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Abstract

We investigated the existence of solutions for a class of Ambrosetti-
Prodi type systems involving the fractional Laplacian operator and with
nonlinearities reaching critical growth and interacting, in some sense, with
the spectrum of the operator. The resonant case in Ay for k > 1 is also
investigated.
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1 Introduction

Let s € (0,1), N > 2s and Q C R" is a bounded smooth domain. In this
paper we study the possibility of existence of solutions for the following critical
fractional system
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(—A)°u = au+ bv + - jé_ Bu+a71v+’3 +&up P L i,
(—A)Y'v=bu+cv+ af_ﬁujfvyg*l + &P g inQ, (1.1)
u=v=0 in RV \ Q,
where
(—A)’u(x) := C(N, s) lim ule) — uly) dy, xecRY,

NO SRV B, (2) |7 — YN T2e

1 —1
is the fractional laplacian operator with C(N,s) = (/ %ﬁggl)do a
RN

positive dimensional constant, «, 8 > 1 are real constants such that the sum

o + 3 is the fractional critical Sobolev exponent 2% := %, &,8 > 0 and
the forcing terms f and g are of the form f = ty1, + f1 and g = ry15 + g1,

in such a way that the pair (t,r) € R?, f1,g1 € L9(Q) for some ¢ > & and
Jo frersde = [ g1p1,sde = 0 with ¢ ¢ the positive eigenfunction associated
with the first eigenvalue Ay s of the operator (—A)® with homogeneous Dirichlet

boundary condition.

With the above decomposition, in order to state and compare our results to the
scalar case, it is convenient to rewrite system (L)) as

(-R)*U = AU + VF(U) + Tprs + Fi  inQ, 12)
U=0 in RN\ Q, '

Zhire< v ) Byo = (9 §‘§>sv )a= (5 0) &t

(uy vy + Gu P 4 o o tF)

V is the gradient operator, F(U) =

T=(t>andF1:(fl).
r g1

Let p1,u2 be real eigenvalues of the symmetric matrix A, which will
assume 1 < po. Thus, it is verified that u;|U|? < (AU, U)g: <
pa|U?,  for all U := (u,v) € R% The interaction of these eigenvalues with the
spectrum of the (—A)* will play an important role in the study of existence of
the solutions.

We recall that Ambrosetti and Prodi [2] in 1972, studied the following
boundary value problem

a+p

1.3
u =0 on 0, (1)

where g € C%?(Q) with o € (0,1), f € C%(R) such that f(0) =0, f”(t) > 0 for
all t € R and

{—Au = f(u) +g(x) inQ,

. / . /
0< t_l)@oof t) <M< t_lgrnoof (t) < Ag,



where 0 < A\; < Ag < ... < \g... denote the eigenvalues of (—A, Hi()). The
authors showed that there exists in C%®(Q2), a closed connected C' manifold
M; of codimension 1 which splits the space into two connected components M
and My such that, if ¢ € My, the problem (I3) has no solution; if ¢ € My,
the problem (3] has exactly one solution and if g € My, the problem (3]
has exactly two solutions. After the pioneering work by Ambrosetti and Prodi
[2], many existence and multiplicity results have been investigated in different
directions. In particular, Ruf and Srikanth (in [29]) established a multiplicity
result for the local subcritical problem —Au = Au+u’, + f(z) in Q, v = 0 on 9Q
provided that the non-homogeneous term f has the form f(z) = h(z) + tp1(x)
(h € L™(Q) with 7 > N), A is not an eigenvalue of (—A, H}(Q)) and t > T,
for some sufficiently large number T = T'(h). Still in the local scalar case,
but with nonlinearity in the critical growth (p = 2* — 1), the problem above
mentioned has been studied by De Figueiredo and Jianfu (in [13]), the authors
proved the existence of two solutions when N > 6. This result was extended
by Calanchi and Ruf [10] using the technique developed in [20]. Works related
to this subject in the local scalar case, we recommend [4] and in the nonlocal
operators situation, [3] and [I9] (see references therein). For the critical system
in the local operators situation, problem (1) was studied, for instance, in [14]
and [26] when w2 < A1 and by [24] in the uncoupled case. For the fractional
subcritical system, (II]) was studied, for instance, in [23].

The purpose of this work is to prove the existence of solutions for the
class of nonlocal gradient systems of elliptic equations (II]) involving critical
nonlinearities on the hypothesis of an interaction of the eigenvalues p1, po of the
matrix A with eigenvalues of the fractional Laplacian operator (—A)*. When
f2 < A1,s, this system belongs to the class of the so called Ambrosetti-Prodi
type problems [2] which have been studied by several authors in the last decades
with different approaches.

Problem (1) is an extension to systems involving fractional Laplacian
operator of the equation considered in [29], [13] and [10], in which (1) was
studied in the local operators case (s = 1) and nonlocal operators (0 < s < 1)
in [3] (see [19] also) and with the particular matrix A = ( f)\ g)\ > € Maxo(R).
In this paper, we complement the results achieved in [23], proving that the
system (LI) (or (L2)) has at least two solutions for sufficiently large values of
parameters (¢, 1), the first solution is negative and obtained explicitly depending
on the non-homogeneous terms f and g. The second solution is obtained via
the Mountain Pass Theorem when po < Aq 5, or applying the Linking Theorem
in the case A s < 1 < po < Agt1,s if £ > 1. The resonant case A\; s = pq for
k > 1 is also treated here.

Finally, we should point out that the corresponding local problem governed by
the standard Laplacian operator can be recovered by letting s — 1.

To show the existence of solution, difficulties arise when we consider
fractional operators. As we know, in [I0], the approximate eigenfunctions
technique was used to facilitate the estimates of the energy functional associated



with the local scalar problem in the space Hg () (for local critical systems, also
see |26]). However, as noted in [22], in the nonlocal case, it is not possible to
employ any more the same idea as in [10] or [26], since u and v are not orthogonal
in the fractional space X§(2) even though they have disjoint supports. On the
other hand, further complications arise due to the presence of the mathematical

[u+o‘v+6 + &up 0P 4 §Qv+o‘+6] that includes either an

1
term F'(u,v) = 5
o

uncoupled or a coupled nonlinearity.

Due to these obstacles, we develop similar techniques to these known for the
Laplacian operator.

It is important to point out that, with the aid of [I5], our results are still valid
for the general case VF(u,v) when F is a (a + 8)—homogeneous nonlinearity,
which includes a larger class of functions.

The proof of the Theorem below follows arguments as in [23], so we will omit
some details.

Theorem 1.1 (Existence of a negative solution) Let A € Msy2(R) be a
symmetric matrix such that

det(N\jo I — A) £0,Vj=1,2,.... (1.4)
Assume that Fy = (f1,g1) € LY(Q) x LI(Q) for some q > &£ and consider

(M,s —a)r + bt <Vdet(A ] — A)}

R {(t yege: 0T Gas m ot <ndet(A,I—4) and }
= , T . '

Then there exist 1,9 < 0 such that system (I.2) has a solution (ur,vr) (with
ur <0 and vy <0 in Q) for every T € R.

Remark 1.1 Suppose that det(A1 I — A) >0 and
A1s > max{a,c}, (1.5)

then the set R is a region between lines satisfying:
(1) If b =0,

- )\1)5 — C )\175 —a
L S ey VY By L SR v s gy

(i) If b> 0,

) C R?.

det(}qul—A) ()\1,3 —C)

9 r<mn b A t and
R=q(t,r) eR™: det(Ap.oT — A) b
r <9 . — t
Al,s —a Al,s —a
(idi) If b < 0,
, > ndCt(Al’ZI — A) B ()\stf C)t and
R={(tr)eR: det(Ar o] — A) b
r <Y — t

>\1,s —a )\1,3 —a



On the other hand, if det(A I — A) >0 and

A1,s < min{a, c}, (1.6)
then the set R satisfies:
(i) Ifb=0,
Ms—cC Al,s —a 2
R—(p—"1s—€¢ L A — R=.
(0 det(A\ sI — A) »F00) X ( det(A,1 — A) Hoo) ©
(¢) If b > 0,
< ndet(kl,zl -4 (>\1,sb_ Vs and
R = (t, ’I“) (S R : - ﬂdet(kl,sl — A) B b t}
" (A1,s —a) (A1,s —a)
(i) If b < 0,
R ndet(kl,zl -4 (>\1,sb_ Vs and
R = (t,T)ER : >19dct(>\1,51714)7 b i
" (A1,s —a) (A1,s —a)

Note that, since det(A1,s I — A) # 0, the lines that define the region R are not
parallel. Moreover, if det(A1,s I — A) < 0 a similar result can be obtained as in
the Remark L1l

The following are the main results of the paper.

Theorem 1.2 Assume that N > 6s, £1,&2 > 0, a+ 0 = 2% and that one of the
following conditions hold,

0<pr <pz <A, (1.7)

Aiys < 1 < p2 < Agt1,s, for some integer k > 0. (1.8)
Then, system (I2) has a second solution.

Remark 1.2 It is important to note that the hypothesis (1.7) implies that the

conditions (1.7]) and [I2) are verified and the hypothesis (I.8) implies in (1.7)
and (I0). In both cases, det(A s I — A) > 0.

Theorem 1.3 Suppose N > 6s and
1,6 >0and Ags = p1 < po < Agy1,s, for some k> 1.
In addition assume that
Fi = (fi91) € (Ker((- )" = Ao )™ (1.9)

Then system (I2) has a second solution.



2 Notations and preliminary stuff

For any measurable function u : RV — R the Gagliardo seminorm is defined by

[u]s :== (C’(N,s) /RQN %dazdy)l/2 = (/RN |(—A)%u|2d:17)1/2.

The second equality follows by [16, Proposition 3.6] when the above integrals
are finite. Then, we consider the fractional Sobolev space

H*RY) = {ue L’®RY) : [u)s <oo}, lullg: = (JulZe + [u]2)"/?,

S

which is a Hilbert space. We use the closed subspace
X5(Q) :={uec H*RY): u=0 ae. in RV \ Q}.

By Theorems 6.5 and 7.1 in [16], the imbedding X§(£2) < L"(£2) is continuous
for r € [1,2%] and compact for r € [1,2%). Due to the fractional Sobolev
inequality, X§(?) is a Hilbert space with inner product

) xs o= G, 3 / (1) — u@) () ~2w)

R2N |z —y|VH2e

which induces the norm | - [[xs; = [-]s. Observe that by Proposition 3.6 in [16],
we have the following identity

2 s s
lull%; = C(TS)H(—A)?UH%N, u € X5(Q).

Then it is proved that for u,v € X§(),

2 s _ (u(z) — u(y)(v(z) — v(y))
— /]RN u(x)(—A)v(z)dx —/ dz dy,

C(N,s) R2N |z — y[N+2s

in particular, (—A)?® is self-adjoint in X§(£2).
Now, we consider the Hilbert space given by the product space

Y(€) := X5 () x X5(9),
equipped with the inner product
((u,0), (0, )y = (u, ) xz + (v, ) x;

and the norm
(s )y = (s + [ol%;) ">

The space L"(2) x L"(2) (r > 1) is considered with the standard product norm

1w, )l zrxzr = (ulld- + [lv]I2-)12.



Besides, we recall that
U < (AU, U)ge < po|U|?,  for all U := (u,v) € R?, (2.1)

where 111 < uo are the eigenvalues of the symmetric matrix A. In this paper, we
consider the following notation for product space S x S := S? and

wt(z) := max{w(z),0}, w™ () := max{—w(z),0}

for positive and negative part of a function w. Consequently we get w = w™—w™.
Since we are wanted to obtain a solution for the problem (1) with critical
growth, we defined S be the best constant for the Sobolev-Hardy embedding

X5(Q) = L% ().

The constant

, lJull%s
in 0
ue X (Q\{0} L\ %
( || dx)
Q

In [I1], Chen, Li and Ou prove that the best Sobolev constant S,y5 = S is
achieved by w, where w is the unique positive solution (up to translations and
dilations) of

S = SaJrﬁ(Q) =

(=A)Pw=w* "1 in RY, weL*(Q).

For the case of problems involving systems, we need the following definition.

2
5. =S B)Q) = inf I, )l N
(u,v)eY'\{0} 2/23
(/|“|Q|U|ﬁ+§1|U|a+ﬁ+§2|v|a+5dx)
Q

The following result establishes a relationship between S and S;. In local
case, it was proved in [I], which the proof in our case follows arguing as was
done there combined with the arguments in [I7] and [I8] for the nonlocal case.

Lemma 2.1 Let Q be a domain (not necessarily bounded), then there exists
a positive constant m such that S = mS. Moreover, if wg achieves S then
(sowo, towg) achives Sy for some positive constants s and t.

Remark 2.1 The constant m of the previous lemma is given by m = M~1,
where M = max J(s,t) is attained in some (B,C) (with B,C > 0) of the
compact set {(s,t) € R? : [s|? + [t|* = 1} with
T(s,8) = (| [1]” + sl + Ealt] ) 7.
Therefore,
B*+C?
(BoCB + & Bath 4 &,Coth)ais




2.1 An eigenvalue problem

For A € R, we consider the problem with homogeneous Dirichlet boundary
condition

{(—A)Su =)Xu in Q, (2.2)

u=0 in RV \ Q.

If 22) admits a weak solution u € X§(2) \ {0}, then A is called an eigenvalue
and u a A-eigenfunction. The set of all eigenvalues is referred as the spectrum of
(—A)* in X§(Q2) and denoted by o((—A)*). Since K = [(—A)*]~! is a compact
operator, the problem (Z2) can be written as u = AKu with u € L?*(Q), hence
the following results are true (see [32], [34]).

(i) problem (2.2) admits an eigenvalue A\ s = mino((—A)?®) > 0 that can be
characterized as follows

JRESERE
— ; (2.3)

A,s = m}n
ueXG\{0} / Ju(z)|?da
RN

(i7) there exists a non-negative function o1 € X§(2), which is an
eigenfunction corresponding to A1 s, attaining the minimum in (Z3));

(i47) all A1 s-eigenfunctions are proportional, and if u is a A1 s-eigenfunction,
then either u(z) > 0 a.e. in Q or u(x) < 0 a.e. in ;

(iv) the set of the eigenvalues of problem (2:2)) consists of a sequence {\g s}
satisfying

0<)\175 <)\275§)\3)S <... S)\js S)\j-i-l,s <..., )\k)s—>00, ask—>oo,

)

which is characterized by

[ ook,
]RQN

o — y|N+2s

Aitl,s = min

u€Pr+1\{0} / |’U,(:E)|2d117
RN

where
Pri1 ={u e X§(Q): (u,9;s)x =0, j=1,2,...,k};

v) if A€ a((—A)*)\ {M,s} and u is a A-eigenfunction, then u changes sign in
Q.

(vi) Denote by ¢, s the eigenfunction associated to the eigenvalue Ak s, for each
k € N. The sequence {(y s} is an orthonormal basis either of L?(£2) or of X§(€2).

Remark 2.2 Every eigenfunction of (—A)* is in C%7(Q) for some o € (0,1)
(see Theorem 1 of [32] or Proposition 2.4 of [30]).



3 Proof of Theorem [1.1]

The proof of the Theorem [T needs the following lemma (see details in [23]).

Lemma 3.1 If (L4) hold and Fy € L*(Q) x L?(2), then the system

(“R)U=AU+F inQ,
U=0 in RV \ Q,

has a unique solution Uy = (ug,vo) € Y ().

Remark 3.1 If (I.9) holds, using the Fredholm alternative, we have that [3.1])

has a unique solution.

Remark 3.2 If [y € LY(Q) x LY(Q) with ¢ > £, by [[6], Theorem 3.13], we
know that the solution Uy = (ug,vo) € C°() x C°(Q).

If Fy € L™(Q) x L>(9Q), by [[28], Proposition 4.6], the solution Uy = (ug,vo) €
Co5(Q) x C%5(Q).

Ifs=1/2 and Fy € Cy7(Q) x CY7(Q), with 0 < o < 1 and N > 2s, then Uy €
Cho(Q)xC7(Q) and [Uoll(cr.0@yyz < cllFill (oo @y (see [9] Proposition 3.1)
and if s > 1/2, arguing as in [5], we have that Uy € CH2571(Q) x CH271(Q).
Moreover, a bootstrap argument ensures that if the function Fy € C°(Q) x C°(Q)
and N > 2s, then the solution Uy given by Lemmal3dl satisfies | Uol|(co.o mnyy2 <
cllF1ll(Lacay)2, where o = min{s,2s — %}, for some constant depending only on
N, s,q and Q (see [27] Proposition 1.4).

We are ready to prove the existence of a negative solution for the system

(@2).

Proof of Theorem .11 We will prove the theorem when the conditions

(T4 and (T8) hold (other cases ((I4) and (L3 or (LA])) are analogous to this

and left to the reader).
By Lemma B and Remark B.2] the system

(—R)*U =AU+ F, in 9,
U=0 in RV \ Q,
has a unique solution Uy = (ug,vg) € C°(Q) x C°(Q).

(M,s — o)t +0br bt + (A5 —a)r
detOhol — A) 75 det(h ol — A) 70

Besides, (w,z) = ) is the unique

solution of the system

(—R)*U = AU + Ty, in Q,
U=0 in RV \ Q.
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Consequently, if

u 7()\115—0)t+b7" Tu
T det(h 0 — A) FbeTHO
bt (A —a)r

VT et .l — A) P T

then Ur = (ur,vr) is a solution of the system

(“R)*U = AU + Tor s+ Fi inQ,
U=0 in RV \ Q.

Clearly if up and v are negative in €2, we deduce also that Ur is a solution of
(T2). Therefore, to conclude the proof under the conditions (L4) and (6] (see
Remark [L)), it suffices to show the existence of an unbounded region R C R?
where up and vy are negative in 2 for every T'= (¢,r) € R.

Indeed, since p1 s € C%7(Q) is strictly positive in © (see corollary 4.8 in
[21]) and ug,vo € C°(R2), there exists 1,9 < 0 such that

Ne1,s +up < 01in Q,

Y16 + 19 <0in Q.

Then up and vy are negative in 2 for every 7' = (¢,r) € R and the proof of
theorem is concluded. ]

4 Proof of Theorem

Let Ur := (ur,vr) be the negative solution with up,vr < 0 in Q given by
Theorem [l for T € R. Notice that if U # (0,0) is a solution of
- .
{(—A)SU—AU+VF(U+UT) in Q, 1)
U= '

0 in RV \ Q,

then U = U + Uy is a (second) solution of the system (L2) with U + Uz # Ur.
Therefore, to prove the Theorem [I.2] we only have to show that the system
(@I has a nonzero solution for every T' € R.

Observe that the weak solutions of () are the critical points of the
functional 7 s : Y(£2) — R given by

I)s(U) _CWV,s) /RzN u(z) — u(y)? + |v(z) — ”(9)|2dxdy

2 o =y

1
——/(AU, U)gzdz — F(U 4+ Ur)de,
2 Q Q
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uf‘rvﬁ + &u P 4 & P for every U = (u,v) € R?

iy
and that U = 0 is a critical point for Z s with Z (0) = 0.
Remark 4.1 The nonlinearity F' is (o 4+ 8)-homogeneous, i.e.
F\U) = X*TPR(U), YU € R?, VA > 0.
In particular:
(i) (VEU),U)gz = uF,(U) +vF,(U) = (a4 B)F(U), YU = (u,v) € R?.
(ii) F, and F, are (o + B — 1)-homogeneous.
(iii) There exists K > 0 such that
F (U) < K(Ju|*T?71 4 [v|*tP~1) and
Fo(U) < K (Jul P71 4 fo* 771,

for all U = (u,v) € R%
Since F(U) = F(uy,vy), VU = (u,v) € R?, we deduce that

IVEU)| < K (™7 + 0777

for some constant K > 0.

4.1 Geometry of the functional 7,

In this subsection, we demonstrate that the functional 7, ; satisfies the
geometric structure required by the Linking Theorem (see [25] Theorem 5.3])
when A o < p1 < po < Agy1,s, for some k > 1. In particular, if po < A; s holds,
then the functional satisfies the conditions of the Mountain Pass Theorem.

Since Y(Q) is a Hilbert space, consider the following orthogonal
decomposition Y (Q) = E,” @ E;, where

E]: = Span{(ov <P1,s)7 (‘Pl,sv O)a (07 <P2,S)a (902,55 0)7 ceey (Oa Sﬁk,s); (Sﬁk,s; O)}

and E;" = (E; )%, for 1 < k € N. Note that E;” = (P)? and U € Y (), then
U=U"+U"withU~ € E, andU" € E}}.
Therefore from the variational characterization (24]), we have the following
estimates:
103 > M6l U2y g, for all U € By,

13 < M| U G2y p2, for allU € E; .

Let
S,:=0B,NE}
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and

Q={UeY Q) : U=W+(E, WeE , |[W[|y<r 0<¢<R)E
where E € E;", 0 < p < R and r > 0 will be chosen later so that the following
conditions hold:

i >
U%%,, Ts(U) >0 >0,

max Zy s(U) < ap, with ag < o
Ueso )\15( )— 0, 0 B

S N
Irhs(U) < =857
peg DU < 5

Proposition 4.1 Suppose ) is a smooth bounded domain of RN, a + 8 = 2*
and A < p1 < pio < Agy1,s, for some k € N. Then there exists pg > 0 and a
function a : [0, po] — RT such that

Irs(U) > alp) for all U € S, :=0B,(0)NE;.
Explicitly the maximum value of «(p) is
H2 )& 1
Ak+1,s (1+ 5)%

&= %SN/QS(l - (4.2)

N —2s .
e L ——, where S is the best
k+1,s (1+£) a5

constant for the embedding of X§ in L% and ¢ =: max{¢&;,&}.

and this is assumed in p = S (1 —

Proof Using the fact that (A(U),U)gz < pz|u|?, we obtain

1 H2 1 27
T, (U) > Z|UI2 - 22 U2d——/[
W) = 5 = [P - —= [ et
(v + vre)® (1 uny)S (v + vm)ﬂ dz.

Note that
8 < 52T e tB for all 5,6 > 0 (4.3)

and
[t ufar < [ Eae < SR = 57 . @)

Similarly
2 N R
| o+t < s i (4.5)

Then, by (@3), (@4) and (@3I]), we have

1

M2 9
IhsU)>=(1- U
(2 5 (132 Il

(1+&) N2 (14+&) N 2r
- (5255w + s ).
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Since ¢ =: max{&1, &} > &1, &2, we obtain
1 H2 2 _ (1 "‘5) 2%
Ihhs(U)>=-(1— —— S 2 = ,
As(U) = D) < )\k+1,s> P a—i—ﬁ p a(p)

where p = ||U]|ly. Using a standart calculus argument, we obtain that the
maximum of a(p) is attained in

po = ! N 2 SN/4S ( >
1+ Akt 1,s
2

So, the function « : [0, po] — R* is such that Z, 4(U)
the maximum value is

a(p) for all U € S, and

N
s 12 2s 1
a(po) = — SN/ (1 - ) : 4.6
(pO) N )\k+175 (1 N 5) N;s2s ( )
Therefore, Ty s(U) > a(p)

U € S,. The proof of the proposition is
complete.

for all

|
It is well know (see [12], Theorem 1.1]) that S = S,44 is achieved by

u(z) == k(u? + v — zo|*)” , (4.7)
with k € R\ {0}, > 0 and 7o € RY fixed constants

Equivalently, we see that

_ 2 - _ 2
s— o, [ MEDWOP, [ E@-m)
HGXD\{U} R2N |{E—y|N+2S R2N

dxdy
_ N+2s
lull, 23 = ==l

1

(z)

where u(x) |
L2

. By translation, supose xg

=

= 0 in (@X). Then, the
function v*(z) =7 (ﬁ_—), x € RY | is a solution for the problem
2s
(=A)°u = |u|*72, em RN (4.8)
satisfying

[

As in [31], for every € > 0 we define the family of functions

Ue(z) == et (E) , z € RN
5

then U, is a solution of (L.8) and verify for all € > 0

|Ue(z) — Ue(y)[?
——————dzd
/sz o=y

N
125 (&) = S2s,

- /M U (2) % dedy = S
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Now, take a fixed § > 0 such that Bys C Q. Let n € C°(RY) be a cut-off
function such that 0 <7 <1 in RY, n=1in Bs and n =0 in RN \ Bas, where
B, = B,(0) is the ball centered in origin and with radius r > 0.

Define the family of nonnegative truncated functions

ue(z) := n(2)U.(x) = €RY, (4.9)

and note that u. € Xg.
The following Brezis-Nirenberg estimates for nonlocal setting was proved in
[31] (also see [33]), which are similar to those proved for the local case in [§].

Lemma 4.1 Suppose s € (0,1) and N > 2s, then for € > 0 small enough, the
following estimates hold true,

|U€( ) Ua( )l N/2s Voo
/R2N dedy <S8 +0(e ),

Cse? + 0(eN %) if N > 4s,
/ lue(2)|?de > { Cse*|loge| + O(2%) if N = 4s,
RY CeeVN=25 41 0(e%)  if 25 < N < 4s,

/ Jue ()% da = SN2 1 O(eN),
RN

N-—2s
luel|Lr @y = Oe =),

N-—2s

2% —1 s
||u€||L2* 1(RN):O(E 2 )'

Denote by P_ the ortogonal projection of X0 in B, = span{y1, @2, ..., ok}
and Py the orthogonal projection of X in A} := (B, )*.
Chosing depending on € > 0 the vetorial functlon given by

e =¢é. = (B(Psu.),C(Pyu.)) € B},

where u, is given in (@) and B and C' are given by Remark [Z1]
We will denote Piu. by e. and consequently é. = (Be., Ce.).

Remark 4.2 (i) e. € Af;

(11) ((Bee,Cec), (0,0 r2xr2 = 0 = ((Bes,Ces), (¢;,0)) 252, for all j =
1,...k. Thene=E¢. € E}f.

Hence, the following results was proved in [3], which are similar to those proved
for the local case in [I3].
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Lemma 4.2 For s € (0,1) and N > 2s, then for € > 0 small enough, the
following estimates hold true,

1Pruel s < [uels < SV 4 O(N%),

1Py < QN

3

o*
L2 (Q ||u5||LS2;f (Q)

N—2s
[Pyl < Ce™7,

| Pyl 25 <ce T

L%~ 1(RN

| P_uc ()] <cetE © forzeq. (4.10)

Fix K > 0 and define Q. x = {z € Q: e.(z) = (Pyu.)(z) > K}. By (@I0)
we can deduce
C —2s —2s
e-(0) = (Prus)(0) = ue(0) — Pouc(0) > ——0 =57 _ 0™,
@l 725 (RN)

which implies that Pyu.(0) — oo as € — 0 By the continuity of Pju,., there
exists v > 0 such that B, C Q. g. Therefore, we have the result below.

Lemma 4.3 For s € (0,1) and N > 2s, we have

2 —
||P+u5||L2* oy = el ) + O™,
2% _q 2* 1 N+2s
||P+Ug||L2* 1 Qe k) = ||ua||L52’;—1(Q) +O(5 2 )

1Pyuel | o, o) = luellLr @) + OEY).

To prove the geometric conditions of the Linking Theorem, we need two
results that can be found in [I3] and [I4] for the case when s = 1. The proof is
similar for s € (0,1).

Lemma 4.4 Given u,v € LP(Q) with 2 < p < 2* and u+v > 0 a.e. on a
measurable subset 3 C €1, it holds

‘/(u—l—v)pd;v—/ |u|pd:b—/ of7da §C/(|u|p_1|v|+|u||v|p_1)d:1c
> 3 > >

with a constant C > 0 depending only on p.
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Lemma 4.5 Given (a,b), (u,v) € LP(Q) x L1(Q) with p,q > 2 and p+ q < 2%.
Ifa4+b, u+v >0 ae on a measurable subset ¥ C Q and H(x,y) = |z|P|y|?,
then
’/H(a—ku,b—l—v)dx—/H(u,v)daj—/H(a,b)d:z:’
by by b
< C[/(|a|p_1|b|q|u| +lalP = ol ?ful + [ulP bl al + [ul"~o]*]al) da
by
+/(|a|p_1|v|q_1|b||u|+|u|p|b|q+|u|p|v|q_1|b|)d$
by
+/(|a|p|b|q_1|v| +lal’o]* + uP~H b7 al[v]) dx
by

QI ol + ol Pl ] (1.11)
P

where the constant C > 0 depending only on p + q.
Proof Let us define

Q)= [ [H(a+ Gusb+ o) = H(Gu, o) d
)
Employing the Fundamental Theorem of the Calculus, |h(1) — h(0)] =
1
/ R'(¢) d¢, and consequently
0

/[H(a—l—u,b—i—v)—H(a,b)] dx

1
< [ [ (TH @+ Cub+ o) = VHCuGo)  (w0))se] dode. (112)
0 3

Using the Mean Value Theorem to the function VH(x,y), there exist
61,02 € (0,1) such that

VH(a+ Cu,b+ Cv) — VH(Cu, (v)
= (pla+ CulP=2(a + Cu)lb + Cul? = plCulP2(Cu)|cole
ala + Cul?lb+ Col1=2 (b + Cv) — gl ul?|Cvl2(Cv))
= (po = DI = 6)a+ CulP (1 = 02)b + Cola

)
+pg|(1 = 01)a + Cu)[P~2((1 = O1)a + Cu)|(1 — 01)b + Cu|=(1 — 61)b + ()b,
pal(1 = O2)a + Cu)P72((1 = B2)a + Cu)|(1 — 02)b + (o772 (1 = 02)b + (v)a
|

(g — D)](1 = 02)b + Cvl9=2|(1 — fa)a + <u|pb). (4.13)
Inequality (LI follows by substituting (AI3) in (AIZ) and making some
forward estimations. [ |

The following inequality which is a direct consequence of Young Inequality,
is essential for the proof of Theorem
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*

Lemma 4.6 Ifa,0>1, a4+ =2% and o > 52 , there is p > 2 such that,

each € > 0, the following inequality holds
|s[*[t1% < Celsf* 1 + CeP |t
where C. and C' are positive constants.
Finally we need
Lemma 4.7 Suppose A, B,C and 0 positive numbers. Consider the function

1
P.(s) = 1s?A - %82334—52:590 with s > 0. Then s, = (#&590) =7 s the

mazximum point of ®. and

1

s N 2s
D (s) < D.(s:) = N <%> +0(Y).

Lemma 4.8 If A\ s < 1 < po < Apt1,s, there are constants ro, Ry > 0 and
go > 0 such that, for r > rg, R > Ry and 0 < ¢ < &g, we have

Ihslog < &,
with & > 0 as in Proposition 411
Proof Let 0Q =T'; UT'3; UT'3, where
I'y =BrNE,,
Dy={UeY:U=W-+sé withW € By, ||W|ly =r, 0<s< R},

Is={UeY:U=W+Ré. with W € E; N B,(0)}.

We will show that for each I'; we have 7 ¢|r, < &, for all 1 =1,2,3.
(i) For all U € I'1(C Ey), using (), we infer that

1 pro 1 1 M1
Tn(U) < =||U|? — &= 2=_(1- 2 <o.
a0 < 501 = G5 IIUTR 2( . )||U||Y_o

k,s

(i1) Let U € Ty, then U = W + se. with W = (wi,wz) € E, and
€ := (B(Pyu.),C(Pyu.)) = (Bee,Cec), where the positive constants B and
C' are chosen as in Remark 271

Hence
Ins(U) < % <1 - )f:S) (W[5 + 5_22(32 +C2)||€a||§<g
S 41_ 3 /Q(wl + 8Bee + )5 (wy + sCec + v,4) da
a ai 5 Q(wl + sBee +up) 3 do - aiﬁ 3 Q(wz + 5Cec + ) da.
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Consider the maximum value & of the function a(p) like in (L6, and define

25 GN/2s(1 — M2 5 L
\/ AT e 20
. _ . (4.14)

| sup [|é:[[% [ sup [[é:][}
0<e<1 0<e<1

In order to comply the condition Zy s|r, < &, we distinguish in our analysis two
cases.

First case: If 0 < s < sg.

The expression of 7y s provides the estimate

s s? . .
Ios(U) < =|le]ly < = sup ||ec][3 = a.
2 2 g<e<1

What concludes this case.
Second case: s > sg.
Define

W + (ur,t; vr,t)

A

150 < s <R, Wy =, WEEE}a
Lo x Loe

with K > 0 independent of R.

Then, by (£9)) and (@I0) we have

e(0) = (Pruc)(0) =uc(0) — P_uc(0)
Co _(N-—2s) N—2s
—c 2z —cg 2 — +oo,
[[ai]] 22 (RY)

as € — 0 because N > 2s.
By the continuity of e., we have

Q. = {z€Q:e(x)=(Pyu)(z) > K} #0

for ¢ > 0 small enough. Therefore, by Lemmas [£.4] and @3] for j = 1 and
Zpt = Upy O j = 2 and 2,4 = vy, We have

. a+p - .
/ (&HM) dxz/ |Beg|asdx+/ ‘u
< s Q. Q. S

—c/ <|Be o |t
€
Q. S

a+p8

251
) dz (4.15)

+|Be.|

wWji + Zrt
s
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and

@ B
/ (B,HM) (C,HM) e (4.16)
Q. E} + S +

2/ Bacﬁ|es|a+ﬁdx+/ w1 +Ur,t
Qe Qe

S
—K/ (‘wl + Urt
Qe S

a—1 ’w2 + Upt

wa + Vg P
S

dx

ol ‘wz + v |8 ‘w1 + up g |t
S

|Ce:|”| Be:|

) de

B

|Bee|+

+ |Beg|a71|C’eg|B

A ‘wl + Upt ’wl + Uury
S

+|Be.|

—K/ (‘wl + ure
Qe s

+|Bes|a|CeE|571

—K/ (‘wl + Ut |
Q. s

w2 + Urt
S

-1
_K/(‘M )dm.
Q. s

Then, using the estimates (£I3) and (£I6]), we can see that, for ¢ > 0 small
enough,

|Ce|’~|Be.|+|Be.|*

7»)@;
S

1
|Cee| +

ol ‘wz + Urt

‘wl + Urt |*

|Ce|?

B=1 1wy + ury
S

|Bec|*|Cec| + |C’e€|571

+|Be€|a71

|Ces|) dx

‘wl + U |¢

w2 + Ur,t
S

1 2 2
< — e s
L) < (1= )IWIE + 5 (57 4+ ey

2AB%ﬁ+&B%+&O el

+K

2;-1 1 1
(HeeuLz* oy +leellznan + leellsihs o, + lleclZh o,

+w¢m1m)+wmmlm)+w¢mm>+wm%mg)

Now, for each j € {a, 3, — 1,8 — 1}, there exists C; > 0 such that

< Cjllec:

”eEHLJ(Q ) Lz*—l(ﬂ )

and, by lemma [£.6] for each j € {a + 1,8 + 1}, there exists K; > 0 such that

-1

*
s P
L2§71(QE) +e )7

el oy < K
with p > 2. Therefore, using the above estimate and the Lemmas [£.1] and 3] we
get

o) < 5 (1= 42 )IWIE + e(s),

yS

*

25 * * *
®.(s) = %(B2 + 0S5 — 8'2—*(3“05 +6B% +60%)8% + Ks*0(e%)
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with ¢ = min{N ; 2871)}. Then, applying Lemma 7] we obtain
2 2y o X1V %
1 N 2 s [(B +C )Sﬁ]
In.(U) < =(1- 4 = - + O(e”)
’ 2 A N N 1N—2s
ks [(BQOB +6B% 4+ 52023)55]
2 2\ X
= l(1— a2 )r2+i (B”+C7) e S + O(e?).
2 Ak,s N (BoCP 4 £,B% + £0%) =

Since Ax,s < p1 and € > 0 can be made arbitrarily small, we can choose r > 0 to
be arbitrarily large in the inequality above such that Zy s(U) < 0. This leads to the
conclusion stated in the proposition for U € I's.

(#i7) Let U € T's. It can be expressed by I's definition as U = W + Ré. with
W € E, NB,(0). Analogously to the case (iz), we get

Tou0) < 2 (1= ZL) W + (87 + ) e g
’ -2 Ak,s 2 0
BCP o W1+ Upe \ @ wa + vre \ B
[ (e B e S
2 \“T T BR ), cr ).
5132: o w1 + Upt\ 25 5202: o w2 + Uy g\ 25
— R s ( - 7’) dr — R s ( e 7’) dx.
2 =T TBR )T \“T7 R ), "

Due to the boundedness of the functions W & E N B.(0), ur: and vpy, there
exists k > 0 such that [|w1 + urtlze < k and ||w2 4+ vrt||ze < k. Again, since
e:(0) = Pyu-(0) — oo as € — 0, there exists €9 > 0 such that for all 0 < £ < &,
we have e.(0) > 2k. Then, by the continuity of e. we can find Ry = Ri(¢) > 0 and
n =n(e) > 0 such that |x| > n for all R > R1, where

X = {x €N : e(x)+ 7w1(:c);-;7n,t(x) > 1 and e.(z) + 711}2(:0)8_;7"’5(:0) > 1}.

Then, we find o, Ro > 0 such that for 0 < ¢ < g9 and R > Ro, we have

I)s(U) <0, foral U eTs.

Indeed, let Ry > max{R:, Ro}, where Ry is such that aR% — RZ: < 0, with

NP C: e L - S LI
= Q(Bacﬁ+f132§ +£202§) n ellxg)-

Then, for £ > 0 above and R > Ry we find

1 1 2 2 2 R’ 2
Lu) < 5(1= 3 )IWIE + (B +C%) el

RQ: o R2
—5 B CPIxl - &

5o R?
B%:|x| - & 3

*
s

- —C% x|

*
s

R? a . R
< (B + ) llecllxg — (B°CY +&B% +6£C%)——n <0.

This completes the proof. |
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Lemma 4.9 Let s € (0,1), Ag,s < p1 < pi2 < Agg1,s and N > 6s. Then we have the
following estimate

max 2s
Q 28 N

Proof: Let € < ¢ fixed that the linking theorem geometry holds. For W + sé: € Q,
we have

. 1 M1 2 2L e H1 25 2
TeWtse) < 5(1= LR W + Sl - B slle ey,
2 Mo 2 2

—/ F(w+ sé+ Ur)dz.
Q

Let so be defined as in (£I4).
First case: If 0 < s < s¢. Arguing as in the proof of Lemma [£.8] and bearing in
mind ([@2)), we can see that

. $2 . s2 o2 N s 1 N
Ins(W+se:) < olleclly < < sup [lec]ly =4 < o ——Fx=-5%. (4.17)
2 2 p<e<1 N (1+6) =
Now, by Lemma [2I] and Remark 21l we get
* * N—2s
s _ BCraBT o) oy
B2+ )
2; N;s2s
1+ [(324'02)?] S = (146 =" 52
S 1+ 5s sS — 1+ 2s 357
(B? +C2)%

and consequently by the estimate ([@I7]), we conclude that

Tou(W + s6.) < 252
A, s See N s .

Second case: Let s > so. As in the proof of Lemma L8] from (£I5), Lemma [41]
and Lemma [£3] we derive

R 1 R R R
ToaW i) < g3 (Il = mlllitecs) = [ Flw+se+ U)o,
Q
On the other hand,

F(w+sé+Ur) = 1 [(SB)a (eg +

w1 + Ut )
23

sB

)is +§2(SC’)2; (eS + %C’UM)?]

Wa + Vpt )5

“ B
(sC) (eg + - .

+

+1(sB)% (e +

Using previous arguments, we get

In,s(W + se.) < P (s),
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where

1o/ . 2 o2
Oe(s) = s (lle=lly — pallé:llz2xr2)

2
- (BTGB + eCPllealy; )+ KsTO()

L2*
with ¢ := min { NEQS , p} > 2s (because N > 6s and p > 2).

Applying Lemma 7] to the function ®., we have by Lemmas E1] and 3] and
by the choice of B and C,

Dc(s) < Du(se)
N
5 [(BZ + CQ)S% + O(EN72S) _ /’L1062s + O(EN72S)i| 2s
q
< N N—2s +O(5 )
[(BoC? + 6182 +60%)8% +0(eN) + O(eV-21)]
S (32 +Cz) Q_Z\i M1 2
—= e — —0(™) + O(eY).
N (B2CP + £, B% + £0%) N

Since g > 2s, taking € > 0 sufficiently small, we obtain

N
S gas
S

I s(W +séc) < N

4.2 The Palais-Smale condition for the functional 7,

In this subsection we discuss a compactness property for the functional Z s, given by
the Palais-Smale condition.

Lemma 4.10 Ifk > 0 and A\i,s < p1 < pt2 < Apt1,s- Then every (PS). sequence of
Ix,s ts bounded.

Proof The Fréchet derivative of the functional 7, s is given by

T4 o 0) i) (w0 () — [

(A(u,v), (¢, %))g2dr — / (VF(u+ ur,v+vr), (¢, ¢))g2dz,
Q Q

for every (u,v), (¢,¢) € Y(Q).

Let (Un) C Y(Q2) be a (PS)c-sequence, i.e. satisfying Zx s(Un) = ¢+ o(1) and
(T3,s(Un), ¥) = o(1)[[ ¥y, V¥ = (,€) € Y(Q).

Therefore

Tas(Un) — %z;,s(Un)Un - %/Q(VF(U,I 4 Ur), Un)geda — /Q F(Uy + Ur)da

< c+o(1) +o(1)|Un]ly- (4.18)
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From (I8), we get
3 | (VP +U). Usads = [ P+ Uris
=3 [ (o5 0057 b 0+l 005
+- f_ 5 (tn + tr) T (Vn 4+ vre) T o +€2(vn + v,«,t)?ﬁﬁflvn) dx
s j_ 3 /g ((Un )T (Un 4 vre) T+ €1 (un + ur) TP+ E2(vn + vr,t)‘frﬁ) dx
(4.19)
<c+o(l)+o)||Un|ly.
Now note that
/Q ((un + ur,t)ifl(fun + vm)iun) dx
= /Q ((un + ) S (un + ) 4 (00 + vr,t)i) dz (4.20)
- /Q ((un + )T (on + v,a,t)fur,t) dz
and
/Q ((un + ur,t)?ﬁﬁflun) dx (4.21)
= / (un +Ur,t)i+6d$ - / (un —|—ur,t)i+571ur,tdx.
Q o

Substituting (@20), [@21]) and expressions similar to these in ([LI9)), yields that

/Q(Un + Ur,t)i(vn + vr,t)idxv
/ (un +ure) T P da, 3 < c4o0(1) + o(1)|Unlly- (4.22)
Q

/(vn + vm)iﬁﬁd:c
Q

Now, using (ZI)) and that ¥ = U = (uf,v}) € E}f, we obtain

(1= 22 ) 1o i
k+1,s

IN

mﬁ%—ém@nﬁmm

= /(VF(Un +Ur), U pzdz — (Z) o (Un), (UF)) (4.23)
Q

A

/ Fy(Un + Ur)|u;f |dz + / Fy(Un + Ur) v |dz + C| UL |y
Q Q
Hence, by Remark [£1] (i4¢), there exists a constant K > 0 such that

FU(U) < K ((U)i+ﬁ71 + (U)iJrﬁ*l)

F,(U) < K ((u)fﬁ*l + (u)fﬁ*l) .
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Then
/QFu(Un + Ur)|ut|dz + /Q Fy(Un + Ur)|v,! |d
SK/Q ((un + uT)?‘ﬁB*l + (vn + vT)?ﬁﬁ*l) [l |d
+K/Q ((un + uT)i%B*1 + (vn + UT)TL*BJ) |fu7f|d:c.

o+
a+pB—1

and using Holder’s inequality with p = and ¢ = a + B, Young’s inequality, we

deduce that
/ Fu(Un 4 Up)|u)|dz + / Fo(Un + Ur)|vyt |da
Q Q

<K {elluf 2+ Ce [l (un +ur)+ 1257 + llwn +vr) 1255 77|}

L2 L2

L2 L2

R {ellod 122 + O [ un +ur) e 257 + 1 (n + o) 1257 ).
Usin, , in view of the embedding X (Q2) — L" (), V r < 2%, we get

/ Fou(Up + Up)|u) |da +/ Fy(Un + Ur) |} |de
Q Q

N+2s
N

<eCUL Y + C2Ce + den|[Unlly
By ([{23)), taking ¢ > 0 small enough, we conclude that
T2 N+2s +
[Un Iy < Cs+ Cal|Unlly ™+ C5[|Uy Iy (4.24)
Analogously, the following estimate is valid
_ 2 N+2s +
[Un lly < Cs+ Crl|Unlly ™ 4 CsllUn Iy (4.25)
Using the estimates (£24) and ([@25]), we get

9 N+2s
[Unlly <C+ClUnlly ™+ CllUn]ly-

Since N+2s

< 2, we conclude that (U,) is bounded in Y (Q). [ ]

Lemma 4.11 Ifk >0 and Ai,s < pi1 < p2 < Agt1,s, then the functional Iy s satisfies

N
the (PS) condition at level ¢ with ¢ < %535.

Proof Let (Un) C Y(Q) be a sequence satisfying
Trs(Un) = ¢ and T4 ,(U,) — 0 in the dual space Y (),

as n — oo. By Lemma HI0 we have that (U,) is bounded. Hence passing to a
subsequence, we may suppose that

Un = U inY(Q),
U, — U in LP(Q) x LP(Q), for all p € [1,25), (4.26)

U, = U ae inRY.
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Hence, U is s weak solution to

{(—Z’)SU—AU+VF(U+UT) in Q, wn
U=0 in RV \ '

that is, for any ¥ € Y(Q) it holds

(U, W)y — /Q (AU, W)ga = /Q (VE(U + Ur), U)gada. (4.28)
In particular, taking ¥ = U in ([28]),we get

iz - /Q(AU, U)geda :/Q(VF(U+UT),U)dex (4.29)
Note that by @2T) ((Z3 ,(U),U) = 0) and @29) we obtain

Ty (U) = % /Q(VF(U +Ur), U)geda — /Q F(U + Ur)dz > 0. (4.30)

By applying the Brezis-Lieb Lemma [7], it follows that

2 2% 2
H(Un + UT)+||L52; N H(Un - U)+ Lbzg « L2% + ”(U + UT)+||L2; «L2% + 0(1)
1Un = U5 = U5 = U3 + 0(1) (4.31)

and by applying the Brezis-Lieb Lemma for homogeneous functions [15], we conclude
that

/ F(Un + Ur)dz = / F(U + Ur)de + / F(Un — U)dz + o1). (4.32)
Q Q Q

Also, we have

/ (VE(Un + Ur), Un + Ur)pada — / (VEU + Ur), U + Ur)gads
Q Q

=(a+ B)/ F(Un — U)dx. (4.33)
Q
Then, by using ([@26), (£31)) and [@33)), we deduce

Tna(Un) = gUn ~ Ul +To(U) - /Q F(Un— U)dz +o0(1).  (4.34)
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On the other hand, by using ([@26]), (@29) and (£31)) and [@32]) we have
(T (Un), Un) = U]l — /Q(AUn,Un)dex—/Q(VF(Un 4 Up), Un)sedz
= [lUn = UI¥ + [U|* + o(1)] — VQ(AU, U)gzdx + 0(1)]

~ [(VFW. 4 Un).Us+ Unheada + [ (VP +Ur). Un)ioda

0~ Ul + 101 - [ (40 U)sade]| - [(@+5) [ PO~ U)as

+ /(VF(U+UT),U+UT)R2dx} +/(VF(Un+UT),UT)R2dx+o(1)
Q Q

:HUn — UHY + -/Q(VF(U-"-UT)7U)R2dJJ:| — |:(Oé+ﬂ)/QF(Un —U)dl’
+/(VF(U+UT)7U)R2d1}+/(VF(U+UT)7UT)R2d$:| —‘r/(VF(Un+UT)7UT)R2d$+O(1)
Q Q Q

— U — U2 - (a +ﬁ)/

F(Un — U)dax + / (VF(U + Ur), Ur)gada
Q Q

+/(VF(Un+UT),UT)R2dm+o(1).
Q

Taking into account that (Z} ,(Un),Un) — 0 and /(VF(Un + Ur),Ur)gedr —
Q

/(VF(U +Ur),Ur)g2dx as n — oo, we deduce
Q

Un = U|2 = (a+ B) /Q F(Un — U)dz + o(1). (4.35)

Let
L:= lim ||U, - U]} >0.
n— o0

If L =0, then Uy, — U in Y(Q) as n — oo.
Let L > 0. Then, by the definition of S,

Wi
2
a+pB
( [l ol + aful + sz|v|a+ﬁdx)
Q

and (433)), we can infer

Ss <

for all U = (u,v) # (0,0).

2
a+pB
U, — U3 > Ss </Q(un —u)% (vn — v)i + &1 (un — u)‘fﬁ + & (vn — v)iwdx)

2
a+B
=5 <(a + 5)/ F(U, — U)dx>
Q
which gives

N-—2s N
L>S,L ~ | ie L>S2. (4.36)
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Now, from (£30), (£34), (£359), (£38) we get

5 oL 2s L 5 L&
NSS S(N—2S>ESC<NSS )
which contradiction. |
Proof of Theorem In the case where A\g,s < p1 < p2 < Agy1,s occurs, the
Proposition 1] and Lemma [£.8 with ¢ > 0 small enough, ensure that the functional
T»,s satisfies the geometric structure required by the Linking Theorem. Therefore,
it follows from the Linking Theorem without the Palais-Smale condition, that there
exists a sequence (Un) C Y (Q) satisfying T,s(Un) — ¢ and I} ,(Un) — 0 in Y (),
and by Lemma [£3] the critical level satisfies

— i 5 o35
0<c:= 361% SE%IA,S(V(U)) < NSS ,
where T' := {7y € C°(Q,Y(Q)) : v = Id on dQ}. By Lemma EI0 (U,) is bounded in
Y (2) and consequently the Lemma ETT] ensures that U, — U in Y ().
If0 = Xo,p < p1 < p2 < A1y, to show that the functional 7y s satisfies the geometrical
conditions of the Mountain Pass Theorem, it is enough to take the finite dimensional
subspace E~ = {(0,0)} and to apply the Proposition B with E;" = Y (Q) such that
R|lé:|ly > p with R > 0 sufficient large to ensure that Zx s(Reé:) < 0. The (PS).
condition is guaranteed by making k = 0 in the Lemmas [£10] and £ ITl Thus, in both
cases, there exists a non-trivial solution U for the problem (@I]). By [23] Remark 4.1,
it follows that U+ # 0 and therefore, Ur and Ur + U are distinct solutions for the

problem (L2)). ]

5 The resonant case

5.1 Proof of Theorem [1.3

In this subsection we discuss a compactness property for the functional Z s, given by
the Palais-Smale condition for this case.

Lemma 5.1 If N > 6s and A\i,s = p1 < p2 < Apt1,s for k > 1, the functional Zs
satisfies the (PS) condition.

Proof We follow the notations of the previous proof.
Let U, € Y(Q) such that Zs(Up) — c and Z;(Un) — 0 in the dual space Y (2)". Writing
Y(Q) = E_,® E]j ® Zx, consequently we have

Un = U; + UI =+ ﬂnYn = Wn + /Bnyru

where U, € E,_,, Ur e E,:r = (E,;)L and Y, € Zy = span{(pk,s,0), (0, pr,s)} with
[Yally = 1.
Using similar arguments as in ([@.24]) and (£.25]), we obtain

IWall¥ < C+ ClUIT + ClWally, (5.1)

where 7 = 2£22 We can assume [|Un|ly > 1 (if [|Un|ly < 1, the sequence (U,) is
bounded in Y (€2)). Then, since |Un|ly < |[Wh|ly + |Brl, from (EII), we have

IWall¥ < CrlWally + 1Ba])™ + Cl[Wally (5.2)
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If B, is bounded, since 7 < 2, by ([B.2) we conclude that (U,) is bounded in Y (Q).
Otherwise, we may assume 3, — +00, therefore, from (5.2)), it follows that

2 /22
H% SCl{(I\Wn|ly+lﬂnl) }+CL Wa
nlly

B

2
1 W, ||7? 1 1 || W,
SO |=0—|| +55—5¢ +C= |~
1{|/3n|“/2 Ba v |/3n|lf/2} Bu || Bn

Using again the fact that 7/2 < 1, the above estimate yields that

Y

Y
2

<G
Y

W ||

Bn

Wn

+Cs B,

Y

+ C4
Y

‘%
Br

— 0.
Y

Therefore, possibly up to a subsequence, W, /B, — 0 a.e. in Q and strongly in
LY(Q) x LY(Q), 1 < qg <25 Y, = Yy € Z; ae. in Q and strongly in Y(Q) and
L) x L1(Q), 1 < ¢ < 2;.

Now, taking 8,Y, € Zj as test function, we get

n

and consequently the sequence {%} is bounded in Y (2) and by (E3), %

Zo(Un)Yn = Bn (||Yn||§/ - / (AK“Yn)de:c) - / (VF(Un + Ur),Yn)gedz.
Q Q

Since (U,) is a (PS)-sequence and —tp— (||Yn||§, —/(AYn,Yn)dex> — 0, as
Q

) (Bn) N—2s
n — 0o, we obtain that

1, 1
o) =~ LU (V) = = [ (VF(Un+ Un), Yo )uad
(/B7L)N72s (6n)N725 Q
Now, from Remark [£1] (i7),
/(VF(W)H)RM:C S - / (VF(Un + Ur), Yo)gzdz — 0. (5.4)
Q n Q

(B) N5

On the other hand, since U,, = Wy, +,Y,, we have that % — Yy in LY(Q) x LY(Q)

for all 1 < ¢ < 2} and a.e in Q. So, by the Dominated Convergence Theorem and by
B4, it follows that

/Q(VF(%),Y”)RMQ: - /Q(VF(YO),YO)dex -0

and from Remark [47] (¢), we concluded that / F(Yo)dz = 0.

Q
Finally, using the notation Yo = (y?,%9), it follows that (y¥)+ = 0 = (y9)+,
contradicting ||Yo|ly = 1 and Yy € Zy with k& > 1, which ensures that at least one of
the functions is not null and changes sign. Thus (U,) is bounded and using the fact
that N > 6s, as in the proof of Lemmas [£9] and @Il we have that (U,) admits a
convergent subsequence. ]
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5.2 Geometry in resonant case

In this subsection, we demonstrate that the functional Z, , satisfies the geometric
structure required by the Linking Theorem in resonant case, that is, we obtain the
following result.

Proposition 5.1 Suppose Q is a smooth bounded domain of RN, a + 8 = 2 and
Ak,s = p1 < p2 < Agy1,s for some k > 1. Then

i) there exist o, p > 0 such that I,(U) > o for all U € E;f with |U||ly = p,
i) there exists E € E_]j and R > 0 such that R||E|ly > p and Zs(U) < 0, for all
U € 0Q, where Q = (BRNE, ) @0, R|E.

Proof i) Let U = (u,v) € E;, using the fact that ur,vr < 0, estimate |u|*|v]® <
[u|*T# 4 |v|**? and the fractional imbedding X — L*™# by @), we have

1 «@ «@
L) > IV~ E 0 = C [ (™ + ol

> (1= 2wk - e,
k+1,s
where C' > 0 is a constant. Since p2 < Agy1,s and a+ > 2, for [|U|ly = p small
enough, we get Z,(U) > o.
ii) Now consider the following decomposition 0Q =11 UIl2UTI's, where
N ={UeY(Q); U=U1+rE, withU: € E,_, |[Ui|ly =R, 0<r <R},
Mo ={UeY(Q); U=U1+RE, withU; € E__, ||Ui|ly < R},
I's = Br(0) N E, .
Let us show that on each set I'; we have Zg |Fi§ 0,7:=1,2,3.
Choose FE as follows:
Fixed Ry > p, take E = (e1,e2) € E; = (E;)* (with e; > 0, i = 1,2) satisfying
MBI} < (% - 1)(527 where § > 0 is a constant to be obtained forward.
(I1) e1 > 2(K+ %) and ez > 2<K+ %) a.e. in some C C Q with |C| > 0,
where K > 0 satisfies ||V||(coy2 < K||V|ly, forall V € E .
Note that this choice is possible because (E)® has unbounded functions; £, has
finite dimension and K =sup |y, =1 [[Vl(co)z.
VeEp
Estimates on I'y: For U = U; +rE € I'1, we consider U; = Rﬁl € I, with
|Ui]|z = 1 and we set Uy = 1Y + caEy, where Ey, € Zy = span{(¢k.s,0), (0, o)}
and Y € E,_, with ||Y|ly = 1. Then,

1 r?
L) < I+ FIER = G0 — [ PO+ Unde

R? ~ R? R? ~
< I + B — B0y — [ U+ Ur)d
R? R? R?
= aY + Bl + B3 - B ey + B,
2 2 (L?)
- F(U + Ur)dz
RQZ 2

R
= S AUYIE = mllYles2y) + S EUBNY = mll Bellf2)2)

R? 9
+ THE”Y_ F(U + Ur)dz.
Q
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Consequently
R? R?
L) < T (1= LW + TR - [ POt Ui 6
2 Ak—1,s 2 Q
Now using the notation (71 = (u1,n1) = (ay1 + cze’f,clyg + czeg), where

Y = (y1,42) € E,_; N By and E = (eieé) € Zi N By, we will prove that there
exist 6 > 0 and 7 > 0 such that

max { max{ciy; + czef; |er| <8} > > 0.
i=1, Q

Indeed, by contradiction, assume that there exist sequences (c7),(cy) C R and

Y, = (yT,y2) C Y(Q) with ||Y,|ly = 1 such that ¢ — 0, |cz| = /1 — (c}')? = 1 and

max{max{clyl +czel}} — 0, asn — oo.

i=1,2
Therefore, ¢y — 0 and c3e’ — eF and consequently

max { max e} (:c)} =0.
Q

i=1,2

Hence, we conclude that ef < 0 and e < 0 in Q, which is a contradiction, because
k> 1, By = (e¥,e5) € Z), and ||E|ly = 1 imply that at least one of the coordinate
functions must change sign.

So, we conclude that there exist § > 0, 7 > 0 such that

max{m_axﬂl; maxv1 : |ei] < 5} >n>0,VU =caY+ewE, € By with |U]ly = 1.
Q Q

Denoting Q4 = {:c €Q: (u1)(x) > n/2 and (v1)(x) > 7]/2}. By equicontinuity of

the functions (71, we have that [Q4| > v > 0, Vﬁl € E, N By and |c1] < 6.
Moreover

UTJSC) > — ||UT;:|JCO > —g and UTIE_;C) > — HUT;J‘CO > —g, V R > Ry sufficiently large.
Then, since e1,e2 > 0 in €2,
&1 a+/3/ up\ot+s
F(U+Ur)dz > —S R (@ +22)" d
Jpwsunis > w5 TR g

e )
OR&+B[/Q+ (u1 o a+5 / 51 a+6dx]
> o[ [ (Z)”Bd . (E)Md ]

+8

> CrR(1)" 0y = ORY,

Y

for all R sufficiently large. Thus, from (53] we can conclude that there exists R1 > 0
such that

R2 2 H1 a+3
J(U) < — _ -
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for all R > R;.
On the other hand, if |c1| > § > 0, by the choose of E, we get

R? R?
L) < -5d(5-1)+ SIER

- 2 ! )\kfl,s

R? 2 H1 2
< S [(E—-y)-EiR] <o
< [P 1E1}] <

Estimates on ['2: For U = U; + RE € I'2, we have

1 R?
I.(Uy + RE) < §||U1H§/(1 - A”—l) + S 1Bl —/ F(Uy + RE + Ur)dz.
k,s Q

Since Ai,s = p1,
R*
Zs(Us + RE) < 7|\E||y — | F(Ui + RE + Ur)dz. (5.6)
Q
Now, to estimate the last integral, note that, if Uy = (u1, u2),

/ F(Ur + RE + Ur)da
Q

1 atp w1 + ur\*th a*B/
> -
> a—|—,8[£1R /Q (61—|— i )7L dr + &R ;

u2 + vr )Q+de]

(62 + R .

for R > Ro, and by (II) each integral on the right can be estimated as follows

: a+p . a+8
/ (6i + wirur +wT) de > / (C‘i - —HUZ”CO + ”wT”CO) dx
Q R + Q R +

= /Q (ei - (K+ %))iﬂida@
> /C <K+ %)aﬂdm - <K+ %)MBWL

fori=1,2 and wr € {ur , vr}.
Therefore, by (5.6) and by above estimates,

ur + UT)ade

R? o
IS(Ul + RE) < —HEH% —caR +5/ (61 +
2 Q R +

a+p 2
- CZRO‘”/ (e2+22 + ) < BB - crot?,
Q R =+ 2

Since a + 8 > 2, for R > Ro we have Z,(U) < 0, for all U € T's.

Estimates on I's: For U € I's, it follows the estimate

12 2 1 M1 2
L) < 510 — G0 < 5 (1= 55 ) WUl =0,

Therefore, for all R > Ry > 0, follows that Z,(U) < 0 for all U € 9Q, concluding
the desired result. |

Proof of Theorem [1.3l

With the previous results, we conclude the proof of Theorem [L[3] by a direct
application of the Linking Theorem and arguing as in proof of Theorem [[.2] to obtain
two distinct solutions for the problem (2. ]
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