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Abstract. An epidemic model, where the dispersal is approximated by nonlocal dif-
fusion operator and spatial domain has one fixed boundary and one free boundary, is
considered in this paper. Firstly, using some elementary analysis instead of variational
characterization, we show the existence and asymptotic behaviors of the principal eigen-
value of a cooperative system which can be used to characterize more epidemic models,
not just ours. Then we study the existence, uniqueness and stability of a related steady
state problem. Finally, we obtain a rather complete understanding for long time behav-
iors, spreading-vanishing dichotomy, criteria for spreading and vanishing, and spreading
speed. Particularly, we prove that the asymptotic spreading speed of solution compo-
nent (u,v) is equal to the spreading speed of free boundary which is finite if and only

if a threshold condition holds for kernel functions.
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1 Introduction

To model the spread of an oral-faecal transmitted epidemic, Hsu and Yang [I] proposed the
following PDE system

up = diAu—au+ H(v), t>0, z€R,

(1.1)
vy =doAv —bv+ G(u), t>0, zeR,

which is used to model the oral-faecal transmitted epidemic, where H(v) and G(u) satisfy

(H) H,G € C?([0,00)), H(0) = G(0) =0, H'(2),G"(2) > 0in [0,00), H"(2),G"(2) < 0 in (0, 00),
and G(H(2)/a) < bz for some Z > 0.

An example for such H and G is H(z) = az/(1+z) and G(z) = B1ln(z+1) with «, f > 0. In model
(T, u(t, z) and v(t, ) stand for the spatial concentrations of the bacteria and the infective human
population, respectively, at time ¢ and location x in the one dimensional habitat; —au represents

the natural death rate of the bacterial population and H (v) denotes the contribution of the infective
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human to the growth rate of the bacteria; —bv is the fatality rate of the infective human population

and G(u) is the infection rate of human population; dy and dg, respectively, stand for the diffusion

rate of bacteria and infective human. Define

H'(0)G'(0)
ab )

When Ry > 1, the authors proved that there exists a ¢, > 0 such that (I has a positive

monotone travelling wave solution if and only if ¢ > ¢,. Moreover, dynamics of the corresponding

Ro = (1.2)

ODE system with positive initial value is govern by Ry. More precisely, when Ry < 1, (0,0) is
globally asymptotically stable; while when Ry > 1, there exists a unique positive equilibrium (U, V)

which is uniquely given by
aU = H(V), bV =G(U), (1.3)

and is globally asymptotically stable.
If H(v) = cv, then system (L.I]) reduces to

up = diAu — au + cv, vy = doAv —bv+ G(u),t >0, z € R (1.4)

whose corresponding ODE system was proposed in [2] to describe the 1973 cholera epidemic spread
in the European Mediterranean regions. Here G satisfies that G € C?([0,00)), G(0) = 0 < G’(u)
in [0,00), G(u)/u is strictly decreasing in (0,00) and ulgglo G(u)/u < ab/c. From (H) and the
assumption on G of (L4), it can be learned that both (LIJ) and (.4]) are monostable cooperative
systems, which have been extensively used to describe the spread of epidemic, such as cholera,
typhoid fever and West Nile virus, etc. When modeling epidemic, an important issue is to know
where the spreading frontier of epidemic is located, which naturally motivates us to discuss the
systems, such as (ILT]) and (L4]), on the domain whose boundary is unknown and varies over time,
instead of the fixed boundary domain or the whole space.

As a pioneering work where free boundary condition is incorporated into the model arising from

ecology, Du and Lin [3] proposed the following problem

(1w, = dAu + u(a — bu), t>0, z e (g(t), ht)),
u(t,g(t)) = u(t,h(t)) =0, t>0,

g () = —pua(t,g(t), h(t)=—pus(t,h(t)), t>0,

( —9(0) = h(0) = ho > 0, u(0,z) = do(z), x € [~ho, hol,

(1.5)

where () is assumed to satisfy g(x) € C?([~ho, o)), to(E£ho) = 0 < dg(x) in (—hg, ho). The
free boundary condition ¢'(t) = —pu,(t,g(t)) and h'(t) = —pu,(t, h(t)) is usually referred to as the
Stefan boundary condition. Du and Lin found that the dynamics of (I3 is govern by a spreading-
vanishing dichotomy, a new spreading phenomena resulting from reaction-diffusion model. Besides,
when spreading happens, the speed was also obtained by analyzing a semi-wave problem.

As we can see, the dispersal in the above models is approximated by random diffusion Auw.
Recently, it has been increasingly recognized that nonlocal diffusion is better to describe the spatial
dispersal, since such diffusion operator can capture local as well as long-distance dispersal. A

commonly used nonlocal diffusion operator takes the form of

d [ o= yult. )y = du, (1.6)



where J is the kernel function and d is the diffusion coefficient. A biological interpretation of (L.6l)
and its properties can be seen from, for example, [4, [5 6] [7]. Using operator (L) or its variation
to model the spreading phenomenon from ecology and epidemiology has attracted much attention,
and many related works have emerged over past decades. An important difference, compared to the
classical reaction-diffusion equations, is that spreading speed may be infinite, known as accelerated
spreading, if J violates a so-called “thin tailed” condition. For example, please see [8] [9, [10] 1T].

Replacing random diffusion Aw in (L) with nonlocal diffusion operator (I.6l), Cao et al [12]
and Cortézar et al [13] independently considered the following problem

h(t)
w = d/ J@ — yyult,y)dy — du+ f(u), ¢ >0, @ € (g(t), hD)),
g(t)
u(t,z) =0, t>0, z ¢ (g(t), h(t))
h(t) poo
t) = u/(t) / J(z — y)u(t, z)dydz, t >0, (1.7)
h(t
u(t,x)dydx, t >0,
u/(t )dy >

h(0) = —g(0) = hg > 0, w(0,2) =ug(z), |z| < ho,

where kernel J satisfies
(J) Je C(R)NL>®(R), J(z) >0, J(0) >0, J is even, [, J(x)dx =1,

and ug € C([—ho, hol, uo(£ho) = 0 < ug(z) in (—hg, ho). The nonlinear term f is of the Fisher-
KPP type in [12] and f = 0 in [13]. The authors in [12] showed that similar to (3], the dynamics
of (L) is also govern by a spreading-vanishing dichotomy. However, when spreading occurs, it was
proved in [I4] that the spreading speed of (IL7) is finite if and only if [ zJ(x)dz < oo, which is
much different from (L5]) since the spreading speed of (L) is always finite. In addition, there are
other developments on research of (7)) along different directions. Please see a series of works of
Du and Ni [I5] [16] [I7, [I§] for spreading speed in homogeneous environment and [19] for the case
in periodic environment. Particularly, the following variant of (L) was proposed by Li et al [20]

w = d/ ult,y)dy — di(e)u+ (), £>0, 0 <z <hit)
u(t, h(t)) t >0,
h(t (1.8)
= / / (x — y)u(t, z)dydz, t>0,
kh( ) = ho, u(0,z)=ug(z), 0 <z < hy,
where J and f satisfy the same conditions with (7)), and j(z fo y)dy; uo meets with

(I) ug € C([O, ho], uO(ho) =0< U(](l‘) in [0, ho)

This model is derived from the assumption that the species will never jump to the area (—oo,0)

which is similar to the usual homogeneous Neumann boundary condition imposed at x = 0.



It is well known that if further 4g(x) is even, then problem (LH]) can reduce to the model [3],
(1.1)] where spatial domain has one free boundary and one fixed boundary. Hence it is natural to
think whether (7)) and (L8] are equivalent in some sense. We shall show that (L&) cannot be
transformed into (7)) in the appendix (cf. Theorem [6.1]).

Nonlocal diffusion systems composed of (7)) have been widely utilized to model the propagation
of epidemic or species in epidemiology or ecology over past decades. Please refer to, for example,
[21] 22], 23] for the competition, prey-predator and mutualist models, [24], 25 26| 27, 28] 29] for
related problems of (IL4]), [30L [3I] for West Nile virus, [32] for SIR model, and [33] for competition

model with seasonal succession. Very recently, Nguyen and Vo [34] studied the following problem

h(?)
up = dl/ Ji(x —y)u(t,y)dy — diu —au+ H(v), t >0, z € (g9(t),h(t)),
9(t)

o)
v = d2/ Jo(z — y)o(t,y)dy — dyv — bo + G(u), > 0, o € (g(t), h(t)),
q(t)

u(t, g(t)) = v(t, h(t)) =0, t >0,
B () (1.9)
gt)=— o /_ (i (x = y)u(t, ) + ppJa(z — y)o(t, )| dydz, t >0,

g

h(t)

RO = [ [ [whe - gulte) + wphe - gl o)]dyda, e
g(t) Jh(t)

—g(0) = h(0) = ho > 0, u(0,2) = up(z), v(0,2) =vo(z), |z| < ho,

where H and G satisfy the condition (H). The authors obtained the well-posedeness, spreading-
vanishing dichotomy as well as criteria for spreading and vanishing. Especially, for the self-adjoint
case, they proved the existence and variational characteristic of a principal eigenvalue by Lax-
Milgram’s theorem, and further got its asymptotic behaviors by using variational characteristic.

Inspired by the above works, in this paper we shall investigate the following problem

h(t)
up = dy / Ji(z —y)u(t,y)dy — diji(x)u —au+ H(v), t >0, z € [0,h(t)),

0

h(t)
vy = d2/ Jo(x — y)u(t,y)dy — dojo(z)v — bv + G(u), t >0, z € 0,h(t)),

0
ult, A1) = v(t, h(t)) = 0, t>0, (1.10)

h(t) poo
W(t) = /0 /h(t) [ Ji (@ = y)ult, z) + poda(x — y)o(t, )| dydz, ¢ >0,

Lh(0) = ho > 0, u(0,2) = ug(z), v(0,2) =vo(x), x € ]0,hg,

where all parameters are positive, J; satisfies the condition (J), and ji(x) = [J° Ji(x — y)dy for
i = 1,2. Condition (I) holds for uy and vy. In this paper we assume that H and G satisfy the
following condition (H1), which is weaker than (H),

(H1) H,G € C'Y([0,00)), H(0) = G(0) = 0, H'(2),G"(z) > 0 in [0,00), H(z)/z is decreasing in

z >0, and G(z)/z is strictly decreasing in z > 0, and G(H(2)/a) < bz for some Z > 0.

This condition allows H(v) = cv, but condition (H) does not include this case. Moreover, under
the condition (H1), positive equilibrium (U, V) also exists uniquely if Ry > 1. Throughout this
paper, we always assume that (H1), (J) and (I) hold.



By using similar methods as in [30, B4] we can prove that the problem (LI0]) has a unique global
solution (u,v,h). Moreover, (u,v) € [C([0,00) x [0,h(t)]))]?, h € C([0,00)), 0 < u(t,z) < My,
0 < v(t,z) < My in [0,00) x [0,h(t)) with some My, My > 0, and A/(t) > 0 for all ¢ > 0. Thus
hoo = tllglo h(t) € (ho, o] is well defined. If ho, < o0, we call vanishing; otherwise we call spreading.

In order to know as much as possible about the dynamics of (ILI0]), in Section 2l we investigate
the eigenvalue problem L[p] = A\p where operator L is defined by (21I). The existence of principal
eigenvalue is obtained by using the arguments in [35]. When operator L is self-adjoint, we also
get the related variational characteristic which is only used to show the monotonicity of principal
eigenvalue on diffusion coefficient. More importantly, a rather complete understanding for the
asymptotic behaviors about spatial domain and diffusion coefficients, which is crucial for studying
the criteria for spreading and vanishing of (LLI0]), is derived by a series of elementary analysis
without assuming that £ is self-adjoint.

With the help of principal eigenvalue, in Section B we first investigate the steady state problem
associated to (ILI0)), and then prove that the dynamics of evolutionary problem is determined com-
pletely by the sign of principal eigenvalue. Especially, when the principal eigenvalue is non-positive,
it will be proved that (0, 0) is exponentially (principal eigenvalue is negative) or algebraically (prin-
cipal eigenvalue is zero) stable.

In Section ] we establish the spreading-vanishing dichotomy, and give the long time behaviors of
solution component (u,v) and a rather complete description of criteria for spreading and vanishing
by using the conclusions obtained in Sections 2 and 3.

When spreading happens, spreading speed is considered in SectionBl We prove that the asymp-
totic spreading speed of solution component (u,v) is equal to the spreading speed of free boundary
which is finite if and only if a threshold condition holds for kernel functions.

Section 6 involves a discussion on the relations of (7)) and (L.S]).

Before ending the introduction, we emphasize the difference between (L) and (I0). Firstly,
there is only one free boundary in (LI0]) and no agents cross the fixed boundary = 0, which implies
that agents can only expand their habitat to right side, while ([L.9]) allows agents to expand to both
sides. Secondly, problem (L9]) is spatially homogeneous while problem ([I0) is spatially non-
homogeneous, and (LI0) cannot be transformed into (9] by Theorem [6.Il Thirdly, the eigenvalue
problem corresponding to problem (9] has constant coefficients, and its principal eigenvalue has
shift invariance, i.e., the principal eigenvalue defined on the interval (I1,l2) depends only on the

length I3 — I3 but not on the position of (I, l2); whereas problem (LI0) does not have such a good
property.

2 An eigenvalue problem associated to (LI0)

For later discussion about the dynamics of (LI0]), in this section, we first study an eigenvalue
problem of a cooperative system with nonlocal diffusion. In particular, without assuming that the
operator is self-adjoint, we obtain a rather complete understanding of asymptotic behaviors of the
principal eigenvalue which is expected to be useful in other cooperative nonlocal diffusion problems.

For any aq1,a99 € R, I > 0, aj2,a01 > 0, di,ds > 0 and dy + do > 0, we define the following



nonlocal operator

Where gb = (@1, ¢Q)T,

Pldl(z) = (dl Jo Ji(@ — y)él(y)dy) H(z) = (—dljl(g;) Yay ai )
& fé (@ = y)éa(y)dy) az1 —dajo(x) + azz)

Since we assume di + do > 0 and d; > 0 for ¢ = 1,2, our results below can be used to handle some

degenerate cooperative systems, such as [24], B6]. For clarity, we make some notations as follows.

2 !
E = [L2([0,0)P, (%) = /0 ¢i(@)i(x)de, |oll2 = V{9, 9), X = [C(0,])],
=1
Xt ={peX:¢1>0,¢2>0in[0,1]}, XTT ={p€ X :¢1 >0,¢2 >0in [0,]}.

Now we are in the position to study the eigenvalue problem L[¢p] = A¢. It is well known that A
is a principal eigenvalue if it is simple and its corresponding eigenfunction ¢ belongs to X ™. In
the following, we first give the existence and some properties for principal eigenvalue of ([2II) by
using the results in [35] whose proofs are inspired by the arguments in [37]. When L is self-adjoint,
we get a variational characteristic by following lines in the proofs of [34, Theorem 2.3] and [38,

Theorem 3.1], but our arguments are more concise than them.

Proposition 2.1. Let L be defined as above. Then the following statements are valid.

(1) X\ is an eigenvalue of operator L with a corresponding eigenfunction ¢, € X+T, where
Ay = inf{A € R: L[¢](z) < Ap(z) in [0,1] for some ¢ € X1}

(2) The algebraic multiplicity of A\, is equal to one. Namely, X\, is simple.
(3) If there exists an eigenpair (N, §) of L with ¢ € X+ \ {(0,0)}, then A =\, and ¢ is a positive

constant multiple of ¢,.

(4) Suppose a1 = ag1, which implies that L is self-adjoint. Then we have the variational charac-
teristic Ap = supjiy|,=1(L[¢), B)-

Proof. We will prove conclusions (1)-(3) by two cases, Case 1: djdy > 0, and Case 2: d; = 0 or
dy = 0. Clearly, Case 2 is referred to as the partially degenerate case.

Case 1: dijdy > 0. In this case, we note that conclusions (1)-(3) follow directly from [35]
Corollary 1.3 and Theorem 1.4]. In fact, it is easy to check that H(x) is strongly irreducible in [0, []

for any [ > 0. Hence it remains to show

1
max(q ) B(x) — B(z)

where f(x) is an eigenvalue of H(z) and the maximum of real parts of all eigenvalues of H(x).

¢ L'([0.1]), (2.2)

Notice that j/(x) = J;(x) for ¢ = 1,2. Simple computations yield

Blz) = —(dij1(z) — ar1 + doja(z) — aze) + \/(diji(z) — arr — dajo(2) + a2)? + 4aran
2 bl




B'(x) <0 and B'(0) <0,

which implies ([2.2]), and conclusions (1)-(3) are derived in this case.
Case 2: di = 0 or dy = 0. Without loss of generality, we suppose that d; = 0 < ds. By [20],

Lemma 2.6], the eigenvalue problem

[
do / Jo(z — y)w(y)dy — dajo(x)w + azw = (w
0

has a principal eigenvalue ¢ with a corresponding positive eigenfunction w € C([0,1]). Let

ar1 + ¢+ +/(a11 — €)% + 4ajzan
2 )

a1o9w

pr=w, ¢=(¢1,02)".

1 =

A= = —
P * ?
)‘p ail

It is easy to see that \; > a1 and L[p] = \i¢.

Then we show AJ = A,. From the definition of A, we know A, < A7, It thus remains to prove
Ap > A5, For any triplet (X, ¢1,2) with ¢ = (¢1,12) € X and L[y] < Mp. We shall prove
A > A which, combined with the definition of ), leads to our desired result.

Denote f(f f(x)g(z)dz by (f,g) for f,g € L?([0,]). Then we have

(Ap@1,91) — a12(ga, 1) = (P1,a1191) < (P1, M1 — arztha) = (A1, Y1) — arz(d, ¥a),

which leads to

(Ap = A)(d1,¥1) < ara(d2, Y1) — a12(d1,¥2). (2.3)

Moreover,

(Apd2 — a2101 — aznga, ¥o) = <¢2= ds /Ol Jo(z — y)a(y)dy — d2j2($)¢2>
< (P2, M2 — a1 — agia),
which yields
(Ap = A2, ¥2) < azn{d1,v2) — a1 (2, Y1)

Combining this with ([23]) gives

(¢1,91) N (¢2,¢2>> <0

a12 a21

o= (

which, together with the fact that ajo > 0, ag; > 0, (¢1,91) > 0 and (p2,12) > 0, arrives at A < A.

Therefore, A\, = A7, and A, is an eigenvalue of £ with corresponding eigenfunction ¢ € X T+, That

is, conclusion (1) is obtained. Then conclusions (2) and (3) can be deduced by [35, Theorem 1.4].
(4) Assume a1z = ag;. For convenience, we denote Ag = supy4|,=1(L[#]; ¢). Clearly, A is well

defined. It suffices to show that \g is an eigenvalue of £ with an eigenfunction in X\ {(0,0)}.
To this end, we first prove Ao > £(0). Let

2a12
o = .
d2/2+a22 —d1/2 — a1 + \/(d1/2+a11 —d2/2—a22)2 +4a%2




By [20, Lemma 2.6], there is a positive function ¢; € C([0,1]) with fé(l + a?)pidr = 1 such that

L rl [
/ / [di i (z—y)+aPdado(z—y)] 1 (y) 1 (z)dydz— / [d1j1(z) + o®daja(z)]pid
0J0 0
2 !
> _dl + o d2/ (p%dx
2 0

Let ¢ = (¢1,¢01)" be the testing function. Clearly, |2 = 1. Simple computations yield

Ao = ||5|1|12 1<£[w],w> > (L, »)

1 1 1
— / / [lel(x —y)+ a2d2J2(:E — y)] ©1(y)p1(z)dyde — / [dljl (x) + oz2d2j2(x)] gp%dx
0 Jo 0
! !
+(aaiz —a11) / gp%dxd:n + afag — aagg)/ go%dx
0 0

l
> /0 [20,1204 — d1/2 —ai] — (d2/2 + (122)@2] (P%dx = /8(0)

Thus Ao > 5(0).
By virtue of a1o = a2; and the definition of Ay, we see that (Ao — L[¢], 1) is bilinear, symmetric
and (Aop — L[g], ) > 0. So by Cauchy-Schwarz inequality, we have

[(ow — Llgl, )] < (Pow — LIe], ©)2 Aov — L], )7 < Aoy — LIl 9) 2 Aol — L2 [[4]|2,

which yields || Ao — L[¢]|l2 < (Ao — L[], <,O>%H)\0[ —L|| 2. Together with the definitions of A\ and

L, we derive that there exists a nonnegative sequence {¢"} with ||¢"]2 = 1 such that
Mog™ — L[¢"|ll2 = 0 as n — oo. (2.4)

For convenience, let T[] = (Al — H)[p]. By Arzela-Ascoli Theorem, P is compact and maps
E to X. Thus there exists a subsequence of {¢"}, still denoted by itself, such that P[p"] — @ for

some @ € X. Moreover, owing to A9 > 3(0), we have that 7 has a bounded and linear inverse 7 ~!.
Define 7 1[p] = 0. Clearly, 6 € X. So lim,,—y0c T [P[¢"]] = T '[¢] = 0 in X. Notice that

T HP"] — ¢ =T '[Ple"] — TIe™] = TILL"] — Xog"]-

Thanks to (2.4)), lim,_,~ ¢"™ = € in E, which combined with the fact that ¢™ is nonnegative and
0 € X, leads to § € X*. Therefore, T ![P[0]] = 6, namely, L[f] = \of. Noticing [|0]|2 = 1, we
see that Ao is an eigenvalue of £ with an eigenfunction § € X+ \ {(0,0)}. Then by conclusion (3),
Ap = Ag. The proof is complete. O

Then we investigate the dependence of A, on interval [0,] and diffusion coefficients d; and da,

4o [0ar 012 B= —di/2 + an a2 .
a1 a2 any —da/2 + a

respectively. Let



Direct computations show there exist 4,7 € R, 84 > 0 and 6p > 0 satisfying

a1l + ag + \/(an + a22)? + 4lar12a21 — airass]

2 9
ai1 — 9 +ap— 2+ \/(au — L+ ag — )2+ 4[arzan — (a1 — G )(aze — 2)]
a a
Oa=—"—, = —— L (yal = A)(04,1)" =0, (381 - B)(65,1)" =0.
YA —a11 ar
B + 5 o

The following lemma will be often used in our later arguments.

Lemma 2.1. Let A\, be the principal eigenvalue of [Z.1I). Then the following statements are valid.

(1) If there exist ¢ = (¢p1,¢2)7 € X with ¢1,¢2 >,%Z 0 and X € R such that L[p] < Ao, then
Ap < A, Moreover, X\, = X\ only if L[¢] = Ao.

(2) If there exist ¢ = (¢1,02)7 € XT\ {(0,0)} and X\ € R such that L[p] > \¢, then N, > .
Moreover, A\, = X\ only if L[¢] = \¢.
Proof. By arguing as in the proof of [30, Lemma 2.2] with some obvious modifications, we can

prove this result. So the details are ignored. O

It is worthy mentioning that in Lemma 2](2), we only need ¢ = (¢1,¢2) € X\ {(0,0)} which
implies that one of ¢1 and ¢5 is allowed to be identical to zero. This will be used later.

Now we are in the position to show the dependence of A, on interval [0, ], and thus rewrite A, as
Ap(1) to stress the relationship of A, about [0,1]. We note that unlike those arguments in the proofs
of [I2 Proposition 3.4] and [34, Proposition 2.7], the methods we use here are elementary analysis
without resorting to variational characteristic. So we don’t assume a12 = a9 in the following result.
Proposition 2.2. Let A\,(l) be the principal eigenvalue of [2.1I). Then the following results hold.
(1) Ap(1) is continuous and strictly increasing with respect to [ > 0.

(2) limy_yoo Ap(l) = v, where v4 is given by (2.5]).

(3) limy_o Ap(l) = vB, where yp is given by (Z5]).

Proof. (1) This conclusion can be obtained by adopting a similar approach as in [30, Proposition
2.3], and thus the details are omitted here.

(2) Recall that v4 and 64 are given by (ZH). Define ¢ = (64,1)". We claim that L[@] < y4@
for all [ > 0 which, combined with Lemma [2.7], yields

Ap(l) <ya forall I >0. (2.6)
Now we prove L[p] < ya@ for all [ > 0. Simple calculations lead to

!
dy / Ji(x —y)0ady — dij1(x)0a + a1104 + a12 < a1104 + a1z = y404,
0

!
do / Jo(x — y)dy — dajo(z) + a2104 + a2 < a21604 + aze = 4.
0

Thus our claim holds and (Z.6]) is obtained.
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Define ¢ = (fl(az),fz(az))T with ¢, (z) = 04&(z), p,(z) = {(z) and {(z) = min {1, 2(l — 2)/I}.
We shall show that for any small € > 0 there exists I. > 0 such that when [ > 4[. there holds:

Llp] > (ya — max{dy,da}e)p for z € [0,1], (2.7)

which, by Lemma 2.1] arrives at A,(l) > v4 — ¢ for [ > 4l.. Then by the arbitrariness of ¢, we have
liminf;_, o0 Ap(l) > va.
Next we prove (27). We first consider the case x € [0,1/4]. Direct calculations yield that

I
dq / Ji(x —y)p, (y)dy — diji(2)p, + anp, + a2,
0

v

12
d19A/ Ji(z —y)dy — diji(x)0a + a1104 + a1z
0

= —difa // Ji(x — y)dy + a1104 + a1z
1/2
> —di0ae + anba+ a1z = (ya — dig)fa > (ya — die)p,,

provided that [ is large enough such that flc/)i J1(y)dy < e. Similarly,

!
do / Jo(z = y)p,(y)dy — daja(z)p, + a21p, + asep, > (va — dag)p,.
0

Then we consider the case x € [I/4,1]. In view of [16, Lemma 7.3] with lo = [ and l; = /2, for
any small € > 0 there exists a [, > 0 such that for all [ > 41,

l
/0 Ji(w — ey > (1 — e)éw) fori=1,2, z € [I/4,1].

Using this estimate, we have

dq /Ol Ji(z —y)e,(v)dy — diji(z)p, +ang, +aep, > di(l —e)p, —dip, +anp, + anxp,
= (—die +an)p, +a2p,
= (ya — die)gp,.
Similarly, l
da /0 J2(x = y)o, (y)dy — daja ()@, + azip, + aznp, > (va — d2e)p,.

Hence (27) holds and liminf; o, Ap(1) > 4. Then due to (2.6]), the conclusion (2) is obtained.

(3) Recall that v and 6 are determined in (ZF). Let ¢ = (65,1)”. We claim that L[¢)] > v
for all I > 0. In fact, it is easy to verify that f(f Ji(z —y)dy — ji(x) > —%. This, combined with
23, allows us to derive

!
. d
dy / Ji(x —y)dylp — dij1(x)0p — anbp + aiz > —7193 + a110p + a2 = voO3B.
0

Similarly,
l
dz/ Jo(x — y)dy — daja(x) + a210p + a2 > V5.
0
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Therefore, our claim is valid. It then follows from Lemma 2] that A,(l) > yp for all [ > 0.
Define p(1) = max {% —d; [~ Ji(y)dy}. Clearly, p(l) — 0 as [ — 0. It is not hard to show

I
di / Ji(z —y)dybp — diji(x)0 + a110p + a2
0

—d d e
= 7193 +a110p + a2 + <?1 —d / Jl(l/)dy> 0 < (v +p(1))0p.
!

Analogously,
!
do / Jo(x — y)dy — daja(x) + a210p + a2 < v + p(1).
0

Using Lemma [2T] again, we have A,(l) < vp + p(1), which implies limsup;_,o Ap(!) < vp. Together
with A,(l) > ~p for all [ > 0, we finish the proof of conclusion (3). The proof is complete. O

Then we investigate the dependence of A, on diffusion coefficients di and dz. So we rewrite A,
as a binary function A,(dy, dz) which, by Proposition 2], is well defined on [0, c0) % [0, 00) \ {(0,0)}.
Proposition 2.3. Let \,(di,dz2) be given as above. Then the following statements are valid.

(1) Ap(dy,dz) is continuous with respect to (di,dz) € [0,00) x [0,00) \ {(0,0)}.

(2) Ap(di,d2) — va as (dy,d2) — (0,0), where v is given by (2.3]).

(3) If a12 = as1, then A\,(dy,dy) is strictly decreasing in each variable di > 0 and dy > 0.

(4) Fiz d;i > 0. Then A\p(di,d2) — ¢ as dj — oo where i,j = 1,2, i # j and (; is the principal

etgenvalue of
l
di/ Ji(z — y)w(y)dy — diji(z)w + ajiw = (w, = € [0,1].
0

(5) Ap(dy,d2) = —o0 as (dy,d2) — (00, 00).
Proof. (1) For any given (dy,ds) and (dy,ds) € [0,00) x [0,00) \ {(0,0)}. Denote by (¢1,$2)" the

positive eigenfunction of A,(di,dz), and set K = max r;?;([[g’;]] zl Direct computations yield
=1, ) z

!
dy /0 Ji(z — y)o1(y)dy — diji(2)d1 + a11¢1 + a12¢2
I
= Ap(dy, da)p1 + (dy — dy) /0 Ji(x —y)d1(y)dy — (di — dr)ji(x)d1
< \p(dy,d2) g1 + 2|dy — di| K 1.

Similarly,

do /Ol Jo(z — y)d2(y)dy — daja(z) P2 + a21d1 + azeda < Np(di, da)do + 2|da — da| K do.
Thus, it follows from Lemma 2.1] that
Ap(dy,d2) < Np(dy,ds) + 2K (|dy — dy| + |da — da), (2.8)
Similar to the above, we have

Ap(czl,dg) > )\p(dl,dg) — 2K(‘CZ1 — d1’ + ’CZQ — dg’),
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which, together with (2.8]), derives
IAp(da, d2) = Np(da, d2)| < 2K (|dy — du| + |dz — dal).
The continuity follows.
(2) Let ¢ = (04,1)" as in the proof of Proposition Direct computations show
l
dy / Ji(x = y)0ady — dij1(2)0a + a1104 + a1z > —di10a + a110a + a1z = (ya — d1)0a,
0
l
d2/ Jo(x — y)dy — dajo(x) + a210a + aze > —dy + 2104 + az2 = y4 — da.
0

Recalling Lemma 2], we have \y(di,d2) > va — (di + dz2), so liminf g, 4,)-(0,0) \p(d1,d2) > 7a.
Moreover, owing to ([2.6]), limsup(q, 4,)-(0,0) Ap(d1,d2) < va. Conclusion (2) is proved.

(3) Note that a12 = ag; in this statement. So by Proposition 2] the variational characteristic
holds. We only show the monotonicity of A,(di,d2) about d; since the other case is similar. We fix
ds and choose any 0 < d; < dy. Denote by ¢ = (¢1, (bg)T the corresponding positive eigenfunction
of Ap(di,dy) with ||¢[|2 = 1. Firstly, using [20, Lemma 2.6], we have

L rl l
/ / Ji(x — y)o1(y) o1 (x)dydx — / jip3de <0 for all I > 0.
0o Jo 0

It then follows that

Lol l l

Ap(di,d2) = dy (/0 /0 Ji(z —y)o1(y)é1 (x)dyda — /0 ]1¢%dx> 1 /O(CLll(Zﬁ% © anodid)da
1ol l l

+d2/0 /0 Ja( = y)d2(y)¢2(2)dydz — d2/0 Jogadz + /0(a21¢1¢2 + axnd3)dz
Lol l l

< </0 /0 Ji(z = y)or(y)or(@)dydz — /0 j1¢%d117> + /O(a11¢% + a12¢1¢2)dx

Il z z
+d2/0 /0 Jo(x = y)P2(y) P2 (x)dyda — d2/o Jagsdz + /O(a21¢1¢2 + apod)da
< )‘p(d_l,dQ).

The monotonicity is obtained.

(4) We only prove A,(dy,d2) — (1 as di — oo for the fix dy > 0, since the other case is parallel.
Our arguments are inspired by [39]. Firstly, it follows from (2.06]) that A,(di,d2) < va. Let w be
the corresponding positive eigenfunction of ¢; and ¢ = (0,w)T. Tt is easy to see that Llpo] > G,
which implies A,(d1,d2) > (1. Consequently,

G < Ap(di,dg) <ya for all dy,dy > 0. (2.9)

In order to show \,(d1,d2) — (1 as di — o0, it is sufficient to prove that for any sequence {d7}
with d — co as n — oo, there is a subsequence, still denoted by itself, such that A,(d},d2) — (1
as n — oo. For convenience, denote Ay(df,dz) by A since we fix dy > 0. Let ¢" = (¢, ¢5)” be
the positive eigenfunction of A} with [[¢"[|x = 1. Using this fact and ([2.9) we deduce that there
exists a subsequence of {n}, still denoted by itself, such that (¢, ¢%) converges weakly to (11, 12)
with ¢; € L*([0,1]), and X = Aoe > (1 as n — co. Due to ¢" € Xt we have ¢; > 0 for i = 1,2.
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Now we show that ¥; = 0. Obviously,
!
d’f/ Ji(x —y)¢t (y)dy — diji(z)B} + angf + azdy = Ay, for z € [0,1].
0
Dividing the above equation by d} and letting n — oo one has
l
/ Ji(z — )T (y)dy — ji(x)¢] — 0 uniformly in [0, ]. (2.10)
0

Since ¢} converges weakly to )1 and operator fol Ji(x—y)ot (y)dy : L([0,1]) — C([0,1]) is compact,

it follows that, as n — oo,

l [
/0 i — y)d(y)dy — /0 i@ — y)r(y)dy uniformly in [0, ]

This, combined with (ZI0)), yields that, as n — oo,

!
- ﬁ/o Ji(z — y)Y1(y)dy uniformly in [0,1].

By the uniqueness of weak limit,

l
(@) = = [ D= i)y

If there exists some x € [0,!] such that 1 (xg) > 0, then it is not hard to show that ¢ (z) > 0 in
[0,1], which implies that (0,1)7) is the principal eigenpair of the eigenvalue problem

[
/0 T(@ — Pwy)dy — ji (@)w(z) = &w. (2.11)

However, on the basis of [20, Lemma 2.6], the principal eigenvalue £ of (ZI1I]) must be less than 0.
This contradiction implies ¢; = 0. Thus ¢} — 0 in C([0,1]) as n — oo.

Noticing that ||¢"||x = 1, we have ||¢%|| — 1 as n — oo. Since ¢% — 1 weakly in L2([0,1]) and
fé Jo(x — y)oi(y)dy : L*([0,1]) — C([0,1]) is compact, one has

[ l
/0 Jo(z — y)ék (y)dy — /0 Ja( — y)a(y)dy uniformly in [0,1]. (2.12)

Moreover, due to ¢} — 0 in C(]0,1]) as n — oo, one also has

1
do / Jo(x — y)p5 (y)dy — dajo ()@ + agedy — A\jds = —ag1¢y — 0 uniformly in [0, [].
0
Since
. n < 2
dajo () — a2 + Ay > 5 — a2t >0,
we have that, as n — oo,

!
& /0 Jolz — )65 (y)dy
doja(z) — agz + A2

— 0 uniformly in [0,].

@5 (2) —
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This, combines with (2.12]), yields that, as n — oo,

l
dy /O Jo(x — y)iba(y)dy
daja () — ag2 + Ao

¢y (x) = uniformly in [0, [].

Note that ¢4 converges weakly to 2. By the uniqueness of limit, we obtain

!
d2/0 Jo(x — y)o(y)dy — dajo(x)a + a2ths = A2, (2.13)

and ¢y — bz in C([0,1]). Recall that [[¢3 [ c(jo,) — 1 as n — 00. So [|12|c (o) = 1. Together with
([213)), we easily derive that 12 > 0 in [0,[], which implies Aoo = (1. Thus conclusion (4) is proved.
(5) It can be seen from [20, Lemma 2.6] that, for i = 1,2, the following eigenvalue problem

l
/0 Ji(@ = )y — jilw)w(@) = o), = €0,1]

has a principal eigenpair (\;,w;) with w; positive and satisfying ||lw;l|c(0,;) = 1. Moreover, A; €
(—=1/2,0). Define

a a
a2 I
111[07 1 %} II]II][O7 1 w2

d=min{d;,ds}, X = min{\;, A2}, w= (w1,w2)T, k= |a1| + |ax| + -
Simple computations yield

l
dq / Ji(x — y)wi(y)dy — diji(x)wr + anwi + araws
0

a12

< <d1)\1 + lay | + ————
mln[o,l] W1

> w1 < (dl)\l + k)wl.
Similarly,
!
d2/ Jo(z — y)wa(y)dy — daja(x)wa + agiwi + azws < (dads + k)ws.
0

Therefore, Lw] < (d\ + k)w. By Lemma 211 \,(d;,d2) < d\ + k. From the fact that A < 0 and k
is independent of (dy,d3), we obtain conclusion (5). The proof of Proposition 23] is complete. [

3 Positive equilibrium solutions associated to (LI0)

With the help of the results obtained in Section 2] in this section, we discuss the positive

equilibrium solutions associated to (LI0) which reads as

l
d / i — y)uly)dy — diji (@)u — au+ Hw) =0, @€ [0,1],
o (3.1)

da /0 Jo(r — y)v(y)dy — dajo(z)v — bv + G(u) =0, = €[0,l],

where all parameters are positive, and condition (H1) holds. In the remainder of this paper, let

A1(l) and Az(1) be the principal eigenvalue of the following two eigenvalue problems, respectively,

l
dq / Ji(z — y)o1(y)dy — diji(z)d1 — agy + H'(0)po = Ap1, = € [0,1],
0 (3.2)

I
d2/0 Jo(x — y)da(y)dy — dajo ()2 + G'(0)p1 — by = A2, = € [0,1].
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1
,1 <d1/ Ji(z —y)1(y)dy — diji(x)d1 — a¢1> +¢2 = A1, z€[0,1],
H'(0) 0 (3.3)
l .
% <d2/0 Jo(z — y)p2(y)dy — daja(x)d2 — b¢2> +¢1=Ap2, z€[0,].
It is easy to see that these two eigenvalue problems are not equivalent, and
M) < Xo(l) < M) it A\; >0
s {0, Gy = = o, oy " o
Ai(D) < Xo(l) < A(0) if Ay <0,

min{H’(0),G'(0)} —

which clearly implies that A1 (l) and A\o() have the same sign. For clarity, in this paper, we usually

~ max{H'(0),G'(0)}"

use A1(!) to study dynamics of (LI0)), and only utilize A2(!) when discussing the effect of diffusion
coefficients dy and ds since, by Proposition 23] the monotonicity of A9(l) holds.

Below is a maximum principle for (3.1I]) that will be used in the coming analysis.

Lemma 3.1. Let (u;,v;) € X1 fori=1,2 and satisfy

l
dl/ Ji(z —y)ui(y)dy — dij1(z)uy — auy + H(vy) <0, z € [0,(]
Ol (3.5)
d2/ Jo(z — y)vi(y)dy — dojo(z)vy — by + G(uy) <0, € [0,1],
0
and
I
di / Ji(z — y)ue(y)dy — dij1(z)ug — aug + H(vg) >0, x € [0,]]
01 (3.6)
ds / Jo( — y)vs(y)dy — daja(x)vs — bvs + Glus) > 0, € (0,1,
0

respectively. Then (u; —us, vy —v2) € XT. Moreover, if one of the above four inequalities is strict

at some point xg € [0,1], then (u; — ug, vy —vg) € X T,
Proof. Step 1: The proof of (uy — us, v, —v2) € XT. Since (u;,v;) € X+ for i = 1,2, then
k=inf{k > 1: (ku; — ug, kv —v2) € X}

is well defined and k > 1. Clearly, (ku; — ug, kv1 —v2) € X 1. If kK > 1, then there exists a point
x1 € [0,1] such that kuy(z1) = ua(z1) or kvy(z1) = vo(x1). We first prove that rui(z1) = us(xq)
is impossible. Assume on the contrary that kuq(z1) = ua(x1).

Case 1: kvi(x1) > va(z1). In view of the first inequalities of ([B.5) and ([B.6), we have

!
Kdy /0 Ji(r1 — y)ur(y)dy — diji(21)Eur(21) — asu (1) + £H (v1(21)) <0,

!
dl/o J1(r1 — y)ue(y)dy — diji(z1)kur(21) — asu (z1) + H(va(21)) > 0,

which, together with kuq(z) > uo(z) in [0,[], implies H(v2(x1)) > kH(v1(x1)). However, thanks
to the assumption on H, £ > 1 and kv (1) > va(x1), we easily obtain H(vo(x1)) < kH (v1(z1)).
This is a contradiction.
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Case 2: kvi(z1) = va(x1). Similar to the above, it can be derived that G(ua(z1)) > £G(u1(z1)).
Due to the assumption on G, £ > 1 and kuq(z1) = ua(z1), we also can derive a contradiction.

Similarly, kvq(z1) = vo(x1) is impossible. Hence, £ = 1 and thus (u; — us,v; —v2) € X 7.

Step 2: Proof of (u1 — w2, v, —v2) € XTT. We only handle the case where the first inequality
in (B3) is strict at xg € [0,(] since other cases can be done by the similar way. Argue indirectly
that (u; — u2,v1 —ve) ¢ XTT. Then there is a point x5 € [0,1] such that wi(z2) = ua(z2) or
v1(z2) = va(z2). Define

Y={xe€0,]]: ui(x) =us(x)}, M={xecl0,l: vi(x)=v2(x)}.

Then at least one of ¥ and II is nonempty. We first consider the case that X # ().

If o € X, ie., ui(zo) = ua(zp). As above, it can be deduced by the first inequalities of (3.5))
and [B.6]) that H(va(xg)) > H(vi(xp)), which clearly contradicts the monotonicity of H and the
fact vo(xg) < v1(xo).

If xg ¢ 3, then wi(z9) > wua(xg). Choose xo € X, ie., uj(z2) = uo(xz). Clearly, xo # xg.
We assume that zo > xp without loss of generality. Then there exists a point x3 € (z0, 2]
such that w;(x3) = wa(xg) and w1 > ug in [zg,x3). Thus, making use of the condition (J) and
the fact that u; > ug in [0,1], we have fé Ji(zs — y)us(y)dy < fé Ji(zs — y)uy(y)dy. However,
analogously, it can be derived by the first inequalities of (3.35]) and (B.6]) that fé Ji(x3—y)ue(y)dy >
fé Ji(x3 —y)ui(y)dy. This is a contradiction.

Now we consider the case X = (), i.e., u; > wg in [0,{]. Then IT # (. Choose =, € II,
ie., vi(zy) = vo(r4). Notice that G'(z) > 0 and uq(z4) > wua(z4). It then follows from the
second equalities of (B.5) and (B.0) that f(f Jo(zg —y)v1(y)dy < fé Jo(x4 —y)v2(y)dy, which clearly
contradicts v; > vy in [0,!]. The proof is ended. O

We now give the result concerning the bounded positive solution of (B3I). Note that our
arguments are different from those in proofs of 27, Lemmas 3.10 and 3.11], [30, Proposition 3.4]
and [34, Proposition 2.10]. Especially, the lack of shifting invariance property of ([B.I]) brings some
difficulties in the proof of the following assertion (u;,v;) — (U,V) as | — oc.

Lemma 3.2. Let M\i(l) be defined as above. Then the following statements are valid.

(1) If M (l) > 0, then problem @BI) has a unique bounded positive solution (u,v) € XTT and
(U —wu,V —v) e XTF. Denote (u,v) by (u;,v;). Then (uy,v;) is strictly increasing for large
[ >0 and (u;,v;) = (U, V) locally uniformly in [0,00) as | — oo.

(2) If A\i(1) <0, then (0,0) is the unique nonnegative solution of (B.1).

Proof. (1) In view of Proposition 2.2, we have that if A\1(l) > 0, then v4 > 0, where ~4 is defined

in (23] and the matrix A here is composed of a1 = —a, a12 = H'(0), az; = G'(0) and agg = —b.

It is easy to see that v4 > 0 if and only if Rg > 1.
Step 1: The existence. Define an operator I': X+ — XT by

1 l

o [T (&2 [ o= ontian+ Hon))
1 l

m <d2 /0 Jo(z — y)d2(y)dy + G(¢1)>
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Clearly, I is increasing in X ™. Simple computations show

1 ! 1 ‘
e <d1 /0 Ji(z — y)Udy + H(V)> < G @V + H(V)
1 |
= Gji() o D@+ al]
—U, zel0,] (3.7)
1 l
R <d2 /0 Jo(z — y)Vdy + G(U)> <V, zeo,l, (3.9)

which implies that I'[(U, V)] < (U, V). Moreover, [8.7) and (B.8]) are strict when x < [ and near [.
Let ¢ = (¢1,¢2) € XTT be the corresponding eigenfunction of A\i(l) with ||¢|x = 1. We claim
that if e is sufficiently small, then I'[e¢] > e¢. In fact, the direct calculation yields

1 I
diji(z) +a [dl /0 Ji(z —y)or(y)dy + H(¢2)] —edy
> m (M ()p1 + diji(x)p1 + agr + H(e) /e — H'(0)] — e¢n
S

> ACET (M ()¢ + H(e)/e — H'(0)] >0

provided that € is small enough. Similarly,

1

[
e [dg /0 (@ — y)eda(y)dy + Clen)| > e

with € small enough. Thus our claim holds.

Then by an iteration or upper-lower solution method, problem (BI]) has at least one solution
(u,v) satisfying (e¢1,e¢2) < (u,v) < (U, V) in [0,1].

Step 2: The continuity. It will be proved that (u,v) is continuous in [0,!] by using the implicit

function theorem and some basic analysis. Define
l l
Q@) =ds [ hio=pul)dy, Qula) = s [ (e =)o)y,

P(z,y,2) = (Qi(z) — diji(x)y — ay + H(z), Qa(x) — daja(z)z — bz + G(y)).

Clearly, P(x,y, z) is continuous in {(x,y,2) : 0 <x <l,y >0,z > 0}, and P(z,u(x),v(z)) = (0,0)
for all 0 < x < I. With regard to 0 < = < I, y > 0, z > 0 satisfying P(z,y,2) = (0,0), direct

computations yield
OP(x,y,z)  [—diji(z)—a H'(2)
Ay, 2) G'y)  —dyjo(z) —b) "
which is continuous for 0 < z < [, y,z > 0, and

1ot ?P @0 2) Qi) + HE)@2) £ C0) ooy > HOCW oo

Iy, z) Yz yz

Hence, by the implicit function theorem, we know that (u,v) is continuous in (0,1).
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In the following we prove that (u,w) is continuous at = = 0,1. We only deal with = 0. Recall
that (e¢1,e¢2) < (u,v) < (U,V) and ¢ € XTt. Let z, — 0 and (u(zy,),v(z,)) — (uo,vo) as
n — oco. Clearly, ug and vq are positive. Taking z = x,, in (B and then letting n — oo yield

I
dl/ J1(y)u(y)dy — d1j1(0)ug — aug + H(vg) =0, = € [0,1],
0

!
dz/o Jo(y)v(y)dy — daj2(0)vg — bvg + G(ug) =0, = € [0,1].

Then setting 2 = 0 in ([BII), we can argue as in the proof of Lemma 1] to derive that (ug,vo) =
(u(0),v(0)). Hence, (u,w) is continuous at x = 0.

Step 3 The uniqueness and (U —u,V —v) € X+T. These two results directly follow from
Lemma [3] since (B1) and ([B.8]) are strict when = < [ and near [. The details are ignored.

Step 4: The monotonicity of (uj,v;) in I and convergence of (u;,v;) as | — oo. For any large
l1 > 1y >0, let (u;,v;) be the bounded positive solutions of (B with [ = ;. Then we have

l2
dl/ Ji(z —y)ui(y)dy — dij1(z)ur — auy + H(vy) <0, x € [0,15]
0

l2
do JQ(QJ — y)vl(y)dy — dgjg(x)’vl —bv + G(ul) <0, =xe€ [0,12].
0
Thus, by Lemma Bl (w1,v1) > (u2,v2). That is, (u;,v;) is strictly increasing in [. Recalling
u; < U and v; <V, we have that the limits lim;_, . u;(x) = @(z) and lim;_, o, v;(x) = 9(x) exist
for all z > 0 with 0 < < U and 0 < © < V. The dominated convergence theorem leads to

[ R = al)dy - i) - e+ H@) =0, € 0.00),
o (3.9)
d2/0 To(z — )6(y)dy — dajo(x)d — b + G(@) =0, @ € [0,00).

Then, by the similar lines as in Step 2, we can show that (@, ) is continuous on [0, o).

It will be proved that (@,v) = (U,V). Obviously, it is sufficient to show infjg yu = U or
inf(p ) © = V since these two equalities are equivalent. To save space, we denote s = infjg o) @
and ;¢ = inf 0,00) V- We now prove wir = U. Assume on the contrary that w,r < U.

Case 1: u(xg) = Uipt for some zg > 0. Then

OSMAwh@m—)(kw 11 (20 )lzo) = aiilzo) — H(5(z0)) (3.10)

as w(y) > Uins = w(xo) for all y > 0. Therefore, H(v(xp)) < att(xo) < aU = H(V'). Since H(z) is
strict increasing in z > 0, it follows that ©(xg) < V. So, i < V.
If ©(z1) = Dins for some x; > 0. Similar to the above, we can get bv(x;) — G(@(x1)) > 0, which

implies @(x1) < U. To sum up, we have
at(zo) — H(v(zp)) = 0, bo(z1) — G(u(z1)) =20, u(zo) < w(z1) <U, v(x1) <v(xo) <V

It follows that G(H (v(z¢))/a) < bv(zg). This contradicts the fact that (U, V) is unique positive
root of (L3]). So v(x) > Viyr for all x > 0.
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Then there exists a sequence {z,,} with x,, /* 0o such that ©(x,) — Uiy as n — oo. By passing

a subsequence, still denoted by itself, we have @(x,) — uo as n — oo. Clearly,
ﬂ($0) = Uipf < ug < U, and Vi < ’INJ(JJ()) <V. (3.11)

As 9(y) > Vit for all y > 0, it is clear that

lirginf/ Jo(zn — y)0(y)dy > Ving lirginf/ Ja(y)dy = Oing, (3.12)
n—oo  Jo n—oo J_..

and ji(z,) — 1 as n — oo, i = 1,2. Together with the equation of ¥, we have bv,s > G(uy).
Together with (BI0) and (BII]), we have

at(zg) — H(0(xg)) >0, bo(zg) — G(u(zg)) >0, w(xg) <ug<U, v(xg) <V,

which also leads to G(H (v(zg))/a) < bv(zg). Analogously, we can get a contradiction.

Case 2: u(x) > s for all x > 0. If there exists xg > 0 such that ©(zg) = Dinf, by exchanging
the positions of @ and v, similar to the above (the third paragraph in Case 1) we can derive a
contradiction. Therefore, w(x) > Ui,r and ¥(z) > Vit for all z > 0. We can find x,, oo and
xl, /oo such that w(z,) — Gie and ©(z],) — Viyr as n — oo. Moreover, by selecting subsequences
if necessary, we may assume that @(x]) — ug and v(x,) — vo. Clearly, Gins < ug < U, Ojpr <
vo < V. Taking * = x, and x = ], in the first and second equations of (B9, respectively,
and then letting n — oo we can obtain that, similar to the above (cf. the derivation of (B12])),
ating > H(vg) > H(Oint) and b0y > G(ug) > G(tine). Note that @ine < U and 9ip¢ < V. Then a
similar contradiction can be obtained.

The above arguments show that @, = U. Therefore (&,v) = (U, V). Then by Dini’s theorem,
conclusion (1) is obtained.

(2) Since one can prove this assertion by following similar lines as in [30, Proposition 3.4] or

[34) Proposition 2.10], we omit the details. The proof is complete. O

At the end of this section, we show dynamics of the following problem with fixed boundary:

l
Up = dl/ Ji(z —y)u(y)dy — dyji(x)u —au+ H(v), t>0, x€]0,]]
0

l
Vg = dz/ Jo(x — y)v(y)dy — deja(z)v —bv + G(u), t>0, x€][0,l], (3.13)
0

(u(0,2) = 1o(z), v(0,2) = To(x),

where (ug,00) € X+ \ {(0,0)}. Especially, it will be shown that (0,0) can be exponentially or
algebraically stable.
Lemma 3.3. Let (u,v) be the unique solution of [BI3). Then the following statements are valid.

(1) If M (1) > 0, then (u(t,z),v(t,z)) — (u,v) in X ast — oo, where (u,v) is the unique positive
steady state of (B.1)).
(2) If M (1) <0, then (u(t,z),v(t,x)) — (0,0) in X ast — co. Moreover,

(2a) if M (1) <0, then (eFu(t, ), e v(t,z)) — (0,0) in X ast — oo for all k € (0, =1 (1));
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(2b) if M (1) =0, and H,G € C*([0,0)) and H"(z) < 0, G"(2) <0 for z > 0, then there exists
a ko € (0,1) such that ((t + 1)*u(t,x), (t + D)kv(t,x)) — (0,0) in X as t — oo for all
k€ (0, ko).
Proof. The convergence results in X can be proved by using similar methods as in [30, Proposition
3.4]. Hence we only prove the exponential stability and algebraic stability, respectively, which are
obtained by constructing suitable upper solutions.

Exponential stability. Let ¢ = (¢1,¢2) be the corresponding positive eigenfunction of Ai(l).
Define 4 = Me "¢ (z) and © = Me ¥ ¢o(x) with positive constants M and k to be determined
later. We now show that, by choosing suitable M and k, (u, ) is an upper solution of ([B.I3]). Then
the desired result follows from a comparison argument.

Direct computations yield that, for ¢ > 0 and z € [0,1],

l
i — dy / T — y)alt, y)dy + duj (x)a + ai — H(®)
0

—kt
= Me ¥ <—k‘¢1 —M(W)dr + H'(0)¢s — %)
> Me ™™ (—k — M\ (1) ¢ >0

provided that 0 < k < —Xy(l). Analogously, we can show

l
o> dy / Jo(@ — y)5(t, y)dy — don(x)5 — b7 + G(B)
0

for t > 0 and = € [0,1] if & < —A;(I). Moreover, let M large enough such that @(0,z) = M¢y(x) >
to(z) and 0(0,z) = Mpo(x) > vo(x) for x € [0,]. Hence (u,v) is an upper solution of ([BI3]).

Algebraic stability. Remember \1(l) = 0 in this case, and let ¢ = (¢1, ¢2) be the corresponding
positive eigenfunction. Fix M > 0 such that 4(0,2) = M¢i(x) > to(z) and 9(0,z) = Mepa(z) >
To(x). Let @ = M(t+1)"%¢; and © = M(t + 1) ¢y, where k > 0 is chosen later. As above, we
only need to show that (u,?) is an upper solution of ([B.I3). For clarity, denote M; = maxq; ¢
and m; = miny ;) ¢; with 1 =1,2.

For ¢t > 0 and x € [0,!], using the properties of H and the mean value theorem, we have

!
- dy / Ty (@ = y)alt,y)dy + dujr (2)a + ati — H(v)
0

M (—ké H(M(t+1)"" )
_(t+1)k<t+1+H(0)¢2_ M(t 4 1)=F
M (ko M3 B
= NS <t+11 + 20+ i)kH"(£)> (here &€ (0,M(t+1)"%¢py))
M kM,  Mm? , M kM, Mm2 §
> H") = — I
= Ttk <t+ 1720t + 1) [0 by E+rDZE\E+D)F 2 [0 hia)
M Mm?
> ———— (kM 2 H") >0
= (t+ 1) < L ) =

if 0 < k < min {17 —]\247"? [onj\l/jaz\}/([ ]H”}. Similarly, we can get that, for ¢ > 0 and z € [0,1],
) 2

l
o > dy / o — y)o(t,y)dy — dajo(e) — bo + G(a)
0
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2
my

when 0 < k < min{l, —]\2/[M2

: H]\l?]\}} | G"}. This completes the proof. O
07 1

4 Dynamics of (LI0)

In this section, we investigate the dynamics of (LI0). We first show spreading-vanishing di-

chotomy holds, and then discuss the criteria governing spreading and vanishing.

4.1 Spreading-vanishing dichotomy and long time behaviors

The following theorem shows that similar to (L9) (see [34 Theorem 1.1]), the dynamics of
(LI0) also conforms to a spreading-vanishing dichotomy. Besides we prove that when vanishing
happens, (0,0) can be exponentially or algebraically asymptotically stable, depending on the sign

of a related principal eigenvalue.

Theorem 4.1 (Spreading-vanishing dichotomy). Let (u,v,h) be the unique solution of (LI0Q).

Then one of the following alternatives must happen.

(1) Spreading (necessarily Ro > 1): hoo := limy_yo0 h(t) = 00, limy_s oo u(t,z) = U and limy_, o v(t, x) =
V in Cioc([0,00)), where (U, V) is uniquely given by (L3]).

(2) Vanishing: hoo < 00, A1(hoo) < 0 and limg o [[u(t, ) + v(t,-)|lcqo,n@)) = 0, where A1(hoo) is
the principal eigenvalue of [B.2). Moreover,
(1(1) Zf /\1(]100) < 0, then hmt—mo ekt||u(t, ) + ’U(t, ')HC([O,h(t)}) =0 fOT any ke (0, _/\l(hoo));'

(1b) if A1 (hoo) = 0, there exists a small kg > 0 such that limy oo (1+)%[Ju(t, ) +o(t, )|l c(o.nw) =
0 for any k € (0, ko).

Theorem [4.]] can be obtained by the following two lemmas.

Lemma 4.1. If hoo < 00, then A1(hoo) < 0 and limy—o [[u(t, x) +v(t, )| c(o,n))) = 0- Moreover,
(1) if M(hoo) < 0, then limy_yo e [|u(t, z) + v(t, @) c(onwy)) = 0 for all 0 < k < =1 (hoo);

(2) if M(hoo) =0, and H,G € C?([0,00)) and H"(z) < 0, G"(z) < 0 for z > 0, then there exists a
ko € (0,1] such that limy_o(t + 1)F[u(t, ) + v(t, 2) |l c(on@y =0 for all 0 < k < ko.

Proof. We first prove that if ho, < 00, then Aj(hoo) < 0. Assume on the contrary that A\j(heo) > 0.

By the continuity of A1(l) in [, there exist small & > 0 and § > 0 such that \j(hs —¢) > 0 and

min{Jy(x), Jo(z)} > 0 for |z| < 2e¢ due to the condition (J). Moreover, there is 7 > 0 such that

h(t) > heo — € for t > T'. Hence the solution component (u,v) of (ILI0) satisfies

hoo—¢
up > dy / Ji(x —y)u(y)dy — diji(x)u —au+ H(v), t>T, x€0,ho —¢]
0

hoo—€
v > d2/ Jo(x — y)v(y)dy — dejo(z)v —bv+ G(u), t>T, z€[0,he — e,
0

w(T,z) >0, v(T,z) >0, x € [0, hee —£].

Let (u,v) be the unique solution of [BI3]) with | = hoo—e¢, tg(x) = u(T, ) and vp(x) = v(T, z). Note
that A1 (heo —e) > 0. Making use of Lemma 3.3 we have (u,v) — (u,v) in X as t — oo, where (u, v)

is the unique positive solution of ([B1]) with [ = ho, —e. Furthermore, by comparison principle, u(t+
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T,xz) > u(t,z) and v(t + T, z) > v(t,x) for x € [0, hoo — €]. Therefore, liminf; ,~ (u(t, z),v(t, x)) >
(u,v) uniformly in [0, hoo — €]. There exist small o > 0 and large T7 > T such that u(t,z) > o
and v(t,z) > o for t > T} and [0, ho — €]. In view of the equation of h(t), we have, for ¢t > T7,

hoo—¢ hoo—i-%
RO zo [ [ ke )+ mad(e - ]dude > (un + )i
00_7 oo

which clearly contradicts hoo < 0co. Thus Aj(hs) < 0.

Let (@,v) be the solution of ([B.5) with | = heo, Uo(x) = |luollc(jo,ne]) and To(x) = [[vollc((o,he))-
Clearly, u(t,z) > u(t,x) and v > v(t,x) for t > 0 and z € [0, h(t)]. Note that \j(heo) < 0. Then
the convergence results in this lemma follow from Lemma The proof is ended. O

The proof of the following result is standard, so the details are omitted.

Lemma 4.2. If hoo = 00 (necessarily Ro > 1, see Lemma [[-3), then (u(t,z),v(t,z)) — (U,V) in
Cloc([0,00)) as t — oo.

4.2 The criteria for spreading and vanishing

We shall give a rather complete description of criteria for spreading and vanishing. From this
result, one can learn some effect, brought by the cooperative behaviors of two agents v and v, on
spreading and vanishing. Define

H'(0)C/(0)
@+ 50+ %)

Ry = Ri(dy,do) :==

The main conclusion of this subsection is the following theorem.

Theorem 4.2 (Criteria for spreading and vanishing). Let Rq be given by ([L2), and (u,v,h) be the
unique solution of (LIQ). Then the following results hold.
(1) If Ry <1, then vanishing happens.
(2) If Ry > 1, then spreading occurs.
(3) Assume R, <1 < Rg and fix all parameters but except for hg and p; for i =1,2. We can find
a unique £* > 0 such that
(3a) if hg > ¢*, then spreading happens;
(3b) if hg < £*, then the following statements hold:

(3b1) there exists 1 > 0 such that vanishing happens when i1 + p2 < p; and there exists a
g1 > 0 (e > 0) which is independent of ug (1) such that spreading happens when
p1 > fir (p2 > fi2);

(3bg) if pe = f(u1) where f € C([0,00)), is strictly increasing, f(0) =0 and lim f(s) = oo,

S—00
then there exists a unique pj > 0 such that spreading happens if and only if p1 > py.
(4) Assume Ry <1 < Ry and fix all parameters but except for d; and p;, i = 1,2.

(4a) Let dy = f(d1) with f having the properties as in (3ba), and d; > 0 be the unique root
of Ru(dy, f(d1)) =1 (Ru(dy, f(d1)) < 1 is equivalent to di > dy). Then there exists a
unique di > d; such that spreading happens if d; < di < dj; while if dy > di, then whether

spreading or vanishing happens depends on the expanding rates 1 and p2 as in (3by).
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(4b) (i) Fiz do < A := 2(H'(0)G'(0) — ab)/a and let Dy = Dy(dz) > 0 be the unique root
of Ri(d1,d2) =1 (Ri(di,d2) < 1 is equivalent to dy > Dp). Then there exists a
unique dy > Dy such that spreading happens if D1 < di < ch, while if dqp > Jl, then
whether spreading or vanishing happens depends on the expanding rates py and o as
in Lemmoas [{.0 and [{.7;

(ii) Let v(da) be given by the following (£2) and dy > A be the unique root of v(dz) = 0.
If we fix dy € [A,d,), then there exists a unique dy > 0 such that spreading happens
when dp < dl, while when d > d~1, whether spreading or vanishing happens depends
on the expanding rates py and po as in (3by);

(iii) If we fix dy > do, then for all dy > 0, whether spreading or vanishing happens depends
on the expanding rates py and po as in (3by).

The proof of Theorem will be divided into several lemmas. We start with considering the
case Ro = H'(0)G'(0)/(ab) < 1.
Lemma 4.3. If Ry < 1, then vanishing happens. Particularly,
1

/ho <u (x) + Hl(o)v (a:)) dz (4.1)
min {di/pr, H'(0)dy/(p2)} Jo \ b | |
Proof. Firstly, in view of ji(x) = [;°Ji(z — y)dy, it can be deduced that

hoo < hg +

h(t) ph(t) h(t) R(t) poo
/ He = gult.p)dpde — [ @t ade = - [ [ 7= ultz)dedy,
o Jo 0 o Jhw

h(t) ph(t) h(t) h(t) poo
[ = wettduds — [ is@pteods =~ [T e - ot opdady.
0 0 0 0 h(t)

Then, by a series of simple computations, we have

h(t) H' h(t) poo H'
g/ <u + ©) U) de = — / / <d1J1(x —y)u+ MJQ(-Z’ - y)v> dydz
dt J, b o Jhe b

)

+/Oh(t <H(v) —au — H'(0)v +

< —min {dl/ﬂla H,(O)dg/(bug)} h,(t).

H'(0)

G(u)> da

Hence we derive

h(t) /
% 0 <“ i Hb(o) > da < —min {di/p1, H'(0)dz/(bu2)} ' (2)-

Integrating the above inequality from 0 to ¢ yields (4.I). O
The following involves the case Ry > 1. All arguments used below tightly depend on the fact

that if vanishing happens, then A\j(ho) < 0 as in Lemma LIl Here we mention that, at our present
situation, a11 = —a, asg = —b,a13 = H'(0) and az; = G'(0). Thus

—(a+b) +/(a+b)2 +4[H'(0)G/(0) — ab]
2
—(a+L+b+%2)+ \/(a+ D1 p4 2)2 L 4[H(0)G'(0) — (a + L) (b+ L))

5 :

A = > 0,

VB =
It is clear that R.(di,d2) > 1 if and only if v > 0.
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Lemma 4.4. If R, > 1, then spreading occurs.

Proof. The condition R, > 1 implies v > 0. Owing to Proposition 2Z.24(3), lim;_o A1(l) = v5.
Therefore, A1(l) > v > 0 for all [ > 0. It then follows from Lemmal[dT]that spreading happens. [

In what follows, we focus on the case R, < 1 < Ry. We fix all the parameters in (LI0) but
except for hg and p; with ¢ = 1,2, and discuss the effect of initial habitat [0, ho] on criteria of
spreading and vanishing. Making use of Proposition 2.2 we have lim; o, A\1(I) = y4 > 0, and
lim;_,o A\ (]) = v < 0. By the monotonicity of Ai(l), there exists a unique ¢* > 0 such that
M) =0and A\ (I)(I—¢*) > 0 for [ # ¢*. As A\i(l) is strictly increasing in [ > 0, as a consequence

of Lemma 41l we have the following result.
Lemma 4.5. Let 0* be defined as above. If hg > £*, then spreading happens.

The next result shows that if hg < ¢* and p; + o small enough, then vanishing occurs.
Lemma 4.6. If hg < {*, then there exists a p > 0 such that vanishing happens if pi + po < p.

Proof. Due to hy < £*, we have A\1(hg) < 0. By the continuity of A1 (1) (Proposition2.2), there exists
a small e > 0 such that A;(ho(1+¢)) < 0. For convenience, denote hy = ho(1+¢). Let ¢ = (¢1, ¢2)
be the positive eigenfunction of Ay (ho(1 + €)) with ||¢|x = 1. Define h(t) = ho[l +£(1 —e™)],
a(t,x) = Me %@ and © = Me % ¢y with 0 < § < —\i(h1) and M large enough such that
Mqﬁl( ) > up(x) and M¢pa(z) > vo(z) for x € [0, hq]. Direct calculations yield that, for ¢ > 0 and

€ [0, h(1)],

Uy — dl/ Ji(x —y)u(t,y)dy + dij1(x)u + au — H(0)

st s M _ , _ H(v)
> Me 01 —di | Ji(x —y)dr(y)dy + diji(2)¢1 + adr — 35

’ 5
H(Me~ t¢2)>

= Me™% <—(5¢1 — A (h1)g1 + H'(0)pg — =z

> Me™% (=6 — A1 (h1)) ¢1 > 0.

Similarly, there holds:

Uy — dg/ Jo(x — y)o(t,y)dy + dojo(z)v + bv — G(a) > 0.

Moreover, when 1 + g < jf/;ﬁ, we have

h(t
/ / (11 (z — y)u(t, z) + poda(z — y)v(t, z)| dyda
h(t

h() -
= Me™ &Z/‘ / / (z)dydz < (1 + pa)Mhie™® < edhoe™® = 1/ (t).

By the comparison principle, h(t) < h(t) for t > 0, which implies lim;_, o h(t) < oo. O

Lemma 4.7. If hg < {*, then there exists a fiy > 0 (fig > 0) which is independent of py (p1) such
that spreading happens when py > i1 (pe > fig).
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Proof. We only prove the assertion about pup since the similar method can be adopt for the con-
clusion of pg. Let (u,v,h) be the unique solution of (LI0) with us = 0. Clearly, (u,v,h) is an
lower solution of (LI0) and Lemmas hold for (u,v,h). Then we can argue as in the proof
of [30, Theorem 1.3] to deduce that there exists a 7i; > 0 such that if u; > i, spreading happens
for (u,v, h) and also for the unique solution (u,v,h) of (II0). The proof is finished. O

By Lemmas .6 and B7] we have that vanishing occurs if i3 + pi2 < p, while spreading happens
if py 4+ po > Ty + iy =: . One naturally wonders whether these is a unique critical value of g + o
such that spreading happens if and only if 11 + uo is beyond this critical value. Indeed, such value
does not exist since the unique solution (u, v, h) of (ILI0)) is not monotone about yq + pe. However,

for some special (p1, pe) we can obtain a unique critical value as we wanted.

Lemma 4.8. Assume hg < 0*. If uo = f(p1) where f € C([0,00)), is strictly increasing, f(0) =0
and lim f(s) = co. Then there is a unique 7 > 0 such that spreading occurs if and only if p > p3.

S§—00

Proof. Firstly, it is easy to see from a comparison argument that the unique solution (u,v,h) is
strictly increasing in p1. We have known that vanishing happens when p; + f(1) < p (Lemma
[4.6]), and spreading happens when p; + f(u1) > 7 (Lemma 7). Due to the properties of f, there
exist unique p, and 77; > 0, such that p + f(p,) = p and 71y + f(f1;) = 71. Clearly, p1 + f(u1) < p
is equivalent to p; < By and p1 + f(p1) > @ is equivalent to puq > 7iy. So, vanishing happens if
P < s while spreading occurs if g1 > ;. Then we can use the monotonicity of (u, v, h) on py and
argue as in the proof of [I2) Theorem 3.14] to finish the proof. The details are omitted here. [

Next, to investigate the effect of d; on spreading and vanishing, we fix all the parameters but
except for d; and p; with ¢ = 1,2. Assume that do = f(dy) with f being given as in Lemma
Then we try to obtain a critical value for d; governing spreading and vanishing.

Clearly, R.(dy, f(dy)) is strict decreasing in d;. There exists a unique d; > 0 such that
Ruldy, f(dy)) = 1, and [Ru(dr, f(d1)) — 1)(ds —dy) < 0 for d # dy.

Lemma 4.9. Suppose that do = f(d1) and di > d,. Then there ezists a unique di > d; such
that spreading happens if dy < df, while if dy > df, then whether spreading or vanishing happens
depends on the expanding rates py and po as in Lemmoas [{.0 and [{.7

Proof. For clarity, we rewrite yp defined by (ZX) as yp(d;), and the principal eigenvalues of (3.2))
and B3] as A1(l,dy1) and A\o(l, dy), respectively. Then Ag(hg,dy) is strictly decreasing in d; > 0 by
Proposition [2.3)3).

Note that R.(d1, f(dy)) > 1 is equivalent to yg(dy) > 0. Therefore, 0 = vp(d;) = }1_1% Ml dy),
and then \;(l,d;) > 0 for all [ > 0 by the monotonicity of A;(l). Thanks to B.4), A\2(l,d;) > 0
for all [ > 0. Certainly, Ay(hg,d;) > 0. Moreover, by Proposition 23|(5), A2(ho,d1) < 0 when
d; is large. The monotonicity of Aa(ho,d;) indicates that there is a unique dj > d; such that
X2(ho,d;) = 0 and Aa(ho,d1)(dr — df) < 0 when d; > d; and d; # dj. Recalling [34), it follows
that if d; < d; < dj, then Ai(hg,d;) > 0 and spreading happens by Lemma AT} if d; > df, then
A1(ho,d1) < 0 and similar to the arguments in the proofs of Lemmas and L7 we can get the
desired results. The proof is finished. O
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Next we consider the case where one diffusion coefficient is fixed and the other one varies. Since
the situations are parallel, we only study the case where dy is fixed and d; is varying. Notice
that Ry(dy,d2) < 1 < Rgp. Define A = 2(H'(0)G'(0) — ab)/a. If dy < A, then R,(0,d2) > 1. The
condition R.(dy,dy) < 1is equivalent to d; > Dy, where D1 > 0 is the unique root of R.(dy,ds) = 1.
This leads to the following conclusion. The proof is ignored since it is similar to that of Lemma
4.9

Lemma 4.10. Fiz dy < A and let di > D1. Then there exists a unique ch > D1 such that spreading
happens if di < cfl, while if dy > Jl, then whether spreading or vanishing happens depends on the
expanding rates 11 and po as in Lemmas [[.60] and [

Next we deal with the case do > A. In view of Proposition 23] we have A (ho,d;) < 0 when d;
is large enough, and thus Ay(hg, d;) < 0. Using the continuity of A\ (hg,d;) in d; > 0 (Proposition
23(1)), we get Ai(ho,d1) — vi(d2) as di — 0, where v(dy) is the principal eigenvalue of

— (1(251 + H/(0)¢2 = I/gbl, €T € [0, h(]],
ho
ds /0 oz — )2 (y)dy — daja(z)ds + G'(0)61 — bs = v,z € [0, hol.

Let k1 be the principal eigenvalue of
ho

; Jo(z — y)w(y)dy — jo(z)w(z) = kw(x) for x € [0, hgl.

Then —1/2 < k1 < 0 (cf. 20 Lemma 2.6]). The simple calculations yield

—~(a+ b= darr) + /(@ +b— darn )2 — 4[a(b — darr) — H'(0)G'(0)]

11 (dg) = B

(4.2)

Clearly, v1(dz) is strictly decreasing in do and vq(A) > 0. Since vq(d2) — —a as dy — oo, there
exists a unique dy > A such that v4(dy) = 0 and v1(ds)(de — dy) < 0 for A < dg # d,.

Lemma 4.11. The following statements are valid.

(1) If we fix do € [A, dy), then there exists a unique dv > 0 such that spreading happens if d; < di,

while whether spreading or vanishing happens depends on the expanding rates py and ps as in
Lemmas -0 and -7 if dy > d;.

(2) If we fix do > dy, then for all di > 0, whether spreading or vanishing happens depends on the
expanding rates (1 and po as in Lemmas[4.6] and [{.7]

Proof. (1) Since da € [A, dy), we have v1(d2) > 0. Recalling that A;(ho,d;) and A2(hg, d;) have the
same sign. From the above discussion we see that Ao(hg,d;) > 0 if d; < 1, while Ag(hg,d;) < 0
if dy > 1. By the monotonicity of \o(hg,d;) on di, then there exists a unique d, > 0 such that
Ao(ho,di) =0if dy = dy and Aa(ho,dy)(dy — dl) <0ifdy # dy. Similar to the proof of Lemma F9]
the first assertion is proved.

(2) If do > d,, then vi(da) < 0. We claim that Aj(hg,d1) < 0 for all d; > 0. Other-
wise, then Aj(ho,d;) > 0 for some d; > 0, and so Aa(hg,d;) > 0. By the monotonicity of
Aa(ho,dy) in dy, Aa(ho,di) > 0 when di < 1, which leads to Aj(hg,d;) > 0 when d; < 1.
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Thus, vi(dy) = dlliglo)\l(ho,dl) > 0. Recall v1(dy) < 0. So limg, 0 A1(ho,d1) = 0, which im-
plies limg, 0 A2(ho,d1) = 0. However, as Aa(ho,d1) > 0 for 0 < d; < 1, it follows from the
monotonicity that limg, 0 A2(ho,d;) > 0. This is a contradiction.

Therefore, \1(ho,d;) < 0 for all d; > 0. Then by arguing as in the proof of Lemma [£.9] we can

complete the proof whose details are ignored. Therefore the proof is finished. O

Theorem [£.2)(1) and (2) are exactly Lemmas EL3H44] respectively; Theorem [£.2)(3a) is exactly
Lemma .5 Theorem [£.2)(3b) follows from Lemmas [.6HL8 Theorem [£.2[4) follows from Lemmas
4,904,111

5 Spreading speed

In this section, we investigate the spreading speed of (LLI0]), and thus always assume that
spreading occurs for (ILI0) which implies Ry > 1. It will be seen that accelerated spreading

(infinite spreading speed) can occur if J; and Jo violate the following condition:
(J1) [;° wJi(z)dz < oo fori=1,2.

However, the rate of accelerated spreading, a hot topic in spreading phenomenon modelled by
nonlocal diffusion equation, is not discussed here and left to future work. We note that for (L),
by virtue of some subtle upper and lower solutions, Du and Ni [16] [I7), 18] obtained some sharp
estimates on the rate of accelerated spreading for a class of algebraic decay kernels.

Before stating the conclusion of this section, we first consider the following semi-wave problem

0
dy / Ji(z — y)p(y)dy — dip+ cp’ —ap + H(q) =0, r € (—00,0),

—00

0
dz/ Jo(z — y)q(y)dy — dag + cq’ — bg + G(p) = 0, r € (—00,0), 51)

(—o0) =V, p(0) =¢(0) =0,

p(-o00)=U, ¢
0 00
c= /_ /0 [ i (z = y)p(x) + pada(x — y)g(x)]dyde.

Proposition 5.1. ([I5) Theorem 1.2]) Problem (1)) has a unique solution triplet (¢,p,q) with
¢ >0 and p,q strictly decreasing in (—o0,0] if and only if (J1) holds.

The following is our main conclusion of this section.

Theorem 5.1 (Spreading speed). Let (u,v,h) be the unique solution of (LIO) and spreading

happen. Then the following statements are valid.
(1) If (J1) is satisfied, then

lim h(t) =¢, lim max (Ju(t,z) — U]+ |v(t,z) — V|) =0 for any c € [0,¢),

t—oo ¢ t—00 [0,ct]

and for any T € (0,1),

lim min{z > 0 : u(t,z) =7U} — lim min{z > 0:v(t,z) =7V}

= 6,
t—o0 t t—o00 t

where (U, V) is determined by (L3)) and ¢ is uniquely given by semi-wave problem (G.1]).



28

(2) If (J1) is violated, then
Jim 40

m —~ = o0, lim max (ju(t,z) — U + |v(t,z) — V|) =0 for any ¢ € [0,00),

t—oo T t—00 [0,ct]
and for any T € (0,1),

lim min{x > 0: u(t,z) =7U} oo, lim min{zx > 0:v(t,x) =7V} C

t—00 t t—00 t

We shall prove Theorem [.1] by using solutions of problem (5.]) and its variations to build

suitable upper and lower solutions. The proof is divided into several lemmas.

Lemma 5.1. Suppose that (J1) holds. Let (u,v,h) be the unique solution of (LIO). Then
h(t
s
Proof. Define h(t) = (1+¢)ét + L, u(t,x) = (1 +&)p(x — h(t)), v(t,x) = (1 + €)d(z — h(t)), where
0 <e<1land L > 0is a positive constant to be determined later. We now prove that there exist
suitable L and 7T such that (@, s, h) satisfies

lim sup,_, < ¢, where ¢ is uniquely given by Proposition [5.1].

() )
iy > dy / Ti(z — y)alt, y)dy — dujr (2)i — ai+ H(@), t> 0, o € [0, (1),
0

h(t) _
vy > d2/ Jo(x — y)o(t,y)dy — dojo(z)v — b + G(u), t >0, x € [0,h(t)),
0

a(t,h(t)) >0, o(t,h(t)) >0, t>0, (5.2)

>

(0) > W(T), u(0,z) > u(T,x), v(0,2) >v(T,x), =z €]0,h(T)].

Once this is done, by comparison principle, we derive that h(t) > h(t + T), u(t,z) > u(t + T, )
and 0(t,xz) > v(t+ T, x) for t > 0 and x € [0, h(t + T')], which indicates lim sup,_, @ < (1+¢)e.
By the arbitrariness of ¢, the desired result holds. Thus, it suffices to verify (G.2]).

Let us begin with proving the first two inequalities in (5.2]). Notice that p(x), §(x) are strictly
decreasing in < 0, and H(z)/z is decreasing and G(z)/z is strictly decreasing in z > 0. To save
space, in this part we set 1 +& = v and p = p(z,t) = x — h(t). Direct computations yield that, for
t >0 and z € [0, h(t)),

1 h(t)
5 <ﬂt —dy / Ji(z —y)u(t,y)dy + diji(x)u + att — H@))
0

h(t) -

= i)~ [ hm—yM@—h@WM+de@ﬂm+aﬂm—%HWﬂM)

h(t) 1
%MM—@/ T = )3y = Ry +dujs (@)5(0) + ailp) = ~H (3 (p)

Y

0
0
=d{[_Jﬂx—Mﬂ—ym@My—mﬁ@%ﬂm@%+H@@D
h(t)

h
—mA h@—mm—mm@+mﬁwmm+mw—§mww>
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0
- - - 1 -
=i ([ e =)ty ~ FO) = 560)] ) dy + H(dl0) - HOU) >0 5.3
Similarly, we can prove the second inequality of (5.2]). From our definitions of 4 and v, it is clear

that u(t,h(t)) = v(t,h(t)) = 0 for t > 0. Then we check the fourth inequality in (52]). Simple

calculations show

h(t) poo
[ It = putte) + pada(e — ot )] dyds
o Jre

0 00
< (1+ E)/_ /0 (i (x — y)p(x) + paJo(z — y)q(x)|dyde = (1 + )¢ = B'(1).

It remains to show the inequalities in the last two lines of (5.2)). Let (w(t),v(t)) be the unique
solution of the corresponding ODE of (LI0) with (%(0),7(0)) = (||uolleo; [|0]|ec). Under the con-
dition (H1), we can show, by phase plane analysis, that lim; . (u(¢),v(t)) = (0,0) if Ry < 1,
and limy_,o (u(t),v(t)) = (U, V) if Ry > 1. Moreover, by a simple comparison argument, we know
that the solution component (u,v) satisfy that (u,v) < (@,7). Consequently, limsup,_ . u < U
and limsup,_,., v < V uniformly in z € [0,00). For the given € > 0, we can find 7' > 0 such that
u< (14¢/2)U and v < (1+4¢€/2)V for t > T and x > 0. There exists L > h(T'), such that u(0,z) =
(I4+e)p(x—L) > (1+¢/2)U > u(t+T,x) and 9(0,2) = (1+e)g(z — L) > (14+¢/2)V > v(t+T,x)
for t > 0 and = € [0, h(T')]. Inequalities in the last two lines of (5.2)) are verified. Therefore, (5.2)
holds and the proof is complete. O

Then we prove the lower limit of h(t) which will be handled by several lemmas. Due to Ry > 1,
H'(0)G"(0)
(a+0)(b+0)

(a+o0)u=H(v), (b+0o)v=G_G(u)

there exists a op > 0 such that > 1 for all o € (0,00). Then obviously, the system

has a unique positive root (U, V,) with U > U, and V' > V,,.. By Proposition[5.] the corresponding

semi-wave problem

0
dy / Tz —y)py)dy —dip+cp —(a+0)p+ H(q) =0, e (—o0,0),

— 00

0
ds / o — 9)ay)dy — dog + of — b+ 0)g +G(p) =0, € (—o0,0),
—o0 (5.4)

q(—00) = V5, p(0) = q(0) =0,

p(—OO) = Um
0 o0
c= /_ /0 [ Ji(x — y)p(z) + poda(z — y)q(z)|dyda

has a unique solution triplet (¢4, Py, ¢s), where ¢, > 0, and both p, and g, are strictly decreasing
in (—o0,0] if and only if (J1) holds.

Lemma 5.2. Assume that (J1) holds. Then ¢, — ¢, (Py,Go) — (B, G) in [Cloc([0,0))]% as ¢ — 0.

Proof. Let {o,} C (0,00) with o, decreasing to 0, and denote (¢,,,, Do, ;Gon) DY (Cn, Py @n). Sim-
ilarly to [I5, Lemma 2.8], we have (¢, Pn,qn) < (€nt1,Pnt1sGn+1) < (¢,P,q). Thus we can define
(¢,p,q) = ,}E%o(émﬁm%) with ¢ € (0,¢]. Obviously, p(z) and g(x) are decreasing in (—oo,0]. For
any x < 0, integrating the first equality of (5.4]) leads to

T 0
eun(0) — éun(z) = /O <d1 /_ J1<z—y>ﬁn<y>dy—dlﬁn<z>—<a+an>ﬁn<z>+H<qn<z>>) dz.
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Letting n — 0o and using the dominated convergence theorem, we have

x 0
ep(0) — eplo) = [ <d1 / J1(z—y)ﬁ(y)dy—dlﬁ(Z)—aﬁ(Z)+H(q‘(Z))> d.

—00

Differentiating the above equality yields

0
—ep(z) = dy / Iz — )Py — dp(z) — ap(z) + H(q(z)).

Similarly, we have

0
dy / oz = 1)3(y)dy — () + &7 (x) — b(x) + G(p(x)) = 0, z < 0.

—0o0
Notice that fn < 7 < §, dn < G < G and fu(—00) = K" — U = j(—00), du(—00) = K" > V =
G(—o0) as n — oo. We easily derive that p(—oo) = U, g(—o0) = V.

Moreover, by monotone convergence theorem, we have that as n — oo,
0 00
o= [ [ Inhle @) + (e~ ), @) dyds
—o0 J0
0 00
— / /0 [y (z — y)p(x) + poda(z — y)g(x) | dyde = ¢.

Taking advantage of Proposition [B.], we have ¢ = ¢, and p(z) = p(z), §(x) = G(x). Together with
Dini’s theorem, we have p,, — p and G, — ¢ in Clo¢([0,00)) which completes the proof. O

For n > 1, define
@) =1, o] <1 E@)=2—|al, 1<|a| <2 E@)=0, 2] > 2,
T (x) = Ji(0)E(E), ) = / @ — y)dy.
0

Then it is not hard to verify that J is supported compactly, increasing in n and J* < J; for x € R.
What’s more, J* — J; in L} (R) and Cloc(R), and 5 — j; in L>°(R) as n — oo. For any o € (0, ),
we can choose n large enough, say n > N, such that d;(j"(z) — ji(x)) + o > 0 in R and

H'(0)G'(0)
[a+o+di(1—[Jp[)][b+ 0+ da(1— [|J5]1)]

Consider the following semi-wave problem

> 1.

0
dl/ TP — 9)p(y)dy — dip + cpl — (a+ o)p+ H(q) = 0, € (—o00,0),

d2/ Iz —y)q(y)dy —dog+cqd — (b+0)g+ G(p) =0, x € (—00,0), 55)

Uy, q(—00) =V, p(0)=q(0)=0,

C—/ / (a7 (@ — y)p(x) 4 poJsy (z — y)q(x)|dyd,

where o € (0,0¢), and (U2, V") is the unique positive root of
di(lJ7'r = Du = (a4 o)u+ H(v) =0, da(|J3]1 = v — (b+0)v + G(u) =

Note that both J* and JJ' are supported compactly. In view of Proposition [5.1], problem (5.5)) has

a unique solution triplet (¢, pZ, 7).



31

Lemma 5.3. If (J1) holds, then ¢} — ¢, Dy — Do and G} — o in Cioc((—00,0]) as n — oo.
Moreover, if (J1) does not hold, then ¢ — 0o as n — oo.

Proof. Recall that J* is increasing in n > 1, J* < J; for x € R, and J* — J; in LY(R) and Cjoe(R).
Then following the similar method as in the proof of Lemma [5.2] we can prove the first assertion
and thus the details are ignored here.

We now show the second assertion. Notice that (J1) is violated. Without loss of generality,
we assume that [ zJ;(x)dz = co. Obviously, pj} is increasing in n and 0 < 2 < U, in (—00,0].

Thus, we can define p, = lim p”. Using p2 > p. for n > 1, we have that, for any [ > Iy > 0,
n—oo

I
lim inf / / Ji(x (r)dydz > liminf / / Ji(x (z)dydz
n—00 n—0o0
I
= / / J1 (& - y)f (2)dyda
lo
> D lo/ / y)dydz
lo
> 5L(~1o) / | nwsay
lo J—y

l

= 5L(~lo) /l 1) — o)y
0

— o0 asl— oo,

which, combined with

liminf & hmmf,ul/ / Ji'(x — y)po(z)dyde,

n—oo

yields ¢ — oo as n — oco. The proof is complete. O

For n > N, we consider the following auxiliary problem
hg ()
(ug)e = dl/ i (@—y)ug(t,y)dy—dijiu; —(ato)ug+H(vy), t>0, x € [0,hg(t)),
0

hiy(t)
() = d2/ Jy(x—y)vl(t,y)dy—dajsve —(b+o)vr+G(uy), t >0, x € [0,h2(t)),
0

ul(t, () = 0, v (¢, h2(t) = 0, t >0, (5.6)

h’!L
/ / [T} @ — )l () + a3 (@ — )l (t, )] dyda, £ 0,
hn(t)

h(0) = h(T), up(0,2) = u(T, z), v}(0,2) =v(T,z), x € [0,h(T)].

Using the same arguments as in the proofs of Lemmas [£.1] and [L.5], we can show that there exists a
critical value £ > 0, depending only on J, H’(0), G’(0) and parameters in the first two equalities
in (E.6]), such that spreading happens if T" large enough satisfying h”(0) = h(T) > £:"°.

Lemma 5.4. Let (ul,v?, h?) be the unique solution of (B.6). Then we have

o) Yoo

"t
lim inf Jt( ) >, litrginf(ug,vg) > (U2, V') uniformly in = € [0, ct], Ve € [0,¢)).
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Proof. Define h(t) = (1)t +2L, u(t,z) = (1— )a(e — h(t)) and v(t,x) = (1 — )G (x — h(t)),
where L > 0 is large enough such that J'(z) = 0 for |x| > L and € > 0 is arbitrarily small. We
next show that there exists a 77 > 0 such that (u,v, h) satisfies

h(t)
u < dy /0 TP (@ —yult,y)dy—dijtu—(a+ o)u+ H@), t>0, z € [L,h(t)),

h(t)
v, < ds /O n (@ —y)olty)dy—dsjbo—(b+ oYu+ Cluw), ¢ >0, z € L, h(t)),

u(t, h(t)) =0, v(t,h(t)) =0, t>0, (5.7)
h(t) oo
W(t) < 0 Do [ 7 (@ —y)u(t, 2)+p2J3 (x—y)u(t, z)]dydz, t >0,

u(t,x) <ul(t+Th,x), v(t,z) <vl(t+Ty,z), t>0, z€[0,L],
1(0) < K(Ty), w(0,2) < Ty, 2), 0(0,2) < *(Ty,z), @ € [0,(Ty).

Once it is done, by a comparison argument, we have hlX(t + T1) > h(t) for ¢ > 0. The arbitrariness
of € implies the first assertion.

For second assertion, we can choose ¢ sufficiently small such that (1 —¢)é? > ¢. Due to the
definitions of u and v, it is easy to see that u — (1—¢)UZ and v — (1 —¢)V," uniformly in = € [0, ct]
as t — 00. So for any small € > 0, we have liminf; , u} > (1—¢)UZ and liminf;_, o, v} > (1—2)V
uniformly in z € [0, ct], which together with the arbitrariness of € yields the second assertion.

It remains to prove (5.7). Since spreading happens for (ul},vl,hl), we can choose a large T}
such that A(T1) > 2L = h(0), u(t,z) < (1 —e)UY < ul(t+ T1,z) and v(t,z) < (1 —e)V] <
vl (t +T1,x) for t > 0 and = € [0,2L]. Noticing that u(0,z) = (1 — e)pi(x — 2L) = 0 and
v(0,2) = (1 —¢)q}(x — 2L) = 0 for z > 2L. Inequalities in the last two lines of (5.7]) hold true.

Recall J*(x) = 0 for |x| > L. Simple computations yield

h(t) poo
/ / [T} (@ = y)ult,2) + a3 (@ — )ult, 2)] dyda

(- / / [ (@ = ) (e) + a3 (o — ) ()] dyds
=(1-¢)c
The inequality in forth line of (57 is verified.

For t > 0 and L < z < h(t), since j7'(z) < 1 and H(z)/z is decreasing in z > 0, similar to the
derivation of (53)), it can be obtained that

h(t)
U < dy / T (x — y)ult,y)dy — dyu — (a+ o)u+ (1 — ) H(@ (@ — b))
h(t)
< dy /0 Ji(x —y)u(t,y)dy — dij7'(x)u — (a + o)u + H(v).

The first inequality of (5.7]) is obtained. Analogously, we can argue as above to deduce the second
inequality in (B.7)). Therefore, (5.7) holds and the proof is finished. O

Lemma 5.5. The unique solution (u2,v? h%) of (&8 is a lower solutions of (LI0]).

o) o) o
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Proof. Recall that d;(j"(x) — ji(z)) + 0 > 0 in R and J < J;. We can see that, for ¢ > 0 and
x € [0, hg (1)),

hZ(t)
(W) = dy / T — gyl (t, y)dy — dyf (@)l — (a + o)l + H()
0
h2(t)
<d / T (@)l (t, y)dy— dujs (2)ul+ (dujs (2)—du 7 (&) — o)l —au+ H ()
0

hZ(t)
< dy / Ty — )l (t, y)dy — dujy (2)ul — au + H(oD).
0

Similarly, we have

hZ(t)
(o) < da / To(@ — )l (b y)dy — dajo(@)el — bl + G,
0

Moreover,
hg(t) oo
05/ @ = [ T e ) e () duds
n(t
h2(t) roo
<[] [ = DG 02) + oo — ) 0] dya
0 n(t
By a comparison method, we completes the proof. O

Lemma 5.6. Let (u,v, h) be the unique solution of (LIQ). Then the following statements are valid.
(1) If (J1) holds, liginf @ > ¢ and liginf(u,fu) > (U, V) uniformly in x € [0, ct] for c € [0,¢).

(2) If (J1) is violated, tlim hY) = 5 and liginf(u,fu) > (U, V) uniformly in x € [0, ct] for ¢ > 0.
— 00 [e.9]

t
Proof. (1) By Lemmas [5.4] and [5.5] we have lim inf M) > &n Together with Lemmas 5.2 and [5.3),
—00

¢
we further derive lig (i)Iolf @ > ¢. Again from Lemma 4] and BB we have liminf; oo (u,v) >
(U2, V) uniformly in = € [0,ct] for all ¢ € [0,¢}), which combined with the fact that (U}, V")
is increasing to (U,,V,) as n — oo, and (Uy,,V,) is decreasing to (U,V) as o — 0, yields that
liminf;_, o (u,v) > (U, V) uniformly in = € [0, ct] for all ¢ € [0, ¢).

(2) Notice that (J1) does not hold. By Lemma [53] ¢ — oo as n — oco. Thus this assertion

directly follows from the similar analysis as above. We complete the proof. O

Theorem Bl follows from Lemmas 5.1l and £.6] as well as the result (already proved in the proof

of Lemma [5.1)) limsup;_,.o u < U and limsup,_,., v < V uniformly in = € [0, c0).

6 Appendix A

From the point of view of PDEs, the differential and boundary operators in problems (7))
and/or (L8] are determined by diffusion coefficient d, kernel function J, and the moving coefficient
w of the free boundary. The triplet (d,.J, ) can be seen as the “working operator” for solving
problems (7)) and/or (L8]). In this appendix we shall show that (L8] cannot be transformed into
(L) in the sense of “working operator”.

Let (u,h) be the unique solution of (L8)). Define @g(z) = wuo(|x|) and u(t,z) = u(t, |z|). We
next prove that there is no d > 0, i > 0 and J(z) satisfying (J) such that (&, —h, h) is the unique
solution of () with d, u, J and ug(x) replaced by d, i, J(z) and dg(|z|), respectively.
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Theorem 6.1. Fiz d,;u > 0 and J(x). There do not exist d, i >0 and J(x) satisfying condition
(J) such that, for all uy(z) satisfying (I) and hg > 0, (@, —h,h) is the unique solution of (L)
with (d, p, J) replaced by (d, i, J), respectively.

Proof. Assume on the contrary that there exists such triplet (d, i, J(z)) as desired. Simple com-
putations yield that for ¢ > 0 and = € [0, h(t)),

h(t)
ut_d/t at,y)dy — d(t, z) + ()
h(t)

) ) )
_d /0 (@ — y)+ J(x + y)]ult,y)dy — du + f(u).

Since u(t,z) = u(t,z) for t > 0 and x € [0,h(t)), we have 4; = u; in such regions. Thus, by the
differential equation of u,

_ph(t) ~ . h(t)
d/ [J(x —y)+J(z+ y)]u(t, y)dy — du = d/ J(x —y)u(t,y) — dj(z)u.
0 0

By continuity and u(t, h(t)) = 0 for t > 0,

h(t) h(t)
d/ [J(h(t) —y) + J(h(t) +y)]u(t,y)dy = d/ J(h(t) — y)u(t,y)dy.
0 0

Letting t — 0 and using continuity again, we obtain

o fho - ho
[ [0~ )+ Tho + p]uolo)dy = d [ T(ho ~ pyuol)dy (6.1)
0 0
holds for all hy > 0 and ug(z) satisfying (I). For hg > 1, choose a class of ug(x) as follows
UO(ZL'):l, 0§:L'§h0—1/h0; ’LL(](ZL'):ho(h(]—l‘), hg—l/hogl‘gho.

Substituting such ug into (61I) and then direct calculating yield

5 l/ho _ 5 ho B _
d/ J(y)dy + d/ [J(ho —y) + J(ho + y)] ho(ho — y)dy
—h() hO_l/hO

1/ho ho
—d / T(y)dy + d / J(ho = y)ho(ho — y)dy.
—h() hO_l/hO

Letting hg — 0o leads to d = d. Thus (61)) holds for removing d and d.

Moreover, by the equation of free boundary, we have that for ¢ > 0,

/ / (x — y)u(t, z)dydx
h(t h(?)

= ,&/0 /h(t) [J(z —y) + J(z+ y)]u(t, z)dydz
h(t) proo
= ,u/o /h J(z — y)u(t, z)dydz.

||
=

By continuity, we deduce

ho 0o ~ ho -
ﬂ/o /h [J(x = y) + T (@ + y)]uo(w)dyde = p /0 | e —u(e)dyds
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is valid for all hg > 0. This implies that there exists a z¢ € [0, hg] such that
/?c/h [j(xo—y)+j(wo+y)}dy=u/h J(zo — y)dy.
0 0

Then setting hg — 0 gives 2ji = p. Therefore,

/Oho /hoo [J(@ —y) + (& + y)]ug(x)dydz = 2 /0 " /h °° J(z — y)uo(x)dydz

holds for all hg > 0. Set

ho poo B ho froo
®(hg) = /0 /ho [J(x —y)+ J(z+ y)]uo(a:)dydx - 2/0 . J(x — y)ug(z)dydzx

for all hg > 0. By ®(ho) = 0, we see ®’(hg) = 0 in hg > 0. Note that ug(hg) = 0. It is easy to show

ho )
'(hg) = —/0 [J(z — ho) + J(z + ho) — 2J(z — ho)]|uo(z)dz =0, V¥ hg > 0,

which, together with (6.1), yields
h() h()

2 J(x — ho)ug(x)dx = J(x — ho)ug(x)dz.
0 0

This is a contradiction since foho J(x — ho)ug(z)dx > 0. The proof is complete. O
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