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Abstract. We consider optimal control problems, where the control appears
in the main part of the operator. We derive the Pontryagin maximum principle
as a necessary optimality condition. The proof uses the concept of topological
derivatives. In contrast to earlier works, we do not need continuity assump-
tions for the coefficient or gradients of solutions of partial differential equations.
Following classical proofs, we consider perturbations of optimal controls by mul-
tiples of characteristic functions of sets, whose scaling factor is send to zero. For
2d problems, we can perform an optimization over the elliptic shapes of such
sets leading to stronger optimality conditions involving a variational inequality
of a new type.
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1 Introduction

In this article, we are interested in proving the Pontryagin maximum principle
maximum principle for the following problem: Minimize

1

2

∫
(y(x)− yd(x))

2 dx+

∫
Ω

g(a(x)) dx (1.1)

over all
a ∈ A ⊆ L∞(Ω;Rd,d), (1.2)

where y ∈ H1
0 (Ω) is the weak solution of

−div(a∇y) = f a.e. in Ω. (1.3)

Hence, the optimization variable is the coefficient in the main part of the differ-
ential operator. In this problem, Ω ⊆ Rd is a bounded domain, f ∈ H−1(Ω) is

∗Institut für Mathematik, Universität Würzburg, 97074 Würzburg, Germany,
daniel.wachsmuth@mathematik.uni-wuerzburg.de. This research was partially supported by
the German Research Foundation DFG under project grant Wa 3626/5-1.

1

ar
X

iv
:2

40
5.

04
20

4v
1 

 [
m

at
h.

O
C

] 
 7

 M
ay

 2
02

4



a given source term, yd ∈ L2(Ω) is the desired state, while g : Rd,d → R∪{+∞}
models the cost of choosing a certain coefficient matrix. In addition, A is a
feasible set, that contains matrices with uniformly positive definite symmetric
part. For the precise statement of the assumptions, we refer to Section 2.1.

Problem (1.1)–(1.3) is a classical problem, and lead to the study of H-
convergence, [14]. One cannot prove existence of solutions, and examples with-
out solutions can be found, e.g., in [2, 13].

Here, we are interested in proving the Pontryagin maximum principle, which
is a classical necessary optimality condition in optimal control theory. Let a be
a solution of the problem above. Then we consider a perturbation of the type

ar := a+ χrω(b− a), (1.4)

where b ∈ Rd,d is a constant matrix, ω is the unit ball in Rd. And we are
interested in passing to the limit in the difference quotient

1

rd
(J(yr, ar)− J(y, a)), (1.5)

where yr is the solution to the elliptic equation with coefficient ar. For the
state-dependent part of the cost functional J , we have the following expansion

1

2
∥yr − yd∥2L2(Ω) −

1

2
∥y − yd∥2L2(Ω)

= −
∫
Ω

(ar − a)∇y · ∇p dx−
∫
Ω

(ar − a)∇y · ∇(p̃r − p) dx,

where p and p̃r are certain adjoint states. The first term in the expansion
represents the Fréchet derivative of the map a 7→ y from L∞(Ω) to H1

0 (Ω),
while the second term is of higher-order in ∥ar − a∥L∞(Ω). Due to the choice of
the perturbation, we do not get that ∥ar − a∥L∞(Ω) → 0 for r → 0. And the
second term in the expansion does not vanish when passing to the limit in the
difference quotient (1.5).

As one would expect, we will encounter topological derivatives of solutions
of the elliptic partial differential equations. In contrast to earlier works, we
prove the corresponding results under much weaker assumptions than in the
literature:

1. The coefficient function a is assumed to belong to L∞(Ω;Rd,d) such that
−div(a∇·) is a uniformly elliptic operator. We do not assume that a is
piecewise constant [2, 3, 6] or continuous [11],

2. We work with weak solutions in H1. We do not assume that the weak
solutions y or their gradients ∇y are continuous.

3. That is, our proof works under the same set of assumptions than the
Lax-Milgram theorem, and the proof only uses regularity of solutions as
provided by Lax-Milgram.

The assumption of piecewise constant coefficients a makes sense in material
or topology optimization. However, this assumption is too restrictive for the
optimization problem (1.1)–(1.3). Our proof follows the developments of [6, 11,
22]. The main improvement compared to these earlier works is the consequent
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use of the celebrated Lebesgue differentiation theorem, which allows to dispense
with continuity assumptions. This derivation is done in Section 2 with the main
result being the asymptotic expansion of the cost functional in Theorem 2.12.

Utilizing these concepts, we obtain the following statement of the Pontryagin
maximum principle. Let a be (locally) optimal in L1(Ω) with associated state y
and adjoint p. Then for almost all x0 ∈ Ω and all feasible perturbations b ∈ Rd,d

we have

0 ≤ −(b− a(x0))∇y(x0) ·
(
∇p(x0) +

1

|ω|

∫
ω

∇x′Qdx′
)
+ g(b)− g(a(x0)).

Here, Q is a solution of a certain adjoint equation on Rd, which depends on a(x0),
b, and the set ω, which is used in the perturbation (1.4). The precise statement
can be found in Theorem 4.1. If a would be locally optimal in L∞(Ω), then
one could use Fréchet derivatives, and one would obtain a similar inequality
but with Q = 0. For certain shapes ω (balls in Rd, ellipses in R2), explicit
formulas for Q are available. Similar results can be found in the work of Raitums
[17, 18, 19, 20], which deserves to be better known, but which seems to be only
available in Russian.

In the special case that the coefficient a is scalar and d = 2, one can optimize
the above formula for elliptic shapes ω to obtain the following strengthened
version

− (b− a(x0))∇y(x0) · ∇p(x0) + g(b)− g(a(x0))

+
1

2

(b− a(x0))
2

b
(∇y(x0) · ∇p(x0)− ∥∇y(x0)∥2∥∇p(x0)∥2) ≥ 0.

A related result can be found in [5] for the study of a material optimization
problem, where a is allowed to take only two different values. These inequalities
are stronger than the related inequalities one gets using Fréchet derivatives in
L∞(Ω).

The plan of the paper is as follows. The sensitivity analysis of the cost func-
tional J with respect to perturbations of the coefficient is performed in Section 2,
where the main result is Theorem 2.12. The special cases of perturbations with
characteristic functions of balls and ellipses are considered in Section 3. These
results are applied in Section 4 to an optimal control problem with control in
the coefficients.

Notation Given v ∈ Rd, we denote its Euclidean norm by ∥v∥2. The set
B(x, r) ⊆ Rd is the open ball centered at x with radius r. The characteristic
function of a set A ⊆ Rd is denoted by χA. The Lebesgue measure of a measur-
able set A ⊆ Rd is denoted by |A|, the measure of a ball with radius r in Rd is
denoted by |B(r)|.

As is customary in the literature on partial differential equations, we will
denote the inner product in Rd of gradients by dots, i.e., ∇y(x) · ∇p(x) :=
∇p(x)T∇y(x).
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2 Sensitivity analysis with respect to perturba-
tions on general sets

2.1 Setup of the problem

Throughout the paper we assume the following about the data of the problem.

Assumption 1. Let Ω ⊆ Rd be a bounded domain. Let α > 0 be given. In
addition, let yd, f ∈ L2(Ω) be given.

Let us define the set of admissible coefficient functions by

A := {a ∈ L∞(Ω;Rd,d) : a(x) ∈ M f.a.a. x ∈ Ω}, (2.1)

where
M := {a ∈ Rd,d : ξTaξ ≥ α|ξ|2 ∀ξ ∈ Rd}. (2.2)

In the sequel, we will work with coefficient functions from the set A. Note
that a(x) ∈ A for almost all x ∈ Ω is the minimum requirement in order that
the Lax-Milgram theorem guarantees existence of weak solutions. We will not
assume more regularity of a and Ω, and we will not rely on any elliptic regularity
results beyond basic H1-regularity.

Let us fix a reference coefficient a ∈ A. We denote the corresponding solution
of the state equation by y, i.e., y ∈ H1

0 (Ω) solves∫
Ω

a∇y · ∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω). (2.3)

Here, we used the notation

a∇y · ∇v :=

d∑
i,j=1

aij
∂

∂xj
y

∂

∂xi
v.

By Lax-Milgram theorem, the equation (2.3) is uniquely solvable. Given a, we
define

J(a) :=
1

2
∥y − yd∥2L2(Ω),

where y is the solution of (2.3) to a ∈ A. We are interested in the sensitivity
analysis of J with respect to perturbations of a. Here, we will use perturbations
by characteristic functions, which is a well-known concept in optimal control,
inverse problems, or material optimization. To this end, let ω ⊆ Rd be an open
bounded set with 0 ∈ ω. Given a point x0 ∈ Ω, a value b ∈ M, and a radius (or
scaling parameter) r > 0, we define

ar := a+ χx0+rω(b− a). (2.4)

The goal of this section is to compute the variation of J at a with respect to b,
ω, which is defined as

δJ(a; b, x0, ω) := lim
r→0

J(ar)− J(a)

rd|ω|
.

Note that rd|ω| is the Lebesgue measure of rω, and it is larger or equal to the
L0- or Ekeland distance between ar and a.
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The exposition in the following subsections follows earlier work [11, 22, 6].
As one would expect, the statements of the main results are identical. However,
we do not use or assume any regularity beyond L∞ for the coefficients and H1

for the weak solutions of state and adjoint equations.

2.2 Basic expansion of the functional

Recall the definition of ar in (2.4). Let yr be the corresponding solution of the
state equation, i.e.,∫

Ω

ar∇yr · ∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω). (2.5)

Note that the difference yr − y satisfies the following equation∫
Ω

ar∇(yr − y) · ∇v dx+

∫
Ω

(ar − a)∇y · ∇v dx = 0 ∀v ∈ H1
0 (Ω). (2.6)

We define the averaged adjoint p̃r ∈ H1
0 (Ω), see, e.g., [22], as the solution of∫

Ω

ar∇v · ∇p̃r dx =
1

2

∫
Ω

[(yr − yd) + (y − yd)]v dx ∀v ∈ H1
0 (Ω). (2.7)

In addition, let the adjoint p ∈ H1
0 (Ω) be given as the solution of∫

Ω

a∇v · ∇p dx =

∫
Ω

(y − yd)v dx ∀v ∈ H1
0 (Ω). (2.8)

Then we have the following result.

Lemma 2.1. Let ar as in (2.4) with the notation from Section 2.1. Then it
holds

J(ar)− J(a) = −
∫
Ω

(ar − a)∇y · ∇p dx−
∫
Ω

(ar − a)∇y · ∇(p̃r − p) dx,

where y, p̃r, p solve (2.3), (2.7), (2.8).

Proof. Using the equations (2.7) and (2.6), we find

J(ar)− J(a) =
1

2
∥yr − yd∥2L2(Ω) −

1

2
∥y − yd∥2L2(Ω)

=
1

2
(yr − y, (yr − yd) + (y − yd))

=

∫
Ω

ar∇(yr − y) · ∇p̃r dx

= −
∫
Ω

(ar − a)∇y · ∇p̃r dx

= −
∫
Ω

(ar − a)∇y · ∇p dx−
∫
Ω

(ar − a)∇y · ∇(p̃r − p) dx,

which is the claim.

5



Here the second term in the expansion of Lemma 2.1 seems to be of second
order. In fact, it corresponds to the remainder term in a Taylor expansion of J
using the Fréchet differentiability of a 7→ y from L∞(Ω) toH1

0 (Ω). Consequently
it is of the order ∥ar−a∥2L∞(Ω). However, the second term is not of higher order
with respect to r ↘ 0. In fact, the second term converges with the same order
as the first for r ↘ 0.

The key for the asymptotic analysis of the expansion of Lemma 2.1 is the
following coordinate transform. This well-known idea is to transform the small
set x0 + rω to ω. To this end, let us define the following functions:

Tr(x
′) := x0 + rx′, T−1

r (x) := (x− x0)/r. (2.9)

2.3 Lebesgue differentiation theorem

Before continuing with the analysis of the expansion, let us recall the Lebesgue
differentiation theorem in the following form.

Theorem 2.2. Let u ∈ Lp
loc(Rd) for some p ∈ [1,∞). Then

lim
r→0

1

|B(x, r)|

∫
B(x,r)

|u(y)− u(x)|p dy = 0

for almost all x ∈ Rd. These points x are called p-Lebesgue points of u.

Proof. See [10, Section 1.7, Corollary 1].

Note that the claim is slightly different from the standard formulation of the
theorem given by

lim
r→0

1

|B(x, r)|

∫
B(x,r)

u(y) dy = u(x)

for almost all x ∈ Rd. In the sequel, the Lebesgue differentiation theorem in
the form of Theorem 2.2 will be a valuable tool. It will serve as a replacement
of continuity assumptions frequently encountered in the literature.

A well-known result says that if there is C > 0 and α ∈ (0, 1] such that

1

|B(x, r)|

∫
B(x,r)

|u(y)− u(x)|dy ≤ Crα

for all x, then u is Hölder continuous with order α. For a precise formulation,
see [16, Theorem 4.3]. This might explain the heavy use of Hölder continuity
assumptions in the literature on topological derivatives for perturbations in the
coefficients of the differential operator. As we will show, convergence to zero
as in Theorem 2.2 is enough, no faster convergence with respect to r ↘ 0 is
needed.

It is well-known that the above theorem can be generalized to take means
on sets of bounded eccentricity. Here, we will use the following modification.

Corollary 2.3. Let ω ⊆ Rd be such that there are ρ1, ρ2 > 0 with

B(0, ρ1) ⊆ ω ⊆ B(0, ρ2).

Let x be a p-Lebesgue point of u. Then

lim
r→0

1

rd|ω|

∫
x+rω

|u(y)− u(x)|p dy = 0.
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Proof. The claim follows from

1

rd|ω|

∫
x+rω

|u(y)− u(x)|p dy ≤ 1

|B(x, rρ1)|

∫
B(x,ρ2r)

|u(y)− u(x)|p dy → 0,

see also [21, Section 3.1.2].

The interplay between the Lebesgue differentiation theorem and the coordi-
nate transform (2.9) is made precise in the next result.

Corollary 2.4. Let u ∈ Lp(Ω), p ∈ [1,∞). Let x0 ∈ Ω be a p-Lebesgue point
of u. Let Tr be given by (2.9). Then

lim
r→0

∫
sω

|u ◦ Tr − u(x0)|p dx′ = 0

for all s ≥ 0.

Proof. By elementary calculations, we get∫
sω

|u ◦ Tr − u(x0)|p dx′ = r−d

∫
x0+srω

|u(x)− u(x0)|p dx → 0,

where we have used Corollary 2.3.

2.4 Transformed linearized state equation

In this section, we will investigate the asymptotics of 1
rd|ω| (yr−y). Let us recall

from (2.6) that the difference yr − y satisfies∫
Ω

ar∇(yr − y) · ∇v dx+

∫
Ω

(ar − a)∇y · ∇v dx = 0 ∀v ∈ H1
0 (Ω).

Following earlier works, e.g., [22], we define

Kr(x
′) :=

1

r
(yr − y) ◦ Tr(x

′). (2.10)

Due to construction, it follows ∇x′Kr(x
′) = ((∇(yr − y)) ◦ Tr)(x

′). Then Kr

satisfies the transformed equation∫
T−1
r (Ω)

ar ◦ Tr∇x′Kr · ∇x′v dx′ +

∫
ω

((b− a)∇y) ◦ Tr · ∇x′v dx′ = 0 (2.11)

for all v ∈ H1
0 (T

−1
r (Ω)). Note, Kr ∈ H1

0 (T
−1
r (Ω)) implies that its extension

by zero belongs to H1(Rd) without assumptions on the regularity of Ω, see [1,
Lemma 3.22]. Hence, in the sequel we will assume Kr is extended by zero to
Rd. The next goal is to pass to the limit r ↘ 0 in (2.11). We have the following
bound of Kr.

Lemma 2.5. Let Kr be given by (2.10). Let x0 be a 2-Lebesgue point of |(b−
a)∇y|. Then there is M > 0 such that

r2∥Kr∥2L2(Rd) + ∥∇x′Kr∥2L2(Rd) ≤ M.

7



Proof. Testing (2.6) with yr − y yields

α∥∇(yr − y)∥2L2(Ω) dx ≤ −
∫
Ω

(ar − a)∇y · ∇(yr − y) dx

≤ α

2
∥∇(yr − y)∥2L2(Ω) +

1

2α

∫
x0+rω

|(b− a)∇y|2 dx.

By Poincare inequality, we get

∥yr − y∥2L2(Ω) + ∥∇(yr − y)∥2L2(Ω) ≤ c

∫
x0+rω

|(b− a)∇y|2 dx

for some c > 0 only depending on Ω and α. Due to Theorem 2.2, we have that

1

rd|ω|

∫
x0+rω

|(b− a)∇y|2 dx

converges for r ↘ 0. This shows that there is M > 0 such that

∥yr − y∥2L2(Ω) + ∥∇(yr − y)∥2L2(Ω) ≤ Mrd|ω|

for all r > 0 sufficiently small. Applying the coordinate transform Tr to this
inequality and using the definition of Kr in (2.10) proves the claim.

Corollary 2.6. Let Kr be given by (2.10). Let x0 be a 2-Lebesgue point of
|(b− a)∇y|. Then

rKr ⇀ 0 in L2(Rd).

Proof. By Lemma 2.5, we have that (rKr)r>0 is uniformly bounded in H1(Rd)
with r∇x′Kr → 0 in L2(Rd) for r ↘ 0. Let rk ↘ 0 such that rkKrk ⇀ w in
L2(Rd). It follows ∇x′w = 0 in Rd, so that w has to be equal to a constant
function. Since w ∈ L2(Rd), it follows w = 0.

Let us define the coefficient function

ã := χωb+ χωca(x0). (2.12)

It turns out that ã is the limit of the transformed coefficients ar ◦ Tr in the
following sense.

Lemma 2.7. Let x0 be a 2-Lebesgue point of a. We have the convergence

ar ◦ Tr → ã

in L2(nω) for all n ∈ N.

Proof. Observe that ar ◦ Tr = ã on ω. Then we get∫
nω

|ar ◦ Tr − ã|2 dx′ =

∫
nω\ω

|(a ◦ Tr)(x
′)− a(x0)|2 dx′,

and the claim is a direct consequence of Corollary 2.4.
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Let us introduce the so-called homogeneous Sobolev space (or Beppo-Levi
space). Here, we define it as the space of equivalence classes under the relation
u ∼ v ⇔ ∇(u− v) = 0. That is, the constant functions are quotiented out:

Ḣ1(Rd) := {z ∈ H1
loc(Rd) : ∇z ∈ L2(Rd)} / R.

It is a Hilbert space when supplied with the norm ∥z∥Ḣ1(Rd) := ∥∇z∥L2(Rd). In

addition, equivalence classes of test functions from C∞
c (Rd) are dense in Ḣ1(Rd).

For the proofs, we refer [15, Section 3]. Note that [15] denotes the Beppo-Levi
space Ḣ1(Rd) by H1(Rd), [15, eq. (10)].

This space is the proper space to look for the weak limit of Kr for r ↘ 0.

Lemma 2.8. Let x0 be a 2-Lebesgue point of |(b− a)∇y| and a. Then we have
Kr ⇀ K in Ḣ1(Rd), where K is the unique solution of∫

Rd

ã∇x′K · ∇x′v dx′ + (b− a(x0))∇y(x0) ·
∫
ω

∇x′v dx′ = 0 ∀v ∈ Ḣ1(Rd).

(2.13)

Proof. Existence and uniqueness of the solution of (2.13) follows directly from
the Lax-Milgram theorem. For each r > 0, the function Kr belongs to the
spaces H1

0 (T
−1
r (Ω)) and H1(Rd), hence Kr ∈ Ḣ1(Rd). By Lemma 2.5, (Kr) is

bounded in Ḣ1(Rd).
Let rk ↘ 0 be a sequence such that Krk ⇀ K̃ in Ḣ1(Rd). It remains to

pass to the limit in the equation (2.10). Let v ∈ C∞
c (Rd) be given. Let n ∈ N

be such that nω ⊇ supp v. Let ρ > 0 be such that ρn < dist(x0, ∂Ω). Then
Tρ(supp v) ⊆ Ω, and v can be used as test function in (2.11) if r < ρ. Due to
Lemma 2.7, we have ar ◦ Tr → ã in L2(nω). This allows us to pass to the limit
in the first integral of (2.11):∫

T−1
rk

(Ω)

ark ◦ Trk∇x′Krk · ∇x′v dx′ →
∫
Rd

ã∇x′K̃ · ∇x′v dx′.

The convergence of the second integral follows from Corollary 2.4, and we have∫
ω

((b− a)∇y) ◦ Trk · ∇x′v dx′ → (b− a(x0))∇y(x0) ·
∫
ω

∇x′v dx′.

Since test functions from C∞
c (Rd) are dense in Ḣ1(Rd), it follows that K̃ satisfies

(2.13), hence K̃ = K.

The convergence of Kr to K is even strong. A similar result can be found
in [6, Proposition 4.1] and [11, Theorem 4.3], where they assumed continuity of
∇y at x0. In addition, the reference coefficient a was assumed to be constant,
so that (in our notation) ar ◦Tr = ã, compare also Lemma 2.7. In order to deal
with the convergence ar ◦ Tr → ã, we follow an idea of [9, Theorem 3.1].

Lemma 2.9. Under the assumptions of Lemma 2.8, we have Kr → K in
Ḣ1(Rd).

Proof. We will use the Cholesky decomposition. Let M+ denote the set of
matrices with positive definite symmetric part, i.e.,

M+ := {A ∈ Rd,d :
1

2
(A+AT ) positive definite }.

9



Then M+ is open in Rd,d. We will denote the map from the symmetric part
of a matrix to its lower triangular Cholesky factor by L, i.e., L(A) is such
that 1

2 (A + AT ) = L(A)L(A)T for matrices A ∈ M+. The map A 7→ L(A) is
continuous fromM+ to Rd,d. In addition, we have ∥L(A)∥2F = tr(L(A)L(A)T ) =
tr(A), so that the superposition operator induced by L is nicely behaved. In
particular, it is continuous from L2(Rd) to L4(Rd).

Since all relevant matrices are elements of M, see (2.2), we have the fol-
lowing bound on L(A)−1. For A ∈ M, we have that ∥L(A)−1∥2F = tr(2(A +
AT )−1). The eigenvalues of 1

2 (A + AT ) are bounded from below by α, so that
∥L(A)−1∥2F ≤ dα−1. In addition, A 7→ L(A)−1 is continuous on M.

By extending ar ◦ Tr with zero to Rd, we can consider it as function on the
domain Rd. We are going to use the equality a∇v · ∇v = 1

2 (a + aT )∇v · ∇v =
|L(a)T∇v|2. Testing (2.11) with Kr, we get∫

Rd

|L(ar ◦ Tr)
T∇x′Kr|2 dx′ = −

∫
ω

((b− a)∇y) ◦ Tr · ∇x′Kr dx
′.

Due to Corollary 2.4 and the weak convergence ∇x′Kr ⇀ ∇x′K in L2(Rd), the
right-hand side converges as

−
∫
ω

((b− a)∇y) ◦ Tr · ∇x′Kr dx
′ → −(b− a(x0))∇y(x0) ·

∫
ω

∇x′K dx′

=

∫
Rd

|L(ã)T∇x′K|2 dx′

where we have used (2.13). Hence, L(ar ◦ Tr)
T∇x′Kr is bounded in L2(Rd),

and in addition ∥L(ar ◦ Tr)
T∇x′Kr∥L2(Rd) converges to ∥L(ã)T∇x′K∥L2(Rd).

Due to Lemma 2.7, L(ar ◦ Tr)
T converges in L4(nω) to L(ã)T . Together

with the weak convergence ∇x′Kr ⇀ ∇x′K, we get that the weak limit of
L(ar ◦Tr)

T∇x′Kr in L2(Rd) is equal to L(ã)T∇x′K. Due to the convergence of
the norms, it follows

L(ar ◦ Tr)
T∇x′Kr → L(ã)T∇x′K in L2(Rd).

We will prove the desired convergence with the celebrated dominated conver-
gence theorem. Let rk ↘ 0 be a sequence. Then after extracting a subse-
quence if necessary, we have the pointwise convergence L(ark ◦ Trk)

T∇x′Krk →
L(ã)T∇x′K a.e. on Rd. Applying a diagonal sequence argument to the result of
Lemma 2.7, we can extract another subsequence (still denoted the same) such
that ark ◦ Trk → ã a.e. on Rd. Using the continuity of a 7→ L(a)−T , we get the
pointwise a.e. convergence

∇x′Krk = L(ark ◦ Trk)
−TL(ark ◦ Trk)

T∇x′Krk → L(ã)−TL(ã)T∇x′K = ∇x′K.

Since the L∞-norms of L(ark ◦Trk)
−T are uniformly bounded, the claim follows

with the dominated convergence theorem applied to

∇x′Krk −∇x′K = L(ark ◦ Trk)
−T (L(ar ◦ Tr)

T∇x′Kr − L(ã)T∇x′K)

+ (L(ark ◦ Trk)
−TL(ã)T − I)∇x′K.

The convergence for r → 0 follows by a standard subsequence-subsequence
argument.
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2.5 Transformed adjoint equations

Let us recall the definition of the averaged adjoint p̃r,∫
Ω

ar∇v · ∇p̃r dx =
1

2

∫
Ω

[(yr − yd) + (y − yd)]v dx ∀v ∈ H1
0 (Ω).

Let us define

Qr(x
′) :=

1

r
(p̃r − p) ◦ Tr(x

′), (2.14)

where p satisfies the adjoint equation∫
Ω

a∇v · ∇p dx =

∫
Ω

(y − yd)v dx ∀v ∈ H1
0 (Ω).

Lemma 2.10. Let x0 be a 2-Lebesgue point of (b − a)∇p. Let Qr be given by
(2.14). Then there is M > 0 such that

r2∥Qr∥2L2(Rd) + ∥∇x′Qr∥2L2(Rd) ≤ M

for all r > 0 small enough.

Proof. We proceed as in the proof of Lemma 2.5. Note that the difference p̃r−p
satisfies∫
Ω

ar∇v ·∇(p̃r−p) dx+

∫
Ω

(ar−a)∇v ·∇p dx =
1

2

∫
Ω

(yr−y)v dx ∀v ∈ H1
0 (Ω).

Testing this equation with p̃r − p, we obtain using Poincare inequality and
standard estimation procedures

∥p̃r−p∥2L2(Ω)+∥∇(p̃r−p)∥2L2(Ω) ≤ c

(∫
x0+rω

|(b− a)∇p|2 dx+

∫
Ω

(y − yr)
2 dx

)
,

where c is independent of r. Due to Theorem 2.2 and Lemma 2.5, the right-hand
side is bounded by Mrd|ω|. The proof follows using the definition of Qr.

Lemma 2.11. Let x0 be a 2-Lebesgue point of (b − a)∇p and a. We have
Qr ⇀ Q in Ḣ1(Rd), where Q is the unique solution of∫

Rd

ã∇x′v · ∇x′Qdx′ + (b− a(x0))

∫
ω

∇x′v dx′ · ∇p(x0) = 0 ∀v ∈ Ḣ1(Rd).

(2.15)

Proof. The proof follows the lines of the proof of Lemma 2.8. Unique solvability
of (2.15) follows from Lax-Milgram theorem. After applying the coordinate
transform, we find that Qr satisfies∫
T−1
r (Ω)

ar◦Tr∇x′v·∇x′Qr dx
′+

∫
ω

((b−a)◦Tr)∇x′v·(∇p)◦Tr dx
′ =

∫
T−1
r (Ω)

rKrv dx

(2.16)
for all v ∈ H1

0 (T
−1
r (Ω)).

Let v ∈ C∞
c (Rd) be given. Then for r > 0 small enough the above equation is

fulfilled. Passing to the limit in the integrals on the left-hand side of (2.16) can
be done exactly as in the proof of Lemma 2.8. The integral on the right-hand
side vanishes for r ↘ 0 due to Corollary 2.6. And the claim is proven.

Strong convergenceQr → Q in Ḣ1(Rd) can be proven similarly as in Lemma 2.9.
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2.6 First sensitivity result

Theorem 2.12. Let ω ⊆ Rd be an open bounded set with 0 ∈ ω. Let b ∈ M.
Then for almost all x0 ∈ Ω, we have

δJ(a; b, x0, ω) = lim
r↘0

J(ar)− J(a)

rd|ω|

= −(b− a(x0))∇y(x0) ·
(
∇p(x0) +

1

|ω|

∫
ω

∇x′Qdx′
)
,

where Q ∈ Ḣ1(Rd) is the solution of (2.15). The function Q depends solely on
a(x0), b, ∇p(x0), and ω.

Proof. Let x0 be a 1-Lebesgue point of the integrable functions (b− a)∇y · ∇p,
and a 2-Lebesgue point of the L2-functions (b−a)∇y, (b−a)∇p, and a. Due to
Theorem 2.2, the set of such points x0 differs from Ω by a set of measure zero.

We will use the expansion from Lemma 2.1

J(ar)− J(a) = −
∫
Ω

(ar − a)∇y · ∇p dx−
∫
Ω

(ar − a)∇y · ∇(p̃r − p) dx.

Due to Theorem 2.2, we have

lim
r↘0

1

rd|ω|

∫
Ω

(ar − a)∇y · ∇p dx = (b− a(x0))∇y(x0) · ∇p(x0).

Using the coordinate transform Tr and the definition of Qr, cf., (2.9) and (2.14),
we have

1

rd|ω|

∫
Ω

(ar − a)∇y · ∇(p̃r − p) dx = |ω|−1

∫
ω

((ar − a)∇y) ◦ Tr · ∇x′Qr dx
′.

Due to Corollary 2.4, the term ((ar − a)∇y) ◦ Tr converges in L2(ω) to the
constant function (b− a(x0))∇y(x0). By Lemma 2.11, we have ∇x′Qr ⇀ ∇x′Q
in L2(Rd). Hence, it follows

lim
r↘0

|ω|−1

∫
ω

((ar−a)∇y)◦Tr ·∇x′Qr dx
′ = |ω|−1(b−a(x0))∇y(x0)·

∫
ω

∇x′Qdx′,

and the claim is proven.

Using the definitions of Q and K, we have the following identity

(b− a(x0))∇y(x0) ·
∫
ω

∇x′Qdx′ = −
∫
Rd

ã∇x′K · ∇x′Qdx′

= (b− a(x0))

∫
ω

∇x′K dx′ · ∇p(x0),

which can be used to equivalently rewrite the result of Theorem 2.12.
In case that a(x0) and b are multiples of the indentity matrix, the formula in

Theorem 2.12 can be written in terms of the so-called polarization matrix M ,
i.e,

δJ(a; b, x0, ω) = − 1

|ω|
(b− a(x0))

a(x0)

b
∇y(x0) ·M∇p(x0). (2.17)

The scaling of the polarization matrix is not unique across the literature, here
we followed [7, Theorem 2.1]. Many details on polarization matrices can be
found in the monograph [3].
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2.7 Sensitivity matrix

For fixed a(x0) and b, the mapping ∇p(x0) 7→
∫
ω
∇x′Qdx′ is a linear mapping

from Rd to Rd. Hence, the mapping (∇y(x0),∇p(x0)) 7→ (b − a(x0))∇y(x0) ·∫
ω
∇x′Qdx′ can be written in terms of a matrix multiplication.

Given p ∈ Rd let us define Qp ∈ Ḣ1(Rd) as the solution of∫
Rd

ã∇x′v · ∇x′Qdx′ + (b− a(x0))

∫
ω

∇x′v dx′ · p = 0 ∀v ∈ Ḣ1(Rd). (2.18)

Let us define the matrix R ∈ Rd,d by

pTRy := −(b− a(x0))y ·
∫
ω

∇x′Qp dx
′. (2.19)

Of course, R depends on the coefficients a(x0) and b. The matrix R has the
following properties.

Lemma 2.13. Suppose a(x0) and b are symmetric. Then R defined in (2.19)
is symmetric.

Proof. Let Qy ∈ Ḣ1(Rd) be the solution of∫
Rd

ã∇x′v · ∇x′Qdx′ + (b− a(x0))

∫
ω

∇x′v dx′ · y = 0 ∀v ∈ Ḣ1(Rd).

Then using the symmetry assumption and testing the equation for Qy with Qp

results in

pTRy = −(b− a(x0))y ·
∫
ω

∇x′Qp dx
′

=

∫
Rd

ã∇x′Qp · ∇x′Qy dx
′

= −(b− a(x0))

∫
ω

∇x′Qy dx
′ · p

= yTRp,

which proves the symmetry of R.

Lemma 2.14. Suppose b − a(x0) is symmetric. Then pTRp ≥ 0 forall p, and
pTRp = 0 if and only if (b− a(x0))p = 0.

Proof. Take p ∈ Rd. Since b− a(x0) is symmetric, it follows

−(b− a(x0))p ·
∫
ω

∇x′v = −(b− a(x0))

∫
ω

∇x′v dx′ · p =

∫
Rd

ã∇x′v · ∇x′Qp dx
′

for all v ∈ Ḣ1(Rd), which implies

pTRp = −(b− a(x0))p ·
∫
ω

∇x′Qp dx
′

=

∫
Rd

ã∇x′Qp · ∇x′Qp dx
′ ≥ α∥∇x′Qp∥2L2(Rd) ≥ 0

13



since ã(x′) ∈ M for almost all x′.
Clearly, pTRp = 0 if (b − a(x0))p = 0. Let us assume pTRp = 0. This

implies ∇x′Qp = 0 and (b−a(x0))
∫
ω
∇x′v dx′ ·p = 0 forall v ∈ Ḣ1(Rd). Setting

v(x′) := pT (b − a(x0))x
′ proves (b − a(x0))p = 0, and definiteness of R is

established as claimed.

For anisotropic variants of the polarization matrix introduced in (2.17), we
refer to [3, Section 4.12] and [12].

3 Perturbations on balls and ellipses

Here, we will work in the isotropic case, that is, a(x0) and b are assumed to be
positive multiples of the identity matrix. In this case, we get explicit expressions
for the variation δJ(a; b, x0, ω). With a little abuse of notation, we will assume

a(x0), b ∈ R, a(x0), b ≥ α.

Polarization matrices for the anisotropic case and d = 2, 3 were computed in
[12].

3.1 Balls

Here, we will set
ω := B(0, 1).

Interestingly, in this case the solutions of (2.13) and (2.15) can be computed
explicitly.

Lemma 3.1. Let ω := B(0, 1). Let g ∈ Rd be given, a(x0), b ∈ R. Then the
solution G ∈ Ḣ1(Rd) of the equation∫

Rd

ã∇x′G · ∇x′v dx′ + g ·
∫
ω

∇x′v dx′ = 0 ∀v ∈ Ḣ1(Rd).

is given by

G(x′) := g · x′ 1

max(1, |x′|d)
· −1

b+ a(x0)(d− 1)
.

Proof. Note that ∆G(x′) = 0 for all x′ with |x′| ≠ 1. Define

G0(x
′) = g · x′ 1

max(1, |x′|d)
.

Let v ∈ C∞
c (Rd). Then∫

Rd

ã∇x′G0 · ∇x′v dx′ =

∫
ωc

a(x0)∇x′G0 · ∇x′v dx′ +

∫
ω

b∇x′G0 · ∇x′v dx′

=

∫
∂ωc

a(x0)∇x′G0 · (−x′) v dx′ +

∫
ω

b∇x′G0 · ∇x′v dx′

=

∫
∂ωc

a(x0)(g − d(g · x′)x′) · (−x′) v dx′ +

∫
∂ω

bg · x′v dx′

=

∫
∂ω

(b+ a(x0)(d− 1))g · x′v dx′

14



and

g ·
∫
ω

∇x′v dx′ =

∫
ω

∇x′(g · x′) · ∇x′v dx′ = 0 +

∫
∂ω

g · x′v dx.

And G satisfies the integral equation when tested with test functions from
C∞

c (Rd). Let us argue that G ∈ Ḣ1(Rd). For d > 1, we have |∇G| ∼ |x|−d for
|x| > 1. For d = 1, it holds ∇G(x) = 0 for |x| > 1. It follows ∇G ∈ L2(Rd). By
density, G satisfies the equation for all test functions.

Theorem 3.2. Let a(x0), b ∈ M be multiples of the identity matrix. Then for
almost all x0 ∈ Ω, we have

δJ(a; b, x0, B(0, 1)) = −∇y(x0) · ∇p(x0)
a(x0)d

b+ a(x0)(d− 1)
(b− a(x0)).

Proof. Due to Lemma 3.1 and (2.15), we have for x′ ∈ ω

Q(x′) = (b− a(x0))∇p(x0) · x′ · −1

b+ a(x0)(d− 1)
,

which implies∫
ω

∇x′Qr dx = (b− a(x0))∇p(x0)|ω| ·
−1

b+ a(x0)(d− 1)
.

Using this identity in the result of Theorem 2.12, we find

lim
r→0

1

|B(r)|
(J(yr)− J(y)) = −(b− a(x0))∇y(x0) · ∇p(x0) ·

(
1− b− a(x0)

b+ a(x0)(d− 1)

)
= −∇y(x0) · ∇p(x0)

a(x0)d

b+ a(x0)(d− 1)
(b− a(x0)).

This result coincides with those of [4, Theorem 6.1], [8, Theorem 3.1], which
were derived under much stronger assumptions.

3.2 Ellipses

Now let H ∈ R2,2 be symmetric, positive definite with detH = 1. Then

ω = {x ∈ R2 : xTHx ≤ 1} (3.1)

is an ellipse with |ω| = |B(1)|. We will now study perturbations on elliptic sets
(instead of on balls). We restrict to the 2d case, where explicit formulas for
the polarization matrix are available from [7, 12]. Such explicit formulas are
available for d = 3 as well [12], but are much more technical to analyze.

Here, we have the following result for axis-aligned ellipses. It was derived
in [7] using an explicitly constructed solution to the equation (2.15) in terms of
elliptic coordinates.

Lemma 3.3. Let H = diag(λ, λ−1) ∈ R2,2 with λ > 0 be given, and define ω as
in (3.1). Let a(x0), b ∈ M be multiples of the identity matrix. Then for almost
all x0 ∈ Ω, we have

δJ(a; b, x0, ω) = −(b− a(x0))a(x0)∇p(x0) ·

(
λ+1

a(x0)λ+b 0

0 λ+1
a(x0)+bλ

)
∇y(x0).
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Proof. From Theorem 2.12, we get

δJ(a; b, x0, ω) = −(b− a(x0))∇y(x0) ·
(
∇p(x0)−

∫
ω

∇x′Qdx′
)
,

where Q solves (2.15). Using the polarization matrix M , cf., (2.17), we can
write

δJ(a; b, x0, ω) = − 1

|ω|
(b− a(x0))

a(x0)

b
∇y(x0) ·M∇p(x0).

The matrix M was computed in [7]. Using [7, eq. (A.4)] with κ := b, γ := a(x0),
a := λ1/2, b := λ−1/2, |ω| = 1, we find

M = |ω|

(
κ(a+b)
γa+κb 0

0 κ(a+b)
γb+κa

)
=

(
b(λ+1)

a(x0)λ+b 0

0 b(λ+1)
a(x0)+bλ

)
,

and the claim follows.

Note that in the case of H = I2 and λ = λ−1 = 1 this reduces to the result
of Theorem 3.2.

Corollary 3.4. Let H = RT diag(λ, λ−1)R ∈ R2,2 with λ > 0, and RTR = I2,
and define ω as in (3.1). Let a(x0), b ∈ M be multiples of the identity matrix.
Then for almost all x0 ∈ Ω, we have

δJ(a; b, x0, ω) =

− (b− a(x0))a(x0)∇p(x0) ·RT

(
λ+1

a(x0)λ+b 0

0 λ+1
a(x0)+bλ

)
R∇y(x0).

for almost all x0.

Proof. Define ω′ := {x : xT diag(λ, λ−1)x ≤ 1}, which implies ω = RTω′. If
Mω and Mω′ are the polarization matrices associated to ω and ω′, then it holds
Mω = RTMω′R by [3, Lemma 4.5]. Using the matrix M from the proof of
Lemma 3.3, the claim follows.

We will now compute the range of

ω 7→ δJ(a; b, x0, ω),

where ω varies over elliptic shapes as considered in the above results. Similar
considerations are done in [5] with a different approach and different notation.

Lemma 3.5. Let y, p ∈ R2 be given. Let D = diag(λ1, λ2) be a diagonal matrix.
For R ∈ R2,2 define

F (R) := pTRTDRy.

Then the range of F is given by

F (O(2)) = F (SO(2)) =
λ1 + λ2

2
yT p+ [−1,+1] · |λ1 − λ2|

2
∥y∥2∥p∥2,

where O(2) = {R ∈ R2,2 : RTR = I2}, SO(2) = {R ∈ O(2) : det(R) = 1}.
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Proof. Wlog we can assume ∥y∥2 = ∥p∥2 = 1. Let R ∈ O(2) with det(R) = −1
be given, and set S := diag(1,−1). Then SR ∈ SO(2) and F (R) = F (SR) since
SDS = D. Now, define R0 to be the rotation matrix that rotates p onto the
first unit vector e1, i.e.,

R0 =

(
p1 p2

−p2 p1

)
.

Set ỹ := R0y. Then it is enough to compute the range of F̃ (R) := F (RR0).
Given v ∈ R2 with ∥v∥2 = 1, we parametrize R as follows

R(v) :=

(
v1 v2

−v2 v1

)
= v1I2 + v2J, J :=

(
0 1

−1 0

)
.

Then we get

F̃ (R(v)) = eT1 (v1I2 + v2J)
TD(v1I2 + v2J)ỹ

= vT

(
λ1ỹ1

λ1−λ2

2 ỹ2
λ1−λ2

2 ỹ2 λ2ỹ1

)
v.

=: vTMv

Hence, the range of v 7→ F (R(v)) is equal to the interval determined by the
eigenvalues of the matrix M . A short calulation shows that the eigenvalues of
M are given by

t1,2 :=
λ1 + λ2

2
ỹ1 ±

|λ1 − λ2|
2

.

Since ỹ1 = yT p, the claim follows.

Lemma 3.6. Let y, p ∈ R2 and a, b > 0 be given. For R ∈ R2,2 and λ > 0
define

G(R, λ) := pTRT

(
λ+1
aλ+b 0

0 λ+1
a+bλ

)
Ry.

Then

clG(O(2), R+) =
1

2

(
1

a
+

1

b

)
yT p+ [−1,+1] · 1

2

(
1

a
− 1

b

)
· ∥y∥2∥p∥2.

Proof. Wlog we can assume ∥y∥2 = ∥p∥2 = 1. In addition, we can assume b ≥ a.
In case b < a, we can consider the function G(R, λ−1), which is equal to G(R, λ)
but with the roles of a, b exchanged. Define

λ1(λ) :=
λ+ 1

aλ+ b
, λ2(λ) :=

λ+ 1

a+ bλ
.

Note that λ2(λ) = λ1(λ
−1). Since b > a it follows that λ1 is monotonically

increasing, and λ2 is monotonically decreasing. This implies that |λ1(λ)−λ2(λ)|
is maximal at λ = 0 and λ → ∞, with maximum 1

a − 1
b .

In addition, we find

λ1(λ) + λ2(λ) = (a+ b)
(λ+ 1)2

abλ2 + (a2 + b2)λ+ ab
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with derivative

d

dλ
(λ1(λ) + λ2(λ)) = (a+ b)(a− b)2

λ2 − 1

(aλ+ b)2(a+ bλ)2
.

Hence, the minimum and maximum of λ1(λ) + λ2(λ) are attained at λ = 1 and
λ = 0, respectively, which means

λ1(1) + λ2(1) =
4

a+ b
≤ λ1(λ) + λ2(λ) ≤

1

a
+

1

b
= λ1(0) + λ2(0). (3.2)

By Lemma 3.5, we have

G(O(2), λ) =
λ1(λ) + λ2(λ)

2
yT p+

[
−|λ1(λ)− λ2(λ)|

2
, +

|λ1(λ)− λ2(λ)|
2

]
.

(3.3)
Let us only consider the case yT p ≥ 0, the case yT p < 0 can be proven by
a simple change of sign. Then using that the supremum of both addends is
attained at λ = 0, see (3.2), we get

sup
λ>0

sup(G(O(2), λ)) = sup
λ>0

λ1(λ) + λ2(λ)

2
yT p+

|λ1(λ)− λ2(λ)|
2

=
(λ1(0) + λ2(0))

2
yT p+

|λ1(0)− λ2(0)|
2

=
1

2

(
1

a
+

1

b

)
yT p+

1

2

(
1

a
− 1

b

)
.

To compute the infimum, we observe that the lower bound in (3.3) is invariant
under the transform λ 7→ λ−1. Hence, it is sufficient to consider λ ≥ 1. Here,
we find

inf
λ>0

inf(G(O(2), λ)) = inf
λ≥1

inf(G(O(2), λ))

= inf
λ≥1

λ1(λ) + λ2(λ)

2
yT p− λ1(λ)− λ2(λ)

2

=
1

2
inf
λ≥1

(
λ1(λ) (y

T p− 1)︸ ︷︷ ︸
≤0

+λ2(λ) (y
T p+ 1)︸ ︷︷ ︸
≥0

)

=
1

2
lim
λ→∞

(
λ1(λ)(y

T p− 1) + λ2(λ)(y
T p+ 1)

)
=

1

2

(
1

a
+

1

b

)
yT p− 1

2

(
1

a
− 1

b

)
due to the monotonicity properties of λ1 and λ2. And the claim is proven.

Using these results, we obtain the following statement about the range of
the topol derivative, if the shape of the perturbation ω varies over all possible
ellipses. The infimum in the next result will be useful for necessary optimality
conditions.

Theorem 3.7. Let a(x0), b ∈ M be multiples of the identity matrix. Let us
define

H := {H ∈ R2,2 positive definite with detH = 1}
ω(H) := {x : xTHx ≤ 1}.
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Then for almost all x0 ∈ Ω, the closure of the range of δJ with respect to
variations of ellipses ω is given by

cl{δJ(a; b, x0, ω(H)) : H ∈ H}
=− (b− a(x0))∇y(x0) · ∇p(x0)

+
1

2

(b− a(x0))
2

b
([−1,+1] · ∥∇y(x0)∥2∥∇p(x0)∥2 +∇y(x0) · ∇p(x0)) .

In particular,

inf{δJ(a; b, x0, ω(H)) : H ∈ H}
=− (b− a(x0))∇y(x0) · ∇p(x0)

+
1

2

(b− a(x0))
2

b
(∇y(x0) · ∇p(x0)− ∥∇y(x0)∥2∥∇p(x0)∥2) .

Proof. First, we apply Corollary 3.4 to matricesH ∈ H with rational eigenvalues
and eigenvectors. Such matrices are dense in H. Then for almost all x0 ∈ Ω it
holds

cl{δJ(a; b, x0, ω(H)) : H ∈ H} = −(b− a(x0))a(x0) clG(O(2), R+, x0),

where G is defined by

G(R, λ, x0) := ∇p(x0)
TRT

(
λ+1

a(x0)λ+b 0

0 λ+1
a(x0)+bλ

)
R∇y(x0).

Due to Lemma 3.6, we get

clG(O(2), R+, x0) =
1

2

(
1

a(x0)
+

1

b

)
∇y(x0) · ∇p(x0)

+ [−1,+1] · 1
2

(
1

a(x0)
− 1

b

)
· ∥∇y(x0)∥2∥∇p(x0)∥2.

The claim follows now from elementary computations.

4 Control in the coefficients

In this section, we will apply the results on the δJ to derive the Pontryagin
maximum principle for the following optimization problem: Minimize

J̃(y, a) :=
1

2
∥y − yd∥2L2(Ω) +

∫
Ω

g(a(x)) dx, (4.1)

subject to a ∈ A, and y ∈ H1
0 (Ω) solves∫

Ω

a∇y · ∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω).

This is a classical problem, and lead to the study of H-convergence, [14]. Solu-
tions do not exist in general. The data of the problem is assumed to satisfy the
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basic Assumption 1. In addition, g : R2,2 → R∪{+∞} is lower semi-continuous,
which implies that g(a) is measurable for all a ∈ A.

We will formulate necessary optimality conditions in terms of the Pontryagin
maximum principle. Using the results from the previous sections, we find that
the maximum principle holds in the following form.

Theorem 4.1. Let a be a local solution of (4.1) with respect to the L1(Ω)-norm.
Let y and p be the corresponding solution of the state equation (2.3) and (2.8).
Let ω ⊆ Rd be open and bounded with 0 ∈ ω. Then for almost all x0 ∈ Ω and
all b ∈ M (see (2.2)) it holds

−(b− a(x0))∇y(x0) ·
(
∇p(x0) +

1

|ω|

∫
ω

∇x′Qdx′
)
+ g(b)− g(a(x0)) ≥ 0,

where Q ∈ Ḣ1(Rd) is the solution of (2.15).

Proof. Fix b ∈ M and x0 ∈ Ω. Define ar as in (2.4) and yr as in (2.5). Then
ar → a in L1(Ω) for r ↘ 0. Hence, J̃(yr, ar) − J̃(y, a) ≥ 0 for all r > 0 small
enough. Using Theorem 2.12 and Theorem 2.2, we get

0 ≤ lim
r↘0

1

rd|ω|
(J̃(yr, ar)− J̃(y, a))

= −(b− a(x0))∇y(x0) ·
(
∇p(x0) +

1

|ω|

∫
ω

∇x′Qdx′
)
+ g(b)− g(a(x0)),

where the limit exists for almost all x0 ∈ Ω. Let G be a countable and dense
subset of gph g = {(b, g(b)) : b ∈ M}. Then using the above arguments, the
claim follows for all (b, g(b)) ∈ G. By continuity, the claim holds for all b ∈
M.

4.1 The scalar case

Now let us investigate the case when a is a multiple of the identity. That is, we
will prove necessary optimality condition for the problem

min J̃(y, a) subject to a(x) ∈ M∩ span(Id) f.a.a. x. (4.2)

With little abuse of notation, we will consider now a : Ω → R and b ∈ R.
Using the explicit expression from Theorem 3.2, we get the following form of
the maximum principle:

Theorem 4.2. Let a be a local solution of (4.2) with respect to the L1(Ω)-norm.
Let y and p be the corresponding solutions of the state equation (2.3) and adjoint
equation (2.8). Then for almost all x0 ∈ Ω and all b ≥ α (see (2.2)) it holds

−(b− a(x0))∇y(x0) · ∇p(x0)
a(x0)d

b+ a(x0)(d− 1)
+ g(b)− g(a(x0)) ≥ 0. (4.3)

Proof. The proof is similar to that of Theorem 4.1 and uses Theorem 3.2 for
the expression of δJ .
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4.2 The scalar case, d = 2

In the two-dimensional case, we have the following expression for the maximum
principle associated with (4.2).

Theorem 4.3. Let a be a local solution of (4.2) with respect to the L1(Ω)-norm.
Let y and p be the corresponding solutions of the state equation (2.3) and adjoint
equation (2.8). Then for almost all x0 ∈ Ω and all b ≥ α (see (2.2)) it holds

− (b− a(x0))∇y(x0) · ∇p(x0) + g(b)− g(a(x0))

+
1

2

(b− a(x0))
2

b
(∇y(x0) · ∇p(x0)− ∥∇y(x0)∥2∥∇p(x0)∥2) ≥ 0. (4.4)

Proof. Follows from Theorem 3.7.

Let us remark that the conclusion of Theorem 4.3 is stronger than that of
Theorem 4.2.

Corollary 4.4. Let a be feasible for (4.2). Let y and p be the corresponding
solutions of the state equation (2.3) and adjoint equation (2.8). Suppose that
for almost all x0 ∈ Ω and all b ≥ α (see (2.2)) the inequality (4.4) is satisfied.
Then (4.3) is true for almost all x0 ∈ Ω and all b ≥ α.

Proof. Clearly, (4.4) implies

−(b− a(x0))∇y(x0) · ∇p(x0) + g(b)− g(a(x0)) ≥ 0.

Since the coeffiecients of ∇y(x0) · ∇p(x0) in this inequality and in (4.3) satisfy

−(b− a(x0))

(
a(x0)d

b+ a(x0)(d− 1)
− 1

)
= −(b− a(x0))

−(b− a(x0))

b+ a(x0)(d− 1)
≥ 0,

the inequality (4.3) follows as claimed.

4.3 Relation to Fréchet derivative

The mapping a 7→ y is Fréchet differentiable from L∞(Ω) to H1
0 (Ω). If a is a

local minimum of (4.2) and g is continuously differentiable, then a satisfies the
necessary optimality condition

(−∇y(x0) · ∇p(x0) + g′(a))(b− a) ≥ 0 ∀b ≥ α. (4.5)

Naturally, the results of Theorem 4.2 and Theorem 4.3 are stronger: replacing
b by a(x0) + t(b− a(x0)) in those inequalities, dividing by t, and passing to the
limit t ↘ 0 yields (4.5).

4.4 Example with linear g

Let us consider the following example, which is motivated by material optimiza-
tion problems, [5]. We consider the feasible set given by

M := {aId : a ∈ [α, β]},
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where 0 < α < β are real numbers. In addition, we chose

g(a) := ℓ · a,

where ℓ ∈ R, which could be used to model the cost of materials. In this simpli-
fied situation, we can analyze the optimality conditions (4.4) and (4.5). Here,
we have the following characterization of solutions of the variational inequal-
ity (4.4). This should be compared to the characterization of solutions of the
condition (4.5). which is given by

ℓ > ∇y(x0) · ∇p(x0) ⇒ a(x0) = α ⇒ ℓ−∇y(x0) · ∇p(x0) ≥ 0,

ℓ < ∇y(x0) · ∇p(x0) ⇒ a(x0) = β ⇒ ℓ−∇y(x0) · ∇p(x0) ≤ 0.

Corollary 4.5. Let a be feasible for (4.2). Let y and p be the corresponding
solutions of the state equation (2.3) and adjoint equation (2.8).

Suppose that for almost all x0 ∈ Ω and all b ≥ α (see (2.2)) the inequality
(4.4) is satisfied. Then for almost all x0 the following implications hold:

ℓ = ∇y(x0) · ∇p(x0) ⇒ ∥∇y(x0)∥2∥∇p(x0)∥2 = ∇y(x0) · ∇p(x0)

ℓ > ∇y(x0) · ∇p(x0) ⇒ a(x0) = α

ℓ < ∇y(x0) · ∇p(x0) ⇒ a(x0) = β.

In addition, if a(x0) = α then

ℓ−∇y(x0) · ∇p(x0)

≥ 1

2

β − α

β
(∥∇y(x0)∥2∥∇p(x0)∥2 −∇y(x0) · ∇p(x0)) ≥ 0.

If a(x0) = β then

ℓ−∇y(x0) · ∇p(x0)

≤ 1

2

α− β

α
(∥∇y(x0)∥2∥∇p(x0)∥2 −∇y(x0) · ∇p(x0)) ≤ 0.

Proof. Let us define for abbreviation

s(x0) := ∇y(x0) · ∇p(x0), n(x0) := ∥∇y(x0)∥2∥∇p(x0)∥2,

which implies |s| ≤ n. Then (4.4) is equivalent to

−(b− a(x0))s(x0) + ℓ(b− a(x0)) +
1

2

(b− a(x0))
2

b
(s(x0)− n(x0)) ≥ 0

and

(b− a(x0))(ℓ− s(x0)) ≥
1

2

(b− a(x0))
2

b
(n(x0)− s(x0)) ∀b ∈ [α, β]. (4.6)

Now let us assume that (4.4) is true, and hence the inequality is satisfied for
almost all x0. In case, ℓ− s(x0) = 0 it follows n(x0) = s(x0).
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If ℓ−s(x0) ̸= 0 it follows a(x0) ∈ {α, β} as the left-hand side of (4.6) changes
sign at b = a(x0), while the right-hand side is non-negative. Suppose a(x0) = α.
Then (4.6) implies

ℓ− s(x0) ≥
1

2

β − α

β
(n(x0)− s(x0)).

If a(x0) = β we get the reverse inequality

ℓ− s(x0) ≤
1

2

α− β

α
(n(x0)− s(x0)).

5 Conclusion and outlook

We developed the Pontryagin maximum principle for control in the coefficients
using quite elementary methods. It would be interesting to consider more com-
plicated settings using general cost functionals semilinar or quasilinear equa-
tions. Also the case b = 0 could be considered following [6]. Another interesting
question is, whether the Ekeland variational principle could be used to prove
existence of ϵ-solutions of the Pontryagin maximum principle. The maximum
principle in the 2d case was written in terms of a variational inequality (4.4) of
a new type, whose solution theory is completely open.
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[20] U. Ë. Răıtum. Optimal Control Problems for Elliptic Equations (in Rus-
sian). Zinatne, Riga, 1989.

[21] Elias M. Stein and Rami Shakarchi. Real analysis, volume 3 of Princeton
Lectures in Analysis. Princeton University Press, Princeton, NJ, 2005.
Measure theory, integration, and Hilbert spaces.

[22] Kevin Sturm. Topological sensitivities via a Lagrangian approach for semi-
linear problems. Nonlinearity, 33(9):4310–4337, 2020.

24


	Introduction
	Sensitivity analysis with respect to perturbations on general sets
	Setup of the problem
	Basic expansion of the functional
	Lebesgue differentiation theorem
	Transformed linearized state equation
	Transformed adjoint equations
	First sensitivity result
	Sensitivity matrix

	Perturbations on balls and ellipses
	Balls
	Ellipses

	Control in the coefficients
	The scalar case
	The scalar case, d=2
	Relation to Fréchet derivative
	Example with linear g

	Conclusion and outlook

