingly, the spin density in Fig. 7(c1) shows an ap-
proximate diagonal distribution, forming four twisted
chains. As can be seen from the spin texture in Fig.
7(c2), each twisted chain corresponds to an interlaced
antimeron-meron-antimeron chain, where the local am-
plifications of the spin texture are displayed in Figs.
7(c3)-7(c5). Therefore the spin defects in Fig. 7(c2) con-
stitute a rather complicated antimeron-meron-antimeron
chain cluster. In particular, the topological charge den-
sity in Fig. 7(d1) displays even parity and excellent sym-
metry about the x = 0 axis and the y = 0 axis. The
spin texture in Fig. 7(d2) forms a peculiar skyrmion-
antiskyrmion-meron-antimeron necklace with a meron-
antimeron necklace embedded inside and a spin Neel do-
main wall along the x = 0 direction in the central region
of the trap. The local enlargements of the spin texture
are presented in Figs. 7(d3)-7(d5).
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To the best of our knowledge, there are few reports
on the study of spin textures in the system with quan-
tum fluctuations. These new skyrmion excitations found
in the present system are significantly different from the
skyrmion structures previously reported in other physi-
cal systems, for instance, rotating two-component BECs
with or without SOC (DDI) [4, 42, 45, 49, 55, 68]. Fur-
thermore, these novel quantum phases and topological
excitations (including vortex excitations and skyrmion
excitations) in present work allow to be tested and veri-
fied in the future experiments.

IV. CONCLUSIONS

In summary, we have studied a rich variety of ground-
state phases and topological excitations of quasi-2D two-
component dipolar BECs with LHY corrections and
Rashba SOC in a harmonic trap. In the absence of
SOC, we present a ground-state phase diagram spanned
by the DDI strength and the LHY correction strength.
For given nonlinear interspecies contact interactions, the
system displays rich quantum phases, such as droplet lat-
tice phase, annular phase, loop-island structure, stripe-
droplet coexistence phase, toroidal stripe phase, and
TF phase. For the droplet lattice phase, the number
of droplets shows an approximate linear dependence on
the LHY correction coefficient. In addition, to describe
the changing process between different quantum phases
of the system, we calculate the average energy of per
atom for different quantum phases. In the stable quan-
tum phase region, as the LHY correction strength in-
creases, the energy per atom increase overall and finally
approaches a steady value. At the same time, the energy
per atom gradually increases with the increasing of DDI
strength for the TF phase and the toroidal stripe phase,
while it non-monotonically decreases with the increasing
of DDI strength for the stripe-droplet coexistence phase
and the droplet lattice phase. For the rotating case, the
variation of DDI strength can lead to a quantum phase
transition between superfluid phase and supersolid phase,
as well as a quantum phase transition between differ-

ent superfluid phases, depending on the LHY correction
strength.

In the presence of SOC, the QDs are obviously
stretched along a certain direction, and hidden vortex-
antivortex pairs (or clusters) are created in each compo-
nent. In this case, the system sustains unique and novel
ground-state quantum phases including square stretched
droplet lattice phase with hidden vortex-antivortex pairs,
triangular droplet lattice phase with hidden vortex-
antivortex cluster, stripe phase with hidden vortex-
antivortex cluster, and droplet-stripe (or annular stripe)
coexisting phase with hidden vortex-antivortex cluster.
It is shown that weak or moderate SOC favors the forma-
tion of droplets, whereas for strong SOC the ground state
of the system develops into a stripe phase with hidden
vortex-antivortex cluster. Furthermore, the typical spin
textures of the system are analyzed. We find that the sys-
tem supports exotic topological excitations, such as com-
posite skyrmion-antiskyrmion-meron-antimeron cluster,
meron-antimeron string cluster, complicated antimeron-
meron-antimeron chain cluster, and peculiar skyrmion-
antiskyrmion-meron-antimeron necklace with a meron-
antimeron necklace embedded inside and a spin Neel do-
main wall in the central region of the trap. These rich
novel quantum phases and topological excitations in this
system allow to be observed in the future cold atom ex-
periments. The findings in the present work have en-
riched our new understanding for the exotic quantum
states and topological excitations in cold atom physics
and condensed matter physics.
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Ferlaino F. Phys Rev X 2016;6:041039.

[12] Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M, Pfau
T. Phys Rev Lett 2016;116:215301.

[13] Baillie D, Blakie PB. Phys Rev Lett 2018;121:195301.
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