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VAISMAN’S THEOREM AND LOCAL REDUCIBILITY

OVIDIU PREDA AND MIRON STANCIU

Abstract. As proven in a celebrated theorem due to Vaisman, pure lo-
cally conformally Kähler metrics do not exist on compact Kähler mani-
folds. In a previous paper, we extended this result to the singular setting,
more precisely to Kähler spaces which are locally irreducible. Without
the additional assumption of local irreducibility, there are counterexam-
ples for which Vaisman’s theorem does not hold. In this article, we give
a much broader sufficient condition under which Vaisman’s theorem still
holds for compact Kähler spaces which are locally reducible.
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1. Introduction

A key challenge in complex geometry is identifying suitable Hermitian
metrics whose existence leads to nice geometric or topological results, but
that also occur on a large enough class of spaces. While the previous century
has seen extensive research of Kähler metrics on manifolds, their existence
imposes significant analytic and topological restrictions, so in order to satisfy
the second requirement, much work has been done recently to weaken the
Kähler condition and so look at interesting classes of special non-Kähler
metrics. Among the most studied such metrics are called locally conformally
Kähler introduced by Vaisman in [Vai76].

Locally conformally Kähler (lcK for short) manifolds are, as the name
implies, complex manifolds which admit a (1, 1)-form ω, such that, locally,
there exist smooth functions f , for which e−fω is Kähler. This immediately
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implies that the differentials df agree on the intersections of these sets and
glue up to a closed 1-form θ, so the lcK condition can be expressed equiv-
alently as dω = θ ∧ ω. The closed 1-form θ is called the Lee form. By
definition, θ is exact if and only if f can be defined globally. In this case,
ω is called globally conformally Kähler (gcK ). If ω is lcK, but not gcK, we
call it pure lcK. Later, Vaisman [Vai80] proved that on a compact complex
manifold, pure lcK and Kähler metrics (with respect to the same complex
structure) cannot coexist. For an extensive and up-to-date survey of lcK
smooth geometry, see [OV24].

Just as Grauert extended the definition of Kähler metrics to complex
analytic spaces in [Gr62], one can also define in a similar manner lcK metrics
on complex spaces with singularities (see [PS21]). Spaces carrying such
metrics may occur naturally even if one is only considering problems of a
smooth nature, for example as a non-generic fibre of a bundle whose total
space is lcK, so or continuing goal over the last few years was generalizing
as many results as possible to this much broader class. Among the known
facts about lcK manifolds, Vaisman’s theorem is perhaps the most powerful.
However, in this setting one no longer has access to many basic tools that
were very useful in the smooth case, for instance Hodge theory or the ∂∂-
Lemma; every proof of Vaisman’s theorem in the smooth case makes use of
one of these results.

In [PS23], making use of the Hironaka desingularization procedure, we
were able to show that Vaisman’s theorem still holds under the additional
assumption that the space is locally irreducible, and also give a counterex-
amples to show that at least for some locally reducible spaces, it does not.
In this article, we continue this work to a much finer analysis of the analytic
and topological properties a complex space must have in order for Vais-
man’s theorem to fail; in our main theorem, we improve our previous result
in [PS23] to find a much larger class of complex spaces for which Vaisman’s
theorem holds.

The paper is organized as follows: in Section 2, we recall the basic defini-
tons, previous results of ours, as well as a few additional facts that we will
need later. In Section 3, in addition to a few auxiliary results, we state
and prove our characterization of the class complex Kähler spaces on which
Vaisman’s theorem still works. We end with Section 4, in which we give
two classes of examples: one with a space that is not locally irreducible, but
satisfies our new conditions, so Vaisman’s Theorem applies, and one giving
a typical scenario in which Vaisman’s theorem still fails to work.

2. Preliminaries

Firstly, we recall the definitions for Kähler and lcK metrics on complex
analytic spaces.

Definition 2.1: Let X be a complex analytic space.
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(K) A Kähler metric on X is the equivalence class (Ui, ϕi)i∈I
∧

of a family
such that (Ui)i∈I is an open cover of X, ϕi : Ui → R is C∞ and
strictly psh, and i∂∂ϕi = i∂∂ϕj on Ui ∩Uj ∩Xreg, for every i, j ∈ I.
Two such families are equivalent if their union verifies the compati-
bility condition on the intersections, described above.

(lcK) An lcK metric on X is the equivalence class (Ui, ϕi, fi)i∈I
∧

of a family
such that (Ui)i∈I is an open cover of X, ϕi : Ui → R is C∞ and
strictly psh, fi : Ui → R is smooth, and iefi∂∂ϕi = iefj∂∂ϕj on
Ui ∩ Uj ∩ Xreg, for every i, j ∈ I. As before, two such families are
equivalent if their union verifies the compatibility condition on the
intersections.

Since for lcK forms on singular spaces we also want to define its associated
Lee form, we have the following definition of a similar nature:

Definition 2.2:

• Let X be a topological space and consider (Ui, fi)i∈I , consisting of
an open cover (Ui)i∈I of X and a family of continuous functions
fi : Ui → R such that fi − fj is locally constant on Ui ∩ Uj , for all
i, j ∈ I. The class

θ = (Ui, fi)i∈I
∧

∈ Ȟ0
(
X,C�R

)

is called a topologically closed 1-form (TC1-form).

• We say that a TC1-form θ is exact if θ = (̂X, f) for a continuous
function f : X → R. In this case, we make the notation θ = df .

• Let ω = (Ui, ϕi, fi)i∈I
∧

be an lcK metric on a complex space X. Then,

the TC1-form θ = (Ui, fi)i∈I
∧

is called the Lee form of ω. If θ is exact,
then ω is called globally conformally Kähler (gcK).

An essential ingredient for our main result is Vaisman’s theorem for locally
irreducible, compact Kähler spaces [PS23, Thm.4.4]. Since it stays true with
exactly the same proof even for wlcK spaces (compare with [APV23, Lemma
2.5], the statement below includes this case.

Theorem 2.3: Let (X,ω, θ) be a compact, locally irreducible, (w)lcK space.
If X admits a Kähler metric, then (X,ω, θ) is (w)gcK.

We also need the next result on the existence of Kähler metrics on spaces
which project with discrete fibers on Kähler spaces:

Theorem 2.4: ([Vâj96, Thm.1]) Let f : X → Y be a holomorphic map of
complex spaces with discrete fibers. If Y is Kählerian, then X is Kählerian
too.

The following theorem by Henri Cartan [Car60, Main Theorem] gives a
sufficient condition under which the quotient of a complex space by a proper
equivalence relation also has a structure of complex space. It will be needed
for constructing the examples in section 4.
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Theorem 2.5: Consider a proper equivalence relation R on a complex space
X, with quotient map π : X → X/R. In order that the ringed space X/R be a
complex space, it suffices that each point of X/R has an open neighborhood
V such that the R-invariant holomorphic maps π−1(V ) → Z (Z being a
complex space) separate the equivalence classes in π−1(V ).

In the same constructions, we will make use of [CM85, Prop. 2.1 &
Cor.2.2] about pushing forward (strictly) psh functions:

Proposition 2.6: Let X,Y be complex spaces and p : X → Y a proper,
surjective, holomorphic map. Let φ : Y −→ [−∞,∞) be an upper semicon-
tinous function such that φ ◦ p is (strictly) psh on X. Then, φ is (strictly)
psh on Y .

An immediate consequence to this is [CM85, Cor.2.3]:

Corollary 2.7: Let X be a complex space and φ : X → [−∞,∞) an upper
semicontinuous function. Then, ϕ is (strictly) psh on X iff restricted to any
irreducible component of X is (strictly) psh.

3. The main result

Let X be a complex analytic space of dimension dimX = n and consider

X = Y0 ∪ Y1 ∪ . . . ∪ Yn

its stratification (for the construction of the stratification of a complex space,
see e.g. [Dem12, Chapter II, Prop.5.6]). Y0 is a discrete set, Yk−1 ⊂ Yk and
Yk \ Yk−1 is a smooth k-dimensional complex manifold for each 1 ≤ k ≤ n.
The sets Yk \ Yk−1 are called the strata; they might not be connected, and
some might be empty for indices k < n.

To help the structure of the proof of the main theorem, we begin with
two lemmas.

Lemma 3.1: Let π : Ŷ → Y be a finite covering with p sheets of topological
spaces and θ be a TC1-form on Y such that its pull-back π∗θ is exact. Then,
θ is exact.

Proof. Let γ be a closed curve in Y . Then, there exists a closed curve γ̂ in

Ŷ such that the restriction π : γ̂ → γ is a covering with q sheets, q ≤ p.
Thus, with the definition of integral given in [PS21, Section 2], we have

∫

γ̂

π∗θ = q

∫

γ

θ.

However, since π∗θ is exact, we have
∫
γ̂
π∗θ = 0, hence

∫
γ
θ = 0. As this is

true for every closed curve γ in Y , we obtain that θ is exact.

Lemma 3.2: Let π : Ŷ → Y be a ramified covering with p sheets of complex
spaces such that Y has no singularities, and let θ be a TC1-form on Y such
that its pull-back π∗θ is exact. Then, θ is exact.



VAISMAN’S THEOREM AND LOCAL REDUCIBILITY 5

Proof. Denote by S ⊂ Y the ramification locus. Since codimY S ≥ 1 and
Y is a complex manifold, Y \ S is locally connected around the points of
S. Let γ ⊂ Y be a closed curve. Then, γ is homotopically equivalent to a
closed curve η ⊂ Y \ S. Hence,

∫
γ
θ =

∫
η
θ. Now, applying Lemma 3.1 for

the unramified covering

π : Ŷ \ π−1(S) → Y \ S,

we get that θ↾Y \S is exact, thus
∫
η
θ = 0, which in turn gives

∫
γ
θ = 0.

Finally, since this is true for any closed curve γ, we get that θ is exact.

Now, we can prove the main theorem.

Theorem 3.3: Let (X,ω0) be a globally irreducible, compact Kähler space.

Denote by π : X̂ −→ X its normalization and consider

X = Y0 ∪ Y1 ∪ . . . ∪ Yn

the stratification of X. For every 0 ≤ k ≤ n, let

Yk =
⋃

j

Yk,j

be the decomposition into globally irreducible components. If for every k and
j, the set π−1(Yk,j) is connected, then X does not admit pure lcK metrics.

Proof. First, we assume that for every k and j, the set π−1(Yk,j) is connected.
We know that (X,ω0) is a Kähler space, and assume also that we have
another metric ω on X such that (X,ω, θ) is an lcK space. Then, since

the normalization mapping π has finite fibers, by Theorem 2.4, X̂ admits a

Kähler metric, and pulling back the metric ω, we obtain that (X̂, π∗ω, π∗θ)

is a wlcK space. Theorem 2.3 then yields that π∗ω is wgcK, thus π∗θ = df̂ .

Next, we show that f̂ is constant on the fibers of π. We do this by
induction on k, which is the dimension of the stratum. For the verification
step, take x ∈ Y0. By our assumption, π−1(x) is connected, hence it consists

of only one point and f̂ is trivially constant on this fiber. For the induction

step, assume that f̂ is constant on the fibers above Yk−1. Denote

π−1(Yk,j) = Ŷk,j =
⋃

l

Ŷk,j,l

the decomposition into irreducible components of Ŷk,j. π is holomorphic
and finite, hence the direct image of an analytic set is also analytic, and
it preserves the dimension when taking direct or inverse images of analytic

sets. If dim Ŷk,j,l < k, then dimπ(Ŷk,j,l) < k. By the construction of the

stratification, this means that π(Ŷk,j,l) ⊂ Yk−1, thus Ŷk,j,l \ π
−1(Yk−1) = ∅,

and there is nothing to prove about f̂ on the fibers of π restricted to this set,
so we are left with studying the case in which there exists an index l such
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that dim Ŷk,j,l = k. π(Ŷk,j,l) is analytic in Yk,j and of the same dimension k.

Further, Yk,j being globally irreducible yields π(Ŷk,j,l) = Yk,j. Also,

π : Ŷk,j,l \ π
−1(Yk−1) → Yk,j \ Yk−1

is a (possibly ramified) covering with finite number of sheets of Yk,j \ Yk−1,
which is a space with no singularities. Applying Lemma 3.2, we get that
θ↾Yk,j\Yk−1

= df . Then, we have

df̂ = π∗θ = π∗df = d(f ◦ π) on Ŷk,j \ π
−1(Yk−1),

hence f̂ − f ◦ π is constant on the connected set Ŷk,j,l \ π−1(Yk−1). By

continuity, f̂
↾Ŷk,j,l

is constant on the fibers, therefore f extends continuously

to Yk,j. Recalling now that Ŷk,j is connected, we obtain that f̂ − f ◦ π is

constant on Ŷk,j. Since this is true for any j, we get that f̂ is constant on
the fibers above Yk, ending the proof of the induction step.

Finally, we know that π∗θ = df̂ and f̂ is constant on the fibers of π, hence

θ = df , where f is any function such that f̂ − f ◦ π = c ∈ R on X, which
means that (X,ω, θ) is gcK.

4. Some examples

In this section, we present two examples of locally reducible complex
spaces: one for which Vaisman’s theorem holds, and one for which it fails.
They are both obtained by identifying two biholomorphic submanifolds in a
complex manifold.

Example 4.1: We consider the projective space P2 with the homogenous
coordinates [z0 : z1 : z2], on which we take the Fubini-Study metric ωFS =
i∂∂ log ‖z‖2. Then, consider the submanifolds Z1 = {[z0 : 0 : z2]} ≃ P1 and
Z2 = {[z0 : z1 : 0]} ≃ P1. We have Z1 ∩ Z2 = {[1 : 0 : 0]}. Next, we define
f : Z1 → Z2, f([z0 : 0 : z2]) = [z0 : z2 : 0], which is a biholomorphism with
one fixed point, [1 : 0 : 0] =: x0. Then, we define

X = P2

�x ∼ f(x), for any x ∈ Z1,

and denote π : P2 → X the projection. By Theorem 2.5, X is a complex
space. Indeed, if x ∈ Z1 ∪ Z2 \ {x0}, then around π(x), X is isomorphic as
ringed spaces to

V = {(v1, v2, 0) | |v1| < 1, |v2| < 1} ∪ {(v1, 0, v3) | |v1| < 1, |v3| < 1} ⊂ C3,

so it is a complex space. It remains to study X around π(x0), where it is

isomorphic to P�∼, where P ⊂ C2 is the unit polydisc and (v, 0) ∼ (0, v) for
any |v| < 1. The function f(v1, v2) = v1+v2 is invariant to ∼, and f(v1, 0) 6=
f(v2, 0) for any v1 6= v2. Also, the function g(v1, v2) = v1v2h(v1, v2), is
invariant to ∼ for any holomorphic h. For any (v1, v2), (w1, w2) ∈ P which
are not in the same class, and with at least one of the products v1v2 and w1w2

non-zero, we cand find a holomorphic h such that g(v1, v2) 6= g(w1, w2).
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Furthermore, the metric ωFS on P2 can be defined by strictly psh functions
which agree on each ∼-class. By Proposition 2.6, these functions descend
to a strictly psh functions on X, thus X is a compact Kähler space. Since
the conditions in Theorem 3.3 are verified by X, Vaisman’s theorem holds
on X.

Example 4.2: This is in fact a generalization of [PS23, Example 4.5],
showing a typical scenario for which Vaisman’s theorem doesn’t hold:

Take a compact Kähler manifold (M,ω), dimC M = n and let M̃ be the

blow-up of M at two distinct points; denote by Z1, Z2 ⊂ M̃ the exceptional
divisors, Z1 ≃ Z2 ≃ Pn−1, and f : Z2 → Z1 a biholomorphism between

them. Let ω̃ be the Kähler form on M̃ . Now define the complex spaces

X̃ = M̃ × Z�∼, where (z, k) ∼ (f(z), k + 1) for any z ∈ Z2, k ∈ Z,

and also X obtained by simply glueing Z1 and Z2 via f on M̃ . Clearly X̃ is
the universal cover of X with Deck group Z. Moreover, we can assume the
Kähler metric on M̃ to be any multiple of the Fubini-Study metric ωFS on
the exceptional divisors (for the technical details about the construction of
a metric on the blow-up in a point, see e.g. [GH78, pp. 182-189]), so let α, β
be two metrics such that α↾Z1

= β↾Z1
= ωFS, α↾Z2

= ωFS and β↾Z2
= 2ωFS.

Accordingly we can consider two Kähler structures on X̃:

• ω̃ such that ω̃M̃×{k} = α for any k ∈ Z;

• Ω̃ such that Ω̃M̃×{k} = 2kβ for any k ∈ Z;

note that this glueing makes sense using Corollary 2.7. Since the metric ω̃ is
just invariant under the action of Z on X̃ −→ X, so it descends to a Kähler
metric on X. On the other hand, Z acts on Ω̃ via homotheties, γ∗kΩ̃ = 2kΩ̃,

so, by [PS21, Theorem 3.10], a metric in the conformal class of Ω̃ descends
to a purely lcK metric on X.
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