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For many-particle systems with short range interactions the local (same point) particle-particle
pair correlation function represents a thermodynamic quantity that can be calculated using the
Hellmann-Feynman theorem. Here we exploit this property to derive a thermodynamic Maxwell
relation between the local pair correlation and the entropy of an ultracold Bose gas in one dimension
(1D). To demonstrate the utility of this Maxwell relation, we apply it to the computational formalism
of the stochastic projected Gross-Pitaevski equation (SPGPE) to determine the entropy of a finite-
temperature 1D Bose gas from its atom-atom pair correlation function. Such a correlation function
is easy to compute numerically within the SPGPE and other formalisms, which is unlike computing
the entropy itself. Our calculations can be viewed as a numerical experiment that serves as a proof-
of-principle demonstration of an experimental method to deduce the entropy of a quantum gas from
the measured atom-atom correlations.

Introduction.—Entropy plays a fundamental role in
thermodynamics, statistical mechanics, and quantum in-
formation theory. However, measuring it directly or cal-
culating it from the defining multiplicity function or the
density matrix of an interacting many-body system often
represents a formidable challenge. Instead, the entropy
is often deduced from other thermodynamic quantities
(such as the heat capacity or the free energy) using the
relevant thermodynamic relations [1, 2]. Here, we derive
and discuss a thermodynamic Maxwell relation by which
the entropy of a quantum many-body system with short-
range interactions can instead be related to, and hence
deduced from, the local particle-particle correlation func-
tion. Such a pair correlation function characterizes the
probability of two particles to be found in the same po-
sition compared to uncorrelated particles and can often
be computed using methods of many-body and quantum
field theory either analytically or numerically [3, 4]. It
can also be measured experimentally in, e.g., ultracold
quantum gas experiments using photoassociation [5].

The surprising aspect of the Maxwell relation between
the pair correlation and the entropy that we discuss here
is that the pair correlation function is usually viewed and
treated as a typical two-body observable, whereas the en-
tropy is a thermodynamic quantity. However, what pro-
motes the pair correlation into a thermodynamic quan-
tity as well is the fact that we are only considering many-
body systems with short-range interactions that can be
characterized by the s-wave scattering length [6, 7]. In
this case, the inter-particle interactions can be approx-
imated by a simple contact interaction, meaning that
the two-body correlation function at zero inter-particle
separation indeed becomes a thermodynamic quantity.
This was first demonstrated by Lieb and Liniger in their
seminal work on the exact Bethe ansatz treatment of a
uniform one-dimensional (1D) Bose gas with repulsive
contact (delta-function) interactions [8]. By using the
Hellmann-Feynman theorem and differentiating the total
ground state (zero-temperature, T =0) energy of the gas

with respect to the interaction strength, Lieb and Liniger
were able to calculate the mean interaction energy com-
ponent, which itself is proportional to the unnormalized
pair correlation function (see below).

The extension of the Hellmann-Feynman theorem to
finite temperature systems [4, 9], together with the exact
Yang-Yang thermodynamic Bethe ansatz (TBA) solution
for the 1D Bose at finite temperature [10], was later uti-
lized to calculate the local pair correlation at any tem-
perature and interaction strength. In this case, the pair
correlation function is related to the partial derivative of
the Helmholtz free energy with respect to the interaction
strength [4, 9, 11]. In this work, we take this relation-
ship a step further by combining it with the fact that
the partial derivative of the same Helmholtz free energy
with respect to the temperature, on the other hand, gives
the entropy of the system according to the canonical en-
semble formalism of statistical mechanics. Therefore, by
using the commutative property of mixed second deriva-
tives of the Helmholtz free energy (with respect to the
interaction strength and temperature) one obtains the
Maxwell relation between the pair correlation and the
entropy that we discuss here.

As a practical application of this Maxwell relation,
we utilize it for computing the entropy of a weakly in-
teracting 1D Bose gas in the quasicondensate regime in
the context of the classical c-field field approach of the
stochastic projected Gross-Pitaevskii equation (SPGPE)
[12–15]. The SPGPE is a well established and widely
used numerical approach for computing thermal equilib-
rium and dynamical properties of finite temperature Bose
gases, such as partially condensed Bose-Einstein conden-
sates in 2D and 3D , or phase-fluctuating quasiconden-
sates in 1D [16]. Despite its wide applicability to ul-
tracold quantum gas systems, computing the entropy of
such systems within the SPGPE has not been accom-
plished prior to this work. Here, we compute the entropy
of a 1D quasicondensate within the SPGPE approach;
we restrict ourselves to the 1D Bose gas because of the
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availability of the exact TBA solution for both the en-
tropy and the pair correlation function, to which we com-
pare, and hence validate, our numerical SPGPE results.
However, we point out that the Maxwell relation derived
and discussed here is equally applicable to 2D and 3D
systems, as well as to Fermi gas systems with similar
contact interactions.

Lieb-Liniger model and two-particle correlation.—We
start by considering the Lieb-Liniger model describing a
uniform 1D gas of N bosons of mass m interacting via
a pair-wise delta-function potential on a line of length L
with periodic boundary conditions and of linear density
of n = N/L. In second-quantized form, the Hamiltonian
of such a system is given by

Ĥ =− h̄2

2m

∫
dx Ψ̂† ∂

2Ψ̂

∂x2
+

χ

2

∫
dx Ψ̂†Ψ̂†Ψ̂Ψ̂. (1)

Here, Ψ̂†(x) and Ψ̂(x) are the bosonic field creation and
annihilation operators, whereas χ quantifies the strength
of boson-boson interactions, assumed to be repulsive
(χ > 0). This interaction strength can be expressed in
terms of the 3D s-wave scattering length a via χ ≈ 2h̄ω⊥a
[17], away from a confinement induced resonance, where
ω⊥ is the frequency of the harmonic potential in the
transverse (tightly confined) dimension.

The normalized two-point particle-particle correlation
is defined in terms of the field operators as the expecta-
tion value of a normally-ordered product of two density
operators, n̂(x) = Ψ̂†(x)Ψ̂(x) and n̂(x′) = Ψ̂†(x′)Ψ̂(x′):

g(2)(x, x′) =
⟨Ψ̂†(x)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x)⟩

n(x)n(x′)
. (2)

In other words, the pair correlation g(2)(x, x′) is a
normalized and normally-ordered density-density corre-
lation function. It is normalized to the product of
mean densities n(x) = ⟨n̂(x)⟩ and n(x′) = ⟨n̂(x′)⟩ at
points x and x′ so that for uncorrelated particles (with
⟨Ψ̂†(x)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x)⟩ = ⟨Ψ̂†(x)Ψ̂(x)⟩⟨Ψ̂†(x′)Ψ̂(x′)⟩),
one has g(2)(x, x′) = 1. For values of g(2)(x, x′) ̸= 1, the
pair correlation characterizes an enhanced (g(2)(x, x′) >
1) or suppressed (g(2)(x, x′) < 1) probability of finding
two particles at positions x and x′, respectively, com-
pared to uncorrelated particles.

Due to the translational invariance of the uniform sys-
tem that we are considering, where n(x′)=n(x)=n, the
above pair correlation g(2)(x, x′) can only depend on the
relative distance |x − x′| between the two particles, i.e.,
g(2)(x, x′) = g(2)(|x − x′|). The local or the same-point
(x=x′) correlation then corresponds to

g(2) ≡ g(2)(0) =
⟨Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)⟩

n2
. (3)

In the canonical formalism, the partition function
Z(T,N,L, χ) can be written in terms of either the

Helmholtz free energy F or the Hamiltonian Ĥ via
Z=exp(−F/kBT ) = Tr exp(−Ĥ/kBT ). By differentiat-
ing the Helmholtz free energy F (T,N,L, χ)=−kBT lnZ
with respect to the interaction strength χ, at constant
N , L, and T , one finds that [4](

∂F

∂χ

)
T,N,L

=
1

Z
Tr

(
e−Ĥ/kBT ∂Ĥ

∂χ

)
=

L

2
⟨Ψ̂†Ψ̂†Ψ̂Ψ̂⟩ ,

(4)
and hence

g(2) =
2

Ln2

(
∂F

∂χ

)
T,N,L

. (5)

This relationship between the local pair correlation and
the Helmholtz free energy is what was used in Ref. [4]
to calculate the g(2) function using the exact Yang-Yang
TBA [10] solution for F , as a function of the dimension-
less interaction strength γ and the dimensionless temper-
ature τ , defined via

γ =
mχ

h̄2n
, τ =

2mkBT

h̄2n2
. (6)

We note here that these two dimensionless parameters
completely characterize the thermodynamic properties of
a uniform 1D Bose gas [4, 10].
Maxwell relation.—We now recall that the partial

derivative of the same Helmholtz free energy with respect
to temperature T gives the entropy S of the system:

S = −
(
∂F

∂T

)
χ,L,N

. (7)

Combining Eqs. (5) and (7) with the the commu-
tative property of mixed second derivatives of F , i.e.
∂
∂χ

(
∂F
∂T

)
L,N

= ∂
∂T

(
∂F
∂χ

)
L,N

, leads to the following

Maxwell relation:(
∂S

∂χ

)
T,L,N

= −Ln2

2

(
∂g(2)

∂T

)
χ,L,N

. (8)

Equation (8) is one of this paper’s key results and im-
plies that the entropy of the gas can be calculated by inte-
grating the partial derivative of the pair correlation func-
tion g(2) with respect to T over the interaction strength
χ. More specifically, the entropy of the uniform 1D Bose
at a specific value of χ (and some fixed values of T , L,
and N) can be evaluated via

S(χ,T, L,N) = S(χ0, T, L,N)

− Ln2

2

∫ χ

χ0

(
∂g(2)(χ′, T, L,N)

∂T

)
χ′,L,N

dχ′. (9)

where S(χ0, T, L,N) serves the role of the integration
constant and is assumed to be known for the method



3

to work. In practice, S(χ0, T, L,N) can be chosen to
correspond to the entropy of an ideal (χ0 = 0) 1D Bose
gas, S(0, T, L,N), which can indeed be calculated for any
T using standard methods of statistical mechanics [1, 18].
As a simple analytic illustration of the utility of

Eq. (9), we calculate the entropy of a 1D Bose gas in
highly degenerate, nearly ideal Bose gas regime that can
be treated using perturbation theory with respect to γ
(see the results for the so-called decoherent quantum
regime in Ref. [4, 18], valid in the region 2

√
γ ≪ τ ≪ 1).

In this regime, the pair correlation function g(2), which
was calculated in Ref. [4] without resorting to the
Helmholtz free energy, is given by

g(2) = 2− 4γ/τ2. (10)

Therefore, Eq. (9) yields the following result for the cor-
responding entropy:

S = SIBG − 4kBNγ2/τ3. (11)

where SIBG = S(0, T, L,N) is entropy of the ideal 1D
Bose gas at the same temperature [18].

Application to the SPGPE approach.—We now illus-
trate the utility of Eq. (9) using a numerically com-
puted pair correlation function within the SPGPE ap-
proach. This itself can be viewed as a numerical experi-
ment demonstrating how one can deduce the entropy of a
quantum gas from the measured atom-atom correlations.

The SPGPE approach (see Appendix) is a classical or
c-field method for computing thermal equilibrium and
dynamical properties of degenerate Bose gases at finite
temperatures [12, 13, 16, 19–29]. Evolving the SPGPE
from an arbitrary initial state, for sufficiently long time
(such that the memory of the initial state is lost), samples
thermal equilibrium configurations of the system from
the grand-canonical ensemble. These configurations are
represented by stochastic realizations of the complex c-
fields ΨC(x, t), which we will denote as ΨC(x) for thermal
equilibrium states. In the SPGPE approach, the pair
correlation function g(2) is computed according to:

g(2) =
⟨Ψ∗

C(x)Ψ
∗
C(x)ΨC(x)ΨC(x)⟩

⟨Ψ∗
C(x)ΨC(x)⟩2

, (12)

where the expectation values are over a large number of
stochastic realisations.

In this work, we are interested in the pair correlation
function, g(2), of a 1D quasicondensate at thermal equi-
librium, in the parameter range

√
γ ≪ τ ≪ 1, where the

c-field approach is valid [19, 29]. In Fig. 1 we show the de-
pendence of this correlation function over a range of the
dimensionless interaction strength γ ∈ [10−4, 10−2], for
a fixed value of the dimensionless temperature τ = 0.2,
obtained from the SPGPE approach. For comparison,
we also show the exact TBA result (squares) and the
approximate analytic result of Eq. (10) (dashed line).

FIG. 1. Local pair correlation g(2) for a 1D quasicondensate
as a function of the dimensionless interaction strength γ, for
a fixed dimensionless temperature τ = 0.2. The numerically
computed data from the SPGPE simulations are shown as
circles and are compared to the exact TBA result (squares),
and the analytic approximation of Eq. (10) (dashes).

As we see, in the limit of an ideal Bose gas (γ → 0)
at finite temperature, the pair correlation approaches the
value of g(2) = 2, which is the Hanbury Brown–Twiss ef-
fect of bosonic bunching (g(2) > 1) first observed for pho-
tons from a chaotic (thermal) light source [30] and more
recently for an ultracold atomic gas above the transition
to a Bose-Einstein condensate [31–33]. It corresponds to
large density fluctuations and an enhanced probability of
detecting two indistinguishable bosons in the same posi-
tion due to the constructive interference of the respective
probability amplitudes. As the strength of the repulsive
interaction increases, the said probability decreases and
manifests itself in the reduction of the value of g(2) below
2 [4, 5]. At some finite, but still weak (γ ≪ 1) interac-
tion strength, the pair correlation crosses the coherent
level of g(2)=1 characteristic of a phase-fluctuating qua-
sicondensate with suppressed density fluctuations, which
itself shares the properties of a weakly interacting Bose-
Einstein condensate in the mean-field description [31, 32].

As the interaction strength increases further and ap-
proaches the regime of very strong or hard-core repulsion
(γ → ∞), also known as the Tonks-Girardeau limit of
fermionization, the pair correlation reduces further down
to g(2) → 0 (see Ref. [4, 5]). This reduction reflects the
fact that the bosons are now strongly (anti)correlated
and behave effectively as fermions, wherein the bosonic
hard-core repulsion mimics the fermionic Pauli blocking.
In the pair correlation function, such repulsion manifests
itself as antibunching (g(2) < 1), which itself is due to the
destructive interference of probability amplitudes for de-
tecting two indistinguishable fermions in the same posi-
tion [33]. This regime, however, is beyond the applicabil-
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FIG. 2. Entropy of a 1D quasicondensate as a function of the
dimensionless interaction strength γ, relative to that of an
ideal Bose gas at the same temperature, S(γ, τ)−SIBG(τ), for
τ = 0.2. The SPGPE data computed using Eq. (9) is shown
as circles and is compared to the exact TBA data (squares),
and the analytic approximation of Eq. (11) (dashes).

ity of the SPGPE approximation (γ ≪1, 2γ≪τ≪1; see,
e.g., Ref. [18, 29], and references therein), and this is why
in Fig. 1 we do not show the behaviour of the g(2) beyond
the weakly interacting regime of γ ≪ 1. Because of the
same approximate nature of the SPGPE approach, we see
that the SPGPE data for g(2), while agreeing well with
the exact TBA results at small γ, starts to deviate from
the TBA results as γ increases and approaches its upper
bound of γ = 0.01, where the condition 2γ ≪ τ is not
well satisfied. Similarly, the analytic result of Eq. (10)
deviates from TBA to a larger extend as γ is increased,
because it is applicable in an even more restricted region
of 2

√
γ≪τ ≪1 [4, 18].

We next deduce the entropy of the 1D quasiconden-
sate using Eq. (9) and the SPGPE data for g(2), except
that now the integration in Eq. (9) is done numerically.
To obtain the dependence of S(χ, T, L,N) on χ at a
fixed T , or rather on the dimensionless γ at a fixed τ ,
we convert Eq. (9) to the dimensionless units and first
evaluate the derivative

(
∂g(2)(γ′, τ)/∂τ

)
γ′ using the cen-

tral difference scheme, for a range of values of γ′. We
next evaluate the integral over γ′ numerically, as a func-
tion of the upper bound. The upper bound is scanned
within γ ∈ [10−4, 10−2], while fixing the lower bound at
γ0 = 10−6, which is sufficiently low for the SPGPE re-
sults to be nearly identical to the IBG results at finite T ,
for which g(2) = 2 and S(γ0, T, L,N) ≃ SIBG(T, L,N).
In Fig. 2 we show the SPGPE result for the entropy dif-
ference per particle, (S − SIBG)/kBN obtained from the
SPGPE approach as a function of γ, for a fixed value
of the dimensionless temperature τ . We again compare

these data with the exact TBA result (squares) and the
analytic result of Eq. (11) (dashed line). As we see, the
entropy is maximal in the ideal Bose gas limit (γ → 0),
where g(2) = 2 is also maximal, reflecting the large den-
sity fluctuations and excess randomness (bunching) in
the probability of finding two indistinguishable bosons in
the same position. As the strength of repulsive interac-
tions increases, the random density fluctuations become
more and more suppressed, which is also evident in the
decrease of the entropy of the gas, as expected. Overall,
we see a good agreement between the SPGPE and TBA
results, particularly at small values of γ, where the con-
dition of validity of the SPGPE approximation is better
satisfied; the agreement becomes worse as γ is increased,
for the same reason as the discrepancy in the behaviour
of g(2) discussed earlier.

Summary and outlook.—We have derived and dis-
cussed a new Maxwell relation by which the entropy of a
quantum many-body system with contact two-body in-
teractions can be related to, and deduced from, the lo-
cal two-particle correlation function. We have validated
this method though a numerical experiment based on the
c-field SPGPE simulations and computed—for the first
time (to the best of our knowledge) within the SPGPE
formalism—the thermodynamic entropy of a weakly in-
teracting 1D Bose gas in the quasicondensate regime.

The Maxwell relation derived here may find immedi-
ate applications, such as measuring the entropy and de-
ducing the thermodynamic equation of state, in quan-
tum gas experiments that take advantage of tuneable in-
terparticle interactions and measurements of atom-atom
correlations using photoassociation or in-situ imaging
techniques in quantum gas microscope setups. It can
also be applied to other computational approaches, such
as DMRG and phase space stochastic gauge methods
[34, 35], that are capable of computing particle-particle
correlations from the many-body wave-function or den-
sity matrix formalisms, but struggle to compute the en-
tropy from, e.g., the multiplicity or the free energy.

Beyond quantum gas systems, the main results dis-
cussed here, Eqs. (8) and (9), can aid the study of tradi-
tional condensed matter systems that are often charac-
terized through the static structure factor that describes
scattering experiments. Indeed, the static structure fac-
tor S(k) is related to the nonlocal pair correlation g(2)(r)
via a Fourier transform, S(k) = 1+n

∫
drg(2)(r)e−ik·r.

Therefore, measurements or theoretical knowledge of
S(k) can be used to deduce the local pair correlation
g(2)(0) ≡ g(2) by an inverse Fourier transform, which can
then be used for determining the thermodynamic entropy
from Eq. (9). Finally, one can envisage derivation of re-
lated Maxwell relations for a large class of spin Hamilto-
nians in which: (a) the spin-spin interaction term can be
similarly calculated using the Hellmann-Feynman theo-
rem; and (b) the relevant spin-spin correlation function
can be experimentally measured.
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Appendix: The Stochastic Projected Gross-
Pitaevskii approach.—In the SPGPE approach [13,
19, 21], the quantum field operator Ψ̂(x, t) is decomposed
into two regions, a c-field region and an incoherent ther-
mal region. The c-field region contains highly occupied
low-energy modes and is described by a single complex-
valued classical field ΨC(x, t). The incoherent region, on
the other hand, contains sparsely occupied high-energy
modes that act as an effective thermal bath, treated as
static, with temperature T and chemical potential µ that
governs the thermal average number of particles in the
system (in the c-field region). The boundary between
these two regions is defined by an appropriately chosen
energy cutoff ϵcut [36].
In this approach, the thermal equilibrium state of

the system is prepared by evolving the simple growth
stochastic projected Gross-Pitaevskii equation (SPGPE)
for the complex c-field ΨC(x, t) [13, 21],

dΨC(x, t) = P(C)

{
− i

h̄
L(C)
0 ΨC(x, t) dt

+
Γ

kBT
(µ− L(C)

0 )ΨC(x, t) dt+ dWΓ(x, t)

}
. (13)

Here, the projection operator P(C){·} sets up the high-
energy cutoff ϵcut, whereas Γ is the so-called growth rate
responsible for the coupling between the c-field and the
effective reservoir (served by the incoherent region). In

addition, L(C)
0 is the Gross-Pitaevskii operator defined

by

L(C)
0 = − h̄2

2m

∂2

∂x2
+ V (x, t) + χ|ΨC(x, t)|2, (14)

where V (x, t) is the external trapping potential, if any.
The last term, dWΓ(x, t), in Eq. (13) is a complex-valued
stochastic white noise term with the following nonzero
correlation:

⟨dW ∗
Γ(x, t)dWΓ(x

′, t)⟩ = 2Γδ(x− x′)dt. (15)

As we mentioned in the main text, the stochas-
tic realisations of the c-field ΨC(x, t) prepared via the
SPGPE after a sufficiently long evolution time sample the
grand-canonical ensemble of thermal equilibrium states
of the system. These stochastic realisations can then be
evolved in real time according to the mean-field projected
Gross-Pitaevskii equation [21], following a certain out-
of-equilibrium protocol. This would then represent real-
time dynamical evolution of the system starting from an
initial thermal equilibrium state. In this work, however,
we do not simulate any real-time dynamics; instead, we
are interested in the pair correlation function, g(2), of a
1D quasicondensate at thermal equilibrium. Accordingly,
our simulations involve only the SPGPE stage.

Denoting the SPGPE realizations of the complex c-
field ΨC(x, t) after a sufficiently long evolution time via
ΨC(x), the thermal equilibrium values of physical ob-
servables are then calculated in terms expectation values
of products of ΨC(x) and its complex conjugate Ψ∗

C(x)
over a large number of stochastic realizations. This
is much in the same way as calculating the same ob-
servables in terms of expectation values over normally-
ordered products of quantum field operators Ψ̂(x) and
Ψ̂†(x), except that their non-commuting nature is ig-
nored. As an example, the particle number density
n(x) = ⟨Ψ̂†(x)Ψ̂(x)⟩ in the SPGPE approach is cal-
culated as n(x) = ⟨Ψ∗

C(x)ΨC(x)⟩, where the brackets
⟨...⟩ refer to ensemble averaging over a large number
of stochastic trajectories; similarly the pair correlation
function g(2) can be computed via Eq. (12) of the main
text.
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