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Dynamics of an epidemic model
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Abstract. An epidemic model, where the dispersal is approximated by nonlocal dif-

fusion operator and spatial domain has one fixed boundary and one free boundary, is

considered in this paper. Firstly, using some elementary analysis instead of variational

characterization, we show the existence and asymptotic behaviors of the principal eigen-

value of a cooperative system which can be used to characterize more epidemic models,

not just ours. Then we study the existence, uniqueness and stability of a related steady

state problem. Finally, we obtain a rather complete understanding for long time behav-

iors, spreading-vanishing dichotomy, criteria for spreading and vanishing, and spreading

speed. Particularly, we prove that the asymptotic spreading speed of solution compo-

nent (u, v) is equal to the spreading speed of free boundary which is finite if and only

if a threshold condition holds for kernel functions.
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1 Introduction

To model the spread of an oral-faecal transmitted epidemic, Hsu and Yang [1] proposed the

following PDE system







ut = d1∆u− au+H(v), t > 0, x ∈ R,

vt = d2∆v − bv +G(u), t > 0, x ∈ R,
(1.1)

which is used to model the oral-faecal transmitted epidemic, where H(v) and G(u) satisfy

(H) H,G ∈ C2([0,∞)), H(0) = G(0) = 0, H ′(z), G′(z) > 0 in [0,∞), H ′′(z), G′′(z) < 0 in (0,∞),

and G(H(ẑ)/a) < bẑ for some ẑ > 0.

An example for such H and G is H(z) = αz/(1+z) and G(z) = β ln(z+1) with α, β > 0. In model

(1.1), u(t, x) and v(t, x) stand for the spatial concentrations of the bacteria and the infective human

population, respectively, at time t and location x in the one dimensional habitat; −au represents

the natural death rate of the bacterial population and H(v) denotes the contribution of the infective

1This work was supported by NSFC Grants 12171120, 12301247
2Corresponding author. E-mail: mxwang@hpu.edu.cn
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human to the growth rate of the bacteria; −bv is the fatality rate of the infective human population

and G(u) is the infection rate of human population; d1 and d2, respectively, stand for the diffusion

rate of bacteria and infective human. Define

R0 =
H ′(0)G′(0)

ab
. (1.2)

When R0 > 1, the authors proved that there exists a c∗ > 0 such that (1.1) has a positive

monotone travelling wave solution if and only if c ≥ c∗. Moreover, dynamics of the corresponding

ODE system with positive initial value is govern by R0. More precisely, when R0 < 1, (0, 0) is

globally asymptotically stable; while whenR0 > 1, there exists a unique positive equilibrium (U, V )

which is uniquely given by

aU = H(V ), bV = G(U), (1.3)

and is globally asymptotically stable.

If H(v) = cv, then system (1.1) reduces to

ut = d1∆u− au+ cv, vt = d2∆v − bv +G(u), t > 0, x ∈ R (1.4)

whose corresponding ODE system was proposed in [2] to describe the 1973 cholera epidemic spread

in the European Mediterranean regions. Here G satisfies that G ∈ C2([0,∞)), G(0) = 0 < G′(u)

in [0,∞), G(u)/u is strictly decreasing in (0,∞) and lim
u→∞

G(u)/u < ab/c. From (H) and the

assumption on G of (1.4), it can be learned that both (1.1) and (1.4) are monostable cooperative

systems, which have been extensively used to describe the spread of epidemic, such as cholera,

typhoid fever and West Nile virus, etc. When modeling epidemic, an important issue is to know

where the spreading frontier of epidemic is located, which naturally motivates us to discuss the

systems, such as (1.1) and (1.4), on the domain whose boundary is unknown and varies over time,

instead of the fixed boundary domain or the whole space.

As a pioneering work where free boundary condition is incorporated into the model arising from

ecology, Du and Lin [3] proposed the following problem






























ut = d∆u+ u(a− bu), t > 0, x ∈ (g(t), h(t)),

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

g′(t) = −µux(t, g(t)), h′(t) = −µux(t, h(t)), t > 0,

− g(0) = h(0) = h0 > 0, u(0, x) = û0(x), x ∈ [−h0, h0],

(1.5)

where û0(x) is assumed to satisfy û0(x) ∈ C2([−h0, h0]), û0(±h0) = 0 < û0(x) in (−h0, h0). The

free boundary condition g′(t) = −µux(t, g(t)) and h
′(t) = −µux(t, h(t)) is usually referred to as the

Stefan boundary condition. Du and Lin found that the dynamics of (1.5) is govern by a spreading-

vanishing dichotomy, a new spreading phenomena resulting from reaction-diffusion model. Besides,

when spreading happens, the speed was also obtained by analyzing a semi-wave problem.

As we can see, the dispersal in the above models is approximated by random diffusion ∆u.

Recently, it has been increasingly recognized that nonlocal diffusion is better to describe the spatial

dispersal, since such diffusion operator can capture local as well as long-distance dispersal. A

commonly used nonlocal diffusion operator takes the form of

d

∫

RN

J(|x− y|)u(t, y)dy − du, (1.6)
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where J is the kernel function and d is the diffusion coefficient. A biological interpretation of (1.6)

and its properties can be seen from, for example, [4, 5, 6, 7]. Using operator (1.6) or its variation

to model the spreading phenomenon from ecology and epidemiology has attracted much attention,

and many related works have emerged over past decades. An important difference, compared to the

classical reaction-diffusion equations, is that spreading speed may be infinite, known as accelerated

spreading, if J violates a so-called “thin tailed” condition. For example, please see [8, 9, 10, 11].

Replacing random diffusion ∆u in (1.5) with nonlocal diffusion operator (1.6), Cao et al [12]

and Cortázar et al [13] independently considered the following problem







































































ut = d

∫ h(t)

g(t)
J(x− y)u(t, y)dy − du+ f(u), t > 0, x ∈ (g(t), h(t)),

u(t, x) = 0, t > 0, x /∈ (g(t), h(t))

h′(t) = µ

∫ h(t)

g(t)

∫ ∞

h(t)
J(x− y)u(t, x)dydx, t > 0,

g′(t) = −µ

∫ h(t)

g(t)

∫ g(t)

−∞
J(x− y)u(t, x)dydx, t > 0,

h(0) = −g(0) = h0 > 0, u(0, x) = u0(x), |x| ≤ h0,

(1.7)

where kernel J satisfies

(J) J ∈ C(R) ∩ L∞(R), J(x) ≥ 0, J(0) > 0, J is even,
∫

R
J(x)dx = 1,

and u0 ∈ C([−h0, h0], u0(±h0) = 0 < u0(x) in (−h0, h0). The nonlinear term f is of the Fisher-

KPP type in [12] and f ≡ 0 in [13]. The authors in [12] showed that similar to (1.5), the dynamics

of (1.7) is also govern by a spreading-vanishing dichotomy. However, when spreading occurs, it was

proved in [14] that the spreading speed of (1.7) is finite if and only if
∫∞
0 xJ(x)dx < ∞, which is

much different from (1.5) since the spreading speed of (1.5) is always finite. In addition, there are

other developments on research of (1.7) along different directions. Please see a series of works of

Du and Ni [15, 16, 17, 18] for spreading speed in homogeneous environment and [19] for the case

in periodic environment. Particularly, the following variant of (1.7) was proposed by Li et al [20]















































ut = d

∫ h(t)

0
J(x− y)u(t, y)dy − dj(x)u + f(u), t > 0, 0 ≤ x < h(t),

u(t, h(t)) = 0, t > 0,

h′(t) = µ

∫ h(t)

0

∫ ∞

h(t)
J(x− y)u(t, x)dydx, t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(1.8)

where J and f satisfy the same conditions with (1.7), and j(x) =
∫∞
0 J(x− y)dy; u0 meets with

(I) u0 ∈ C([0, h0], u0(h0) = 0 < u0(x) in [0, h0).

This model is derived from the assumption that the species will never jump to the area (−∞, 0)

which is similar to the usual homogeneous Neumann boundary condition imposed at x = 0.
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It is well known that if further û0(x) is even, then problem (1.5) can reduce to the model [3,

(1.1)] where spatial domain has one free boundary and one fixed boundary. Hence it is natural to

think whether (1.7) and (1.8) are equivalent in some sense. We shall show that (1.8) cannot be

transformed into (1.7) in the appendix (cf. Theorem 6.1).

Nonlocal diffusion systems composed of (1.7) have been widely utilized to model the propagation

of epidemic or species in epidemiology or ecology over past decades. Please refer to, for example,

[21, 22, 23] for the competition, prey-predator and mutualist models, [24, 25, 26, 27, 28, 29] for

related problems of (1.4), [30, 31] for West Nile virus, [32] for SIR model, and [33] for competition

model with seasonal succession. Very recently, Nguyen and Vo [34] studied the following problem


























































































ut = d1

∫ h(t)

g(t)
J1(x− y)u(t, y)dy − d1u− au+H(v), t > 0, x ∈ (g(t), h(t)),

vt = d2

∫ h(t)

g(t)
J2(x− y)v(t, y)dy − d2v − bv +G(u), t > 0, x ∈ (g(t), h(t)),

u(t, g(t)) = v(t, h(t)) = 0, t > 0,

g′(t) = −

∫ h(t)

g(t)

∫ g(t)

−∞

[

µJ1(x− y)u(t, x) + µρJ2(x− y)v(t, x)
]

dydx, t > 0,

h′(t) =

∫ h(t)

g(t)

∫ ∞

h(t)

[

µJ1(x− y)u(t, x) + µρJ2(x− y)v(t, x)
]

dydx, t > 0,

−g(0) = h(0) = h0 > 0, u(0, x) = u0(x), v(0, x) = v0(x), |x| ≤ h0,

(1.9)

where H and G satisfy the condition (H). The authors obtained the well-posedeness, spreading-

vanishing dichotomy as well as criteria for spreading and vanishing. Especially, for the self-adjoint

case, they proved the existence and variational characteristic of a principal eigenvalue by Lax-

Milgram’s theorem, and further got its asymptotic behaviors by using variational characteristic.

Inspired by the above works, in this paper we shall investigate the following problem






























































ut = d1

∫ h(t)

0
J1(x− y)u(t, y)dy − d1j1(x)u− au+H(v), t > 0, x ∈ [0, h(t)),

vt = d2

∫ h(t)

0
J2(x− y)v(t, y)dy − d2j2(x)v − bv +G(u), t > 0, x ∈ [0, h(t)),

u(t, h(t)) = v(t, h(t)) = 0, t > 0,

h′(t) =

∫ h(t)

0

∫ ∞

h(t)

[

µ1J1(x− y)u(t, x) + µ2J2(x− y)v(t, x)
]

dydx, t > 0,

h(0) = h0 > 0, u(0, x) = u0(x), v(0, x) = v0(x), x ∈ [0, h0],

(1.10)

where all parameters are positive, Ji satisfies the condition (J), and ji(x) =
∫∞
0 Ji(x − y)dy for

i = 1, 2. Condition (I) holds for u0 and v0. In this paper we assume that H and G satisfy the

following condition (H1), which is weaker than (H),

(H1) H,G ∈ C1([0,∞)), H(0) = G(0) = 0, H ′(z), G′(z) > 0 in [0,∞), H(z)/z is decreasing in

z > 0, and G(z)/z is strictly decreasing in z > 0, and G(H(ẑ)/a) < bẑ for some ẑ > 0.

This condition allows H(v) = cv, but condition (H) does not include this case. Moreover, under

the condition (H1), positive equilibrium (U, V ) also exists uniquely if R0 > 1. Throughout this

paper, we always assume that (H1), (J) and (I) hold.
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By using similar methods as in [30, 34] we can prove that the problem (1.10) has a unique global

solution (u, v, h). Moreover, (u, v) ∈ [C([0,∞) × [0, h(t)])]2, h ∈ C1([0,∞)), 0 < u(t, x) ≤ M1,

0 < v(t, x) ≤ M2 in [0,∞) × [0, h(t)) with some M1,M2 > 0, and h′(t) > 0 for all t ≥ 0. Thus

h∞ := lim
t→∞

h(t) ∈ (h0,∞] is well defined. If h∞ <∞, we call vanishing; otherwise we call spreading.

In order to know as much as possible about the dynamics of (1.10), in Section 2 we investigate

the eigenvalue problem L[ϕ] = λϕ where operator L is defined by (2.1). The existence of principal

eigenvalue is obtained by using the arguments in [35]. When operator L is self-adjoint, we also

get the related variational characteristic which is only used to show the monotonicity of principal

eigenvalue on diffusion coefficient. More importantly, a rather complete understanding for the

asymptotic behaviors about spatial domain and diffusion coefficients, which is crucial for studying

the criteria for spreading and vanishing of (1.10), is derived by a series of elementary analysis

without assuming that L is self-adjoint.

With the help of principal eigenvalue, in Section 3 we first investigate the steady state problem

associated to (1.10), and then prove that the dynamics of evolutionary problem is determined com-

pletely by the sign of principal eigenvalue. Especially, when the principal eigenvalue is non-positive,

it will be proved that (0, 0) is exponentially (principal eigenvalue is negative) or algebraically (prin-

cipal eigenvalue is zero) stable.

In Section 4, we establish the spreading-vanishing dichotomy, and give the long time behaviors of

solution component (u, v) and a rather complete description of criteria for spreading and vanishing

by using the conclusions obtained in Sections 2 and 3.

When spreading happens, spreading speed is considered in Section 5. We prove that the asymp-

totic spreading speed of solution component (u, v) is equal to the spreading speed of free boundary

which is finite if and only if a threshold condition holds for kernel functions.

Section 6 involves a discussion on the relations of (1.7) and (1.8).

Before ending the introduction, we emphasize the difference between (1.9) and (1.10). Firstly,

there is only one free boundary in (1.10) and no agents cross the fixed boundary x = 0, which implies

that agents can only expand their habitat to right side, while (1.9) allows agents to expand to both

sides. Secondly, problem (1.9) is spatially homogeneous while problem (1.10) is spatially non-

homogeneous, and (1.10) cannot be transformed into (1.9) by Theorem 6.1. Thirdly, the eigenvalue

problem corresponding to problem (1.9) has constant coefficients, and its principal eigenvalue has

shift invariance, i.e., the principal eigenvalue defined on the interval (l1, l2) depends only on the

length l2 − l1 but not on the position of (l1, l2); whereas problem (1.10) does not have such a good

property.

2 An eigenvalue problem associated to (1.10)

For later discussion about the dynamics of (1.10), in this section, we first study an eigenvalue

problem of a cooperative system with nonlocal diffusion. In particular, without assuming that the

operator is self-adjoint, we obtain a rather complete understanding of asymptotic behaviors of the

principal eigenvalue which is expected to be useful in other cooperative nonlocal diffusion problems.

For any a11, a22 ∈ R, l > 0, a12, a21 > 0, d1, d2 ≥ 0 and d1 + d2 > 0, we define the following
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nonlocal operator

L[φ](x) := P[φ](x) +H(x)φ(x), x ∈ [0, l], (2.1)

where φ = (φ1, φ2)
T ,

P[φ](x) =

(

d1
∫ l
0 J1(x− y)φ1(y)dy

d2
∫ l
0 J2(x− y)φ2(y)dy

)

, H(x) =

(

−d1j1(x) + a11 a12

a21 −d2j2(x) + a22

)

.

Since we assume d1 + d2 > 0 and di ≥ 0 for i = 1, 2, our results below can be used to handle some

degenerate cooperative systems, such as [24, 36]. For clarity, we make some notations as follows.

E = [L2([0, l])]2, 〈φ,ψ〉 =
2
∑

i=1

∫ l

0
φi(x)ψi(x)dx, ‖φ‖2 =

√

〈φ, φ〉, X = [C([0, l])]2,

X+ = {φ ∈ X : φ1 ≥ 0, φ2 ≥ 0 in [0, l]}, X++ = {φ ∈ X : φ1 > 0, φ2 > 0 in [0, l]}.

Now we are in the position to study the eigenvalue problem L[φ] = λφ. It is well known that λ

is a principal eigenvalue if it is simple and its corresponding eigenfunction φ belongs to X++. In

the following, we first give the existence and some properties for principal eigenvalue of (2.1) by

using the results in [35] whose proofs are inspired by the arguments in [37]. When L is self-adjoint,

we get a variational characteristic by following lines in the proofs of [34, Theorem 2.3] and [38,

Theorem 3.1], but our arguments are more concise than them.

Proposition 2.1. Let L be defined as above. Then the following statements are valid.

(1) λp is an eigenvalue of operator L with a corresponding eigenfunction φp ∈ X++, where

λp = inf{λ ∈ R : L[φ](x) ≤ λφ(x) in [0, l] for some φ ∈ X++}.

(2) The algebraic multiplicity of λp is equal to one. Namely, λp is simple.

(3) If there exists an eigenpair (λ, φ) of L with φ ∈ X+ \ {(0, 0)}, then λ = λp and φ is a positive

constant multiple of φp.

(4) Suppose a12 = a21, which implies that L is self-adjoint. Then we have the variational charac-

teristic λp = sup‖φ‖2=1〈L[φ], φ〉.

Proof. We will prove conclusions (1)-(3) by two cases, Case 1: d1d2 > 0, and Case 2: d1 = 0 or

d2 = 0. Clearly, Case 2 is referred to as the partially degenerate case.

Case 1: d1d2 > 0. In this case, we note that conclusions (1)-(3) follow directly from [35,

Corollary 1.3 and Theorem 1.4]. In fact, it is easy to check that H(x) is strongly irreducible in [0, l]

for any l > 0. Hence it remains to show

1

max[0,l] β(x)− β(x)
/∈ L1([0, l]), (2.2)

where β(x) is an eigenvalue of H(x) and the maximum of real parts of all eigenvalues of H(x).

Notice that j′i(x) = Ji(x) for i = 1, 2. Simple computations yield

β(x) =
−(d1j1(x)− a11 + d2j2(x)− a22) +

√

(d1j1(x)− a11 − d2j2(x) + a22)2 + 4a12a21
2

,
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β′(x) ≤ 0 and β′(0) < 0,

which implies (2.2), and conclusions (1)-(3) are derived in this case.

Case 2: d1 = 0 or d2 = 0. Without loss of generality, we suppose that d1 = 0 < d2. By [20,

Lemma 2.6], the eigenvalue problem

d2

∫ l

0
J2(x− y)ω(y)dy − d2j2(x)ω + a22ω = ζω

has a principal eigenvalue ζ with a corresponding positive eigenfunction ω ∈ C([0, l]). Let

λ∗p =
a11 + ζ +

√

(a11 − ζ)2 + 4a12a21
2

, φ1 =
a12ω

λ∗p − a11
, φ2 = ω, φ = (φ1, φ2)

T .

It is easy to see that λ∗p > a11 and L[φ] = λ∗pφ.

Then we show λ∗p = λp. From the definition of λp, we know λp ≤ λ∗p. It thus remains to prove

λp ≥ λ∗p. For any triplet (λ, ψ1, ψ2) with ψ = (ψ1, ψ2) ∈ X++ and L[ψ] ≤ λψ. We shall prove

λ ≥ λ∗p which, combined with the definition of λp, leads to our desired result.

Denote
∫ l
0 f(x)g(x)dx by 〈f, g〉 for f, g ∈ L2([0, l]). Then we have

〈λ∗pφ1, ψ1〉 − a12〈φ2, ψ1〉 = 〈φ1, a11ψ1〉 ≤ 〈φ1, λψ1 − a12ψ2〉 = 〈λφ1, ψ1〉 − a12〈φ1, ψ2〉,

which leads to

(λ∗p − λ)〈φ1, ψ1〉 ≤ a12〈φ2, ψ1〉 − a12〈φ1, ψ2〉. (2.3)

Moreover,

〈λ∗pφ2 − a21φ1 − a22φ2, ψ2〉 =

〈

φ2, d2

∫ l

0
J2(x− y)ψ2(y)dy − d2j2(x)ψ2

〉

≤ 〈φ2, λψ2 − a21ψ1 − a22ψ2〉,

which yields

(λ∗p − λ)〈φ2, ψ2〉 ≤ a21〈φ1, ψ2〉 − a21〈φ2, ψ1〉.

Combining this with (2.3) gives

(λ∗p − λ)

(

〈φ1, ψ1〉

a12
+

〈φ2, ψ2〉

a21

)

≤ 0,

which, together with the fact that a12 > 0, a21 > 0, 〈φ1, ψ1〉 > 0 and 〈φ2, ψ2〉 > 0, arrives at λ∗p ≤ λ.

Therefore, λp = λ∗p, and λp is an eigenvalue of L with corresponding eigenfunction φ ∈ X++. That

is, conclusion (1) is obtained. Then conclusions (2) and (3) can be deduced by [35, Theorem 1.4].

(4) Assume a12 = a21. For convenience, we denote λ0 = sup‖φ‖2=1〈L[φ], φ〉. Clearly, λ0 is well

defined. It suffices to show that λ0 is an eigenvalue of L with an eigenfunction in X+ \ {(0, 0)}.

To this end, we first prove λ0 > β(0). Let

α =
2a12

d2/2 + a22 − d1/2− a11 +
√

(d1/2 + a11 − d2/2− a22)2 + 4a212
.
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By [20, Lemma 2.6], there is a positive function ϕ1 ∈ C([0, l]) with
∫ l
0(1 + α2)ϕ2

1dx = 1 such that

∫ l

0

∫ l

0

[

d1J1(x−y)+α
2d2J2(x−y)

]

ϕ1(y)ϕ1(x)dydx−

∫ l

0

[

d1j1(x) + α2d2j2(x)
]

ϕ2
1dx

≥ −
d1 + α2d2

2

∫ l

0
ϕ2
1dx.

Let ϕ = (ϕ1, αϕ1)
T be the testing function. Clearly, ‖ϕ‖2 = 1. Simple computations yield

λ0 = sup
‖ψ‖2=1

〈L[ψ], ψ〉 ≥ 〈L[ϕ], ϕ〉

=

∫ l

0

∫ l

0

[

d1J1(x− y) + α2d2J2(x− y)
]

ϕ1(y)ϕ1(x)dydx−

∫ l

0

[

d1j1(x) + α2d2j2(x)
]

ϕ2
1dx

+(αa12 − a11)

∫ l

0
ϕ2
1dxdx+ α(a21 − αa22)

∫ l

0
ϕ2
1dx

>

∫ l

0

[

2a12α− d1/2− a11 − (d2/2 + a22)α
2
]

ϕ2
1dx = β(0).

Thus λ0 > β(0).

By virtue of a12 = a21 and the definition of λ0, we see that 〈λ0ϕ−L[ϕ], ψ〉 is bilinear, symmetric

and 〈λ0ϕ− L[ϕ], ϕ〉 ≥ 0. So by Cauchy-Schwarz inequality, we have

|〈λ0ϕ− L[ϕ], ψ〉| ≤ 〈λ0ϕ− L[ϕ], ϕ〉
1
2 〈λ0ψ − L[ψ], ψ〉

1
2 ≤ 〈λ0ϕ− L[ϕ], ϕ〉

1
2‖λ0I − L‖

1
2 ‖ψ‖2,

which yields ‖λ0ϕ−L[ϕ]‖2 ≤ 〈λ0ϕ−L[ϕ], ϕ〉
1
2‖λ0I −L‖

1
2 . Together with the definitions of λ0 and

L, we derive that there exists a nonnegative sequence {ϕn} with ‖ϕn‖2 = 1 such that

‖λ0ϕ
n − L[ϕn]‖2 → 0 as n→ ∞. (2.4)

For convenience, let T [ϕ] = (λ0I −H)[ϕ]. By Arzelà-Ascoli Theorem, P is compact and maps

E to X. Thus there exists a subsequence of {ϕn}, still denoted by itself, such that P[ϕn] → ϕ̄ for

some ϕ̄ ∈ X. Moreover, owing to λ0 > β(0), we have that T has a bounded and linear inverse T −1.

Define T −1[ϕ̄] = θ. Clearly, θ ∈ X. So limn→∞ T −1[P[ϕn]] = T −1[ϕ̄] = θ in X. Notice that

T −1[P[ϕn]]− ϕn = T −1[P[ϕn]− T [ϕn]] = T [L[ϕn]− λ0ϕ
n].

Thanks to (2.4), limn→∞ ϕn = θ in E, which combined with the fact that ϕn is nonnegative and

θ ∈ X, leads to θ ∈ X+. Therefore, T −1[P[θ]] = θ, namely, L[θ] = λ0θ. Noticing ‖θ‖2 = 1, we

see that λ0 is an eigenvalue of L with an eigenfunction θ ∈ X+ \ {(0, 0)}. Then by conclusion (3),

λp = λ0. The proof is complete.

Then we investigate the dependence of λp on interval [0, l] and diffusion coefficients d1 and d2,

respectively. Let

A =

(

a11 a12

a21 a22

)

, B =

(

−d1/2 + a11 a12

a21 −d2/2 + a22

)

.
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Direct computations show there exist γA, γB ∈ R, θA > 0 and θB > 0 satisfying














































γA =
a11 + a22 +

√

(a11 + a22)2 + 4[a12a21 − a11a22]

2
,

γB =
a11 −

d1
2 + a22 −

d2
2 +

√

(a11 −
d1
2 + a22 −

d2
2 )

2 + 4
[

a12a21 − (a11 −
d1
2 )(a22 −

d2
2 )
]

2
,

θA =
a12

γA − a11
, θB =

a12

γB +
d1
2

− a11

, (γAI −A)(θA, 1)
T = 0, (γBI −B)(θB, 1)

T = 0.

(2.5)

The following lemma will be often used in our later arguments.

Lemma 2.1. Let λp be the principal eigenvalue of (2.1). Then the following statements are valid.

(1) If there exist φ = (φ1, φ2)
T ∈ X with φ1, φ2 ≥, 6≡ 0 and λ ∈ R such that L[φ] ≤ λφ, then

λp ≤ λ. Moreover, λp = λ only if L[φ] = λφ.

(2) If there exist φ = (φ1, φ2)
T ∈ X+ \ {(0, 0)} and λ ∈ R such that L[φ] ≥ λφ, then λp ≥ λ.

Moreover, λp = λ only if L[φ] = λφ.

Proof. By arguing as in the proof of [30, Lemma 2.2] with some obvious modifications, we can

prove this result. So the details are ignored.

It is worthy mentioning that in Lemma 2.1(2), we only need φ = (φ1, φ2) ∈ X+ \ {(0, 0)} which

implies that one of φ1 and φ2 is allowed to be identical to zero. This will be used later.

Now we are in the position to show the dependence of λp on interval [0, l], and thus rewrite λp as

λp(l) to stress the relationship of λp about [0, l]. We note that unlike those arguments in the proofs

of [12, Proposition 3.4] and [34, Proposition 2.7], the methods we use here are elementary analysis

without resorting to variational characteristic. So we don’t assume a12 = a21 in the following result.

Proposition 2.2. Let λp(l) be the principal eigenvalue of (2.1). Then the following results hold.

(1) λp(l) is continuous and strictly increasing with respect to l > 0.

(2) liml→∞ λp(l) = γA, where γA is given by (2.5).

(3) liml→0 λp(l) = γB, where γB is given by (2.5).

Proof. (1) This conclusion can be obtained by adopting a similar approach as in [30, Proposition

2.3], and thus the details are omitted here.

(2) Recall that γA and θA are given by (2.5). Define ϕ̄ = (θA, 1)
T . We claim that L[ϕ̄] ≤ γAϕ̄

for all l > 0 which, combined with Lemma 2.1, yields

λp(l) ≤ γA for all l > 0. (2.6)

Now we prove L[ϕ̄] ≤ γAϕ̄ for all l > 0. Simple calculations lead to

d1

∫ l

0
J1(x− y)θAdy − d1j1(x)θA + a11θA + a12 ≤ a11θA + a12 = γAθA,

d2

∫ l

0
J2(x− y)dy − d2j2(x) + a21θA + a22 ≤ a21θA + a22 = γA.

Thus our claim holds and (2.6) is obtained.
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Define ϕ = (ϕ
1
(x), ϕ

2
(x))T with ϕ

1
(x) = θAξ(x), ϕ2

(x) = ξ(x) and ξ(x) = min {1, 2(l − x)/l}.

We shall show that for any small ε > 0 there exists lε > 0 such that when l > 4lε there holds:

L[ϕ] ≥ (γA −max{d1, d2}ε)ϕ for x ∈ [0, l], (2.7)

which, by Lemma 2.1, arrives at λp(l) ≥ γA− ε for l ≥ 4lε. Then by the arbitrariness of ε, we have

lim inf l→∞ λp(l) ≥ γA.

Next we prove (2.7). We first consider the case x ∈ [0, l/4]. Direct calculations yield that

d1

∫ l

0
J1(x− y)ϕ

1
(y)dy − d1j1(x)ϕ1

+ a11ϕ1
+ a12ϕ2

≥ d1θA

∫ l/2

0
J1(x− y)dy − d1j1(x)θA + a11θA + a12

= −d1θA

∫ ∞

l/2
J1(x− y)dy + a11θA + a12

≥ −d1θAε+ a11θA + a12 = (γA − d1ε)θA ≥ (γA − d1ε)ϕ1
,

provided that l is large enough such that
∫∞
l/4 J1(y)dy ≤ ε. Similarly,

d2

∫ l

0
J2(x− y)ϕ

2
(y)dy − d2j2(x)ϕ2

+ a21ϕ1
+ a22ϕ2

≥ (γA − d2ε)ϕ2
.

Then we consider the case x ∈ [l/4, l]. In view of [16, Lemma 7.3] with l2 = l and l1 = l/2, for

any small ε > 0 there exists a lε > 0 such that for all l ≥ 4lε,

∫ l

0
Ji(x− y)ξ(y)dy ≥ (1− ε)ξ(x) for i = 1, 2, x ∈ [l/4, l].

Using this estimate, we have

d1

∫ l

0
J1(x− y)ϕ

1
(y)dy − d1j1(x)ϕ1

+ a11ϕ1
+ a12ϕ2

≥ d1(1− ε)ϕ
1
− d1ϕ1

+ a11ϕ1
+ a12ϕ2

= (−d1ε+ a11)ϕ1
+ a12ϕ2

= (γA − d1ε)ϕ1
.

Similarly,

d2

∫ l

0
J2(x− y)ϕ

2
(y)dy − d2j2(x)ϕ2

+ a21ϕ1
+ a22ϕ2

≥ (γA − d2ε)ϕ2
.

Hence (2.7) holds and lim inf l→∞ λp(l) ≥ γA. Then due to (2.6), the conclusion (2) is obtained.

(3) Recall that γB and θB are determined in (2.5). Let ψ = (θB , 1)
T . We claim that L[ψ] ≥ γBψ

for all l > 0. In fact, it is easy to verify that
∫ l
0 Ji(x − y)dy − ji(x) ≥ −1

2 . This, combined with

(2.5), allows us to derive

d1

∫ l

0
J1(x− y)dyθB − d1j1(x)θB − a11θB + a12 ≥ −

d1
2
θB + a11θB + a12 = γBθB.

Similarly,

d2

∫ l

0
J2(x− y)dy − d2j2(x) + a21θB + a22 ≥ γB .
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Therefore, our claim is valid. It then follows from Lemma 2.1 that λp(l) ≥ γB for all l > 0.

Define ρ(l) = max
i=1,2

{

di
2 − di

∫∞
l Ji(y)dy

}

. Clearly, ρ(l) → 0 as l → 0. It is not hard to show

d1

∫ l

0
J1(x− y)dyθB − d1j1(x)θB + a11θB + a12

=
−d1
2
θB + a11θB + a12 +

(

d1
2

− d1

∫ ∞

l
J1(y)dy

)

θB ≤ (γB + ρ(l))θB .

Analogously,

d2

∫ l

0
J2(x− y)dy − d2j2(x) + a21θB + a22 ≤ γB + ρ(l).

Using Lemma 2.1 again, we have λp(l) ≤ γB + ρ(l), which implies lim supl→0 λp(l) ≤ γB . Together

with λp(l) ≥ γB for all l > 0, we finish the proof of conclusion (3). The proof is complete.

Then we investigate the dependence of λp on diffusion coefficients d1 and d2. So we rewrite λp

as a binary function λp(d1, d2) which, by Proposition 2.1, is well defined on [0,∞)× [0,∞)\{(0, 0)}.

Proposition 2.3. Let λp(d1, d2) be given as above. Then the following statements are valid.

(1) λp(d1, d2) is continuous with respect to (d1, d2) ∈ [0,∞) × [0,∞) \ {(0, 0)}.

(2) λp(d1, d2) → γA as (d1, d2) → (0, 0), where γA is given by (2.5).

(3) If a12 = a21, then λp(d1, d2) is strictly decreasing in each variable d1 > 0 and d2 > 0.

(4) Fix di > 0. Then λp(d1, d2) → ζj as dj → ∞ where i, j = 1, 2, i 6= j and ζj is the principal

eigenvalue of

di

∫ l

0
Ji(x− y)ω(y)dy − diji(x)ω + aiiω = ζω, x ∈ [0, l].

(5) λp(d1, d2) → −∞ as (d1, d2) → (∞,∞).

Proof. (1) For any given (d̄1, d̄2) and (d1, d2) ∈ [0,∞) × [0,∞) \ {(0, 0)}. Denote by (φ1, φ2)
T the

positive eigenfunction of λp(d1, d2), and set K = max
i=1,2

max[0,l] φi
min[0,l] φi

. Direct computations yield

d̄1

∫ l

0
J1(x− y)φ1(y)dy − d̄1j1(x)φ1 + a11φ1 + a12φ2

= λp(d1, d2)φ1 + (d̄1 − d1)

∫ l

0
J1(x− y)φ1(y)dy − (d̄1 − d1)j1(x)φ1

≤ λp(d1, d2)φ1 + 2|d̄1 − d1|Kφ1.

Similarly,

d̄2

∫ l

0
J2(x− y)φ2(y)dy − d̄2j2(x)φ2 + a21φ1 + a22φ2 ≤ λp(d1, d2)φ2 + 2|d̄2 − d2|Kφ2.

Thus, it follows from Lemma 2.1 that

λp(d̄1, d̄2) ≤ λp(d1, d2) + 2K(|d̄1 − d1|+ |d̄2 − d2|), (2.8)

Similar to the above, we have

λp(d̄1, d̄2) ≥ λp(d1, d2)− 2K(|d̄1 − d1|+ |d̄2 − d2|),
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which, together with (2.8), derives

|λp(d̄1, d̄2)− λp(d1, d2)| ≤ 2K(|d̄1 − d1|+ |d̄2 − d2|).

The continuity follows.

(2) Let ϕ̄ = (θA, 1)
T as in the proof of Proposition 2.2. Direct computations show

d1

∫ l

0
J1(x− y)θAdy − d1j1(x)θA + a11θA + a12 ≥ −d1θA + a11θA + a12 = (γA − d1)θA,

d2

∫ l

0
J2(x− y)dy − d2j2(x) + a21θA + a22 ≥ −d2 + a21θA + a22 = γA − d2.

Recalling Lemma 2.1, we have λp(d1, d2) ≥ γA − (d1 + d2), so lim inf(d1,d2)→(0,0) λp(d1, d2) ≥ γA.

Moreover, owing to (2.6), lim sup(d1,d2)→(0,0) λp(d1, d2) ≤ γA. Conclusion (2) is proved.

(3) Note that a12 = a21 in this statement. So by Proposition 2.1, the variational characteristic

holds. We only show the monotonicity of λp(d1, d2) about d1 since the other case is similar. We fix

d2 and choose any 0 < d̄1 < d1. Denote by φ = (φ1, φ2)
T the corresponding positive eigenfunction

of λp(d1, d2) with ‖φ‖2 = 1. Firstly, using [20, Lemma 2.6], we have

∫ l

0

∫ l

0
J1(x− y)φ1(y)φ1(x)dydx−

∫ l

0
j1φ

2
1dx < 0 for all l > 0.

It then follows that

λp(d1, d2) = d1

(∫ l

0

∫ l

0
J1(x− y)φ1(y)φ1(x)dydx−

∫ l

0
j1φ

2
1dx

)

+

∫ l

0
(a11φ

2
1 + a12φ1φ2)dx

+d2

∫ l

0

∫ l

0
J2(x− y)φ2(y)φ2(x)dydx− d2

∫ l

0
j2φ

2
2dx+

∫ l

0
(a21φ1φ2 + a22φ

2
2)dx

< d̄1

(
∫ l

0

∫ l

0
J1(x− y)φ1(y)φ1(x)dydx−

∫ l

0
j1φ

2
1dx

)

+

∫ l

0
(a11φ

2
1 + a12φ1φ2)dx

+d2

∫ l

0

∫ l

0
J2(x− y)φ2(y)φ2(x)dydx− d2

∫ l

0
j2φ

2
2dx+

∫ l

0
(a21φ1φ2 + a22φ

2
2)dx

≤ λp(d̄1, d2).

The monotonicity is obtained.

(4) We only prove λp(d1, d2) → ζ1 as d1 → ∞ for the fix d2 > 0, since the other case is parallel.

Our arguments are inspired by [39]. Firstly, it follows from (2.6) that λp(d1, d2) ≤ γA. Let ω be

the corresponding positive eigenfunction of ζ1 and ϕ = (0, ω)T . It is easy to see that L[ϕ] ≥ ζ1ϕ,

which implies λp(d1, d2) ≥ ζ1. Consequently,

ζ1 ≤ λp(d1, d2) ≤ γA for all d1, d2 > 0. (2.9)

In order to show λp(d1, d2) → ζ1 as d1 → ∞, it is sufficient to prove that for any sequence {dn1}

with dn1 → ∞ as n → ∞, there is a subsequence, still denoted by itself, such that λp(d
n
1 , d2) → ζ1

as n → ∞. For convenience, denote λp(d
n
1 , d2) by λnp since we fix d2 > 0. Let φn = (φn1 , φ

n
2 )
T be

the positive eigenfunction of λnp with ‖φn‖X = 1. Using this fact and (2.9) we deduce that there

exists a subsequence of {n}, still denoted by itself, such that (φn1 , φ
n
2 ) converges weakly to (ψ1, ψ2)

with ψi ∈ L2([0, l]), and λnp → λ∞ ≥ ζ1 as n→ ∞. Due to φn ∈ X++, we have ψi ≥ 0 for i = 1, 2.
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Now we show that ψ1 ≡ 0. Obviously,

dn1

∫ l

0
J1(x− y)φn1 (y)dy − dn1 j1(x)φ

n
1 + a11φ

n
1 + a12φ

n
2 = λnpφ

n
1 , for x ∈ [0, l].

Dividing the above equation by dn1 and letting n→ ∞ one has

∫ l

0
J1(x− y)φn1 (y)dy − j1(x)φ

n
1 → 0 uniformly in [0, l]. (2.10)

Since φn1 converges weakly to ψ1 and operator
∫ l
0 J1(x−y)φ

n
1 (y)dy : L2([0, l]) → C([0, l]) is compact,

it follows that, as n→ ∞,

∫ l

0
J1(x− y)φn1 (y)dy →

∫ l

0
J1(x− y)ψ1(y)dy uniformly in [0, l].

This, combined with (2.10), yields that, as n→ ∞,

φn1 →
1

j1(x)

∫ l

0
J1(x− y)ψ1(y)dy uniformly in [0, l].

By the uniqueness of weak limit,

ψ1(x) =
1

j1(x)

∫ l

0
J1(x− y)ψ1(y)dy.

If there exists some x0 ∈ [0, l] such that ψ1(x0) > 0, then it is not hard to show that ψ1(x) > 0 in

[0, l], which implies that (0, ψ1) is the principal eigenpair of the eigenvalue problem

∫ l

0
J1(x− y)ω(y)dy − j1(x)ω(x) = ξω. (2.11)

However, on the basis of [20, Lemma 2.6], the principal eigenvalue ξ of (2.11) must be less than 0.

This contradiction implies ψ1 ≡ 0. Thus φn1 → 0 in C([0, l]) as n→ ∞.

Noticing that ‖φn‖X = 1, we have ‖φn2‖ → 1 as n→ ∞. Since φn2 → ψ2 weakly in L2([0, l]) and
∫ l
0 J2(x− y)φn2 (y)dy : L2([0, l]) → C([0, l]) is compact, one has

∫ l

0
J2(x− y)φn2 (y)dy →

∫ l

0
J2(x− y)ψ2(y)dy uniformly in [0, l]. (2.12)

Moreover, due to φn1 → 0 in C([0, l]) as n→ ∞, one also has

d2

∫ l

0
J2(x− y)φn2 (y)dy − d2j2(x)φ

n
2 + a22φ

n
2 − λnpφ

n
2 = −a21φ

n
1 → 0 uniformly in [0, l].

Since

d2j2(x)− a22 + λnp ≥
d2
2

− a22 + ζ1 > 0,

we have that, as n→ ∞,

φn2 (x)−

d2

∫ l

0
J2(x− y)φn2 (y)dy

d2j2(x)− a22 + λnp
→ 0 uniformly in [0, l].
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This, combines with (2.12), yields that, as n→ ∞,

φn2 (x) →

d2

∫ l

0
J2(x− y)ψ2(y)dy

d2j2(x)− a22 + λ∞
uniformly in [0, l].

Note that φn2 converges weakly to ψ2. By the uniqueness of limit, we obtain

d2

∫ l

0
J2(x− y)ψ2(y)dy − d2j2(x)ψ2 + a22ψ2 = λ∞ψ2, (2.13)

and φn2 → ψ2 in C([0, l]). Recall that ‖φn2‖C([0,l]) → 1 as n→ ∞. So ‖ψ2‖C([0,l]) = 1. Together with

(2.13), we easily derive that ψ2 > 0 in [0, l], which implies λ∞ = ζ1. Thus conclusion (4) is proved.

(5) It can be seen from [20, Lemma 2.6] that, for i = 1, 2, the following eigenvalue problem
∫ l

0
Ji(x− y)ω(y)dy − ji(x)ω(x) = λω(x), x ∈ [0, l]

has a principal eigenpair (λi, ωi) with ωi positive and satisfying ‖ωi‖C([0, l]) = 1. Moreover, λi ∈

(−1/2, 0). Define

d = min{d1, d2}, λ = min{λ1, λ2}, ω = (ω1, ω2)
T , k = |a11|+ |a22|+

a12
min[0, l] ω1

+
a21

min[0, l] ω2
.

Simple computations yield

d1

∫ l

0
J1(x− y)ω1(y)dy − d1j1(x)ω1 + a11ω1 + a12ω2

≤

(

d1λ1 + |a11|+
a12

min[0, l] ω1

)

ω1 ≤ (d1λ1 + k)ω1.

Similarly,

d2

∫ l

0
J2(x− y)ω2(y)dy − d2j2(x)ω2 + a21ω1 + a22ω2 ≤ (d2λ2 + k)ω2.

Therefore, L[ω] ≤ (dλ+ k)ω. By Lemma 2.1, λp(d1, d2) ≤ dλ+ k. From the fact that λ < 0 and k

is independent of (d1, d2), we obtain conclusion (5). The proof of Proposition 2.3 is complete.

3 Positive equilibrium solutions associated to (1.10)

With the help of the results obtained in Section 2, in this section, we discuss the positive

equilibrium solutions associated to (1.10) which reads as


















d1

∫ l

0
J1(x− y)u(y)dy − d1j1(x)u− au+H(v) = 0, x ∈ [0, l],

d2

∫ l

0
J2(x− y)v(y)dy − d2j2(x)v − bv +G(u) = 0, x ∈ [0, l],

(3.1)

where all parameters are positive, and condition (H1) holds. In the remainder of this paper, let

λ1(l) and λ2(l) be the principal eigenvalue of the following two eigenvalue problems, respectively,


















d1

∫ l

0
J1(x− y)φ1(y)dy − d1j1(x)φ1 − aφ1 +H ′(0)φ2 = λφ1, x ∈ [0, l],

d2

∫ l

0
J2(x− y)φ2(y)dy − d2j2(x)φ2 +G′(0)φ1 − bφ2 = λφ2, x ∈ [0, l].

(3.2)
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

















1

H ′(0)

(

d1

∫ l

0
J1(x− y)φ1(y)dy − d1j1(x)φ1 − aφ1

)

+ φ2 = λφ1, x ∈ [0, l],

1

G′(0)

(

d2

∫ l

0
J2(x− y)φ2(y)dy − d2j2(x)φ2 − bφ2

)

+ φ1 = λφ2, x ∈ [0, l].

(3.3)

It is easy to see that these two eigenvalue problems are not equivalent, and


















λ1(l)

max{H ′(0), G′(0)}
≤ λ2(l) ≤

λ1(l)

min{H ′(0), G′(0)}
, if λ1 ≥ 0,

λ1(l)

min{H ′(0), G′(0)}
≤ λ2(l) ≤

λ1(l)

max{H ′(0), G′(0)}
, if λ1 < 0,

(3.4)

which clearly implies that λ1(l) and λ2(l) have the same sign. For clarity, in this paper, we usually

use λ1(l) to study dynamics of (1.10), and only utilize λ2(l) when discussing the effect of diffusion

coefficients d1 and d2 since, by Proposition 2.3, the monotonicity of λ2(l) holds.

Below is a maximum principle for (3.1) that will be used in the coming analysis.

Lemma 3.1. Let (ui,vi) ∈ X++ for i = 1, 2 and satisfy



















d1

∫ l

0
J1(x− y)u1(y)dy − d1j1(x)u1 − au1 +H(v1) ≤ 0, x ∈ [0, l]

d2

∫ l

0
J2(x− y)v1(y)dy − d2j2(x)v1 − bv1 +G(u1) ≤ 0, x ∈ [0, l],

(3.5)

and


















d1

∫ l

0
J1(x− y)u2(y)dy − d1j1(x)u2 − au2 +H(v2) ≥ 0, x ∈ [0, l]

d2

∫ l

0
J2(x− y)v2(y)dy − d2j2(x)v2 − bv2 +G(u2) ≥ 0, x ∈ [0, l],

(3.6)

respectively. Then (u1−u2,v1−v2) ∈ X+. Moreover, if one of the above four inequalities is strict

at some point x0 ∈ [0, l], then (u1 − u2,v1 − v2) ∈ X++.

Proof. Step 1: The proof of (u1 − u2,v1 − v2) ∈ X
+. Since (ui,vi) ∈ X++ for i = 1, 2, then

κ = inf{κ > 1 : (κu1 − u2, κv1 − v2) ∈ X+}

is well defined and κ ≥ 1. Clearly, (κu1 − u2, κv1 − v2) ∈ X+. If κ > 1, then there exists a point

x1 ∈ [0, l] such that κu1(x1) = u2(x1) or κv1(x1) = v2(x1). We first prove that κu1(x1) = u2(x1)

is impossible. Assume on the contrary that κu1(x1) = u2(x1).

Case 1: κv1(x1) > v2(x1). In view of the first inequalities of (3.5) and (3.6), we have

κd1

∫ l

0
J1(x1 − y)u1(y)dy − d1j1(x1)κu1(x1)− aκu1(x1) + κH(v1(x1)) ≤ 0,

d1

∫ l

0
J1(x1 − y)u2(y)dy − d1j1(x1)κu1(x1)− aκu1(x1) +H(v2(x1)) ≥ 0,

which, together with κu1(x) ≥ u2(x) in [0, l], implies H(v2(x1)) ≥ κH(v1(x1)). However, thanks

to the assumption on H, κ > 1 and κv1(x1) > v2(x1), we easily obtain H(v2(x1)) < κH(v1(x1)).

This is a contradiction.
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Case 2: κv1(x1) = v2(x1). Similar to the above, it can be derived that G(u2(x1)) ≥ κG(u1(x1)).

Due to the assumption on G, κ > 1 and κu1(x1) = u2(x1), we also can derive a contradiction.

Similarly, κv1(x1) = v2(x1) is impossible. Hence, κ = 1 and thus (u1 − u2,v1 − v2) ∈ X+.

Step 2: Proof of (u1 − u2,v1 − v2) ∈ X++. We only handle the case where the first inequality

in (3.5) is strict at x0 ∈ [0, l] since other cases can be done by the similar way. Argue indirectly

that (u1 − u2,v1 − v2) /∈ X++. Then there is a point x2 ∈ [0, l] such that u1(x2) = u2(x2) or

v1(x2) = v2(x2). Define

Σ = {x ∈ [0, l] : u1(x) = u2(x)}, Π = {x ∈ [0, l] : v1(x) = v2(x)}.

Then at least one of Σ and Π is nonempty. We first consider the case that Σ 6= ∅.

If x0 ∈ Σ, i.e., u1(x0) = u2(x0). As above, it can be deduced by the first inequalities of (3.5)

and (3.6) that H(v2(x0)) > H(v1(x0)), which clearly contradicts the monotonicity of H and the

fact v2(x0) ≤ v1(x0).

If x0 6∈ Σ, then u1(x0) > u2(x0). Choose x2 ∈ Σ, i.e., u1(x2) = u2(x2). Clearly, x2 6= x0.

We assume that x2 > x0 without loss of generality. Then there exists a point x3 ∈ (x0, x2]

such that u1(x3) = u2(x3) and u1 > u2 in [x0, x3). Thus, making use of the condition (J) and

the fact that u1 ≥ u2 in [0, l], we have
∫ l
0 J1(x3 − y)u2(y)dy <

∫ l
0 J1(x3 − y)u1(y)dy. However,

analogously, it can be derived by the first inequalities of (3.5) and (3.6) that
∫ l
0 J1(x3−y)u2(y)dy ≥

∫ l
0 J1(x3 − y)u1(y)dy. This is a contradiction.

Now we consider the case Σ = ∅, i.e., u1 > u2 in [0, l]. Then Π 6= ∅. Choose x4 ∈ Π,

i.e., v1(x4) = v2(x4). Notice that G′(z) > 0 and u1(x4) > u2(x4). It then follows from the

second equalities of (3.5) and (3.6) that
∫ l
0 J2(x4− y)v1(y)dy <

∫ l
0 J2(x4− y)v2(y)dy, which clearly

contradicts v1 ≥ v2 in [0, l]. The proof is ended.

We now give the result concerning the bounded positive solution of (3.1). Note that our

arguments are different from those in proofs of [27, Lemmas 3.10 and 3.11], [30, Proposition 3.4]

and [34, Proposition 2.10]. Especially, the lack of shifting invariance property of (3.1) brings some

difficulties in the proof of the following assertion (ul,vl) → (U, V ) as l → ∞.

Lemma 3.2. Let λ1(l) be defined as above. Then the following statements are valid.

(1) If λ1(l) > 0, then problem (3.1) has a unique bounded positive solution (u,v) ∈ X++ and

(U − u, V − v) ∈ X++. Denote (u,v) by (ul,vl). Then (ul,vl) is strictly increasing for large

l > 0 and (ul,vl) → (U, V ) locally uniformly in [0,∞) as l → ∞.

(2) If λ1(l) ≤ 0, then (0, 0) is the unique nonnegative solution of (3.1).

Proof. (1) In view of Proposition 2.2, we have that if λ1(l) > 0, then γA > 0, where γA is defined

in (2.5) and the matrix A here is composed of a11 = −a, a12 = H ′(0), a21 = G′(0) and a22 = −b.

It is easy to see that γA > 0 if and only if R0 > 1.

Step 1: The existence. Define an operator Γ : X+ → X+ by

Γ [φ] =











1

d1j1(x) + a

(

d1

∫ l

0
J1(x− y)φ1(y)dy +H(φ2)

)

1

d2j2(x) + b

(

d2

∫ l

0
J2(x− y)φ2(y)dy +G(φ1)

)











.
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Clearly, Γ is increasing in X+. Simple computations show

1

d1j1(x) + a

(

d1

∫ l

0
J1(x− y)Udy +H(V )

)

≤
1

d1j1(x) + a
[d1j1(x)U +H(V )]

=
1

d1j1(x) + a
[d1j1(x)U + aU ]

= U, x ∈ [0, l], (3.7)

1

d2j2(x) + b

(

d2

∫ l

0
J2(x− y)V dy +G(U)

)

≤ V, x ∈ [0, l], (3.8)

which implies that Γ [(U, V )] ≤ (U, V ). Moreover, (3.7) and (3.8) are strict when x < l and near l.

Let φ = (φ1, φ2) ∈ X++ be the corresponding eigenfunction of λ1(l) with ‖φ‖X = 1. We claim

that if ε is sufficiently small, then Γ [εφ] ≥ εφ. In fact, the direct calculation yields

1

d1j1(x) + a

[

d1

∫ l

0
J1(x− y)φ1(y)dy +H(φ2)

]

− εφ1

≥
ε

d1j1(x) + a

[

λ1(l)φ1 + d1j1(x)φ1 + aφ1 +H(ε)/ε −H ′(0)
]

− εφ1

≥
ε

d1j1(x) + a

[

λ1(l)φ1 +H(ε)/ε −H ′(0)
]

≥ 0

provided that ε is small enough. Similarly,

1

d2j2(x) + b

[

d2

∫ l

0
J2(x− y)εφ2(y)dy +G(εφ1)

]

≥ εφ2

with ε small enough. Thus our claim holds.

Then by an iteration or upper-lower solution method, problem (3.1) has at least one solution

(u,v) satisfying (εφ1, εφ2) ≤ (u,v) ≤ (U, V ) in [0, l].

Step 2: The continuity. It will be proved that (u,v) is continuous in [0, l] by using the implicit

function theorem and some basic analysis. Define

Q1(x) = d1

∫ l

0
J1(x− y)u(y)dy, Q2(x) = d2

∫ l

0
J2(x− y)v(y)dy,

P (x, y, z) =
(

Q1(x)− d1j1(x)y − ay +H(z), Q2(x)− d2j2(x)z − bz +G(y)
)

.

Clearly, P (x, y, z) is continuous in {(x, y, z) : 0 ≤ x ≤ l, y ≥ 0, z ≥ 0}, and P (x,u(x),v(x)) = (0, 0)

for all 0 < x < l. With regard to 0 < x < l, y > 0, z > 0 satisfying P (x, y, z) = (0, 0), direct

computations yield

∂P (x, y, z)

∂(y, z)
=

(

−d1j1(x)− a H ′(z)

G′(y) −d2j2(x)− b

)

,

which is continuous for 0 < x < l, y, z > 0, and

det
∂P (x, y, z)

∂(y, z)
=

(Q1(x) +H(z))(Q2(x) +G(y))

yz
−H ′(z)G′(y) ≥

H(z)G(y)

yz
−H ′(z)G′(y) > 0.

Hence, by the implicit function theorem, we know that (u,v) is continuous in (0, l).
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In the following we prove that (u,v) is continuous at x = 0, l. We only deal with x = 0. Recall

that (εφ1, εφ2) ≤ (u,v) ≤ (U, V ) and φ ∈ X++. Let xn → 0 and (u(xn),v(xn)) → (u0,v0) as

n→ ∞. Clearly, u0 and v0 are positive. Taking x = xn in (3.1) and then letting n→ ∞ yield



















d1

∫ l

0
J1(y)u(y)dy − d1j1(0)u0 − au0 +H(v0) = 0, x ∈ [0, l],

d2

∫ l

0
J2(y)v(y)dy − d2j2(0)v0 − bv0 +G(u0) = 0, x ∈ [0, l].

Then setting x = 0 in (3.1), we can argue as in the proof of Lemma 3.1 to derive that (u0,v0) =

(u(0),v(0)). Hence, (u,v) is continuous at x = 0.

Step 3: The uniqueness and (U − u, V − v) ∈ X++. These two results directly follow from

Lemma 3.1 since (3.7) and (3.8) are strict when x < l and near l. The details are ignored.

Step 4: The monotonicity of (ul,vl) in l and convergence of (ul,vl) as l → ∞. For any large

l1 > l2 > 0, let (ui,vi) be the bounded positive solutions of (3.1) with l = li. Then we have



















d1

∫ l2

0
J1(x− y)u1(y)dy − d1j1(x)u1 − au1 +H(v1) < 0, x ∈ [0, l2]

d2

∫ l2

0
J2(x− y)v1(y)dy − d2j2(x)v1 − bv1 +G(u1) < 0, x ∈ [0, l2].

Thus, by Lemma 3.1, (u1,v1) > (u2,v2). That is, (ul,vl) is strictly increasing in l. Recalling

ul ≤ U and vl ≤ V , we have that the limits liml→∞ul(x) = ũ(x) and liml→∞ vl(x) = ṽ(x) exist

for all x ≥ 0 with 0 < ũ ≤ U and 0 < ṽ ≤ V . The dominated convergence theorem leads to















d1

∫ ∞

0
J1(x− y)ũ(y)dy − d1j1(x)ũ− aũ+H(ṽ) = 0, x ∈ [0,∞),

d2

∫ ∞

0
J2(x− y)ṽ(y)dy − d2j2(x)ṽ − bṽ +G(ũ) = 0, x ∈ [0,∞).

(3.9)

Then, by the similar lines as in Step 2, we can show that (ũ, ṽ) is continuous on [0,∞).

It will be proved that (ũ, ṽ) = (U, V ). Obviously, it is sufficient to show inf [0,∞) ũ = U or

inf [0,∞) ṽ = V since these two equalities are equivalent. To save space, we denote ũinf = inf [0,∞) ũ

and ṽinf = inf [0,∞) ṽ. We now prove ũinf = U . Assume on the contrary that ũinf < U .

Case 1: ũ(x0) = ũinf for some x0 ≥ 0. Then

0 ≤ d1

∫ ∞

0
J1(x0 − y)ũ(y)dy − d1j1(x0)ũ(x0) = aũ(x0)−H(ṽ(x0)) (3.10)

as ũ(y) ≥ ũinf = ũ(x0) for all y ≥ 0. Therefore, H(ṽ(x0)) ≤ aũ(x0) < aU = H(V ). Since H(z) is

strict increasing in z ≥ 0, it follows that ṽ(x0) < V . So, ṽinf < V .

If ṽ(x1) = ṽinf for some x1 ≥ 0. Similar to the above, we can get bṽ(x1)−G(ũ(x1)) ≥ 0, which

implies ũ(x1) < U . To sum up, we have

aũ(x0)−H(ṽ(x0)) ≥ 0, bṽ(x1)−G(ũ(x1)) ≥ 0, ũ(x0) ≤ ũ(x1) < U, ṽ(x1) ≤ ṽ(x0) < V.

It follows that G
(

H(ṽ(x0))/a
)

≤ bṽ(x0). This contradicts the fact that (U, V ) is unique positive

root of (1.3). So ṽ(x) > ṽinf for all x ≥ 0.
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Then there exists a sequence {xn} with xn ր ∞ such that ṽ(xn) → ṽinf as n→ ∞. By passing

a subsequence, still denoted by itself, we have ũ(xn) → u0 as n→ ∞. Clearly,

ũ(x0) = ũinf ≤ u0 ≤ U, and ṽinf ≤ ṽ(x0) < V. (3.11)

As ṽ(y) > ṽinf for all y ≥ 0, it is clear that

lim inf
n→∞

∫ ∞

0
J2(xn − y)ṽ(y)dy ≥ ṽinf lim inf

n→∞

∫ ∞

−xn

J2(y)dy = ṽinf , (3.12)

and ji(xn) → 1 as n → ∞, i = 1, 2. Together with the equation of ṽ, we have bṽinf ≥ G(u0).

Together with (3.10) and (3.11), we have

aũ(x0)−H(ṽ(x0)) ≥ 0, bṽ(x0)−G(ũ(x0)) ≥ 0, ũ(x0) ≤ u0 ≤ U, ṽ(x0) < V,

which also leads to G
(

H(v(x0))/a
)

≤ bv(x0). Analogously, we can get a contradiction.

Case 2: ũ(x) > ũinf for all x ≥ 0. If there exists x0 ≥ 0 such that ṽ(x0) = ṽinf , by exchanging

the positions of ũ and ṽ, similar to the above (the third paragraph in Case 1) we can derive a

contradiction. Therefore, ũ(x) > ũinf and ṽ(x) > ṽinf for all x ≥ 0. We can find xn ր ∞ and

x′n ր ∞ such that ũ(xn) → ũinf and ṽ(x′n) → ṽinf as n→ ∞. Moreover, by selecting subsequences

if necessary, we may assume that ũ(x′n) → u0 and ṽ(xn) → v0. Clearly, ũinf ≤ u0 ≤ U, ṽinf ≤

v0 ≤ V . Taking x = xn and x = x′n in the first and second equations of (3.9), respectively,

and then letting n → ∞ we can obtain that, similar to the above (cf. the derivation of (3.12)),

aũinf ≥ H(v0) ≥ H(ṽinf) and bṽinf ≥ G(u0) ≥ G(ũinf). Note that ũinf < U and ṽinf < V . Then a

similar contradiction can be obtained.

The above arguments show that ũinf = U . Therefore (ũ, ṽ) = (U, V ). Then by Dini’s theorem,

conclusion (1) is obtained.

(2) Since one can prove this assertion by following similar lines as in [30, Proposition 3.4] or

[34, Proposition 2.10], we omit the details. The proof is complete.

At the end of this section, we show dynamics of the following problem with fixed boundary:































ut = d1

∫ l

0
J1(x− y)u(y)dy − d1j1(x)u− au+H(v), t > 0, x ∈ [0, l]

vt = d2

∫ l

0
J2(x− y)v(y)dy − d2j2(x)v − bv +G(u), t > 0, x ∈ [0, l],

u(0, x) = ũ0(x), v(0, x) = ṽ0(x),

(3.13)

where (ũ0, ṽ0) ∈ X+ \ {(0, 0)}. Especially, it will be shown that (0, 0) can be exponentially or

algebraically stable.

Lemma 3.3. Let (u, v) be the unique solution of (3.13). Then the following statements are valid.

(1) If λ1(l) > 0, then (u(t, x), v(t, x)) → (u,v) in X as t→ ∞, where (u,v) is the unique positive

steady state of (3.1).

(2) If λ1(l) ≤ 0, then (u(t, x), v(t, x)) → (0, 0) in X as t→ ∞. Moreover,

(2a) if λ1(l) < 0, then (ektu(t, x), ektv(t, x)) → (0, 0) in X as t→ ∞ for all k ∈ (0,−λ1(l));
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(2b) if λ1(l) = 0, and H,G ∈ C2([0,∞)) and H ′′(z) < 0, G′′(z) < 0 for z ≥ 0, then there exists

a k0 ∈ (0, 1) such that ((t + 1)ku(t, x), (t + 1)kv(t, x)) → (0, 0) in X as t → ∞ for all

k ∈ (0, k0].

Proof. The convergence results in X can be proved by using similar methods as in [30, Proposition

3.4]. Hence we only prove the exponential stability and algebraic stability, respectively, which are

obtained by constructing suitable upper solutions.

Exponential stability. Let φ = (φ1, φ2) be the corresponding positive eigenfunction of λ1(l).

Define ū = Me−ktφ1(x) and v̄ = Me−ktφ2(x) with positive constants M and k to be determined

later. We now show that, by choosing suitable M and k, (ū, v̄) is an upper solution of (3.13). Then

the desired result follows from a comparison argument.

Direct computations yield that, for t > 0 and x ∈ [0, l],

ūt − d1

∫ l

0
J1(x− y)ū(t, y)dy + d1j1(x)ū+ aū−H(v̄)

= Me−kt
(

−kφ1 − λ1(l)φ1 +H ′(0)φ2 −
H(Me−ktφ2)

Me−kt

)

≥ Me−kt (−k − λ1(l))φ1 ≥ 0

provided that 0 < k ≤ −λ1(l). Analogously, we can show

v̄t ≥ d2

∫ l

0
J2(x− y)v̄(t, y)dy − d2j2(x)v̄ − bv̄ +G(ū)

for t > 0 and x ∈ [0, l] if k ≤ −λ1(l). Moreover, let M large enough such that ū(0, x) =Mφ1(x) ≥

ũ0(x) and v̄(0, x) =Mφ2(x) ≥ ṽ0(x) for x ∈ [0, l]. Hence (ū, v̄) is an upper solution of (3.13).

Algebraic stability. Remember λ1(l) = 0 in this case, and let φ = (φ1, φ2) be the corresponding

positive eigenfunction. Fix M > 0 such that ū(0, x) = Mφ1(x) ≥ ũ0(x) and v̄(0, x) = Mφ2(x) ≥

ṽ0(x). Let ū = M(t + 1)−kφ1 and v̄ = M(t + 1)−kφ2, where k > 0 is chosen later. As above, we

only need to show that (ū, v̄) is an upper solution of (3.13). For clarity, denote Mi = max[0,l] φi

and mi = min[0,l] φi with i = 1, 2.

For t > 0 and x ∈ [0, l], using the properties of H and the mean value theorem, we have

ūt − d1

∫ l

0
J1(x− y)ū(t, y)dy + d1j1(x)ū+ aū−H(v̄)

=
M

(t+ 1)k

(

−kφ1
t+ 1

+H ′(0)φ2 −
H(M(t+ 1)−kφ2)

M(t+ 1)−k

)

= −
M

(t+ 1)k

(

kφ1
t+ 1

+
Mφ22

2(t+ 1)k
H ′′(ξ)

)

(

here ξ ∈ (0,M(t+ 1)−kφ2)
)

≥ −
M

(t+ 1)k

(

kM1

t+ 1
+

Mm2
2

2(t+ 1)k
max

[0,MM2]
H ′′

)

= −
M

(t+ 1)2k

(

kM1

(t+ 1)1−k
+
Mm2

2

2
max

[0,MM2]
H ′′

)

≥ −
M

(t+ 1)2k

(

kM1 +
Mm2

2

2
max

[0,MM2]
H ′′

)

≥ 0

if 0 < k ≤ min

{

1, −
Mm2

2
2M1

max
[0,MM2]

H ′′

}

. Similarly, we can get that, for t > 0 and x ∈ [0, l],

v̄t ≥ d2

∫ l

0
J2(x− y)v̄(t, y)dy − d2j2(x)v̄ − bv̄ +G(ū)
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when 0 < k ≤ min

{

1, −
Mm2

1
2M2

max
[0,MM1]

G′′

}

. This completes the proof.

4 Dynamics of (1.10)

In this section, we investigate the dynamics of (1.10). We first show spreading-vanishing di-

chotomy holds, and then discuss the criteria governing spreading and vanishing.

4.1 Spreading-vanishing dichotomy and long time behaviors

The following theorem shows that similar to (1.9) (see [34, Theorem 1.1]), the dynamics of

(1.10) also conforms to a spreading-vanishing dichotomy. Besides we prove that when vanishing

happens, (0, 0) can be exponentially or algebraically asymptotically stable, depending on the sign

of a related principal eigenvalue.

Theorem 4.1 (Spreading-vanishing dichotomy). Let (u, v, h) be the unique solution of (1.10).

Then one of the following alternatives must happen.

(1) Spreading (necessarily R0 > 1): h∞ := limt→∞ h(t) = ∞, limt→∞ u(t, x) = U and limt→∞ v(t, x) =

V in Cloc([0,∞)), where (U, V ) is uniquely given by (1.3).

(2) Vanishing: h∞ < ∞, λ1(h∞) ≤ 0 and limt→∞ ‖u(t, ·) + v(t, ·)‖C([0,h(t)]) = 0, where λ1(h∞) is

the principal eigenvalue of (3.2). Moreover,

(1a) if λ1(h∞) < 0, then limt→∞ ekt‖u(t, ·) + v(t, ·)‖C([0,h(t)]) = 0 for any k ∈ (0,−λ1(h∞));

(1b) if λ1(h∞) = 0, there exists a small k0 > 0 such that limt→∞(1+t)k‖u(t, ·)+v(t, ·)‖C([0,h(t)]) =

0 for any k ∈ (0, k0).

Theorem 4.1 can be obtained by the following two lemmas.

Lemma 4.1. If h∞ <∞, then λ1(h∞) ≤ 0 and limt→∞ ‖u(t, x)+ v(t, x)‖C([0,h(t)]) = 0. Moreover,

(1) if λ1(h∞) < 0, then limt→∞ ekt‖u(t, x) + v(t, x)‖C([0,h(t)]) = 0 for all 0 < k < −λ1(h∞);

(2) if λ1(h∞) = 0, and H,G ∈ C2([0,∞)) and H ′′(z) < 0, G′′(z) < 0 for z ≥ 0, then there exists a

k0 ∈ (0, 1] such that limt→∞(t+ 1)k‖u(t, x) + v(t, x)‖C([0,h(t)]) = 0 for all 0 < k ≤ k0.

Proof. We first prove that if h∞ <∞, then λ1(h∞) ≤ 0. Assume on the contrary that λ1(h∞) > 0.

By the continuity of λ1(l) in l, there exist small ε > 0 and δ > 0 such that λ1(h∞ − ε) > 0 and

min{J1(x), J2(x)} ≥ δ for |x| ≤ 2ε due to the condition (J). Moreover, there is T > 0 such that

h(t) > h∞ − ε for t ≥ T . Hence the solution component (u, v) of (1.10) satisfies































ut ≥ d1

∫ h∞−ε

0
J1(x− y)u(y)dy − d1j1(x)u− au+H(v), t > T, x ∈ [0, h∞ − ε]

vt ≥ d2

∫ h∞−ε

0
J2(x− y)v(y)dy − d2j2(x)v − bv +G(u), t > T, x ∈ [0, h∞ − ε],

u(T, x) > 0, v(T, x) > 0, x ∈ [0, h∞ − ε].

Let (u, v) be the unique solution of (3.13) with l = h∞−ε, ũ0(x) = u(T, x) and ṽ0(x) = v(T, x). Note

that λ1(h∞−ε) > 0. Making use of Lemma 3.3 we have (u, v) → (u,v) in X as t→ ∞, where (u,v)

is the unique positive solution of (3.1) with l = h∞−ε. Furthermore, by comparison principle, u(t+
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T, x) ≥ u(t, x) and v(t+ T, x) ≥ v(t, x) for x ∈ [0, h∞ − ε]. Therefore, lim inft→∞(u(t, x), v(t, x)) ≥

(u,v) uniformly in [0, h∞ − ε]. There exist small σ > 0 and large T1 ≫ T such that u(t, x) ≥ σ

and v(t, x) ≥ σ for t ≥ T1 and [0, h∞ − ε]. In view of the equation of h(t), we have, for t > T1,

h′(t) ≥ σ

∫ h∞−ε

h∞− 3ε
2

∫ h∞+ ε
2

h∞

[

µ1J1(x− y) + µ2J2(x− y)
]

dydx ≥ (µ1 + µ2)δσ,

which clearly contradicts h∞ <∞. Thus λ1(h∞) ≤ 0.

Let (ū, v̄) be the solution of (3.5) with l = h∞, ũ0(x) = ‖u0‖C([0,h0]) and ṽ0(x) = ‖v0‖C([0,h0]).

Clearly, ū(t, x) ≥ u(t, x) and v̄ ≥ v(t, x) for t ≥ 0 and x ∈ [0, h(t)]. Note that λ1(h∞) ≤ 0. Then

the convergence results in this lemma follow from Lemma 3.3. The proof is ended.

The proof of the following result is standard, so the details are omitted.

Lemma 4.2. If h∞ = ∞ (necessarily R0 > 1, see Lemma 4.3), then (u(t, x), v(t, x)) → (U, V ) in

Cloc([0,∞)) as t→ ∞.

4.2 The criteria for spreading and vanishing

We shall give a rather complete description of criteria for spreading and vanishing. From this

result, one can learn some effect, brought by the cooperative behaviors of two agents u and v, on

spreading and vanishing. Define

R∗ = R∗(d1, d2) :=
H ′(0)G′(0)

(a+ d1
2 )(b+

d2
2 )
.

The main conclusion of this subsection is the following theorem.

Theorem 4.2 (Criteria for spreading and vanishing). Let R0 be given by (1.2), and (u, v, h) be the

unique solution of (1.10). Then the following results hold.

(1) If R0 ≤ 1, then vanishing happens.

(2) If R∗ ≥ 1, then spreading occurs.

(3) Assume R∗ < 1 < R0 and fix all parameters but except for h0 and µi for i = 1, 2. We can find

a unique ℓ∗ > 0 such that

(3a) if h0 ≥ ℓ∗, then spreading happens;

(3b) if h0 < ℓ∗, then the following statements hold:

(3b1) there exists µ > 0 such that vanishing happens when µ1 + µ2 ≤ µ; and there exists a

µ̄1 > 0 (µ̄2 > 0) which is independent of µ2 (µ1) such that spreading happens when

µ1 ≥ µ̄1 (µ2 ≥ µ̄2);

(3b2) if µ2 = f(µ1) where f ∈ C([0,∞)), is strictly increasing, f(0) = 0 and lim
s→∞

f(s) = ∞,

then there exists a unique µ∗1 > 0 such that spreading happens if and only if µ1 > µ∗1.

(4) Assume R∗ < 1 < R0 and fix all parameters but except for di and µi, i = 1, 2.

(4a) Let d2 = f(d1) with f having the properties as in (3b2), and d1 > 0 be the unique root

of R∗(d1, f(d1)) = 1 (R∗(d1, f(d1)) < 1 is equivalent to d1 > d1). Then there exists a

unique d∗1 > d1 such that spreading happens if d1 < d1 ≤ d∗1; while if d1 > d∗1, then whether

spreading or vanishing happens depends on the expanding rates µ1 and µ2 as in (3b1).
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(4b) (i) Fix d2 < Λ := 2(H ′(0)G′(0) − ab)/a and let D1 = D1(d2) > 0 be the unique root

of R∗(d1, d2) = 1 (R∗(d1, d2) < 1 is equivalent to d1 > D1). Then there exists a

unique d̂1 > D1 such that spreading happens if D1 < d1 ≤ d̂1, while if d1 > d̂1, then

whether spreading or vanishing happens depends on the expanding rates µ1 and µ2 as

in Lemmas 4.6 and 4.7;

(ii) Let ν(d2) be given by the following (4.2) and d2 ≥ Λ be the unique root of ν(d2) = 0.

If we fix d2 ∈ [Λ, d2), then there exists a unique d̃1 > 0 such that spreading happens

when d1 ≤ d̃1, while when d1 > d̃1, whether spreading or vanishing happens depends

on the expanding rates µ1 and µ2 as in (3b1);

(iii) If we fix d2 > d2, then for all d1 > 0, whether spreading or vanishing happens depends

on the expanding rates µ1 and µ2 as in (3b1).

The proof of Theorem 4.2 will be divided into several lemmas. We start with considering the

case R0 = H ′(0)G′(0)/(ab) ≤ 1.

Lemma 4.3. If R0 ≤ 1, then vanishing happens. Particularly,

h∞ ≤ h0 +
1

min {d1/µ1, H ′(0)d2/(bµ2)}

∫ h0

0

(

u0(x) +
H ′(0)

b
v0(x)

)

dx. (4.1)

Proof. Firstly, in view of ji(x) =
∫∞
0 J1(x− y)dy, it can be deduced that

∫ h(t)

0

∫ h(t)

0
J1(x− y)u(t, y)dydx−

∫ h(t)

0
j1(x)u(t, x)dx = −

∫ h(t)

0

∫ ∞

h(t)
J1(x− y)u(t, x)dxdy,

∫ h(t)

0

∫ h(t)

0
J2(x− y)v(t, y)dydx−

∫ h(t)

0
j2(x)v(t, x)dx = −

∫ h(t)

0

∫ ∞

h(t)
J2(x− y)v(t, x)dxdy.

Then, by a series of simple computations, we have

d

dt

∫ h(t)

0

(

u+
H ′(0)

b
v

)

dx = −

∫ h(t)

0

∫ ∞

h(t)

(

d1J1(x− y)u+
H ′(0)d2

b
J2(x− y)v

)

dydx

+

∫ h(t)

0

(

H(v) − au−H ′(0)v +
H ′(0)

b
G(u)

)

dx

< −min
{

d1/µ1, H
′(0)d2/(bµ2)

}

h′(t).

Hence we derive

d

dt

∫ h(t)

0

(

u+
H ′(0)

b
v

)

dx < −min
{

d1/µ1, H
′(0)d2/(bµ2)

}

h′(t).

Integrating the above inequality from 0 to t yields (4.1).

The following involves the case R0 > 1. All arguments used below tightly depend on the fact

that if vanishing happens, then λ1(h∞) ≤ 0 as in Lemma 4.1. Here we mention that, at our present

situation, a11 = −a, a22 = −b, a12 = H ′(0) and a21 = G′(0). Thus

γA =
−(a+ b) +

√

(a+ b)2 + 4
[

H ′(0)G′(0)− ab
]

2
> 0,

γB =
−(a+ d1

2 + b+ d2
2 ) +

√

(a+ d1
2 + b+ d2

2 )
2 + 4

[

H ′(0)G′(0)− (a+ d1
2 )(b+

d2
2 )
]

2
.

It is clear that R∗(d1, d2) ≥ 1 if and only if γB ≥ 0.
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Lemma 4.4. If R∗ ≥ 1, then spreading occurs.

Proof. The condition R∗ ≥ 1 implies γB ≥ 0. Owing to Proposition 2.2(3), liml→0 λ1(l) = γB .

Therefore, λ1(l) > γB ≥ 0 for all l > 0. It then follows from Lemma 4.1 that spreading happens.

In what follows, we focus on the case R∗ < 1 < R0. We fix all the parameters in (1.10) but

except for h0 and µi with i = 1, 2, and discuss the effect of initial habitat [0, h0] on criteria of

spreading and vanishing. Making use of Proposition 2.2, we have liml→∞ λ1(l) = γA > 0, and

liml→0 λ1(l) = γB < 0. By the monotonicity of λ1(l), there exists a unique ℓ∗ > 0 such that

λ1(ℓ
∗) = 0 and λ1(l)(l− ℓ∗) > 0 for l 6= ℓ∗. As λ1(l) is strictly increasing in l > 0, as a consequence

of Lemma 4.1, we have the following result.

Lemma 4.5. Let ℓ∗ be defined as above. If h0 ≥ ℓ∗, then spreading happens.

The next result shows that if h0 < ℓ∗ and µ1 + µ2 small enough, then vanishing occurs.

Lemma 4.6. If h0 < ℓ∗, then there exists a µ > 0 such that vanishing happens if µ1 + µ2 ≤ µ.

Proof. Due to h0 < ℓ∗, we have λ1(h0) < 0. By the continuity of λ1(l) (Proposition 2.2), there exists

a small ε > 0 such that λ1(h0(1+ε)) < 0. For convenience, denote h1 = h0(1+ε). Let φ = (φ1, φ2)

be the positive eigenfunction of λ1(h0(1 + ε)) with ‖φ‖X = 1. Define h̄(t) = h0
[

1 + ε(1 − e−δt)
]

,

ū(t, x) = Me−δtφ1 and v̄ = Me−δtφ2 with 0 < δ ≤ −λ1(h1) and M large enough such that

Mφ1(x) ≥ u0(x) and Mφ2(x) ≥ v0(x) for x ∈ [0, h1]. Direct calculations yield that, for t > 0 and

x ∈ [0, h̄(t)],

ūt − d1

∫ h̄(t)

0
J1(x− y)ū(t, y)dy + d1j1(x)ū+ aū−H(v̄)

≥ Me−δt
(

−δφ1 − d1

∫ h1

0
J1(x− y)φ1(y)dy + d1j1(x)φ1 + aφ1 −

H(v̄)

Me−δt

)

= Me−δt
(

−δφ1 − λ1(h1)φ1 +H ′(0)φ2 −
H(Me−δtφ2)

Me−δt

)

≥ Me−δt (−δ − λ1(h1))φ1 ≥ 0.

Similarly, there holds:

v̄t − d2

∫ h̄

0
J2(x− y)v̄(t, y)dy + d2j2(x)v̄ + bv̄ −G(ū) ≥ 0.

Moreover, when µ1 + µ2 ≤
εδh0
Mh1

, we have

∫ h̄(t)

0

∫ ∞

h̄(t)

[

µ1J1(x− y)ū(t, x) + µ2J2(x− y)v̄(t, x)
]

dydx

= Me−δt
2
∑

i=1

µi

∫ h̄(t)

0

∫ ∞

h̄(t)
Ji(x− y)φi(x)dydx ≤ (µ1 + µ2)Mh1e

−δt ≤ εδh0e
−δt = h̄′(t).

By the comparison principle, h(t) ≤ h̄(t) for t ≥ 0, which implies limt→∞ h(t) <∞.

Lemma 4.7. If h0 < ℓ∗, then there exists a µ̄1 > 0 (µ̄2 > 0) which is independent of µ2 (µ1) such

that spreading happens when µ1 ≥ µ̄1 (µ2 ≥ µ̄2).
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Proof. We only prove the assertion about µ1 since the similar method can be adopt for the con-

clusion of µ2. Let (u, v, h) be the unique solution of (1.10) with µ2 = 0. Clearly, (u, v, h) is an

lower solution of (1.10) and Lemmas 4.1-4.6 hold for (u, v, h). Then we can argue as in the proof

of [30, Theorem 1.3] to deduce that there exists a µ1 > 0 such that if µ1 ≥ µ1, spreading happens

for (u, v, h) and also for the unique solution (u, v, h) of (1.10). The proof is finished.

By Lemmas 4.6 and 4.7, we have that vanishing occurs if µ1+µ2 ≤ µ, while spreading happens

if µ1+µ2 ≥ µ1+µ2 =: µ. One naturally wonders whether these is a unique critical value of µ1+µ2

such that spreading happens if and only if µ1 + µ2 is beyond this critical value. Indeed, such value

does not exist since the unique solution (u, v, h) of (1.10) is not monotone about µ1+µ2. However,

for some special (µ1, µ2) we can obtain a unique critical value as we wanted.

Lemma 4.8. Assume h0 < ℓ∗. If µ2 = f(µ1) where f ∈ C([0,∞)), is strictly increasing, f(0) = 0

and lim
s→∞

f(s) = ∞. Then there is a unique µ∗1 > 0 such that spreading occurs if and only if µ1 > µ∗1.

Proof. Firstly, it is easy to see from a comparison argument that the unique solution (u, v, h) is

strictly increasing in µ1. We have known that vanishing happens when µ1 + f(µ1) ≤ µ (Lemma

4.6), and spreading happens when µ1 + f(µ1) ≥ µ (Lemma 4.7). Due to the properties of f , there

exist unique µ
1
and µ1 > 0, such that µ

1
+ f(µ

1
) = µ and µ1 + f(µ1) = µ. Clearly, µ1 + f(µ1) ≤ µ

is equivalent to µ1 ≤ µ
1
, and µ1 + f(µ1) ≥ µ is equivalent to µ1 ≥ µ1. So, vanishing happens if

µ1 ≤ µ
1
, while spreading occurs if µ1 ≥ µ1. Then we can use the monotonicity of (u, v, h) on µ1 and

argue as in the proof of [12, Theorem 3.14] to finish the proof. The details are omitted here.

Next, to investigate the effect of di on spreading and vanishing, we fix all the parameters but

except for di and µi with i = 1, 2. Assume that d2 = f(d1) with f being given as in Lemma 4.8.

Then we try to obtain a critical value for d1 governing spreading and vanishing.

Clearly, R∗(d1, f(d1)) is strict decreasing in d1. There exists a unique d1 > 0 such that

R∗(d1, f(d1)) = 1, and [R∗(d1, f(d1))− 1](d1 − d1) < 0 for d 6= d1.

Lemma 4.9. Suppose that d2 = f(d1) and d1 > d1. Then there exists a unique d∗1 > d1 such

that spreading happens if d1 ≤ d∗1, while if d1 > d∗1, then whether spreading or vanishing happens

depends on the expanding rates µ1 and µ2 as in Lemmas 4.6 and 4.7.

Proof. For clarity, we rewrite γB defined by (2.5) as γB(d1), and the principal eigenvalues of (3.2)

and (3.3) as λ1(l, d1) and λ2(l, d1), respectively. Then λ2(h0, d1) is strictly decreasing in d1 > 0 by

Proposition 2.3(3).

Note that R∗(d1, f(d1)) ≥ 1 is equivalent to γB(d1) ≥ 0. Therefore, 0 = γB(d1) = lim
l→0

λ1(l, d1),

and then λ1(l, d1) > 0 for all l > 0 by the monotonicity of λ1(l). Thanks to (3.4), λ2(l, d1) > 0

for all l > 0. Certainly, λ2(h0, d1) > 0. Moreover, by Proposition 2.3(5), λ2(h0, d1) < 0 when

d1 is large. The monotonicity of λ2(h0, d1) indicates that there is a unique d∗1 > d1 such that

λ2(h0, d
∗
1) = 0 and λ2(h0, d1)(d1 − d∗1) < 0 when d1 > d1 and d1 6= d∗1. Recalling (3.4), it follows

that if d1 < d1 ≤ d∗1, then λ1(h0, d1) ≥ 0 and spreading happens by Lemma 4.1; if d1 > d∗1, then

λ1(h0, d1) < 0 and similar to the arguments in the proofs of Lemmas 4.6 and 4.7, we can get the

desired results. The proof is finished.
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Next we consider the case where one diffusion coefficient is fixed and the other one varies. Since

the situations are parallel, we only study the case where d2 is fixed and d1 is varying. Notice

that R∗(d1, d2) < 1 < R0. Define Λ = 2(H ′(0)G′(0) − ab)/a. If d2 < Λ, then R∗(0, d2) > 1. The

conditionR∗(d1, d2) < 1 is equivalent to d1 > D1, whereD1 > 0 is the unique root ofR∗(d1, d2) = 1.

This leads to the following conclusion. The proof is ignored since it is similar to that of Lemma

4.9.

Lemma 4.10. Fix d2 < Λ and let d1 > D1. Then there exists a unique d̂1 > D1 such that spreading

happens if d1 ≤ d̂1, while if d1 > d̂1, then whether spreading or vanishing happens depends on the

expanding rates µ1 and µ2 as in Lemmas 4.6 and 4.7.

Next we deal with the case d2 ≥ Λ. In view of Proposition 2.3, we have λ1(h0, d1) < 0 when d1

is large enough, and thus λ2(h0, d1) < 0. Using the continuity of λ1(h0, d1) in d1 ≥ 0 (Proposition

2.3(1)), we get λ1(h0, d1) → ν1(d2) as d1 → 0, where ν1(d2) is the principal eigenvalue of















− aφ1 +H ′(0)φ2 = νφ1, x ∈ [0, h0],

d2

∫ h0

0
J2(x− y)φ2(y)dy − d2j2(x)φ2 +G′(0)φ1 − bφ2 = νφ2, x ∈ [0, h0].

Let κ1 be the principal eigenvalue of

∫ h0

0
J2(x− y)ω(y)dy − j2(x)ω(x) = κω(x) for x ∈ [0, h0].

Then −1/2 < κ1 < 0 (cf. [20, Lemma 2.6]). The simple calculations yield

ν1(d2) =
−(a+ b− d2κ1) +

√

(a+ b− d2κ1)2 − 4
[

a(b− d2κ1)−H ′(0)G′(0)
]

2
. (4.2)

Clearly, ν1(d2) is strictly decreasing in d2 and ν1(Λ) > 0. Since ν1(d2) → −a as d2 → ∞, there

exists a unique d2 > Λ such that ν1(d2) = 0 and ν1(d2)(d2 − d2) < 0 for Λ < d2 6= d2.

Lemma 4.11. The following statements are valid.

(1) If we fix d2 ∈ [Λ, d2), then there exists a unique d̃1 > 0 such that spreading happens if d1 ≤ d̃1,

while whether spreading or vanishing happens depends on the expanding rates µ1 and µ2 as in

Lemmas 4.6 and 4.7 if d1 > d̃1.

(2) If we fix d2 ≥ d2, then for all d1 > 0, whether spreading or vanishing happens depends on the

expanding rates µ1 and µ2 as in Lemmas 4.6 and 4.7.

Proof. (1) Since d2 ∈ [Λ, d2), we have ν1(d2) > 0. Recalling that λ1(h0, d1) and λ2(h0, d1) have the

same sign. From the above discussion we see that λ2(h0, d1) > 0 if d1 ≪ 1, while λ2(h0, d1) < 0

if d1 ≫ 1. By the monotonicity of λ2(h0, d1) on d1, then there exists a unique d̃1 > 0 such that

λ2(h0, d1) = 0 if d1 = d̃1 and λ2(h0, d1)(d1 − d̃1) < 0 if d1 6= d̃1. Similar to the proof of Lemma 4.9,

the first assertion is proved.

(2) If d2 ≥ d2, then ν1(d2) ≤ 0. We claim that λ1(h0, d1) < 0 for all d1 > 0. Other-

wise, then λ1(h0, d1) ≥ 0 for some d1 > 0, and so λ2(h0, d1) ≥ 0. By the monotonicity of

λ2(h0, d1) in d1, λ2(h0, d1) > 0 when d1 ≪ 1, which leads to λ1(h0, d1) > 0 when d1 ≪ 1.
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Thus, ν1(d2) = lim
d1→0

λ1(h0, d1) ≥ 0. Recall ν1(d2) ≤ 0. So limd1→0 λ1(h0, d1) = 0, which im-

plies limd1→0 λ2(h0, d1) = 0. However, as λ2(h0, d1) > 0 for 0 < d1 ≪ 1, it follows from the

monotonicity that limd1→0 λ2(h0, d1) > 0. This is a contradiction.

Therefore, λ1(h0, d1) < 0 for all d1 > 0. Then by arguing as in the proof of Lemma 4.9, we can

complete the proof whose details are ignored. Therefore the proof is finished.

Theorem 4.2(1) and (2) are exactly Lemmas 4.3-4.4, respectively; Theorem 4.2(3a) is exactly

Lemma 4.5; Theorem 4.2(3b) follows from Lemmas 4.6-4.8; Theorem 4.2(4) follows from Lemmas

4.9-4.11.

5 Spreading speed

In this section, we investigate the spreading speed of (1.10), and thus always assume that

spreading occurs for (1.10) which implies R0 > 1. It will be seen that accelerated spreading

(infinite spreading speed) can occur if J1 and J2 violate the following condition:

(J1)
∫∞
0 xJi(x)dx <∞ for i = 1, 2.

However, the rate of accelerated spreading, a hot topic in spreading phenomenon modelled by

nonlocal diffusion equation, is not discussed here and left to future work. We note that for (1.7),

by virtue of some subtle upper and lower solutions, Du and Ni [16, 17, 18] obtained some sharp

estimates on the rate of accelerated spreading for a class of algebraic decay kernels.

Before stating the conclusion of this section, we first consider the following semi-wave problem


















































d1

∫ 0

−∞
J1(x− y)p(y)dy − d1p+ cp′ − ap+H(q) = 0, x ∈ (−∞, 0),

d2

∫ 0

−∞
J2(x− y)q(y)dy − d2q + cq′ − bq +G(p) = 0, x ∈ (−∞, 0),

p(−∞) = U, q(−∞) = V, p(0) = q(0) = 0,

c =

∫ 0

−∞

∫ ∞

0

[

µ1J1(x− y)p(x) + µ2J2(x− y)q(x)
]

dydx.

(5.1)

Proposition 5.1. ([15, Theorem 1.2]) Problem (5.1) has a unique solution triplet (c̃, p̃, q̃) with

c̃ > 0 and p̃, q̃ strictly decreasing in (−∞, 0] if and only if (J1) holds.

The following is our main conclusion of this section.

Theorem 5.1 (Spreading speed). Let (u, v, h) be the unique solution of (1.10) and spreading

happen. Then the following statements are valid.

(1) If (J1) is satisfied, then

lim
t→∞

h(t)

t
= c̃, lim

t→∞
max
[0,ct]

(

|u(t, x) − U |+ |v(t, x) − V |
)

= 0 for any c ∈ [0, c̃),

and for any τ ∈ (0, 1),

lim
t→∞

min{x > 0 : u(t, x) = τU}

t
= lim

t→∞

min{x > 0 : v(t, x) = τV }

t
= c̃,

where (U, V ) is determined by (1.3) and c̃ is uniquely given by semi-wave problem (5.1).
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(2) If (J1) is violated, then

lim
t→∞

h(t)

t
= ∞, lim

t→∞
max
[0,ct]

(

|u(t, x)− U + |v(t, x) − V |
)

= 0 for any c ∈ [0,∞),

and for any τ ∈ (0, 1),

lim
t→∞

min{x > 0 : u(t, x) = τU}

t
= ∞, lim

t→∞

min{x > 0 : v(t, x) = τV }

t
= ∞.

We shall prove Theorem 5.1 by using solutions of problem (5.1) and its variations to build

suitable upper and lower solutions. The proof is divided into several lemmas.

Lemma 5.1. Suppose that (J1) holds. Let (u, v, h) be the unique solution of (1.10). Then

lim supt→∞
h(t)
t ≤ c̃, where c̃ is uniquely given by Proposition 5.1.

Proof. Define h̄(t) = (1 + ε)c̃t+ L, ū(t, x) = (1 + ε)p̃(x− h̄(t)), v̄(t, x) = (1 + ε)q̃(x− h̄(t)), where

0 < ε≪ 1 and L > 0 is a positive constant to be determined later. We now prove that there exist

suitable L and T such that (ū, v̄, h̄) satisfies


































































ūt ≥ d1

∫ h̄(t)

0
J1(x− y)ū(t, y)dy − d1j1(x)ū− aū+H(v̄), t > 0, x ∈ [0, h̄(t)),

v̄t ≥ d2

∫ h̄(t)

0
J2(x− y)v̄(t, y)dy − d2j2(x)v̄ − bv̄ +G(ū), t > 0, x ∈ [0, h̄(t)),

ū(t, h̄(t)) ≥ 0, v̄(t, h̄(t)) ≥ 0, t > 0,

h̄′(t) ≥

∫ h̄(t)

0

∫ ∞

h̄(t)

[

µ1J1(x− y)ū(t, x) + µ2J2(x− y)v̄(t, x)
]

dydx, t > 0,

h̄(0) ≥ h(T ), ū(0, x) ≥ u(T, x), v̄(0, x) ≥ v(T, x), x ∈ [0, h(T )].

(5.2)

Once this is done, by comparison principle, we derive that h̄(t) ≥ h(t + T ), ū(t, x) ≥ u(t + T, x)

and v̄(t, x) ≥ v(t+ T, x) for t ≥ 0 and x ∈ [0, h(t+ T )], which indicates lim supt→∞
h(t)
t ≤ (1 + ε)c̃.

By the arbitrariness of ε, the desired result holds. Thus, it suffices to verify (5.2).

Let us begin with proving the first two inequalities in (5.2). Notice that p̃(x), q̃(x) are strictly

decreasing in x < 0, and H(z)/z is decreasing and G(z)/z is strictly decreasing in z > 0. To save

space, in this part we set 1 + ε = γ and ρ = ρ(x, t) = x− h̄(t). Direct computations yield that, for

t > 0 and x ∈ [0, h̄(t)),

1

γ

(

ūt − d1

∫ h̄(t)

0
J1(x− y)ū(t, y)dy + d1j1(x)ū+ aū−H(v̄)

)

= −γc̃p̃′(ρ)− d1

∫ h̄(t)

0
J1(x− y)p̃(y − h̄(t))dy + d1j1(x)p̃(ρ) + ap̃(ρ)−

1

γ
H(γq̃(ρ))

≥ −c̃p̃′(ρ)− d1

∫ h̄(t)

0
J1(x− y)p̃(y − h̄(t))dy + d1j1(x)p̃(ρ) + ap̃(ρ)−

1

γ
H(γq̃(ρ))

= d1

∫ 0

−∞
J1(x− h̄(t)− y)p̃(y)dy − d1p̃(ρ)− ap̃(ρ) +H(q̃(ρ))

−d1

∫ h̄(t)

0
J1(x− y)p̃(y − h̄(t))dy + d1j1(x)p̃(ρ) + ap̃(ρ)−

1

γ
H(γq̃(ρ))
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= d1

(
∫ 0

−∞
J1(x− y)

[

p̃(y − h̄(t)) − p̃(ρ)
]

)

dy +H(q̃(ρ))−
1

γ
H(γq̃(ρ)) ≥ 0. (5.3)

Similarly, we can prove the second inequality of (5.2). From our definitions of ū and v̄, it is clear

that ū(t, h̄(t)) = v̄(t, h̄(t)) = 0 for t > 0. Then we check the fourth inequality in (5.2). Simple

calculations show
∫ h̄(t)

0

∫ ∞

h̄(t)

[

µ1J1(x− y)ū(t, x) + µ2J2(x− y)v̄(t, x)
]

dydx

≤ (1 + ε)

∫ 0

−∞

∫ ∞

0

[

µ1J1(x− y)p̃(x) + µ2J2(x− y)q̃(x)
]

dydx = (1 + ε)c̃ = h̄′(t).

It remains to show the inequalities in the last two lines of (5.2). Let (u(t), v(t)) be the unique

solution of the corresponding ODE of (1.10) with (u(0), v(0)) = (‖u0‖∞, ‖v0‖∞). Under the con-

dition (H1), we can show, by phase plane analysis, that limt→∞(u(t), v(t)) = (0, 0) if R0 < 1,

and limt→∞(u(t), v(t)) = (U, V ) if R0 > 1. Moreover, by a simple comparison argument, we know

that the solution component (u, v) satisfy that (u, v) ≤ (u, v). Consequently, lim supt→∞ u ≤ U

and lim supt→∞ v ≤ V uniformly in x ∈ [0,∞). For the given ε > 0, we can find T > 0 such that

u ≤ (1+ε/2)U and v ≤ (1+ε/2)V for t ≥ T and x ≥ 0. There exists L≫ h(T ), such that ū(0, x) =

(1+ ε)p̃(x−L) ≥ (1+ ε/2)U ≥ u(t+T, x) and v̄(0, x) = (1+ ε)q̃(x−L) ≥ (1+ ε/2)V ≥ v(t+T, x)

for t ≥ 0 and x ∈ [0, h(T )]. Inequalities in the last two lines of (5.2) are verified. Therefore, (5.2)

holds and the proof is complete.

Then we prove the lower limit of h(t) which will be handled by several lemmas. Due to R0 > 1,

there exists a σ0 > 0 such that H′(0)G′(0)
(a+σ)(b+σ) > 1 for all σ ∈ (0, σ0). Then obviously, the system

(a+ σ)u = H(v), (b+ σ)v = G(u)

has a unique positive root (Uσ , Vσ) with U > Uσ and V > Vσ. By Proposition 5.1, the corresponding

semi-wave problem


















































d1

∫ 0

−∞
J1(x− y)p(y)dy − d1p+ cp′ − (a+ σ)p +H(q) = 0, x ∈ (−∞, 0),

d2

∫ 0

−∞
J2(x− y)q(y)dy − d2q + cq′ − (b+ σ)q +G(p) = 0, x ∈ (−∞, 0),

p(−∞) = Uσ, q(−∞) = Vσ, p(0) = q(0) = 0,

c =

∫ 0

−∞

∫ ∞

0

[

µ1J1(x− y)p(x) + µ2J2(x− y)q(x)
]

dydx

(5.4)

has a unique solution triplet (c̃σ , p̃σ, q̃σ), where c̃σ > 0, and both p̃σ and q̃σ are strictly decreasing

in (−∞, 0] if and only if (J1) holds.

Lemma 5.2. Assume that (J1) holds. Then c̃σ → c̃, (p̃σ, q̃σ) → (p̃, q̃) in [Cloc([0,∞))]2 as σ → 0.

Proof. Let {σn} ⊆ (0, σ0) with σn decreasing to 0, and denote (c̃σn , p̃σn , q̃σn) by (c̃n, p̃n, q̃n). Sim-

ilarly to [15, Lemma 2.8], we have (c̃n, p̃n, q̃n) ≤ (c̃n+1, p̃n+1, q̃n+1) ≤ (c̃, p̃, q̃). Thus we can define

(c̄, p̄, q̄) = lim
n→∞

(c̃n, p̃n, q̃n) with c̄ ∈ (0, c̃]. Obviously, p̄(x) and q̄(x) are decreasing in (−∞, 0]. For

any x < 0, integrating the first equality of (5.4) leads to

c̃np̃n(0)− c̃np̃n(x) =

∫ x

0

(

d1

∫ 0

−∞
J1(z − y)p̃n(y)dy − d1p̃n(z)− (a+ σn)p̃n(z) +H(q̃n(z))

)

dz.
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Letting n→ ∞ and using the dominated convergence theorem, we have

c̄p̄(0)− c̄p̄(x) =

∫ x

0

(

d1

∫ 0

−∞
J1(z − y)p̄(y)dy − d1p̄(z)− ap̄(z) +H(q̄(z))

)

dz.

Differentiating the above equality yields

−c̄p̄′(x) = d1

∫ 0

−∞
J1(x− y)p̄(y)dy − d1p̄(x)− ap̄(x) +H(q̄(x)).

Similarly, we have

d2

∫ 0

−∞
J2(x− y)q̄(y)dy − d2q̄(x) + c̄q̄′(x)− bq̄(x) +G(p̄(x)) = 0, x < 0.

Notice that p̃n ≤ p̄ ≤ p̃, q̃n ≤ q̄ ≤ q̃, and p̃n(−∞) = Kσn
1 → U = p̃(−∞), q̃n(−∞) = Kσn

2 → V =

q̃(−∞) as n→ ∞. We easily derive that p̄(−∞) = U , q̄(−∞) = V .

Moreover, by monotone convergence theorem, we have that as n→ ∞,

c̃n =

∫ 0

−∞

∫ ∞

0

[

µ1J1(x− y)p̃n(x) + µ2J2(x− y)q̃n(x)
]

dydx

→

∫ 0

−∞

∫ ∞

0

[

µ1J1(x− y)p̄(x) + µ2J2(x− y)q̄(x)
]

dydx = c̄.

Taking advantage of Proposition 5.1, we have c̄ = c̃, and p̄(x) = p̃(x), q̄(x) = q̃(x). Together with

Dini’s theorem, we have p̃n → p̃ and q̃n → q̃ in Cloc([0,∞)) which completes the proof.

For n ≥ 1, define

ξ(x) = 1, |x| ≤ 1; ξ(x) = 2− |x|, 1 < |x| ≤ 2; ξ(x) = 0, |x| > 2,

Jni (x) = Ji(x)ξ(
x
n ), j

n
i (x) =

∫ ∞

0
Jni (x− y)dy.

Then it is not hard to verify that Jni is supported compactly, increasing in n and Jni ≤ Ji for x ∈ R.

What’s more, Jni → Ji in L
1(R) and Cloc(R), and j

n
i → ji in L

∞(R) as n→ ∞. For any σ ∈ (0, σ0),

we can choose n large enough, say n ≥ N , such that di(j
n
i (x)− ji(x)) + σ ≥ 0 in R and

H ′(0)G′(0)
[

a+ σ + d1(1− ‖Jn1 ‖1)
][

b+ σ + d2(1− ‖Jn2 ‖1)
] > 1.

Consider the following semi-wave problem


















































d1

∫ 0

−∞
Jn1 (x− y)p(y)dy − d1p+ cp′ − (a+ σ)p +H(q) = 0, x ∈ (−∞, 0),

d2

∫ 0

−∞
Jn2 (x− y)q(y)dy − d2q + cq′ − (b+ σ)q +G(p) = 0, x ∈ (−∞, 0),

p(−∞) = Unσ , q(−∞) = V n
σ , p(0) = q(0) = 0,

c =

∫ 0

−∞

∫ ∞

0

[

µ1J
n
1 (x− y)p(x) + µ2J

n
2 (x− y)q(x)

]

dydx,

(5.5)

where σ ∈ (0, σ0), and (Unσ , V
n
σ ) is the unique positive root of

d1(‖J
n
1 ‖1 − 1)u− (a+ σ)u+H(v) = 0, d2(‖J

n
2 ‖1 − 1)v − (b+ σ)v +G(u) = 0.

Note that both Jn1 and Jn2 are supported compactly. In view of Proposition 5.1, problem (5.5) has

a unique solution triplet (c̃nσ , p̃
n
σ, q̃

n
σ).
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Lemma 5.3. If (J1) holds, then c̃nσ → c̃σ, p̃
n
σ → p̃σ and q̃nσ → q̃σ in Cloc((−∞, 0]) as n → ∞.

Moreover, if (J1) does not hold, then c̃nσ → ∞ as n→ ∞.

Proof. Recall that Jni is increasing in n ≥ 1, Jni ≤ Ji for x ∈ R, and Jni → Ji in L
1(R) and Cloc(R).

Then following the similar method as in the proof of Lemma 5.2, we can prove the first assertion

and thus the details are ignored here.

We now show the second assertion. Notice that (J1) is violated. Without loss of generality,

we assume that
∫∞
0 xJ1(x)dx = ∞. Obviously, p̃nσ is increasing in n and 0 ≤ p̃nσ ≤ Uσ in (−∞, 0].

Thus, we can define p̄σ = lim
n→∞

p̃nσ. Using p̃
n
σ ≥ p̃1σ for n ≥ 1, we have that, for any l > l0 > 0,

lim inf
n→∞

∫ 0

−∞

∫ ∞

0
Jn1 (x− y)p̃nσ(x)dydx ≥ lim inf

n→∞

∫ −l0

−l

∫ l

0
Jn1 (x− y)p̃1σ(x)dydx

=

∫ −l0

−l

∫ l

0
J1(x− y)p̃1σ(x)dydx

≥ p̃1σ(−l0)

∫ −l0

−l

∫ l−x

−x
J1(y)dydx

≥ p̃1σ(−l0)

∫ l

l0

∫ −l0

−y
J1(y)dxdy

= p̃1σ(−l0)

∫ l

l0

J1(y)(y − l0)dy

→ ∞ as l → ∞,

which, combined with

lim inf
n→∞

c̃nσ ≥ lim inf
n→∞

µ1

∫ 0

−∞

∫ ∞

0
Jn1 (x− y)p̃nσ(x)dydx,

yields c̃nσ → ∞ as n→ ∞. The proof is complete.

For n ≥ N , we consider the following auxiliary problem































































(unσ)t = d1

∫ hnσ(t)

0
Jn1 (x−y)u

n
σ(t, y)dy−d1j

n
1 u

n
σ−(a+σ)unσ+H(vnσ), t > 0, x ∈ [0, hnσ(t)),

(vnσ)t = d2

∫ hnσ(t)

0
Jn2 (x−y)v

n
σ (t, y)dy−d2j

n
2 v

n
σ−(b+σ)vnσ+G(u

n
σ), t > 0, x ∈ [0, hnσ(t)),

unσ(t, h
n
σ(t)) = 0, vnσ(t, h

n
σ(t)) = 0, t > 0,

(hnσ)
′(t) =

∫ hnσ(t)

0

∫ ∞

hnσ(t)

[

µ1J
n
1 (x− y)unσ(t, x) + µ2J

n
2 (x− y)vnσ (t, x)

]

dydx, t > 0,

hnσ(0) = h(T ), unσ(0, x) = u(T, x), vnσ (0, x) = v(T, x), x ∈ [0, h(T )].

(5.6)

Using the same arguments as in the proofs of Lemmas 4.1 and 4.5, we can show that there exists a

critical value ℓn,σ∗ > 0, depending only on Jni , H
′(0), G′(0) and parameters in the first two equalities

in (5.6), such that spreading happens if T large enough satisfying hnσ(0) = h(T ) ≥ ℓn,σ∗ .

Lemma 5.4. Let (unσ, v
n
σ , h

n
σ) be the unique solution of (5.6). Then we have

lim inf
t→∞

hnσ(t)

t
≥ c̃nσ, lim inf

t→∞
(unσ , v

n
σ) ≥ (Unσ , V

n
σ ) uniformly in x ∈ [0, ct], ∀c ∈ [0, c̃nσ).
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Proof. Define h(t) = (1− ε)c̃nσt+2L, u(t, x) = (1− ε)p̃nσ(x−h(t)) and v(t, x) = (1− ε)q̃nσ (x−h(t)),

where L > 0 is large enough such that Jni (x) = 0 for |x| ≥ L and ε > 0 is arbitrarily small. We

next show that there exists a T1 > 0 such that (u, v, h) satisfies















































































ut ≤ d1

∫ h(t)

0
Jn1 (x−y)u(t, y)dy−d1j

n
1 u−(a+ σ)u+H(v), t > 0, x ∈ [L, h(t)),

vt ≤ d2

∫ h(t)

0
Jn2 (x−y)v(t, y)dy−d2j

n
2 v−(b+ σ)v +G(u), t > 0, x ∈ [L, h(t)),

u(t, h(t)) = 0, v(t, h(t)) = 0, t > 0,

h′(t) ≤

∫ h(t)

0

∫ ∞

h(t)

[

µ1J
n
1 (x−y)u(t, x)+µ2J

n
2 (x−y)v(t, x)

]

dydx, t > 0,

u(t, x) ≤ unσ(t+ T1, x), v(t, x) ≤ vnσ(t+ T1, x), t > 0, x ∈ [0, L],

h(0) ≤ hnσ(T1), u(0, x) ≤ unσ(T1, x), v(0, x) ≤ vnσ (T1, x), x ∈ [0, hnσ(T1)].

(5.7)

Once it is done, by a comparison argument, we have hnσ(t+ T1) ≥ h(t) for t ≥ 0. The arbitrariness

of ε implies the first assertion.

For second assertion, we can choose ε sufficiently small such that (1 − ε)c̃nσ > c. Due to the

definitions of u and v, it is easy to see that u→ (1−ε)Unσ and v → (1−ε)V n
σ uniformly in x ∈ [0, ct]

as t→ ∞. So for any small ε > 0, we have lim inft→∞ unσ ≥ (1−ε)Unσ and lim inft→∞ vnσ ≥ (1−ε)V n
σ

uniformly in x ∈ [0, ct], which together with the arbitrariness of ε yields the second assertion.

It remains to prove (5.7). Since spreading happens for (unσ, v
n
σ , h

n
σ), we can choose a large T1

such that hnσ(T1) > 2L = h(0), u(t, x) ≤ (1 − ε)Unσ ≤ unσ(t + T1, x) and v(t, x) ≤ (1 − ε)V n
σ ≤

vnσ(t + T1, x) for t > 0 and x ∈ [0, 2L]. Noticing that u(0, x) = (1 − ε)p̃nσ(x − 2L) = 0 and

v(0, x) = (1− ε)q̃nσ (x− 2L) = 0 for x ≥ 2L. Inequalities in the last two lines of (5.7) hold true.

Recall Jni (x) = 0 for |x| ≥ L. Simple computations yield

∫ h(t)

0

∫ ∞

h(t)

[

µ1J
n
1 (x− y)u(t, x) + µ2J

n
2 (x− y)v(t, x)

]

dydx

= (1− ε)

∫ 0

−∞

∫ ∞

0

[

µ1J
n
1 (x− y)p̃nσ(x) + µ2J

n
2 (x− y)q̃nσ(x)

]

dydx

= (1− ε)c̃nσ = (h)′(t).

The inequality in forth line of (5.7) is verified.

For t > 0 and L ≤ x < h(t), since jn1 (x) ≤ 1 and H(z)/z is decreasing in z > 0, similar to the

derivation of (5.3), it can be obtained that

ut ≤ d1

∫ h(t)

−∞
Jn1 (x− y)u(t, y)dy − d1u− (a+ σ)u+ (1− ε)H(q̃nσ (x− h))

≤ d1

∫ h(t)

0
Jn1 (x− y)u(t, y)dy − d1j

n
1 (x)u− (a+ σ)u+H(v).

The first inequality of (5.7) is obtained. Analogously, we can argue as above to deduce the second

inequality in (5.7). Therefore, (5.7) holds and the proof is finished.

Lemma 5.5. The unique solution (unσ , v
n
σ , h

n
σ) of (5.6) is a lower solutions of (1.10).
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Proof. Recall that di(j
n
i (x) − ji(x)) + σ ≥ 0 in R and Jni ≤ Ji. We can see that, for t > 0 and

x ∈ [0, hnσ(t)),

(unσ)t = d1

∫ hnσ(t)

0
Jn1 (x− y)unσ(t, y)dy − d1j

n
1 (x)u

n
σ − (a+ σ)unσ +H(vnσ )

≤ d1

∫ hnσ(t)

0
J1(x−y)u

n
σ(t, y)dy−d1j1(x)u

n
σ+(d1j1(x)−d1j

n
1 (x)−σ)u

n
σ−au

n
σ+H(vnσ)

≤ d1

∫ hnσ(t)

0
J1(x− y)unσ(t, y)dy − d1j1(x)u

n
σ − aunσ +H(vnσ ).

Similarly, we have

(vnσ )t ≤ d2

∫ hnσ(t)

0
J2(x− y)vnσ (t, y)dy − d2j2(x)v

n
σ − bvnσ +G(unσ).

Moreover,

(hnσ)
′(t) =

∫ hnσ(t)

0

∫ ∞

hnσ(t)

[

µ1J
n
1 (x− y)unσ(t, x) + µ2J

n
2 (x− y)vnσ(t, x)

]

dydx

≤

∫ hnσ(t)

0

∫ ∞

hnσ(t)

[

µ1J1(x− y)unσ(t, x) + µ2J2(x− y)vnσ (t, x)
]

dydx.

By a comparison method, we completes the proof.

Lemma 5.6. Let (u, v, h) be the unique solution of (1.10). Then the following statements are valid.

(1) If (J1) holds, lim inf
t→∞

h(t)
t ≥ c̃ and lim inf

t→∞
(u, v) ≥ (U, V ) uniformly in x ∈ [0, ct] for c ∈ [0, c̃).

(2) If (J1) is violated, lim
t→∞

h(t)
t = ∞ and lim inf

t→∞
(u, v) ≥ (U, V ) uniformly in x ∈ [0, ct] for c ≥ 0.

Proof. (1) By Lemmas 5.4 and 5.5, we have lim inf
t→∞

h(t)
t ≥ c̃nσ . Together with Lemmas 5.2 and 5.3,

we further derive lim inf
t→∞

h(t)
t ≥ c̃. Again from Lemma 5.4 and 5.5, we have lim inft→∞(u, v) ≥

(Unσ , V
n
σ ) uniformly in x ∈ [0, ct] for all c ∈ [0, c̃nσ), which combined with the fact that (Unσ , V

n
σ )

is increasing to (Uσ , Vσ) as n → ∞, and (Uσ, Vσ) is decreasing to (U, V ) as σ → 0, yields that

lim inft→∞(u, v) ≥ (U, V ) uniformly in x ∈ [0, ct] for all c ∈ [0, c̃).

(2) Notice that (J1) does not hold. By Lemma 5.3, c̃nσ → ∞ as n → ∞. Thus this assertion

directly follows from the similar analysis as above. We complete the proof.

Theorem 5.1 follows from Lemmas 5.1 and 5.6, as well as the result (already proved in the proof

of Lemma 5.1) lim supt→∞ u ≤ U and lim supt→∞ v ≤ V uniformly in x ∈ [0,∞).

6 Appendix A

From the point of view of PDEs, the differential and boundary operators in problems (1.7)

and/or (1.8) are determined by diffusion coefficient d, kernel function J , and the moving coefficient

µ of the free boundary. The triplet (d, J, µ) can be seen as the “working operator” for solving

problems (1.7) and/or (1.8). In this appendix we shall show that (1.8) cannot be transformed into

(1.7) in the sense of “working operator”.

Let (u, h) be the unique solution of (1.8). Define ũ0(x) = u0(|x|) and ũ(t, x) = u(t, |x|). We

next prove that there is no d̃ > 0, µ̃ > 0 and J̃(x) satisfying (J) such that (ũ,−h, h) is the unique

solution of (1.7) with d, µ, J and u0(x) replaced by d̃, µ̃, J̃(x) and ũ0(|x|), respectively.
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Theorem 6.1. Fix d, µ > 0 and J(x). There do not exist d̃, µ̃ > 0 and J̃(x) satisfying condition

(J) such that, for all u0(x) satisfying (I) and h0 > 0, (ũ,−h, h) is the unique solution of (1.7)

with (d, µ, J) replaced by (d̃, µ̃, J̃), respectively.

Proof. Assume on the contrary that there exists such triplet (d̃, µ̃, J̃(x)) as desired. Simple com-

putations yield that for t > 0 and x ∈ [0, h(t)),

ũt = d̃

∫ h(t)

−h(t)
J̃(x− y)ũ(t, y)dy − d̃ũ(t, x) + f(ũ)

= d̃

∫ h(t)

0

[

J̃(x− y) + J̃(x+ y)
]

u(t, y)dy − d̃u+ f(u).

Since ũ(t, x) = u(t, x) for t > 0 and x ∈ [0, h(t)), we have ũt = ut in such regions. Thus, by the

differential equation of u,

d̃

∫ h(t)

0

[

J̃(x− y) + J̃(x+ y)
]

u(t, y)dy − d̃u = d

∫ h(t)

0
J(x− y)u(t, y)− dj(x)u.

By continuity and u(t, h(t)) = 0 for t ≥ 0,

d̃

∫ h(t)

0

[

J̃(h(t) − y) + J̃(h(t) + y)
]

u(t, y)dy = d

∫ h(t)

0
J(h(t) − y)u(t, y)dy.

Letting t → 0 and using continuity again, we obtain

d̃

∫ h0

0

[

J̃(h0 − y) + J̃(h0 + y)
]

u0(y)dy = d

∫ h0

0
J(h0 − y)u0(y)dy (6.1)

holds for all h0 > 0 and u0(x) satisfying (I). For h0 > 1, choose a class of u0(x) as follows

u0(x) = 1, 0 ≤ x ≤ h0 − 1/h0; u0(x) = h0(h0 − x), h0 − 1/h0 ≤ x ≤ h0.

Substituting such u0 into (6.1) and then direct calculating yield

d̃

∫ −1/h0

−h0

J̃(y)dy + d̃

∫ h0

h0−1/h0

[

J̃(h0 − y) + J̃(h0 + y)
]

h0(h0 − y)dy

= d

∫ −1/h0

−h0

J(y)dy + d

∫ h0

h0−1/h0

J(h0 − y)h0(h0 − y)dy.

Letting h0 → ∞ leads to d̃ = d. Thus (6.1) holds for removing d̃ and d.

Moreover, by the equation of free boundary, we have that for t > 0,

h′(t) = µ̃

∫ h(t)

−h(t)

∫ ∞

h(t)
J̃(x− y)ũ(t, x)dydx

= µ̃

∫ h(t)

0

∫ ∞

h(t)

[

J̃(x− y) + J̃(x+ y)
]

u(t, x)dydx

= µ

∫ h(t)

0

∫ ∞

h(t)
J(x− y)u(t, x)dydx.

By continuity, we deduce

µ̃

∫ h0

0

∫ ∞

h0

[

J̃(x− y) + J̃(x+ y)
]

u0(x)dydx = µ

∫ h0

0

∫ ∞

h0

J(x− y)u0(x)dydx
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is valid for all h0 > 0. This implies that there exists a x0 ∈ [0, h0] such that

µ̃

∫ ∞

h0

[

J̃(x0 − y) + J̃(x0 + y)
]

dy = µ

∫ ∞

h0

J(x0 − y)dy.

Then setting h0 → 0 gives 2µ̃ = µ. Therefore,

∫ h0

0

∫ ∞

h0

[

J̃(x− y) + J̃(x+ y)
]

u0(x)dydx = 2

∫ h0

0

∫ ∞

h0

J(x− y)u0(x)dydx

holds for all h0 > 0. Set

Φ(h0) =

∫ h0

0

∫ ∞

h0

[

J̃(x− y) + J̃(x+ y)
]

u0(x)dydx− 2

∫ h0

0

∫ ∞

h0

J(x− y)u0(x)dydx

for all h0 > 0. By Φ(h0) ≡ 0, we see Φ′(h0) ≡ 0 in h0 > 0. Note that u0(h0) = 0. It is easy to show

Φ′(h0) = −

∫ h0

0

[

J̃(x− h0) + J̃(x+ h0)− 2J(x− h0)
]

u0(x)dx ≡ 0, ∀ h0 > 0,

which, together with (6.1), yields

2

∫ h0

0
J(x− h0)u0(x)dx =

∫ h0

0
J(x− h0)u0(x)dx.

This is a contradiction since
∫ h0
0 J(x− h0)u0(x)dx > 0. The proof is complete.
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[13] C. Cortázar, F. Quirós and N. Wolanski, A nonlocal diffusion problem with a sharp free bound-

ary, Interfaces Free Bound., 21 (2019), 441-462.

[14] Y.H. Du, F. Li and M.L. Zhou, Semi-wave and spreading speed of the nonlocal Fisher-KPP

equation with free boundaries, J. Math. Pures Appl., 154 (2021), 30-66.

[15] Y.H. Du and W.J. Ni, Spreading speed for some cooperative systems with nonlocal diffusion

and free boundaries, part 1: Semi-wave and a threshold condition, J. Differential Equations,

308 (2022), 369-420.

[16] Y.H. Du and W.J. Ni, The high dimensional Fisher-KPP nonlocal diffusion equation with free

boundary and radial symmetry, Part 2, (2022), submitted, arXiv: 2102.05286v1.

[17] Y.H. Du and W.J. Ni, Rate of propagation for the Fisher-KPP equation with nonlocal diffusion

and free boundaries, J. Eur. Math. Soc., (2023), Doi:10.4171/JEMS/1392.

[18] Y.H. Du and W.J. Ni, Exact rate of accelerated propagation in the Fisher-KPP equation with

nonlocal diffusion and free boundaries, Math. Ann., (2023), https://doi.org/10.1007/s00208-

023-02706-7.

[19] W.Y. Zhang, Z.H. Liu and L. Zhou, Dynamics of a nonlocal diffusive logistic model with free

boundaries in time periodic environment, Discrete Contin. Dyn. Syst. B., 26 (2021), 3767-3784.

[20] L. Li, W.-T. Li and M.X. Wang, Dynamics for nonlocal diffusion problems with a free boundary,

J. Differential Equations, 330 (2022), 110-149.

[21] Y.H. Du, M.X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries,

Discrete Contin. Dyn. Syst., 42 (2022), 1127-1162.

[22] L. Li, X.P. Li and M.X. Wang, The monostable cooperative system with nonlocal diffusion and

free boundaries, Proc. Royal Soc. Edinburgh A, 154 (2024), 629-659.

[23] L. Li and M.X. Wang, Free boundary problems of a mutualist model with nonlocal diffusion, J.

Dyn. Diff. Equat., 36 (2024), 375-403.

[24] M. Zhao, Y. Zhang, W.-T. Li and Y.H. Du, The dynamics of a degenerate epidemic model

with nonlocal diffusion and free boundaries, J. Differential Equations, 269 (2020), 3347-3386.

[25] M. Zhao, W.-T. Li and Y.H. Du, The effect of nonlocal reaction in an epidemic model with

nonlocal diffusion and free boundaries, Comm. Pure Appl. Anal., 19 (2020), 4599-4620.

[26] Y.H. Du, W.-T. Li, W.J. Ni and M. Zhao, Finite or infinite spreading speed of an epi-

demic model with free boundary and double nonlocal effects, J. Dyn. Diff. Equat., (2022),

https://doi.org/10.1007/s10884-022-10170-1.

[27] R. Wang and Y.H. Du, Long-time dynamics of a nonlocal epidemic model with free boundaries:

spreading-vanishing dichotomy, J. Differential Equations, 327 (2022), 322-381.

[28] R. Wang and Y.H. Du, Long-time dynamics of a nonlocal epidemic model with free boundaries:

spreading speed, Discrete. Contin. Dyn. Syst., 43 (2023), 121-161.



37

[29] Y.H. Du, W.J. Ni and R. Wang, Rate of accelerated expansion of the epidemic region in a

nonlocal epidemic model with free boundaries, Nonlinearity, 36 (2023), 5621-5660.

[30] Y.H. Du and W.J. Ni, Analysis of a West Nile virus model with nonlocal diffusion and free

boundaries, Nonlinearity, 33 (2020), 4407-4448.

[31] L.Q. Pu, Z.G. Lin and Y. Lou, A West Nile virus nonlocal model with free boundaries and

seasonal succession, J. Math. Biol., 86 (2023), 25.

[32] G.Y. Yang, S.W. Yao and M.X. Wang, An SIR epidemic model with nonlocal diffusion, nonlocal

infection and free boundaries, J. Math. Anal. Appl., 518 (2023), 126731.

[33] Q.Y. Zhang and M.X. Wang, A nonlocal diffusion competition model with seasonal succession

and free boundaries, Commun. Nonlinear Sci. Numer. Simul., 122 (2023), 107263.

[34] T.-H. Nguyen and H.-H. Vo, Dynamics for a two-phase free boundaries system in an epidemi-

ological model with couple nonlocal dispersals, J. Differential Equations, 335 (2022), 398-463.

[35] Y.-H. Su, X.F. Wang and T. Zhang, Principal spectral theory and variational characterizations

for cooperative systems with nonlocal and coupled diffusion, J. Differential Equations, 369

(2023), 94-114.

[36] M.A. Lewis and G. Schmitz, Biological invasion of an organism with separate mobile and

stationary states: Modelling and analysis, Forma, 11 (1996), 1-25.

[37] F. Li, J. Coville and X.F. Wang, On eigenvalue problems arising from nonlocal diffusion models,

Discrete. Contin. Dyn. Syst., 37 (2017), 879-903.

[38] V. Hutson, S. Martinez, K. Mischaikow and G.T. Vickers, The evolution of dispersal, J. Math.

Biol., 47 (2003), 483-517.

[39] L. Zhang, Principal spectral theory and asymptotic behavior of the spectral bound for partially

degenerate nonlocal dispersal systems, preprint, (2023), arXiv: 2307.16221v2.


	Introduction
	An eigenvalue problem associated to (1.10)
	Positive equilibrium solutions associated to (1.10)
	Dynamics of (1.10)
	Spreading-vanishing dichotomy and long time behaviors
	The criteria for spreading and vanishing

	Spreading speed
	Appendix A

