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On the existence and uniqueness of weak solutions

to elliptic equations with a singular drift
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Abstract

In this paper we study the Dirichlet problem for a scalar elliptic equation in a
bounded Lipschitz domain Ω ⊂ R

3 with a singular drift of the form b0 = b− α x′

|x′|2

where x′ = (x1, x2, 0), α ∈ R is a parameter and b is a divergence free vector field
having essentially the same regularity as the potential part of the drift. Such drifts
naturally arise in the theory of axially symmetric solutions to the Navier-Stokes
equations. For α < 0 the divergence of such drifts is positive which potentially can
ruin the uniqueness of solutions. Nevertheless, for α < 0 we prove existence and
Hölder continuity of a unique weak solution which vanishes on the axis Γ := { x ∈
R
3 : |x′| = 0 }.

1 Introduction and Main Results

Assume Ω ⊂ R
3 is a bounded domain with the Lipschitz boundary ∂Ω. Without

loss of generality we can assume Ω contains the origin. We consider the following
boundary value problem:

{

−∆u+ b0 · ∇u = − div f in Ω,

u|∂Ω = 0.
(1.1)

Here u : Ω → R is unknown, b0 : Ω → R
3 and f : Ω → R

3 are given functions.
In this paper we study the problem (1.1) for the drift b0 of a special form. Our

motivating example is

b0(x) = −α
x′

|x′|2
, x′ = (x1, x2, 0), α ∈ R (1.2)

where α ∈ R is a parameter. Clearly, in this case the drift does not belong to L2(Ω),
so instead we assume that b0 belongs to some critical weak Morrey space

b0 ∈ L2,1
w (Ω), (1.3)
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where Lp,λ
w (Ω) is the weak Morrey space equipped with the quasinorm

‖b0‖Lp,λ
w (Ω)

:= sup
x0∈Ω

sup
r<1

r−
λ
p ‖b0‖Lp,w(Br(x0)∩Ω)

and Lp,w(Ω) is the weak Lebesgue space equipped with the quasinorm

‖b0‖Lp,w(Ω) := sup
s>0

s |{ x ∈ Ω : |b0(x)| > s }|
1

p . (1.4)

We define the bilinear form B[u, η] by

B[u, η] :=

∫

Ω

η b0 · ∇u dx. (1.5)

Note that for b0 satisfying (1.3) the bilinear form (1.5) generally speaking is not
well-defined for u ∈ W 1

2 (Ω) where we denote by W k
p (Ω) the standard Sobolev space,

see notation at the end of this section. Nevertheless, B[u, η] is well-defined at least
for u ∈ W 1

p (Ω) with p > 2 and η ∈ L 2p
p−2

(Ω). So, instead of the standard notion of

weak solutions from the energy class W 1
2 (Ω) we introduce the definition of p-weak

solutions to the problem (1.1), see also the related definitions in [15], [18], [23]:

Definition 1.1. Assume p > 2, b0 ∈ Lp′(Ω), p
′ = p

p−1 , and f ∈ L1(Ω). We say u

is a p-weak solution to the problem (1.1) if u ∈
◦
W 1

p(Ω) and u satisfies the identity

∫

Ω

∇u · ∇η dx + B[u, η] =

∫

Ω

f · ∇η dx, ∀ η ∈ C∞
0 (Ω). (1.6)

If b ∈ L2(Ω) and u ∈
◦
W 1

2(Ω) satisfy (1.6) then we call u a weak solution to the
problem (1.1). Obviously, in this case p-weak solutions are some subclass of weak
solutions.

Note that if u is a weak or a p-weak solution to (1.1) and f ∈ L2(Ω) then by
density arguments we can extend the class of test functions in (1.6) from η ∈ C∞

0 (Ω)

to all functions η ∈
◦
W 1

2(Ω) ∩L∞(Ω). We can consider two special cases of the drift
b0:

div b0 ≤ 0 in D′(Ω), (1.7)

or
div b0 ≥ 0 in D′(Ω), (1.8)

where we denote by D′(Ω) the space of distibutions on Ω. The principal difference
between the cases (1.7) and (1.8) is due to the fact that under the assumption
(1.7) the quadratic form B[u, u] provides (at least, formally) a positive support to
the quadratic form of the elliptic operator in (1.1), while in the case of (1.8) the
quadratic form B[u, u] is non-positive and hence it “shifts” the operator to the
“spectral area”. For example, it is well-known that in the case (1.8) the uniqueness
for the problem (1.1) can be violated even for smooth solutions. Indeed, the function
u(x) = c(1− |x|2) is a solution to the problem (1.1) in the unite ball Ω = {x ∈ R

n :
|x| < 1 } corresponding to b0(x) = n x

|x|2
with b0 ∈ Ln,w(Ω) satisfying (1.8), see also

the discussion in [6], [12].
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The case (1.7) under the assumption (1.3) was studied in [7] (see also [6] for the
2D case). In this paper we focus on the case (1.8) which is much more subtle and
for now we are not able to treat it in full generality. So, we restrict ourselves to the
drifts with the potential part of some specific form. Namely, we assume that

b0(x) = b(x) + α
x′

|x′|2
, (1.9)

where b : Ω → R
3 satisfies the divergence-free condition (in the sense of distribu-

tions)
div b = 0 in D′(Ω). (1.10)

Note that from (1.3) we obtain

b ∈ L2,1
w (Ω). (1.11)

The relation (1.9) can be viewed as the Helmogoltz decomposition of the vector field
b0

b0 = b+ α∇h a.e. in Ω, (1.12)

where the potential part of the drift h : Ω → R is specified by

h(x) = ln
1

|x′|
. (1.13)

In this case we have

−∆h = 2π δΓ in D′(Ω), Γ = {x ∈ Ω̄ : x′ = 0 }, (1.14)

where δΓ is the delta-function concentrated on Γ, i.e.

〈δΓ, ϕ〉 :=

∫

Γ

ϕ(x) dlx, ∀ϕ ∈ C∞
0 (R3).

Certainly, in the case of (1.9) the identity (1.6) reduces to
∫

Ω

∇u · (∇η+ bη) dx + 2π α

∫

Γ

u(x)η(x) dlx =

∫

Ω

f ·∇η dx, ∀ η ∈ C∞
0 (Ω). (1.15)

Note that for u ∈ W 1
p (Ω) with p > 2 the trace u|Γ of u on Γ satisfies

u|Γ ∈ W
1− 2

p
p (Γ), (1.16)

where W s
p (Γ), s > 0, is the Slobodetskii-Sobolev space, see, for example, [2]. So, for

p-weak solutions in the sense of Definition 1.1 the second term in the left-hand side
of (1.15) is well-defined. Note also that the condition (1.8) corresponds to α ≤ 0 in
(1.9) and (1.15).

The drift of type (1.9) plays an important role in the theory of axially symmetric
solutions to the Navier-Stokes equations, see, for example, [19], [30], [31], [32], [33],
[35], [38]. In the axially symmetric case the Navier-Stokes system can reduced to
the scalar equation

∂tu−∆u+
(

v − α
x′

|x′|2

)

· ∇u = 0 in R
3 × (0, T ), (1.17)
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where v = v(x, t) is the divergence-free velocity field and u = u(x, t) is some auxiliary
scalar function. For example, for axially symmetric solutions without swirl (i.e. if
v(x, t) = vr(r, z, t)er + vz(r, z, t)ez where er, eϕ, ez is the standard cylindrical basis)
the equation (1.17) is satisfied for α = 2 and u =

ωϕ

r , where ωϕ := vr,z − vz,r and
r = |x′|. In the case of general axially symmetric solutions v(x, t) = vr(r, z, t)er +
vϕ(r, z, t)eϕ + vz(r, z, t)ez the equation (1.17) holds for α = −2 and u = rvϕ.

It is well-known in the Navier-Stokes theory (see [19], [30], [33], [35], [38]) that
while in the case α > 0 some results like Liouville-type theorems assume no special
conditions on the solutions u to the equation (1.17) besides a proper decay of the
drift v, the analogues results in the case α < 0 require the additional condition
u|Γ = 0. Our equation (1.1) under the assumption (1.9) can be considered as the
elliptic model for the general equation (1.17). The main goals of the present paper is
to investigate the equation (1.17) from the point of view of the “general theory” (i.e.
without the assumption on the axial symmetry of u and other specific properties
of solutions to the Navier-Stokes equations). In particular, we would like to clarify
the role which the condition u|Γ = 0 plays in the theory. On the other hand, our
present contribution can be viewed as a 3D extension of the results obtained earlier
in [6] in the 2D case.

The main result the present paper are the following two theorems:

Theorem 1.1. Assume Ω ⊂ R
3 is a bounded Lipschitz domain containing the

origin, b0 is given by (1.9) with α < 0, b satisfies (1.10), (1.11) and f ∈ Lq(Ω) with
q > 3. Then every p–weak solution to the problem (1.1) satisfying the condition

u|Γ = 0 (1.18)

is Hölder continuous. Namely, there exists µ ∈ (0, 1) depending only on q, α,
‖b‖L2,1

w (Ω) and the Lipschitz constant of ∂Ω such that if for some p > 2 a function

u is a p–weak solution to the problem (1.1) corresponding to the right-hand side
f ∈ Lq(Ω) and satisfying the condition (1.18) in the sense of traces then u is Hölder
continuous on Ω̄ with the exponent µ and the estimate

‖u‖Cµ(Ω̄) ≤ c ‖f‖Lq(Ω), (1.19)

holds with the constant c > 0 depending only on Ω, α, q, ‖b‖L2,1
w (Ω) and the Lipschitz

constant of ∂Ω.

We emphasize that the Hölder exponent µ in Theorem 1.1 does not depend on
p, so in this theorem we need the assumption p > 2 only to have the trace in (1.18)
to be well-defined.

Theorem 1.2. Assume Ω ⊂ R
3 is a bounded Lipschitz domain containing the

origin, b0 is given by (1.9) with α < 0, b satisfies (1.10), (1.11) and assume q > 3.
Then there exists p > 2 depending only on α, q, ‖b‖L2,1

w (Ω) and the Lipschitz constant

of ∂Ω such that for any f ∈ Lq(Ω) there exists a unique p-weak solution u to the
problem (1.1) satisfying the condition (1.18) Moreover, this solution satisfies the
estimate

‖u‖W 1
p (Ω) ≤ c ‖f‖Lq(Ω), (1.20)

with a constant c > 0 depending only on Ω, α, q, ‖b‖L2,1
w (Ω) and the Lipschitz

constant of ∂Ω.
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Note that the condition (1.18) is essential for the uniqueness in Theorem 1.2,
see the example of non-uniqueness for the Dirichlet problem in 2D case, for exam-
ple, in [6]. Note also that for sufficiently regular drift b0 the uniqueness for the
Dirichlet problem (1.1) holds even without the condition (1.18) as it follows from
the maximum principle for the problem (1.1), see, for example, [12] for the further
discussion.

So, our main message is: if the drift b0 in (1.1) is singular then the “bad” sign
of its divergence (1.8) can ruin the uniqueness for the problem (1.1). But if the
drift is singular along a particular curve Γ (and the singular part of the drift is
harmonic away from this curve) then the additional condition (1.18) (compensating
the singularity of the drift) provides the existence and uniqueness in the class of
p-weak solutions as well as guarantees some other “good” properties of solutions
such as the Hölder continuity in Theorem 1.1 (see also the Liouville property in
[19] and [28]). From our point of view the most interesting result in Theorem 1.2 is
the existence of solutions satisfying the condition (1.18) as their uniqueness follows
directly from the energy identity.

There are many papers devoted to the investigation of the problem (1.1) in the
case of divergence free drift, [1], [9], [11], [12], [13], [26], [27], [28], [34], [36], [41],
[42] and references there. Papers devoted to the non-divergence free drifts are not
so numerous (see [3], [4], [6], [15], [16], [17], [18], [20], [21], [22], [23], [24], [28] for
the references). Our present contribution can be viewed as a 3D analogue of the
results obtained earlier in [6] in the 2D case.

Our paper is organized as follows. In Section 2 we introduce some auxiliary
results and derive the estimates of the bilinear form which are based on Fefferman
[10] and Chiarenza and Frasca [8] inequalities. In Section 3 we prove a priori global
boundedness of p–weak solutions to the problem (1.1) satisfying the condition (1.18).
Note that this result holds for a supercritical drift b, but it is heavily based on the
boundary conditions in (1.1) and has not its analogue in the local setting, see the
discussion in [12]. In Section 4 we adopt the De Giorgi technique to investigation
of the problem with the singular drift of type (1.9). The basic assumption which
allows us to use the De Giorgi technique in more or less standard way is the density
condition (4.2). To show the validity of this condition for the points on the singular
curve Γ we follow the method developed in [5], see also [38]. In Section 5 we prove
Theorem 1.1. Finally, in Section 6 we prove Theorem 1.2.

In the paper we use the following notation. For any a, b ∈ R
n we denote by

a · b = akbk their scalar product in R
n. Repeated indexes assume the summation

from 1 to n. An index after comma means partial derivative with respect to xk, i.e.
f,k := ∂f

∂xk
. We denote by Lp(Ω) and W k

p (Ω) the usual Lebesgue and Sobolev spaces.
We do not distinguish between functional spaces of scalar and vector functions and
omit the target space in notation. C∞

0 (Ω) is the space of smooth functions compactly

supported in Ω. The space
◦
W 1

p(Ω) is the closure of C∞
0 (Ω) in W 1

p (Ω) norm and

W−1
p (Ω) is the dual space for

◦
W 1

p′(Ω), p
′ = p

p−1 . The space of distributions on Ω is

denoted by D′(Ω). By Cµ(Ω̄), µ ∈ (0, 1) we denote the spaces of Hölder continuous
functions on Ω̄. The symbols ⇀ and → stand for the weak and strong convergence
respectively. We denote by BR(x0) the ball in R

n of radius R centered at x0 and
write BR if x0 = 0. We write B instead of B1 and denote S1 := ∂B1. For a domain

5



Ω ⊂ R
n we also denote ΩR(x0) := Ω ∩BR(x0). For u ∈ L∞(ω) we denote

osc
ω

u := esssup
ω

u− essinf
ω

u.

We denote by Lp,λ(Ω) the Morrey space equipped with the norm

‖u‖Lp,λ(Ω) := sup
x0∈Ω

sup
R<diamΩ

R
−λ

p ‖u‖Lp(ΩR(x0)).

(f)ω stands for the average of f over the domain ω ⊂ R
n:

(f)ω := −

∫

ω

f dx =
1

|ω|

∫

ω

f dx.

Acknowledgement. This research of Tim Shilkin was partly done during his stay
at the Max Planck Institute for Mathematics in the Sciences (MiS) in Leipzig in
2023. The author thanks MiS for the hospitality. The research of Misha Chernobai
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2 Auxiliary results

In this section we present several auxiliary results. Within this section we assume
that Ω ⊂ R

n is a bounded domain for arbitrary n ≥ 2. The first result shows that
by relaxing an exponent of the integrability of a function we can always switch from
a weak Morrey norm to a regular one.

Proposition 2.1. For any p ∈ (1, n) and 1 ≤ q < p ≤ r ≤ n there are positive
constants c1 and c2 depending only on n, p, q and Ω such that

c1 ‖b‖Lq,n−q(Ω) ≤ ‖b‖Lp,n−p
w (Ω) ≤ c2 ‖b‖Lr,n−r(Ω).

Proof. The result follows from the Hölder inequality for Lorentz norms, see [14,
Section 4.1].

The next result is the estimate of the quadratic form corresponding to the drift
term satisfying (1.9) and (1.10).

Proposition 2.2. Assume p > 2, p′ = p
p−1 and b0 is given by (1.9) with b ∈ Lp′(Ω)

satisfying (1.10). Then for any α ∈ R and any u ∈
◦
W 1

p(Ω) the bilinear form B[u, η]
defined in (1.5) satisfies the identity

B[u, u] = πα

∫

Γ

|u(x)|2 dlx (2.1)

where the integral in the right-hand side is understood in the sense of traces.

Proof. For a smooth function u ∈ C∞
0 (Ω) the relation (2.1) follows by integration by

parts. For an arbitrary function u ∈
◦
W 1

p(Ω) with p > 2 the corresponding relation
follows from the continuity of the trace operator from W 1

p (Ω) to Lp(Γ).

The next proposition proved by Chiarenza and Frasca in [8] is the well-known
extension of the result of C. Fefferman [10] for p = 2. This theorem is one of basic
tools in our proofs of both Theorems 1.1 and 1.2.

Proposition 2.3. Assume p ∈ (1, n), r ∈ (1, np ] and V ∈ Lr,n−pr(Ω). Then

∫

Ω

|V | |u|p dx ≤ cn,r,p ‖V ‖Lr,n−rp(Ω)‖∇u‖pLp(Ω), ∀u ∈ C∞
0 (Ω).

with the constant cn,r,p > 0 depending only on n, r and p.

Our next result is the estimate of the bilinear form corresponding to the drift
term. This result is a direct consequence of Proposition 2.3.

Proposition 2.4. Assume r ∈
(

2n
n+2 , 2

)

and b ∈ Lr,n−r(Ω). Then there exists

c > 0 depending only on n and r such that for any u ∈ W 1
2 (Ω) and ζ ∈ C∞

0 (Ω) the
following estimate holds:

∫

Ω

ζ3 |b| |u|2 dx ≤ c ‖b‖Lr,n−r(Ω) ‖∇(ζ2u)‖L2(Ω) ‖∇(ζu)‖L 2n
n+2

(Ω). (2.2)
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Moreover, for any θ ∈
(

n
r − n

2 , 1
)

there exists c > 0 depending only on n, r and θ
such that for any u ∈ W 1

2 (Ω) and any ζ ∈ C∞
0 (Ω) satisfying 0 ≤ ζ ≤ 1 we have

∫

Ω

ζ1+θ |b| |u|2 dx ≤ c ‖b‖Lr,n−r(Ω)‖u‖
1−θ
L2(Ω)‖∇(ζu)‖1+θ

L2(Ω) |Ω|
θ/n. (2.3)

If we additionally assume u ∈
◦
W 1

2(Ω) then the estimates (2.2) and (2.3) remains
true for an arbitrary ζ ∈ C∞

0 (Rn).

Proposition 2.4 is proved in [7, Proposition 3.4].
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3 Boundedness of weak solutions

In this section we establish global boundedness of p–weak solutions to the problem
(1.1). Note that this result holds for a supercritical drift b, so we do not need the
critical condition (1.11) in this section. Note also, that our result is global, i.e. it is
heavily based on the homogeneous (or, more generally, regular) Dirichlet boundary
conditions in (1.1) and this result is not valid in the local setting, see, for example,
counterexamples and discussion in [12]. For the related results in local setting we
see the recent paper [1] and reference there.

Theorem 3.1. Assume p > 2, p′ = p
p−1 and b0 is given by (1.9) with b ∈ Lp′(Ω)

satisfying (1.10). Assume q > 3 and f ∈ Lq(Ω). Then for any α ∈ R any p-weak

solution u ∈
◦
W 1

p(Ω) to the problem (1.1) satisfying (1.18) is essentially bounded and
satisfies the estimate

‖u‖L∞(Ω) ≤ c ‖f‖Lq(Ω), (3.1)

with a constant c > 0 depending only on Ω and q.

Proof. For m > 0 we define a truncation Tm : R → R by Tm(s) := m for s ≥ m,
Tm(s) = s for s < m. For any s ∈ R we also denote (s)+ := max{s, 0}. Now we fix
some m > 0 and and denote ū := Tm(u). Then for any k ≥ 0 we have

(ū− k)+ ∈ L∞(Ω) ∩
◦
W 1

p(Ω), ∇(ū− k)+ = χΩ[k<u<m]∇u

where Ω[k < u < m] = {x ∈ Ω : k < u(x) < m }. Define η := (ū − k)+ and note
that from (1.18) for any m ≥ 0 and any k ≥ 0 we obtain

(u−m)+|Γ = 0, η|Γ = 0 (3.2)

in the sense of traces. Approximating η by smooth functions we can take η as a test
function in (1.6). For k ≥ m we have η ≡ 0 and hence B[u, η] = 0. For k < m we
obtain

B[u, η] = B[η, η] + (m− k)

∫

Ω

b0 · ∇(u−m)+ dx.

From Proposition 2.2 taking into account (3.2) we obtain B[η, η] = 0. On the other
hand, from (1.10) and (1.14) taking into account (3.2) we obtain

∫

Ω

b0 · ∇(u−m)+ dx = 2πα

∫

Γ

(u−m)+(x) dlx = 0

and hence B[u, η] = 0. So, for Ak := {x ∈ Ω : ū(x) > k } from (1.6) we obtain

∫

Ω

|∇(ū− k)+|
2 dx ≤ ‖f‖2Lq(Ω)|Ak|

1− 2

q , ∀ k ≥ 0,

which implies (see [25, Chapter II, Lemma 5.3])

esssup
Ω

ū ≤ c |Ω|δ ‖f‖Lq(Ω), δ := 1
3 −

1
q ,

9



with some constant c > 0 depending only on q. As this estimate is uniform with
respect to m > 0 we conclude u is essentially bounded from above and

esssup
Ω

u ≤ c |Ω|δ ‖f‖Lq(Ω).

Applying the same procedure to ū := Tm(−u) instead of ū := Tm(u) we obtain
u ∈ L∞(Ω) as well as (3.1).
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4 De Giorgi classes

In this section we introduce the modified De Giorgi classes which are convenient for
the study of solutions to the elliptic equations with coefficients from Morrey spaces.
These classes were used before in [7]. In this section we use the following notation:
for u ∈ L∞(Ω) and Bρ(x0) ⊂ Ω we denote

m(x0, ρ) := inf
Bρ(x0)

u, M(x0, ρ) := sup
Bρ(x0)

u, ω(x0, ρ) := M(x0, ρ)−m(x0, ρ).

Definition 4.1. Assume Ω ⊂ R
n is a bounded Lipschitz domain, n ≥ 2. For

u ∈ W 1
2 (Ω) we define Ak := {x ∈ Ω : u(x) > k }. We say u ∈ DG(Ω, k0) if there

exist constants γ > 0, F > 0, β ≥ 0, q > n such that for any BR(x0) ⊂ Ω, any
0 < ρ < R and any k ≥ k0 the following inequality holds

∫

Ak∩Bρ(x0)

|∇u|2 dx ≤
γ2

(R− ρ)2

(

1 +
Rβ

(R − ρ)β

)
∫

Ak∩BR(x0)

|u− k|2 dx +

+ F 2 |Ak ∩BR(x0)|
1− 2

q .

(4.1)

To avoid overloaded notation, when we need to specify constants in Definition
4.1 we allow some terminological license and say that the class D(Ω, k0) corresponds
to the constants γ, F , β, q instead of including these constants in the notation of
the functional class.

The main result of this section is the following weak version of the maximum
principle:

Proposition 4.1. Let Ω ⊂ R
n be a bounded Lipschitz domain, n ≥ 2. Denote

by DG(Ω, k0) the De Giorgi class with parameters γ, β, q, F and assume u ∈
DG(Ω, k0). Then u is locally essentially bounded from above in Ω and for any
δ ∈ (0, 1) there exists θ ∈ (0, 1) depending only on δ, γ, β, q such that for any
B4R(x0) ⊂ Ω if

∣

∣{x ∈ B2R(x0) : u(x) ≤ k0 }
∣

∣ ≥ δ |B2R| (4.2)

then
sup

BR(x0)
u ≤ (1− θ) sup

B4R(x0)
u + θ k0 + c1 F R

1−n
q , (4.3)

where c1 > 0 depends only on n, γ, β, q.

Proposition 4.1 is a simple combination of statements of Lemmas 4.1 — 4.3
below. These Lemmas are standard and their proofs can be found, for example, in
[7], see also [25].

Lemma 4.1. Assume u ∈ DG(Ω, k0). Then u is locally essentially bounded from
above in Ω and for any B2R(x0) ⊂ Ω

sup
BR(x0)

(u− k0)+ ≤ c∗







(

−

∫

B2R(x0)

|(u− k0)+|
2 dx

)1/2
+ F R

1−n
q






(4.4)

where (u− k0)+ := max{u− k0, 0} and c∗ > 0 depends only on n, γ and β.
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Lemma 4.2. Assume u ∈ DG(Ω, k0). Then there exists δ0 ∈ (0, 1) depending on
n, γ, β in Definition 4.1 of the De Giorgi class such that for any B2R(x0) ⊂ Ω if

|B2R(x0) ∩Ak0 | ≤ δ0 |B2R|

then either

sup
BR(x0)

(u− k0)+ ≤
1

2
sup

B4R(x0)
(u− k0)+ (4.5)

or
sup

B4R(x0)
(u− k0)+ ≤ 4c∗ F (2R)

1−n
q (4.6)

where c∗ > 0 is a constant from (4.4).

Lemma 4.3. Assume u ∈ DG(Ω, k0). Then for any δ ∈ (0, 1) there exists s ∈ N

depending only on δ, n, γ, β such that if for some B4R(x0) ⊂ Ω we have

|B2R(x0) \ Ak0 | ≥ δ |B2R|

then either
|B2R(x0) ∩Ak̄| ≤ δ0 |B2R|, (4.7)

or
sup

B4R(x0)
(u− k0)+ ≤ 2s F R

1−n
q . (4.8)

Here δ0 ∈ (0, 1) is the constant from Lemma 4.2 and we denote

k̄ = M(x0, 4R)−
1

2s

(

M(x0, 4R)− k0

)

, M(x0, 4R) := sup
B4R(x0)

u.

Proposition 4.1 provides the control of the oscillation of a function belonging
to the modified De Giorgi class if the assumption (4.2) is satisfied. The validity of
(4.2) for the points x0 on the singular curve Γ of the drift (1.9) follows from the
following weak form of the Harnak inequality which we borrow from [38], see also
[6]. From now on we restrict ourselves to the case n = 3 so that the trace u|Γ for a
p-weak solution u ∈ W 1

p (Ω) is well-defined.

Proposition 4.2. Assume BR := {x ∈ R
3 : |x| < R}. Assume p > 2, b ∈ Lp′(B2),

p′ = p
p−1 satisfies div b = 0 in D′(B2), and g ∈ Lp(B2). Assume v ∈ W 1

p (B2)
satisfies the equation (in the sense of distributions)

−∆v + b0 · ∇v = − div g in B2, b0 := b− α
x′

|x′|2
. (4.9)

Assume α 6= 0 and

0 ≤ v ≤ 2 in B2, v|Γ ≥ 1, Γ := {x ∈ R
3 : x1 = x2 = 0 }. (4.10)

Then there exists constants δ1 ∈ (0, 1) and λ1 ∈ (0, 1) depending only on ‖b‖Lp′ (B2)

in the explicit way specified below such that if

‖g‖L2(B2) ≤ c⋆ |α|, where c⋆ :=
π

4|B2|1/2
, (4.11)

then
∣

∣{x ∈ B2 : v(x) ≥ λ1 }
∣

∣ ≥ δ1.

12



Proof. Assume there exist g ∈ Lp(B2) and v ∈ W 1
p (B2) satisfying (4.9), (4.10),

(4.11) such that
|{x ∈ B2 : v(x) > λ1 }| ≤ δ1. (4.12)

Multiplying (4.9) by an arbitrary η ∈ C∞
0 (B2) and integrating by parts we obtain

2πα

∫

Γ∩B2

v(x)η(x) dlx =

∫

B2

v
(

∆η + b · ∇η
)

dx +

∫

B2

g · ∇η dx. (4.13)

Note that v|Γ ≥ 1. Choose η ∈ C∞
0 (B2) so that

η = 1 on B, ‖∇η‖L2(B2) ≤ 4 |B2|
1/2, ‖η‖C2(B̄2) ≤ c⋆⋆,

where c⋆⋆ > 0 is some sufficiently large absolute constant. Then from (4.11) and
the Hölder inequality we obtain

∣

∣

∣

∫

B2

g · ∇η dx
∣

∣

∣
≤ π|α|.

Hence from (4.13) we obtain

π|α| ≤
∣

∣

∣

∫

B2

v
(

∆η + b · ∇η
)

dx
∣

∣

∣
. (4.14)

Denote

B2[v > λ1] := { x ∈ B2 : v(x) > λ1 }, B2[v ≤ λ1] := { x ∈ B2 : v(x) ≤ λ1 }.

From the Hölder inequality we obtain
∫

B2[v>λ1]

v
(

∆η+ b(α) ·∇η
)

dx ≤ ‖v‖L∞(B2) ‖η‖C2(B̄2)

(

1+‖b‖Lp′ (B2)

)

|B2[v > λ1]|
1

p .

Taking into account (4.10), (4.12) and ‖η‖C2(B2) ≤ c⋆⋆ we conclude

∣

∣

∣

∫

B2[v>λ1]

v
(

∆η + b · ∇η
)

dx
∣

∣

∣
≤ 2c⋆⋆

(

1 + ‖b‖Lp′ (B2)

)

δ
1

p

1 .

On the other hand
∣

∣

∣

∫

B2[v≤λ1]

v
(

∆η + b · ∇η
)

dx
∣

∣

∣
≤ c⋆⋆

(

1 + ‖b‖L1(B2)

)

λ1.

Finally, we obtain

|α| ≤ 2c⋆⋆

(

1 + ‖b‖Lp′ (B2)

)

δ
1

p

1 + c⋆⋆

(

1 + ‖b‖L1(B2)

)

λ1.

This inequality leads to the contradiction if we fix values of λ1, δ1 ∈ (0, 1) so that

2c⋆⋆

(

1 + ‖b‖Lp′ (B2)

)

δ
1

p

1 + c⋆⋆

(

1 + ‖b‖L1(B2)

)

λ1 < π|α|.
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Proposition 4.3. Assume Ω ⊂ R
3 is a bounded domain which contains the origin.

Denote by δ1 ∈ (0, 1) and λ1 ∈ (0, 1) the constants from Proposition 4.2. Assume
b ∈ L2,1

w (Ω) satisfies div b = 0 in D′(Ω). Assume f ∈ Lp(Ω) with p > 2 and let u be
a p-weak solution to the problem (1.1) such that

u|Γ = 0.

Assume α 6= 0, x0 ∈ Γ and B4R(x0) ⊂ Ω. Denote

k0 :=
1

2

(

M(x0, 4R) +m(x0, 4R)
)

, (4.15)

and

k1 := M(x0, 4R) −
λ1

2
ω(x0, 4R). (4.16)

If k0 ≥ 0 then either

∣

∣{x ∈ B2R(x0) : u(x) ≤ k1 }
∣

∣ ≥ δ1 |B2R| (4.17)

or

ω(x0, 4R) ≤
2R−1/2

c⋆|α|
‖f‖L2(B4R(x0)) (4.18)

where c⋆ is defined in (4.11).

Proof. Assume (4.18) does not hold, i.e.

R−1/2 ‖f‖L2(B4R(x0)) ≤
c⋆|α|

2
ω(x0, 4R). (4.19)

For x ∈ B4 we denote

uR(x) = u(x0 +Rx), bR0 (x) = Rb0(x0 +Rx), fR(x) = Rf(x0 +Rx).

Then uR is a solution to

−∆uR + bR0 · ∇uR = − div fR in B2

and, moreover,
‖bR0 ‖Lp′ (B2) ≤ c ‖b0‖L2,1

w (Ω)

with some c > 0 independent of R. Define v and g so that

v(x) := 2
M(x0, 4R)− uR(x)

ω(x0, 4R)
, g(x) := −2

fR(x)

ω(x0, 4R)
.

From (4.19) we conclude that g satisfies (4.11). Moreover, v is a p-weak solution to
the equation (4.9) which satisfies

0 ≤ v ≤ 2, v|Γ ≥ 1.

Hence
∣

∣{x ∈ B2 : v(x) ≥ λ1 }
∣

∣ ≥ δ1

which gives (4.17).
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Now we can prove the estimates of oscillation for functions belonging to various
modified De Giorgi classes. We will distinguish between the following three cases
which are motivated by the properties of a p-weak solution u to the problem (1.1)
(we will proof this properties in Section 5):

• Assume x0 is an internal point away from the singular line Γ. In this case we
assume BR(x0) ⊂ Ω \ Γ. In this case we will show that ±u ∈ DG(BR(x0); k0)
for any k0 ∈ R, i.e. away from the singular line Γ a p-weak solution to the
problem (1.1) belongs to the De Giorgi class with arbitrary starting level k0.
In this case the estimate of the oscillation of u in the ball BR(x0) is standard.

• Assume x0 is an internal point which belongs to the singular line Γ. In this
case we assume BR(x0) ⊂ Ω and x0 ∈ Γ. Due to the assumption (1.18) this
case would correspond to the condition ±u ∈ DG(Ω; 0) (i.e. the De Griorgi
class DG(Ω; k0) with the fixed starting level k0 = 0). In this case the estimate
of the oscillation of u in the ball BR(x0) is based on Proposition 4.3.

• Finally, consider a boundary point x0 ∈ ∂Ω (including the case when x0 ∈
∂Ω ∩ Γ). In this case we take arbitrary Ω0 such that Ω ⋐ Ω0 and denote by
ū the zero extension of u onto Ω0 \ Ω. So, this case also corresponds to the
condition ±ū ∈ DG(Ω0; 0) and due to the Dirichlet condition in (1.1) and the
Lipschitz continuity of ∂Ω we may assume that ũ vanishes on a fixed portion
of BR(x0) ⊂ Ω0 (so the density condition (4.2) in this case is satisfied for free
because of the Dirichlet condition in (1.1)).

We start from the oscillation estimate for the non-singular internal points. The
proof of this estimate is standard and we present it only for readers’ convenience.

Lemma 4.4. Let Ω ⊂ R
n be a bounded Lipschitz domain, n ≥ 2, and ±u ∈

DG(Ω, k0) for any k0 ∈ R, where DG(Ω; k0) is the De Giorgi class with the param-
eters γ, F , β, q (see Definition 4.1). There exists a constant σ ∈ (0, 1) depending
only on γ, β, q, such that for any B4R(x0) ⊂ Ω

osc
BR(x0)

u ≤ σ osc
B4R(x0)

u + c2 F R
1−n

q (4.20)

where c2 > 0 is a constant from (4.3).

Proof. Define k0 ∈ R by (4.15) and consider the case:
∣

∣{x ∈ B2R(x0) : u(x) ≤ k0 }
∣

∣ ≥ 1
2 |B2R|.

Then from (4.3) we obtain

M(x0, R) ≤ (1− θ)M(x0, 4R) + θ k0 + c2 F R1−n
q .

Subtracting from both sides m(x0, 4R) we arrive at

ω(x0, R) ≤ (1− θ
2)ω(x0, 4R) + c2 F R

1−n
q . (4.21)

In the second case
∣

∣{x ∈ B2R(x0) : u(x) ≥ k0 }
∣

∣ ≥ 1
2 |B2R|

we denote v := −u, l0 := −k0 and obtain v ∈ DG(Ω, l0) and
∣

∣{x ∈ B2R(x0) : v(x) ≤ l0 }
∣

∣ ≥ 1
2 |B2R|.

Then from (4.3) we again arrive at (4.21).
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Now we present the oscillation estimate for points on the singular curve Γ:

Lemma 4.5. Assume Ω ⊂ R
3 is a bounded domain which contains the origin.

Denote by δ1 ∈ (0, 1) and λ1 ∈ (0, 1) the constants from Proposition 4.2. Assume
b ∈ L2,1

w (Ω) satisfies div b = 0 in D′(Ω). Assume f ∈ Lp(Ω) with p > 2 and let u be
a p-weak solution to the problem (1.1) such that

u|Γ = 0.

Assume α 6= 0, x0 ∈ Γ and B4R(x0) ⊂ Ω. There is a constant σ ∈ (0, 1) depending
only on ‖b‖

L2,1
w (Ω)

and α such that for any x0 ∈ Γ and any B4R(x0) ⊂ Ω we have

osc
BR(x0)

u ≤ σ osc
B4R(x0)

u + c2 F R
1− 3

q (4.22)

where c1 > 0 depends only on n, γ, β, q and α.

Proof. Assume u is a p-weak solution to (1.1) and u|Γ = 0. In the next section (see
Proposition 5.2) we will show that in this case ±u ∈ DG(B4R(x0); 0). Define k0 ∈ R

and k1 ∈ R by (4.15) and (4.16) respectively and assume k0 ≥ 0. By Proposition 4.3
either (4.17) of (4.18) hold. In the case of (4.18) we obtain by the Hölder inequality
for q > 3

ω(x0, 4R) ≤
2

c⋆|α|
‖f‖L2(B4R(x0))R

− 1

2 ≤
c

c⋆|α|
‖f‖Lq(B4R(x0))R

1− 3

q

and hence (4.22) follows. Assume now (4.17) holds. Note that k1 ≥ k0 ≥ 0 and
hence u ∈ DG(Ω, k1). Hence from Proposition 4.1 we conclude

M(x0, R) ≤ (1− θ)M(x0, 4R) + θ k1 + c1 F R
1− 3

q

and taking into account (4.16) we arrive at

ω(x0, R) ≤ (1− λ1θ
2 )ω(x0, 4R) + c2 F R1− 3

q . (4.23)

Now consider the case k0 ≤ 0. Denote v := −u, l0 := −k0

l1 := −m(x0, 4R) −
λ0

2
ω(x0, 4R). (4.24)

Note that v ∈ DG(Ω; 0) and l0 ≥ 0. Applying Proposition 4.3 for v we obtain either
(4.18) or

∣

∣{x ∈ B2R(x0) : v(x) ≤ l1 }
∣

∣ ≥ δ1 |B2R| (4.25)

hold. In the case of (4.18) we obtain (4.22) immediately. In the case of (4.25) we
apply Proposition 4.1 for v and conclude

−m(x0, R) ≤ −(1− θ)m(x0, 4R) + θ l1 + c1 F R1− 3

q

and taking into account (4.24) we arrive at (4.23) again.

Finally we present the oscillation estimate near the boundary:
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Lemma 4.6. Let Ω ⊂ R
n be a bounded Lipschitz domain, n ≥ 2, and ±u ∈

DG(Ω, 0) where DG(Ω; 0) is the De Giorgi class with the parameters γ, F , β, q
and the initial level k0 = 0 (see Definition 4.1). For any δ > 0 there exists a con-
stant σ ∈ (0, 1) depending only on δ, γ, β, q, such that if for some B4R(x0) ⊂ Ω the
estimate

∣

∣{x ∈ B2R(x0) : u(x) = 0 }
∣

∣ ≥ δ |B2R| (4.26)

is valid then (4.20) holds.

Proof. Define k0 ∈ R by (4.15) and consider the case k0 ≥ 0. Then

{x ∈ B2R(x0) : u(x) = 0 } ⊂ {x ∈ B2R(x0) : u(x) ≤ k0 }

and we obtain hence (4.2) holds. As u ∈ DG(Ω, k0) we obtain

M(x0, R) ≤ (1− θ)M(x0, 4R) + θ k0 + c1 F R
1−n

q

and hence
ω(x0, R) ≤ (1− θ

2)ω(x0, 4R) + c1 F R
1−n

q . (4.27)

In the case k0 ≤ 0 we denote v := −u, l0 := −k0. Then l0 ≥ 0 and v ∈ DG(Ω, l0).
As

{x ∈ B2R(x0) : u(x) = 0 } ⊂ {x ∈ B2R(x0) : v(x) ≤ l0 }

we obtain
∣

∣{x ∈ B2R(x0) : v(x) ≤ l0 }
∣

∣ ≥ δ |B2R|

and hence
−m(x0, R) ≤ −(1− θ)m(x0, 4R) + θ l0 + c1 F R1−n

q

which again leads to (4.27).
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5 Hölder continuity of weak solutions

In this section we show that under assumption on the drift term (1.9), (1.10),
(1.11) any p-weak solution u to the problem (1.1) belongs to De Giorgi classes from
Section 4. As a consequence we obtain the proof of Theorem 1.1. First we consider
an internal point x0 away from the singular curve Γ.

Proposition 5.1. Let all assumptions of Theorem 1.1 hold and assume B4R(x0) ⊂
Ω \Γ. Then for any k0 ∈ R we have ±u ∈ DG(B4R(x0); k0) where DG(Ω; k0) is the
De Giorgi class in Definition 4.1 with n = 3, F = ‖f‖Lq(Ω) and some γ > 0, β > 0
which depend only on ‖b‖

L2,1
w (Ω)

and α.

In the case B4R(x0) ⊂ Ω \ Γ the drift b0 is divergence free in B4R(x0). Hence
Proposition 5.1 follows from [7, Section 5]. Here we outline the proof for reader’s
convenience.

Proof. From Theorem 3.1 we conclude u ∈ L∞(Ω). Let us fix some r ∈
(

6
5 , 2

)

and
θ ∈

(

3
r −

3
2 , 1

)

. Then from (1.3) and Proposition 2.1 we obtain

b0 ∈ Lr,3−r(Ω), ‖b0‖Lr,3−r(Ω) ≤ c ‖b0‖L2,1
w (Ω).

Take some radius ρ < R and a cut-off function ζ ∈ C∞
0 (BR(x0)) such that

0 ≤ ζ ≤ 1, ζ ≡ 1 on Bρ(x0), |∇ζ| ≤
c

R− ρ
. (5.1)

Assume k ∈ R is arbitrary and denote

ũ := (u− k)+ ≡ max{u− k, 0}, ũ ∈ L∞(Ω) ∩W 1
p (Ω). (5.2)

Fix m := 1
1−θ and note that 2m − 1 = m(1 + θ). Take η = ζ2mũ in (1.6). Taking

into account
div b0 = 0 in D′(B4R(x0))

with the help of integration by parts we obtain

B[u, η] = − m

∫

Ω

ζ2m−1 b0 · ∇ζ |ũ|2 dx. (5.3)

As 2m− 1 = m(1 + θ) we obtain

‖ζm∇ũ‖2L2(BR(x0))
≤ c ‖ũ∇ζ‖2L2(BR(x0))

+m

∫

Ω

ζm(1+θ) b0 · ∇ζ |ũ|2 dx +

+ ‖f‖2Lq(Ω) |Ak ∩BR(x0)|
1− 2

q

(5.4)

where Ak := {x ∈ Ω : u(x) > k }. Taking into account (5.1) and applying the
estimate (2.3) we obtain

∫

Ω

ζm(1+θ) b · ∇ζ |ũ|2 dx ≤
cRθ

R− ρ
‖b0‖Lr,3−r(Ω) ‖∇(ζmũ)‖1+θ

L2(BR(x0))
‖ũ‖1−θ

L2(BR(x0))
.
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Taking arbitrary ε > 0 and applying the Young inequality we obtain
∫

Ω

ζm(1+θ)b · ∇ζ |ũ|2 dx ≤ ε ‖∇ (ζmũ)‖2L2(BR(x0))
+

+
cε

(R− ρ)2

( R

R− ρ

)
2θ
1−θ

‖b0‖
2

1−θ

Lr,3−r(BR(x0))
‖ũ‖2L2(BR(x0))

.

So, if we fix sufficiently small ε > 0 from (5.4) for any k ∈ R and 0 < ρ < R we
obtain

1
2 ‖∇(u− k)+‖

2
L2(Bρ(x0))

≤

≤
c

(R− ρ)2

(

1 +
( R

R− ρ

)
2θ
1−θ

‖b0‖
2

1−θ

Lr,3−r(Ω)

)

‖(u− k)+‖
2
L2(BR(x0))

+

+ ‖f‖2Lq(Ω) |Ak ∩BR(x0)|
1− 2

q .

(5.5)

Hence we obtain that u ∈ DG(Ω). Applying the same arguments to −u instead of
u we also obtain −u ∈ DG(Ω).

Now we consider an internal point x0 laying on the singular curve Γ.

Proposition 5.2. Let all assumptions of Theorem 1.1 hold and assume x0 ∈ Γ and
B4R(x0) ⊂ Ω. Then for any k0 ≥ 0 we have ±u ∈ DG(B4R(x0); 0) where DG(Ω; 0)
is the De Giorgi class in Definition 4.1 with n = 3, k0 = 0, F = ‖f‖Lq(Ω) and some
γ > 0, β > 0 which depend only on ‖b‖

L2,1
w (Ω)

and α.

Proof. We take arbitrary k ≥ 0 and proceed as in the proof of Proposition 5.1.
Define ũ by (5.2). As u|Γ = 0 and k ≥ 0 we conclude ũ|Γ = 0 in the sense of traces
and from Proposition 2.2 we conclude

B[ζmũ, ζmũ] = 0. (5.6)

Hence we again arrive at (5.3) and proceed in the same way as in Proposition 5.1.

Finally we consider a point x0 laying on the boundary ∂Ω. Note that as Ω is a
bounded Lipschitz domain there exist R∗ > 0 and δ∗ such that for any x0 ∈ ∂Ω and
any R < R∗

|BR(x0) \Ω| ≥ δ∗ |BR|. (5.7)

Proposition 5.3. Let all assumptions of Theorem 1.1 hold and denote by ū the
zero extension of u outside Ω. Assume x0 ∈ ∂Ω and 4R ≤ R∗. Then for any k0 ≥ 0
we have ±ū ∈ DG(B4R(x0); 0) where DG(Ω; 0) is the De Giorgi class in Definition
4.1 with n = 3, k0 = 0, F = ‖f‖Lq(Ω) and some γ > 0, β > 0 which depend only on
‖b‖L2,1

w (Ω) and α.

Proof. Denote ΩR(x0) := Ω ∩ BR(x0). Take a cut-off function ζ ∈ C∞
0 (BR(x0))

satisfying (5.1). Then for any k ≥ 0 the function η = ζ2m(u − k)+ vanishes on ∂Ω
hence it is admissible for the identify (1.6). From (u− k)+|Γ = 0 we conclude (5.6)
holds. Proceeding as in the proofs of Propositions 5.1, 5.2 we arrive at

1
2 ‖∇(u− k)+‖

2
L2(Ωρ(x0))

≤

≤
c

(R − ρ)2

(

1 +
( R

R− ρ

)
2θ
1−θ

‖b‖
2

1−θ

Lr,3−r(Ω)

)

‖(u− k)+‖
2
L2(ΩR(x0))

+

+ ‖f‖2Lq(Ω) |Ak ∩ΩR(x0)|
1− 2

q ,

19



which gives (5.5) with the function ū instead of u. Hence we obtain ū ∈ DG(B4R(x0)).
Similarly we obtain −ū ∈ DG(B4R(x0)).

Now we can prove Theorem 1.1. Taking into account (5.7) we can iterate esti-
mates in Proportions 4.4, 4.5, 4.6 and obtain the oscillation estimate

∀ ρ < R osc
Bρ(x0)∩Ω

u ≤ c2

(( ρ

R

)µ
‖u‖L∞(Ω) + F ρµ

)

(5.8)

with some µ ∈ (0, 1) depending only on σ ∈ (0, 1) and q > 3 in one of the following
three cases:

(a) B4R(x0) ⊂ Ω \ Γ,

(b) x0 ∈ Γ, B4R(x0) ⊂ Ω,

(c) x0 ∈ ∂Ω, R < 1
4R∗.

Then the inequality (5.8) for an arbitrary x0 ∈ Ω̄ and R < 1
4R∗ can be obtained by

a standard combination of inequalities (a), (b), (c). From this inequality and (3.1)
the estimate (1.19) follows immediately. Theorem 1.1 is proved.
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6 Existence and uniqueness of p-weak solu-

tions

In this section we prove Theorem 1.2. First we establish the higher integrability of
weak solutions to the problem (1.1).

Proposition 6.1. Assume b ∈ L2,1
w (Ω) satisfies (1.9), (1.10) and assume f ∈ Lq(Ω)

with q > 3. Then there exists p > 2 depending only on q, α, ‖b‖L2,1
w (Ω) and the

Lipschitz constant of ∂Ω such that for any p-weak solution u of the problem (1.17)
satisfying additional assumption (1.18) the estimate (1.20) holds with some constant
c > 0 depending only on q, α and ‖b‖

L2,1
w (Ω)

and the Lipschitz constant of ∂Ω.

Proof. Assume p > 2 and let u be a p-weak solution to (1.17). Then we can interpret
u as a p-weak solution to the problem

{

−∆u+ b · ∇u = div g in Ω,

u|∂Ω = 0
(6.1)

with the right hand side

g = f + α
x′

|x′|2
u.

and hence for any p > 2 we have

‖g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + c
∥

∥

∥

u
|x′|

∥

∥

∥

Lp(Ω)

From Theorem 1.1 we obtain u ∈ Cµ(Ω̄) with some µ ∈ (0, 1) depending only on Ω,

α, q and ‖b‖L2,1
w (Ω). Fix some p0 ∈

(

2, 2
1−µ

)

and denote q0 = min{q, p0}. Taking

into account (1.18) we obtain

∥

∥

∥

u
|x′|

∥

∥

∥

Lq0
(Ω)

≤ c ‖u‖Cµ(Ω̄)

and hence from Theorem 1.1 we arrive at

‖g‖Lq0
(Ω) ≤ ‖f‖Lq(Ω) + c ‖u‖Cµ(Ω̄) ≤ c ‖f‖Lq(Ω)

Since div b = 0, we conclude u is a p-weak solution of the problem (6.1) with a
divergence-free drift b and the right-hand side q ∈ Lq0(Ω) with some q0 > 2. Hence
from [7] we obtain there exists p ∈ (2, q0) such that

‖u‖W 1
p (Ω) ≤ c ‖g‖Lp(Ω)

from which we obtain (1.20).

Now we turn to the proof of Theorem 1.2. We follow the method we used in
[6] in the 2D case. As a first step we construct a solution of an auxiliary problem
satisfying the “non-spectral” condition (1.7).
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Proposition 6.2. Assume α < 0. Then there exists p1 > 2 depending only on Ω
and α such that for any f ∈ C∞

0 (Ω \ Γ) there exists a unique p1–weak solution v to
the problem







−∆v − |α|
x′

|x′|2
· ∇v = −|x′|α div f in Ω,

v|∂Ω = 0.

(6.2)

Moreover, v is Hölder continuous in Ω̄.

Proposition 6.2 is proved in [7].

Now we apply the so-called “Darboux transform” to the function v to construct
a solution of an auxiliary problem with α < 0 (which corresponds to the “spectral”
case (1.8)) and vanishing on Γ.

Proposition 6.3. Assume α < 0 and q > 3. Then there exists p > 2 depending
only on q, α and the Lipschitz constant of ∂Ω such that for any f ∈ C∞

0 (Ω \ Γ)
there exists a unique p–weak solution u to the problem







−∆u− α
x′

|x′|2
· ∇u = − div f in Ω,

u|∂Ω = 0,

(6.3)

which satisfies the condition (1.18). Moreover, u is Hölder continuous in Ω̄ and
satisfies estimates (1.19) and (1.20).

Proof. Let v be a p1-weak solution of (6.2). Denote

u(x) = |x′||α| v(x)

If |α| ≥ 1 then the function |x′||α| is Lipschitz continuous. Hence we obtain u ∈
W 1

p1(Ω). In the case 0 < |α| < 1 we have u ∈ W 1
p (Ω) for any p satisfying

2 < p < min

{

p1,
2

1− |α|

}

. (6.4)

In any case we obtain u ∈
◦
W 1

p(Ω) for some p > 2, u is Hölder continuous on Ω̄ and
satisfies the condition (1.18). Let us verify u is a p-weak solution to (6.3). Indeed,
taking arbitrary η ∈ C∞

0 (Ω) and testing (6.2) by |x′||α|η with the help of identities

∇
(

|x′||α|η
)

= |x′||α|
(

∇η + |α|
x′

|x′|2
η
)

, |x′||α|∇v = ∇u+ αu
x′

|x′|2

we arrive at the identity

∫

Ω

(

∇u+ αu
x′

|x′|2

)

· ∇η dx =

∫

Ω

f · ∇η dx, ∀ η ∈ C∞
0 (Ω).

Taking into account u|Γ = 0 and using integration by parts we obtain

α

∫

Ω

x′

|x|2
· ∇u η dx = −α

∫

Ω

x′

|x|2
· ∇η u dx
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which gives

−∆u− α
x′

|x′|2
· ∇u = − div f in D′(Ω).

Now we can fix µ ∈ (0, 1) and p > 2 as in Theorem 1.1 and Proposition 6.1. Without
loss of generality we can assume (6.4) is satisfied. Then from Theorem 1.1 and in
Proposition 6.1 we obtain inequalities (1.19) and (1.20). Note that µ ∈ (0, 1) and
p > 2 depend only on Ω, q and α.

Now we can relax the assumption on the smoothness of the right hand side f .

Proposition 6.4. Assume α < 0, q > 3 and assume µ ∈ (0, 1) is defined in
Theorem 1.1 and p > 2 is defined in Proposition 6.3. Then for any f ∈ Lq(Ω)
there exists a unique p-weak solution u of the system (6.3) which satisfies (1.18).
Moreover, u ∈ Cµ(Ω̄) and the estimates (1.19), (1.20) hold.

Proof. Assume f ∈ Lq(Ω) and take fε ∈ C∞
0 (Ω \ Γ) so that ‖fε − f‖Lq(Ω) → 0 and

ε → 0. From Proposition 6.3 we obtain the existence of p-weak solutions {uε} to the
problem (6.3) with right hand side fε Moreover, using estimates (1.19) and (1.20)
we obtain inequality

‖uε‖W 1
p (Ω) + ‖uε‖Cµ(Ω̄) ≤ c ‖fε‖Lq(Ω).

Hence we can extract a subsequence such that uε ⇀ u in W 1
q (Ω) and uε → u

uniformly in Ω̄. It is easy to check that u will satisfy (6.3) with right hand side f
and (1.18) holds.

Now we can prove the existence of p-weak solutions to the problem (1.1) in the
case of a smooth divergence free part of the drift.

Proposition 6.5. Assume α < 0, q > 3 and b ∈ C∞(Ω) satisfies div b = 0. Then
there exist µ ∈ (0, 1) and p > 2 depending only on q, α, ‖b‖

L2,1
w (Ω)

and the Lipschitz

constant of ∂Ω such that for any f ∈ Lq(Ω) there exists a unique p-weak solution u
to the problem (1.1) which satisfies the condition (1.18). Moreover, u ∈ Cµ(Ω) and
the estimates (1.19) and (1.20) hold.

Proof. Take any v ∈ Lq(Ω). From Proposition 6.4 we obtain the existence the
unique p-weak solution uv to the problem







−∆uv − α
x′

|x′|2
· ∇uv = div(f − bv) in Ω,

uv|∂Ω = 0.

(6.5)

such that
uv|Γ = 0.

Moreover, uv ∈ Cµ(Ω̄) and the estimate

‖uv‖W 1
p (Ω) + ‖uv‖Cµ(Ω̄) ≤ c

(

‖f‖Lq(Ω) + ‖b‖L∞(Ω)‖v‖Lq(Ω)

)

(6.6)

holds. Define the operator A : Lq(Ω) → Lq(Ω), A(v) := uv. Applying Theorem 1.1
and Proposition 6.1 for any v1, v2 ∈ Lq(Ω) we obtain the inequality

‖A(v1)−A(v2)‖W 1
p (Ω) + ‖A(v1)−A(v2)‖Cµ(Ω̄) ≤ c ‖b‖L∞(Ω)‖v1 − v2‖Lq(Ω)
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which implies the operator A : Lq(Ω) → Lq(Ω) is continuous. Moreover, from (6.6)
taking into account compactness of the imbedding W 1

p (Ω) →֒ Lp(Ω) it is easy to see
that the operator A : Lq(Ω) → Lq(Ω) is compact. Hence we can apply the Leray-
Shauder fixed point theorem. Assume λ ∈ [0, 1] and v ∈ Lq(Ω) satisfies v = λA(v).
Denote u := A(v). Then u is a unique p-weak solution to the problem







−∆u+
(

λb− α
x

|x|2

)

· ∇u = − div f in Ω,

u|∂Ω = 0,

which satisfies the condition (1.18). Hence from Theorem 1.1 and Proposition 6.1
we obtain the estimate

‖u‖W 1
p (Ω) + ‖u‖Cµ(Ω̄) ≤ c ‖f‖Lq(Ω)

with some constant c depending only on Ω, q, α and ‖b‖L2,w(Ω) and independent of
λ ∈ [0, 1]. Hence there exists u ∈ Lq(Ω) satisfying u = A(u).

Now we can prove Theorem 1.2.

Proof. We follow the method similar to [23, Theorem 2.1], and [39],[40]. Let us fix
some q > 3 and let µ ∈ (0, 1) and p > 2 be the constants determined in Theorem
1.1 and Proposition 1.2 respectively. Denote p′ = p

p−1 . As Ω is Lipschitz we can

find the sequence of C2-smooth domains {Ωk}
∞
k=1 such that

Ωk+1 ⋐ Ωk,
⋃

k

Ωk = Ω.

Moreover, it is possible to construct domains Ωk so that the Lipschitz constants of
∂Ωk are controlled uniformly by the Lipschitz constant of ∂Ω. In particular, we can
assume there are exist positive constants δ̂0 and R̂0 independent on k ∈ N such that

∀ k ∈ N, ∀R < R̂0, ∀x0 ∈ ∂Ωk |BR(x0) \Ωk| ≥ δ̂0 |BR|. (6.7)

For a canonical domain given as a subgraph of a Lipschitz function existence of
such approximation can be obtained by mollification and shift of the graph, and for
general bounded Lipschitz domain the standard localization works.

Now we take a sequence of positive numbers εk → 0 such that εk < dist{Ω̄k, ∂Ω},
and define the mollification of the drift b:

bk(x) :=

∫

Ω

ωεk(x− y)b(y) dy, x ∈ Ω,

where ωε(x) := ε−nω(x/ε) and ω ∈ C∞
0 (Rn) is the standard Sobolev kernel, i.e.

ω ≥ 0, suppω ∈ B̄,

∫

Rn

ω(x) dx = 1, ω(x) = ω0(|x|). (6.8)

Then bk ∈ C∞(Ω̄) and as εk < dist{Ω̄k, ∂Ω} from div b = 0 in D′(Ω) for any k we
obtain

div bk = 0 in Ωk. (6.9)
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Moreover, from [7, Proposition 6.1] we obtain there is a constant c > 0 independent
on k such that

‖bk‖L2,1
w (Ωk)

≤ c ‖b‖L2,1
w (Ω), ‖bk − b‖Lp′ (Ω) → 0 as k → 0. (6.10)

For f ∈ Lq(Ω) we can find fk ∈ C∞
0 (Ωk) such that ‖fk − f‖Lq(Ω) → 0. From

Proposition 6.5 we conclude that for any k ∈ N there exists a unique p-weak solution
uk ∈ W 1

p (Ω) ∩ Cµ(Ω̄) to the problem







−∆uk +
(

bk − α
x′

|x′|2

)

· ∇uk = − div fk in Ωk,

uk|∂Ωk
= 0,

(6.11)

which satisfies the condition
uk|Γ = 0

in the sense of traces. Extend functions uk by zero from Ωk onto Ω. From Proposi-
tion 6.1 we obtain the estimate

‖uk‖W 1
p (Ω) ≤ c ‖fk‖Lp(Ω)

with a constant c > 0 depending only on q, ‖b‖
L2,1
w (Ω)

and the constant δ̂0 in (6.7)

which is independent on k. Hence we can take a subsequence uk such that

uk ⇀ u in W 1
p (Ω).

As for p > 2 the trace operator is compact from W 1
p (Ω) into Lp(Γ) we obtain

u|Γ = 0

in the sense of traces. Take any η ∈ C∞
0 (Ω), due to our construction of Ωk for

sufficiently large k we have supp η ⊂ Ωk and hence η is a suitable test function in
(6.11). As bk → b in Lp′(Ω) we can pass to the limit in the identity

∫

Ω

∇uk ·

(

∇η +
(

bk − α
x′

|x′|2

)

η

)

dx =

∫

Ω

fk · ∇η dx,

and obtain (1.6). Hence u ∈
◦
W 1

p(Ω) is a p-weak solution to the problem (1.1)
satisfying (1.18) and (1.20). From Theorem 1.1 we obtain u ∈ Cµ(Ω̄) and the
estimate (1.19). The uniqueness of u follows from the estimate (1.20).
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