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Abstract

This book uses optimal control theory to prove that the most unpackable
centrally symmetric convex disk in the plane is a smoothed polygon. A
smoothed polygon is a polygon whose corners have been rounded in a special
way by arcs of hyperbolas. To be highly unpackable means that even densest
packing of that disk has low density.

Motivated by Minkowski’s geometry of numbers, which investigates lattice
packings of convex bodies, researchers (notably Blaschke and Courant) began
to search for the most unpackable centrally symmetric convex disk (in brief,
the most unpackable disk) starting in the early 1920s. In 1934, Reinhardt
conjectured that the most unpackable disk is a smoothed octagon. Working
independently of Reinhardt, but also motivated by Minkowski’s geometry of
numbers, Mahler attempted without success in 1946 to prove that the most
unpackable disk must be a smoothed polygon. This book proves what Mahler
set out to prove: Mahler’s First conjecture on smoothed polygons. His second
conjecture is identical to the Reinhardt conjecture, which remains open.

This book explores the many remarkable structures of this packing problem,
formulated as a problem in optimal control theory on a Lie group, with
connections to hyperbolic geometry and Hamiltonian mechanics. Bang-bang
Pontryagin extremals to the optimal control problem are smoothed polygons.
Extreme difficulties arise in the proof because of chattering behavior in the
optimal control problem, corresponding to possible smoothed “polygons with
infinitely many sides” that need to be ruled out. To analyze and eliminate the
possibility of chattering solutions, the book introduces a discrete dynamical
system (the Poincaré first recurrence map) and gives a full description of
its fixed points, stable and unstable manifolds, and basin of attraction on a
blowup centered at a singular set. Some proofs in this book are computer-
assisted using a computer algebra system.
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Chapter 1

Introduction

This book shows how the still-unsolved Reinhardt conjecture in discrete
geometry can be formulated as a problem in optimal control theory. A proof of
Mahler’s First conjecture is presented, which is a weak form of the Reinhardt
conjecture, asserting that the most unpackable centrally symmetric convex
disk is a smoothed polygon.

Discrete geometers are interested in the class of problems which minimize
or maximize the packing density δpK,Pq of a convex body K Ă Rn; that is, a
convex compact set with nonempty interior.1 A convex body in R2 is called
a convex disk. The packing density is roughly the fraction of space taken
up by non-overlapping congruent copies of a convex body K when they are
arranged according to the packing P in Euclidean space Rn. Since δpK,Pq is
function of two variables, different flavors of this question may be posed: we
may restrict the classes of convex bodies K under consideration, or we may
restrict the type of packings P .

For example, the sphere packing problem fixes the convex body K to be
Bn (the unit ball in Rn) and asks us to determine δpKq :“ supP δpB

n,Pq,
where the supremum ranges over all possible packings P . Determining δpKq

for an arbitrary convex body K is an extremely hard optimization problem
in general, even in low dimensions. In three dimensions, the sphere packing
problem is the Kepler conjecture, which was asserted over 400 years ago, but
not solved until 1998 [14]. In 2022, Maryna Viazovska received a Fields medal
for the solution of the sphere packing problem in eight dimensions [6].

1This and other terms are defined at the beginning of Chapter 2.

13



14 CHAPTER 1. INTRODUCTION

Invalid

ValidValid

Figure 1.0.1: Valid and Invalid Convex Centrally Symmetric Disks.

1.1 Karl Reinhardt’s Problem
Let K be the set of convex disks in the plane, and let Kccs Ă K be the set

of centrally symmetric convex disks in the plane R2. Examples of compact
sets belonging to (and not belonging to) Kccs are shown in Figure 1.0.1. The
Reinhardt problem is to determine the infimum

inf
KPKccs

δpKq “ inf
KPKccs

sup
P
δpK,Pq

and also that centrally symmetric convex disk which whose greatest packing
density achieves this minimum. The Reinhardt problem is structured as a
minimax problem: finding the infimum of a supremum (or to find that disk
whose greatest packing density is the least). In our situation, a centrally
symmetric convex disk achieving this minimum exists. We will see below that
an affine transformation does not change the greatest packing density of a
centrally symmetric convex disk. The minimizer is conjectured to be unique
up to affine transformation.

Figure 1.1.1: The Smoothed Octagon.
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Although a plausible first guess for the minimizer is the circular disk
in the plane, it turns out that there is a candidate which is slightly worse.
(We say that one convex disk is worse than another if its greatest packing
density is smaller. To be worse is to be less packable and more unpackable.)
In 1934, Reinhardt conjectured that the minimum is achieved by the so-called
smoothed octagon pictured in Figure 1.1.1 [40]. Independently, Kurt Mahler
arrived at the same conjecture in 1947 [29].

Conjecture (Reinhardt [40], Mahler [29]). The smoothed octagon achieves
the least greatest packing density among all other centrally symmetric convex
disks in the plane. Its density is given by

inf
KPKccs

δpKq “
8 ´

?
32 ´ ln 2

?
8 ´ 1

« 0.902414. (1.1.1)

Figure 1.1.2: Construction of the Smoothed Octagon starting from a regular
octagon. The hyperbolic arcs clipping each vertex are shown in red.

The smoothed octagon is constructed by clipping the vertices of a regular
octagon by hyperbolic arcs which are tangent to the two edges at the vertex,
and whose asymptotes pass through two further edges of the octagon, as shown
in Figure 1.1.2. The density formula appears in Fejes Tóth [47, p.106]. A
calculation of the density formula appears in an example before Theorem 7.5.6.
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1.2 History of the Reinhardt Problem
The earliest mention of the Reinhardt problem is as Problem 17 in §27 of

a 1923 book by Wilhelm Blaschke, where it is called Courant’s conjecture [4],
stating that the worst of all centrally symmetric convex disks is the circular
disk (whose greatest packing density in the plane is π{

?
12).

Less than a decade later, Richard Courant’s conjecture was shown to be
false by Reinhardt in his 1934 article, by his construction of the smoothed
octagon. In his article, Reinhardt also proved fundamental results on the
existence, structure, and regularity of a minimizer. The title and motivation
for Reinhardt’s article came from Minkowski’s work from 1904 on the lattice
packings of convex bodies [32]. Reinhardt wrote,

“Bei unseren Bereichen kommt diejenige Figure in Betracht, welche
aus einem regelmäßigen Achteck ensteht, wenn man jede Ecke
durch diejenigen Hyperbel abschneidet, die die beiden austoßenden
Seiten berührt, und die beiden wieder an diese grenzenden Seiten
zu Asymptoten hat” [40, p. 230].

Among our regions, that figure comes into consideration which
arises from a regular octagon, if one cuts off each corner with that
hyperbola which is tangent to the two outgoing sides, and again
has the two sides bordering on these as asymptotes. (Compare
Figure 1.1.2.)

More than a decade later, Kurt Mahler was also led to the smoothed
octagon in a series of articles in 1946–47. Mahler’s first article used the
calculus of variations to refute Courant’s conjecture by proving the existence
of a convex disk whose packing density was worse than the circular disk [29]. In
this paper, Mahler formulates the packing problem, considers a parameterized
family of convex domains adapted to this problem, and writes down necessary
conditions these domains should satisfy. Making the assumption that the
boundary is sufficiently smooth, and by disregarding the convexity constraint,
he shows that the only solution to the Euler-Lagrange equation is a circle, up
to affine transformation. He then takes a second variation of the circle to show
that it is not second-order optimal. In this way, he learns that the convexity
condition cannot be disregarded. Our treatment of the circle is similar to
his [15, §5.1,§5.2]. Like Mahler, we use parameterizations in SL2pRq.

In the same article, Mahler makes the final remark:
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It seems highly probable from the convexity condition, that the
boundary of an extreme convex domain consists of line segments
and arcs of hyperbolae. So far, however, I have not succeeded in
proving this assertion.

We refer to this final remark as Mahler’s First conjecture: the most
unpackable centrally symmetric convex disk is a smoothed polygon.

In a follow-up article, Mahler gives an explicit construction of the smoothed
octagon [28]. The term smoothed octagon appears explicitly in a later article
by Mahler and Ledermann in 1949 [25]. Although we may tend to cite Mahler
more frequently than Reinhardt, and although they worked from different
perspectives, we wish to make it clear that priority for many early results
belongs to Reinhardt.

Further progress was achieved by V. Ennola in 1961 and Paul Tammela
in 1969 where they showed that infKPKccs δpKq ě 0.8926... [9] [44]. Fedor
Nazarov proved that the smoothed octagon is a local minimum in the space
of convex disks equipped with the Hausdorff metric [36]. Discussions of the
Reinhardt conjecture appear in the books by János Pach and Pankaj Agarwal
and by L. Fejes Tóth [38] [46]. Hales’s earlier work treats the Reinhardt
problem as a problem in the calculus of variations [15].

As of 2024, the full Reinhardt conjecture is still beyond our immediate
reach, having remained open since 1934. However, we firmly believe that
optimal control theory is the proper framework for the study of this conjecture.
This book uses optimal control theory to give a proof of Mahler’s First
conjecture.

1.3 Book Summary
This book is an extension of a 2017 preprint of Hales in which the Reinhardt

problem is reduced to an optimal control problem on the tangent bundle of
the Lie group SL2pRq [16]. The book also grows out of the 2022 PhD thesis
of Vajjha, which considerably extends the theoretical framework [48]. We
include all the results from that preprint and thesis, and we carry the program
much further still.

As we show, the Reinhardt optimal control problem has a remarkable
amount of structure with deep connections with hyperbolic geometry, Hamil-
tonian mechanics and the theory of chattering control. It is our belief that the
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Reinhardt conjecture has now been transformed from an impossible problem
to a difficult, but approachable one.

In Part I of the book, we recall Reinhardt’s and Mahler’s results, which will
be essential for the construction of our control problem. In the formulation
of the control problem, properties proved by Reinhardt himself in 1934 play
an essential role. As an example, Reinhardt proved that the boundary of the
minimizer is described by six points moving to generate six curves, which
close up seamlessly into a single simple closed curve. The origin and any
three of these consecutive points form a parallelogram whose area remains
fixed as the three points move around the boundary. This is shown in Figure
1.3.1. The six curves (with centrally symmetric pairs colored similarly) form
a multi-curve, in a sense made precise in Definition 2.4.1.

Figure 1.3.1: Multi-curves generating the smoothed octagon. The parallelo-
grams all have the same area.

The points move along the boundary curves in a way that yields the
convexity of the enclosed disk. Convexity is imposed locally via a local
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curvature nonnegativity condition and globally via conditions on the tangents
to the six curves. The curvatures of these curves play a role in determining
the packing density of the resultant disk in the plane. The control problem
reformulation takes all these conditions into account.

A noteworthy feature of our control problem is that the set of controls is
the standard two-simplex in R3. Each point in the control set can be viewed
as a normalized ordered triple of curvatures, which are used to specify the
planar curvatures of the six curves describing the boundary of a minimizer
K. The bounding edges of the two-simplex constrain the planar curvatures
to be nonnegative, enforcing the convexity of K. We prove an analogue of
the Frenet-Serret formulas, showing that the six curves are determined from
the curvature control function, by solving a second order ordinary differential
equation with initial values. These differential equations appear in what we
call the state equations of the Reinhardt control problem (equations (3.6.1)
and (3.6.2) in problem 3.6.2).

The six curves describing the boundary of a minimizer K can be generated
in a uniform way from a single curve, taking values in the Lie group SL2pRq

of 2 ˆ 2 matrices with real entries and determinant one. The control problem
will occur naturally on a manifold that is closely related to this Lie group
(its tangent bundle).

Symmetry is visible throughout this book and plays an important role.
The control problem alluded to above is a left-invariant control problem on
a Lie group, and it is well known that such problems admit a reduction
in dynamics to coadjoint orbits in the corresponding Lie algebra [19]. The
Poincaré upper-half plane (a well-known model of hyperbolic geometry) and
its invariant metric also appear in a natural way – being symplectomorphic
to this coadjoint orbit. Lemma 7.1.2 shows that many important trajectories
of the control problem have constant speed with respect to the Riemannian
metric on the upper-half plane.

Another prominent symmetry is the discrete dihedral symmetry of the
equilateral triangle (expanded on in Section 4.6) arising from the standard
two-simplex, which is our control set. Using the isomorphism between SL2pRq

and the special unitary group SUp1, 1q, we transfer the dynamics to the
hyperboloid model of the hyperbolic plane. In the hyperboloid model, the
symmetries take a particularly nice form.

Part II of this book explores the Reinhardt optimal control problem 3.6.2,
and highlights its remarkable structure and these connections with hyperbolic
geometry and Hamiltonian mechanics.
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The state space of the control problem is unbounded. In Chapter 5, the
state space is compactified by cutting down the region of interest to a compact
set containing the global minimizer K. This compactification is achieved
by giving a geometric interpretation to trajectories that stray outside the
compact set. In a sense that we make precise, such trajectories correspond to
convex disks that are approximately parallelograms. Any such approximate
parallelogram yields a packing in the plane with high density. In particular,
it cannot have the worst greatest packing density, and thus it can be ruled
out. Our motivation for compactifying the state space has been to make the
Reinhardt control problem more amenable to numerical computer experiments
and possibly also more amenable to computer-assisted proof.

First order necessary conditions for optimality of an optimal control prob-
lem are given by the Pontryagin Maximum Principle (PMP) which states
that the optimal trajectory is given by a projection of the lifted controlled tra-
jectory (living in the cotangent bundle of the underlying manifold) [49]. This
means that our control problem is a higher-order variational problem since it
involves the cotangent bundle of the tangent bundle of a Lie group [7]. The
lifted controlled trajectory is the Hamiltonian flow of the maximized Hamilto-
nian, which is the pointwise maximum of a control-dependent Hamiltonian
function on the control set.

A control function is said to be bang-bang if its range is contained in
the set of extreme points of the control set, with discontinuous switching.
In our setting, the extreme points of the control set are the vertices of the
two-simplex. Critical points of control problems are frequently given by bang-
bang controls. The smoothed octagon is an example of an explicit solution
to the Reinhardt optimal control problem with bang-bang control. In earlier
research, we viewed the Reinhardt conjecture as a problem in the calculus
of variations [15]. However, one of our primary reasons to reformulate the
conjecture as a problem in optimal control theory is the bang-bang behavior
of the smoothed octagon. This behavior can be seen geometrically in the
way its boundary switches suddenly between linear segments and segments
that are as curved as possible at the rounded corners. This insight explains
its shape. Lemma 3.1.8 shows that the rounded corners of the smoothed
octagon are indeed as highly curved as possible, subject to the constraints of
the problem.

In Part III, we construct explicit solutions to the Reinhardt optimal control
problem 3.6.2. A bang-bang control function with finitely many switches
always produces a smoothed polygon, and a smoothed polygon with the
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corner-rounding of sort considered by Reinhardt and Mahler has a bang-bang
control function with finitely many switches. In particular, in Section 7.5, the
smoothed octagon is shown to be a critical point of the optimization problem
(a Pontryagin extremal) given by a bang-bang control. More generally, for
each k “ 1, 2, . . ., Theorem 7.5.6 constructs a smoothed 6k ` 2-gon that
is a Pontryagin extremal of the Reinhardt optimal control problem. The
associated control is bang-bang. As k tends to infinity, the smoothed 6k ` 2-
gon converges to the circle, which is also a Pontryagin extremal, but its
control function is not bang-bang. Among this explicit list of extremals, the
smoothed octagon has the worst greatest packing density.

If we examine the initial and terminal conditions of the optimal control
problem, we find that the boundary conditions are periodic modulo a rotation
by angle π{3. We can use the rotational symmetry of the boundary condi-
tions to extend every extremal trajectory to a periodic orbit with a discrete
rotational symmetry. In this way, the global minimizer of the Reinhardt
control problem can be viewed as a periodic orbit of the dynamical system.
Because of this, the research focus should be on the periodic Pontryagin
extremals. For example, if we could classify the periodic extremals, then the
global minimizer could be picked out from among them.

No other extremals have been found, but we have no proof that no other
extremals exist. In light of our results, a proof that no other extremals exist
would complete a proof of the Reinhardt conjecture. However, we do not
hazard a guess about whether other extremals might exist.

Singular arcs in optimal control problems arise when the maximization
condition in the Pontryagin maximum principle fails to determine a unique
control over an interval of time. In such a case, a face of the control two-
simplex can be found such that the entire face satisfies the maximization
condition (by Lemma 7.3.1). When that face is an edge of the two-simplex,
an anomalous situation occurs. Abnormal Pontryagin extremals exist, but
those abnormal extremals are obviously spurious solutions. In this case, we
modify the control problem slightly to form what we call the edge control
problem. In the modified control problem, the spurious extremals disappear,
and every Pontryagin extremal of the edge control problem has a bang-bang
control with finitely many switches. This is Theorem 8.1.4.

As we have just mentioned, associated to each singular arc is a maximizing
face of the control two-simplex. That face can be the entire control simplex.
In this case, Theorem 8.2.6 gives a characterization of singular extremals. The
result states that up to an affine transformation, the arc of a circle (generating
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the circular disk K in the plane) is the unique such singular extremal of
the Reinhardt optimal control problem. Although the arc of a circle is an
extremal in the sense of Pontryagin, it does not satisfy the necessary second
order conditions to be a global minimizer. Theorem 8.2.7 proves that the
global minimizer contains no singular arcs.

The region of state space where singular behavior might appear is called
the singular locus. As mentioned, the global minimizer does not remain in the
singular locus during any positive time interval. Nevertheless, it is possible
for trajectories to approach the singular locus, without remaining in the locus
during a positive time interval. Extremals that completely avoid the singular
locus have a simple form, as follows.

Theorem (8.3.2). Every Pontryagin extremal of the Reinhardt control problem
which does not meet the singular locus is given by a bang-bang control function
with finitely many switches.

In terms of the centrally symmetric convex domain K, this theorem implies
that any such extremal is a smoothed polygon whose corners are rounded by
hyperbolic arcs, according to Reinhardt’s corner-smoothing procedure. Thus,
if the global minimizer avoids the singular locus, then the global minimizer
is a smoothed polygon. We eventually show that the global minimizer does
indeed avoid the singular locus, and this yields a proof of Mahler’s First
conjecture, which is the main result of the book.

Theorem (Mahler’s First 16.3.1). The global minimizer of the Reinhardt
optimal control problem is a bang-bang solution with finitely many switches.
In particular, the minimizer Kmin of the Reinhardt problem is a finite-sided
smoothed polygon with rounded hyperbolic arcs at each corner of the sort
described by Reinhardt and Mahler.

One of the most intriguing aspects of the Reinhardt problem is the behavior
of trajectories near the singular locus. The only way for a Pontryagin extremal
to approach the singular locus is through chattering, which is the term used
to denote the phenomenon when the control function performs discontinuous
and increasingly rapid transitions between extreme points of the control set
in order to approach the singularity [50]. They were first studied in a problem
of A. T. Fuller in 1963 [11] and were considered pathological for a time, but
were eventually proven to be ubiquitous in a very precise sense by Ivan A.
Kupka in the 1990s [24]. One of the main results of this book is the recovery
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of the Fuller optimal control system in a neighborhood of the singular locus.
To explain this precisely, we first discuss circular control sets.

An important strategy for us is to change the shape of the control set
from the two-simplex to a circular disk. Part IV of this book is devoted to
the study of the control problem for a circular control set. By changing the
control set, the control problem changes, and we are no longer studying the
Reinhardt problem in discrete geometry. However, there are good reasons to
investigate the optimal control problem with a circular control set.

There are a few different ways to imagine the relationship between the
original Reinhardt problem and the modified control problem with circular
control. First, if we take the circular control set to be the circumscribing
circle of the triangular control, then the modified optimal control problem is
a relaxation of the original Reinhardt optimal control problem. This means
that a lower bound on the cost in the modified problem should be a lower
bound on the cost of the original problem.2

Second, the triangular control is a discretization of the circular control.
We know that the optimal control function for trajectories that avoid the
singular locus takes values in the set of extreme points of the control set.
For circular control, each point on the circle is an extreme point, and the
control function is continuous. For triangular control, the control function
is discontinuous, taking values at the vertices of the two-simplex. Hence,
the Reinhardt problem can be viewed as a three-point discretization of the
continuous control.

Third, we can view the triangle as a continuous deformation of the circle.
We can study the properties of the dynamical system for the circular control
set. We can ask to what extent these properties are preserved as the circular
control is deformed back into a triangular control set.

Finally, the triangular control is a symmetry breaking of the circular
control problem. All data used to specify the Reinhardt control problem have
a rotational symmetry except for the control set. The modification of the
control set to make it circular allows us to construct a conserved quantity.
This we do by appealing to a control-theoretic version of the classical Noether
theorem, proved by Hector Sussmann [43].

2We do not claim this relaxation result as a theorem because of technicalities related to
the fact that we have not extended the compactification result of Chapter 5 to the relaxed
problem. The issue is that the relaxed problem is defined on a smaller domain than the
original problem, and a global minimizer of a relaxed problem on the smaller domain is
not a priori a lower bound to the unrelaxed problem on the full domain.
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Theorem (9.1.6). In the control problem with the circular disk control set,
each Pontryagin extremal satisfies a conservation law (which we call the
angular momentum).

The symmetry is broken by the triangular control set, where the angular
momentum is approximately but not exactly preserved. The circular control
problem with its extra symmetry is a toy model for the original Reinhardt
problem. We study the modified problem in the hope that it will lead to
useful insights into the Reinhardt conjecture.

With this background about circular control sets, we return to examine
the trajectories near the singular locus in greater detail. The conservation of
angular momentum gives us valuable information about the optimal control.

Using this conservation law, we perform a truncation of the Pontryagin
control system by estimating the magnitude of terms in the system of equations
and then discarding all higher-order terms. We make the remarkable discovery
that the truncation of our optimal control problem is precisely the Fuller
optimal control problem for a chain of odd length. We find inward and
outward logarithmic spiral solutions to the Fuller system, centered at the
singular locus. (In a similar fashion, we construct triangular inward and
outward spirals, when the control set is the two-simplex.)

We make a complete analysis of the global dynamics of this Fuller system.
The dynamical system maps onto a simpler dynamical system in the plane.
In the planar system, there are only two critical points. One is asymptotically
stable and the other is unstable. Every point in the plane, except for the
unstable equilibrium point, is in the basin of attraction of the stable critical
point. Going from the planar system back to the full Fuller system, we find
that the only trajectory that converges to the singular locus is an inward
logarithmic spiral centered at the singular locus. The only trajectory that
escapes from the singular locus is an outward spiral, which is unique up
to rotational symmetry. The inward spiral is unstable, and the outward
spiral is stable, so that a trajectory that is not exactly an inward spiral must
necessarily swerve away from the singular locus, then reapproach an outward
spiral.

We plot some solutions numerically and observe that the solutions appear
to behave chaotically. We conjecture that for certain parameter values, the
trajectories are indeed chaotic. For this and other research problems, we refer
the reader to Appendix B.4.

In Part V, we return to the Reinhardt problem with triangular control set.



1.3. BOOK SUMMARY 25

Several further ideas are introduced to give a proof of Mahler’s conjecture.
Blowing up at the singular locus (in the sense of algebraic geometry) creates
an exceptional divisor, which becomes the focus of attention. We make
a detailed study of the Fuller system with a triangular control set on the
exceptional divisor. By restricting the dynamical system to switching times,
the Fuller system becomes a discrete dynamical system whose dynamics are
given by a Poincaré first recurrence map.

We find that the discrete dynamical system has several features that are
remarkably similar to features that were found in the toy system with circular
control. There are exactly two fixed points. One is stable and the other is
unstable. The two fixed points are related by a time-reversing symmetry. The
stable fixed point has a global basin of attraction. The fixed points can be
interpreted as self-similar spirals in a larger dynamical system that does not
factor out by symmetries.

To prove that the stable fixed point has a global basin of attraction
we introduce an explicit geometric partition of the exceptional divisor into
finitely many compact pieces. On each piece, the discrete dynamical system
is continuous. The dynamical system acquires a block upper triangular form
with respect to the geometric partition. The strictly upper triangular blocks
represent transient behavior of the dynamical system, and the diagonal terms
are localized around the stable and unstable fixed points. In this way, the
claim of global stability can be reduced to a statement about local stability.
From a slightly different perspective, the upper triangular structure can be
interpreted as a discrete Lyapunov function with respect to the geometric
partition.

The stable and unstable fixed points for the discrete Fuller dynamical
system are hyperbolic fixed points for the discrete Reinhardt dynamical
system. On the blowup, the discrete Reinhardt dynamical system extends
by analytic continuation to a neighborhood of the hyperbolic fixed points.
We study the local stable and unstable manifolds near the fixed points. The
global stability result (for the discrete Fuller system) is used to show that a
chattering solution to the Reinhardt dynamical system must approach and
depart the blown up singular locus through the stable and unstable manifolds
of the hyperbolic fixed points. Explicit calculations show that trajectories
on these stable and unstable manifolds cannot be periodic. However, the
solution to the Reinhardt problem is necessarily periodic. We conclude that
the solution to the Reinhardt problem is not a chattering solution and does
not meet the singular locus. From this conclusion, it follows that the solution
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to the Reinhardt problem is a smoothed polygon, affirming Mahler’s First.

In many ways, the Reinhardt problem is a textbook control problem,
because of the way it employs significant parts of the general theory in
a single problem. Among other structures, we encounter Lax equations,
control problems on Lie groups, the symplectic structure on coadjoint orbits,
Poisson brackets, Lie-Poisson dynamics, Euler-Arnold equations, Lyapunov
functions, a conserved quantity via the Noether-Sussmann theorem, singular
arcs, chattering, the Fuller system, bang-bang solutions, and even an ODE
without a Lipschitz condition.

Although this book does not succeed in resolving the Reinhardt conjecture,
it is our firm belief that optimal control theory is the proper framework
for understanding this problem. In particular, the Reinhardt conjecture is
formulated as an entirely explicit control problem. This book brings us one
step closer to a complete solution.
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Chapter 2

Historical Results

2.1 A Statement of the Reinhardt Conjecture
In this section, we state the Reinhardt conjecture and introduce terminol-

ogy used throughout this book.
We will call a compact, convex set in Rn with nonempty interior a convex

body, and a convex body in R2 will be called a convex disk. By a centrally
symmetric convex disk in the Euclidean plane, we mean a convex disk K in
R2 such that if v P K then ´v P K. Here, and throughout this chapter, we
assume the center of symmetry is the origin 0 :“ p0, 0q. We denote by Kccs
the set of all centrally symmetric convex disks in the plane R2, which have
the origin as the center of symmetry.

A family of convex disks in R2 is called a packing if any two distinct convex
disks in the family do not overlap; that is, they have disjoint interiors. We
can now define the packing density and greatest packing density of a packing
in R2. Intuitively the packing density corresponds to the proportion of the
plane taken up by the packing.

Definition 2.1.1 (Greatest packing density). Let Br be a ball of radius r in
R2 centered at the origin, and let area be the Lebesgue measure on R2. The
upper and lower density of a packing P are defined to be

lim sup
rÑ8

1
areapBrq

ÿ

K1PP
areapK 1

XBrq and lim inf
rÑ8

1
areapBrq

ÿ

K1PP
areapK 1

XBrq

respectively. If they both exist and coincide, the common number is called
the density of the packing P and is denoted δpK,Pq. Given a convex body

27
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K we define the greatest packing density as the packing density formed with
congruent copies of K:

δpKq :“ sup tδpK,Pq | δpK,Pq exists, and P is a packing with congruent copies of Ku .

It can be proved that for a convex disk K, one can always find a packing
P such that δpK,Pq exists and is equal to δpKq [38, Exercise 3.2].

A lattice is a discrete additive subgroup of R2 of full rank. An important
class of packings are lattice packings, which consist of lattice translates of of
a convex disk K: If L is a lattice in R2 and K is a fixed convex disk, then we
consider the packings of translates of K under L, provided the translates of
K do not overlap (called the lattice packing of K). We write K ` L for the
packing and write K ` l, for the lattice translate of the convex disk K, for
l P L. We can now similarly define the lattice packing density and greatest
lattice packing density.

Definition 2.1.2 (Greatest lattice packing density). We define the upper
and lower densities of a lattice packing K `L of congruent copies of a convex
disk K to be respectively

lim sup
rÑ`8

ř

lPL areapBr X pK ` lqq

areapBrq
and lim inf

rÑ`8

ř

lPL areapBr X pK ` lqq

areapBrq
.

It can be proved that given a convex disk K and a lattice L, the upper
and lower lattice packing densities of the packing K ` L (provided that the
L-translates of K have disjoint interiors) coincide and are both equal to

δpK,Lq “
areapKq

detpLq

where detpLq is the determinant of the lattice L (see Definition 2.3.2) [13,
Corollary 30.1].

The common value δpK,Lq of the upper and lower densities is called the
density of the lattice packing. The greatest lattice packing density is defined
as

δLpKq :“ suptδpK,Lq | L a lattice in R2 such that K ` L is a packing u.

If K is a convex disk, let Ksym :“ tpv ´ wq{2 | v,w P Ku be its sym-
metrization. Then Ksym is a centrally symmetric convex disk. For a centrally
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symmetric convex disk K, we have K “ Ksym. Minkowski made the simple
observation that K ` L is a packing if and only if Ksym ` L is a packing.
In this way, questions about lattice packings for K can usually be reduced
to corresponding questions for Ksym. This led early researchers to focus on
centrally symmetric convex disks.

A key point is the following theorem of L. Fejes Tóth, which states that
the greatest packing density and greatest lattice packing densities are actually
equal for the class Kccs [45],[46],[47].
Theorem 2.1.3 (Fejes Tóth). If K Ă R2 is a centrally symmetric convex
disk, then

δpKq “ δLpKq. (2.1.1)
Many of the early research articles on the Reinhardt conjecture were

restricted in scope to lattice packings. However, in view of Fejes Tóth’s
theorem, results about greatest lattice packing density actually imply results
about greatest packing density (for the set Kccs). In lattice form, packings of
convex bodies were studied by multiple authors, beginning with Minkowski.

Now consider the infimum of densities:
δmin :“ inf

KPKccs

δpKq.

So δmin is defined as a minimax : the least (or worst) greatest packing density
among all centrally symmetric convex disks in R2.

In 1904, Minkowski established a lower bound on this infimum [33]. In
1923, Blaschke called Courant’s conjecture the statement that the ellipse
minimizes the greatest packing density [4]. Later, Reinhardt proved that a
minimizer exists, and proved several properties about it, including the fact
that the ellipse is not the minimizer, refuting Courant’s conjecture [40].

Reinhardt’s problem now is to explicitly describe a Kmin P Kccs for which
δpKminq “ δmin, and also determine this worst greatest packing density. It is
the problem of finding the most unpackable shape in Kccs. As mentioned in
the previous chapter, Reinhardt suggested a specific candidate, the smoothed
octagon, to be the most unpackable; that is, to be the minimax optimizer.
The smoothed octagon is a regular octagon whose vertices have been clipped
by hyperbolic arcs (shown in Figure 1.1.1).

If L gives a lattice packing of K, and if g is an affine transformation,
then gL gives a lattice packing of gK of the same density. Because of this
affine invariance, the set of worst disks is stable under the group of affine
transformations.
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Conjecture (Reinhardt [40], Mahler [29]). The smoothed octagon achieves
the least greatest packing density among all centrally symmetric convex disks
in the plane. Its density is given by

8 ´
?

32 ´ ln 2
?

8 ´ 1
« 0.902414.

The smoothed octagon is uniquely the worst, up to affine transformation.

This book investigates the Reinhardt conjecture by restating it as a
problem in control theory. To do this, we rely on numerous geometric
properties of the worst convex disk Kmin, which we collect in the following
sections. These sections review the results contained in Reinhardt’s article of
1934 and Mahler’s articles written in the 1940s.

2.2 Reinhardt’s Approach
In this section, we briefly review Reinhardt’s article of 1934. The proofs

that we give will be sketches, because the full details are available in Rein-
hardt’s article. Let K be a centrally symmetric convex disk. Let K ` L be a
lattice packing of K.

Lemma 2.2.1. The packing K ` L is realized by placing K inside an appro-
priate parallelogram or centrally symmetric convex hexagon HK, tiling the
plane with translates of HK, then placing a copy of K inside each translate
of HK.

Proof. Homothetically expand K (to rK) and its translates by L until two
translates rK and rK ` l come in contact. Draw a separating line between
these two translates (by the separating hyperplane theorem). Similarly sepa-
rate other translates of rK using translates of the separating line. Continue
to homothetically expand rK, but now cropping rK to prKqcr so as to lie
between its bounding separating lines, so that cropped translated regions
prKqcr ` l do not overlap. Continue to expand until a new point of contact is
formed. Repeat the process, adding new separating lines, cropping, and then
continuing with cropped homothetic expansion. Eventually, after repeating
the process a finite number of times, the plane is tiled by the translates of
the cropped homothetic expansion HK of K.
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By construction HK is a convex polygon, because it is bounded by the
finitely many separating lines that were introduced. It is centrally symmetric
by central symmetry of K and the symmetric placement of the separating
lines. By considerations of Euler characteristic of a polygon tiling, the number
of edges is at most six. Thus HK is a parallelogram or centrally symmetric
hexagon.

Every centrally symmetric hexagon tiles the plane. A parallelogram HK

never gives smaller area than that of the smallest centrally symmetric hexagon
containing K, because its corners can be clipped to give a smaller hexagon
containing K, except when K itself is a parallelogram. In this exceptional
case, K itself tiles and has greatest packing density 1. We exclude this
exception from our further discussions.

Theorem 2.2.2 (Reinhardt-Fejes-Tóth). If K Ă R2 is a centrally symmetric
convex disk that is not a parallelogram, then its packing density is

δpKq “
areapKq

areapHKq
, (2.2.1)

where HK is a centrally symmetric hexagon of least area circumscribing K.

We remark that the hexagon of smallest area circumscribing a centrally
symmetric disk K can be realized as a centrally symmetric hexagon [38,
Theorem 2.5].

Proof. By Fejes-Tóth (Equation 2.1.1), we have δLpKq “ δpKq. Let L be a
lattice that realizes this equality. By the previous lemma, the lattice packing
K`L is obtained by tiling a centrally symmetric hexagon HK . The density of
this packing is given by (2.2.1). This hexagon has least area among centrally
symmetric ones, because every centrally symmetric hexagon tiles, and one of
smaller area circumscribing K would lead to a packing of greater density.

From now on, HK will denote a centrally symmetric hexagon of smallest
area circumscribingK. We call such aHK a critical hexagon. This terminology
is further explained in Definition 2.3.8 and Theorem 2.3.9.

The midpoints of the edges of HK lie on the boundary of K. For otherwise,
an edge of HK can be rotated about some point on that edge to create a
hexagon of smaller area. If we slide one edge of a convex polygon, where
the movement is constrained to keep the area of the polygon fixed, then the
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x

y

Figure 2.2.1: The hyperbola is the envelope of a pencil of lines the product of
whose x and y-intercepts is constant.

envelope of the moving edge is a hyperbola whose asymptotes are the lines
through the two adjacent edges. This observation follows from the fact that
the hyperbola is the envelope of a pencil of lines the product of whose x and
y-intercepts is constant. Additionally, every point on the hyperbolic envelope
is the midpoint of a unique line segment formed by a line in the pencil and
the x and y axes. See Figure 2.2.1.

Definition 2.2.3 (Support line). For a convex disk K, a support line is a
line containing at least one point of K but does not separate any points of K.

From this observation about the hyperbola, it follows that the six edge
midpoints of HK on the boundary of K are not corners of K: the unique
support line at each midpoint is the tangent to the hyperbolic envelope at
that point. Otherwise the area of HK is not minimal.

Remark 2.2.4. We also observe that locally around each midpoint, K contains
an arc of the hyperbola. It is here that we first see the significance of the
hyperbola for the Reinhardt conjecture.

The ratio areapKq{areapHKq in Theorem 2.2.2 is scale invariant and so
there is no loss of generality in fixing the denominator areapHKq. We choose
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the normalization areapHKq “
?

12, which is the area of a regular hexagon
with inradius 1. This choice has the advantage of making the unit circular
disk K satisfy the normalization condition.

Let detpv1,v2q denote the determinant of the 2 ˆ 2 matrix with with
columns v1,v2 P R2. If HK is any critical hexagon of K P Kccs, then the
edge midpoints s0, s1, . . . , s5 give six points, ordered counterclockwise, around
the boundary of K. The six points, by virtue of being the edge midpoints
of a centrally symmetric convex hexagon, satisfy the following multi-point
conditions

s0 ` s2 ` s4 “ 0, sj`3 “ ´sj, detpsj, sj`1q “ constant, (2.2.2)

for all j P Z{6Z, the constant being independent of j. Moreover, detpsj, sj`1q

is independent of the critical hexagon HK , because it is a fixed fraction of
the area of HK . By fixing the area of HK at

?
12, we have

detpsj, sj`1q “
?

3{2. (2.2.3)

Replacing K by its image under an affine transformation, we may assume
that s0, s1, . . . , s5 are the sixth roots of unity s˚

j in the plane, with complex
coordinates s˚

j “ expp2πij{6q, where i “
?

´1. The convex hull of the six
points s˚

j is a regular hexagon hK contained in K. It follows from the convexity
of K that the boundary of K is contained in the union of six equilateral
triangles Tj , where triangle Tj has vertices s˚

j , s˚
j`1, s˚

j ` s˚
j`1, for j “ 0, . . . , 5.

See Figure 2.2.2.

Lemma 2.2.5. A disk Kmin with the worst greatest density lattice packing
exists. Kmin has no corners. That is, there is a unique support line to Kmin
at each boundary point. Moreover, the support line of each boundary point of
Kmin contains an edge of some critical hexagon.

Proof. Reinhardt uses the Blaschke selection theorem to prove the existence
of a centrally symmetric K with a worst greatest density lattice packing.
We fix one such K “ Kmin. The set of critical hexagons of K is closed: a
convergent limit of critical hexagons is again critical. Moreover, every point on
the boundary of K “ Kmin lies on some edge of a critical hexagon. Otherwise,
if the point u is not on the edge of any critical hexagon, then by closedness,
the same holds for all nearby boundary points, and a small area can be shaved
in a centrally symmetric manner from K at ˘u to decrease the area of K
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s∗0

s∗1s∗2

s∗3

s∗4 s∗5

s∗0 + s∗1

Figure 2.2.2: Hexagon formed by the sixth roots of unity along with triangles
Tj formed by the vertices s˚

j , s˚
j`1, s˚

j ` s˚
j`1.

without changing the minimal area of the critical hexagons. This contradicts
the density minimax property of Kmin. If a boundary point u is a midpoint
of a critical hexagon HK , then as seen above with the hyperbolic envelope, u
is not a corner.

If a boundary point u lies on some edge of a critical hexagon without
being its midpoint, then an entire segment containing u of the edge lies along
the boundary of K. The segment determines the unique support line for
points in the relative interior of the segment. Each endpoint of the segment
is the midpoint of an edge of a critical hexagons and hence not a corner, for
otherwise it can be shaved as above.

Lemma 2.2.6. Assume that the boundary of Kmin has critical hexagon with
edge midpoints s˚

j . Consider a second critical hexagon of Kmin with edge
midpoints s0, . . . , s5, indexed so that s0 P T0zts˚

0 , s˚
1u. Then for all j, we have

that sj lies in the interior of Tj.

Reinhardt calls this property monotonicity. As the midpoint s0 advances
counterclockwise beyond s˚

0 , the other midpoints sj advance counterclockwise
beyond s˚

j into the interior of Tj. See Figure 2.2.3. Note that if tsj | ju ‰

ts˚
j | ju, we can always assume without generality that the subscripts are
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s∗0

s∗1

s0

Figure 2.2.3: This figure shows monotonicity. The points sj of the rotated
hexagons lie in triangles Tj.

indexed such that
s0 P T0zts˚

j | ju “ T0zts˚
0 , s˚

1u,

to satisfy the assumption of the lemma.

Proof. Assume s0 P T0. For some j and k, we have s1 P Tj and s2 P Tk. As
above, we have s1 “ s0 ` s2, which gives a system of constraints

s1 P Tj X pT0 ` Tkq,

expressed using the Minkowski sum

T0 ` Tk :“ tu0 ` uk | u0 P T0, uk P Tku.

Also, for fixed s0, the inequality detps0, s1q ą 0 places a half-plane constraint
on s1. These constraints imply that s1 P T1 and s2 P T2. Using sj`3 “ ´sj
and rotational symmetry, we have a weak form of monotonicity: if for some
j, we have sj P Tjzts˚

j , s˚
j`1u, then for all k, we have sk P Tk.

Now suppose for a contradiction that s0 lies on the relative interior of the
edge ps˚

0 , s˚
1q of T0. By the convexity of K, the entire edge rs˚

0 , s˚
1s lies on the

boundary of K. Let u1 P BK be any midpoint of a critical hexagon in the
interior of T1 such that its support line is different from the support lines at
s˚
1 and s˚

2 . The point u1 exists because there are no corners, by Lemma 2.2.5.
Let uj be the other midpoints. By the weak form of monotonicity in the



36 CHAPTER 2. HISTORICAL RESULTS

previous paragraph, the point u0 lies in T0, hence along the edge of T0. The
multi-point conditions (2.2.2) now imply that for some t0, t1 P R, we have

u0 “ s˚
0 ` t0s˚

2 , u1 “ s˚
2 ` t1u0 u2 “ s˚

2 ` pt1 ´ 1qu0.

The condition that u1 is an interior point of T1 gives 0 ă t1 ă 1. Thus,
u1, s˚

2 ,u2 are distinct collinear points on BK so that the entire segment from
u1 to u2 lies on the boundary of K. This shows that s˚

2 and u1 have the same
support line, which is contrary to the construction of u1. Thus u0 does not
lie on the relative interior of the edge. Repeating this argument for each j,
we find that no sj lies on the relative interior of the edge ps˚

j , s˚
j`1q of Tj.

Now assume that s0 P T0zrs˚
0 , s˚

1s. We claim that s1 ‰ s˚
1 . Otherwise, the

multi-point condition s5 “ s0 ´ s˚
1 forces s5 to lie along the relative interior of

the edge ps˚
5 , s˚

0q, which we have shown to be impossible. Similarly, we claim
that s1 ‰ s˚

2 . Otherwise, the multi-point condition gives s0 “ s˚
2 ´ s2, which

forces s0 to lie on the forbidden edge rs˚
0 , s˚

1s.
Thus, s1 satisfies the hypotheses of the previous paragraph (shifting indices

by one): s1 P T1zrs˚
1 , s˚

2s. Iterating the argument of the previous paragraph for
consecutive j, we find that for all j, we have sj P Tjzrs˚

j , s˚
j`1s. Furthermore,

no sj is on the boundary of Tj. Otherwise, the convexity of K forces sj`1 or
sj´1 to lie on the forbidden edge. This completes the proof.

Lemma 2.2.7. Let K “ Kmin have worst greatest packing density. Then
every point of the boundary of K is the midpoint of an edge of a unique critical
hexagon. As s0 advances around the boundary of K in a counterclockwise
direction, the five other midpoints s1, . . . , s5 advance strictly monotonically
and continuously in a counterclockwise direction.

Proof. Strict monotonicity is established in the previous lemma. In particular,
each point on the boundary is the edge midpoint of at most one critical
hexagon. Continuity follows from monotonicity if we show that there are no
jumps. We show that every open interval along the boundary of K contains
the edge midpoint of a critical hexagon.

Suppose for a contradiction that an open interval exists without a such
a midpoint. Then picking the interval to be as large as possible, there exist
critical hexagons and edge midpoints s0,u0 marking the endpoints. Let
s0, . . . , s5 and u0, . . . ,u5 be the corresponding midpoints of the six edges
of these two critical hexagons. For each j, we claim that no point on BK
between sj and uj is an edge midpoint of a critical hexagon. For otherwise,
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by monotonicity the same critical hexagon has an edge midpoint between
s0 and u0. By Lemma 2.2.5, the boundary segments of BK between sj and
uj are straight lines, included in edges of critical hexagons. This forces the
critical hexagon for sj and uj to be equal (both hexagons having their edges
along these straight lines), and since these are the edge midpoints sj “ uj for
all j. Thus, no such open interval exists.

Thus, in summary, excluding the degenerate case when K is a parallel-
ogram, Reinhardt constructed the hexagon HK as the centrally symmetric
hexagon of least area containing K. He showed that the midpoints of the
edges of HK lie on the boundary of K. He constructed hK as the centrally
symmetric polygon joining these midpoints and showed that to achieve the
densest lattice packing of K, the plane is tiled by copies of HK . Reinhardt
also proved the existence of a disk Kmin which has the worst greatest lattice
packing density, and proved properties about its boundary.

2.3 Mahler’s Approach
In the previous chapter, we have mentioned Minkowski’s discovery of

the connection between centrally symmetric convex disks and lattices, which
resulted in the famous Minkowski theorem on lattice points [34]. These results
initiated the geometry of numbers. Kurt Mahler rediscovered the Reinhardt
conjecture while attempting to extend Minkowski’s results. These results
were published in a series of papers in the 1940s. We review his approach in
this section.

Definition 2.3.1 (Admissible lattice). For a K P Kccs centered at the origin,
a lattice L is called K-admissible if no point of L other than 0 “ p0, 0q lies in
the interior of K.

The lattice L of a centrally symmetric convex disk K is K-admissible if
and only if K{2`L is a lattice packing of K{2. Thus, results about admissible
lattices translate readily into results about lattice packings.

Definition 2.3.2 (Determinant of a Lattice). For any lattice L with basis
u0,u1 P R2, the determinant detpLq is equal to the absolute value | detpu0,u1q|.
This is also sometimes called the covolume of the lattice L.
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Definition 2.3.3 (Minimal determinant). For K P Kccs, the minimizer

∆pKq :“ inf
K´admissible

detpLq,

where the infimum runs over all K-admissible lattices, is called the minimal
determinant of the convex disk K.

Definition 2.3.4 (Critical lattice). A lattice is called critical for a convex
disk K if its determinant is equal to the minimal determinant of K.

Definition 2.3.5 (Irreducible disk). A convex disk K P Kccs is called irre-
ducible if every boundary point of K lies on a critical lattice of K.

We remark that this is not the original definition of irreducibility of a
convex disk. We choose our definition based on of [29, Lemma 3], which
shows that this definition is equivalent to the original definition. We reiterate
that the most significant results of this section were known to Reinhardt in
1934, without using the language of critical lattices, minimal determinants,
and irreducibility.

Minkowski proved the following theorem which gives conditions under
which points on K give rise to critical lattices.

Theorem 2.3.6 (Minkowski [33], Mahler [27]). Let L be a critical lattice of a
convex disk K P Kccs. Then L contains three points s0, s1, s2 on the boundary
of K such that (i) s0, s1 is a basis of the lattice L, and (ii) 0s0s1s2 is a
parallelogram of area detpLq “ | detps0, s1q| “ ∆pKq, the minimal determinant
of K. Conversely, if s0, s1, s2 are three points on the boundary of K such
that 0s0s1s2 is a parallelogram, then the area of this parallelogram is not less
than ∆pKq and is equal to ∆pKq if and only if the lattice with basis s0, s1 is
critical.

The parallelogram of the theorem above is shown in Figure 1.3.1.
Since centrally symmetric hexagons can be decomposed into three par-

allelograms, the above result shows that a critical lattice of a convex disk
K P Kccs gives rise to an inscribed centrally symmetric hexagon hK within
our convex disk K so that ∆pKq “ areaphKq{3 which is minimal in the sense
that

areaphKq “ inf
h

areaphq,

where the infimum is taken over all hexagons h with vertices s0, s1, s2 (and
their reflections about 0) on the boundary of K and with s0 ´ s1 ` s2 “ 0. In



2.3. MAHLER’S APPROACH 39

hK

K

HK

Figure 2.3.1: Critical hexagons for an ellipse.

1947, Mahler [29] proved an analogous result for circumscribed hexagons of
K:
Theorem 2.3.7 (Mahler [29]). Let K P Kccs be a convex disk which is not a
parallelogram. Let L be a critical lattice of K with lattice point s0, . . . , s5 on
the boundary of K satisfying s0 ´ s1 ` s2 “ 0 and sj`3 “ ´sj. Then there are
unique symmetric support lines ℓj of K at these points, such that

1. no two of these lines coincide;

2. the area of the centrally symmetric hexagon HK bounded by the support
lines is given by areapHKq “ 4∆pKq;

3. each side of HK is bisected at the lattice point sj where it touches the
boundary of K;

4. the hexagon HK is minimal in the sense that

areapHKq “ inf
H

areapHq,

where the infimum is taken over the set of all hexagons H bounded by
symmetric support lines of the convex disk K.

By construction, hK , HK P Kccs. The hexagons HK and hK for an ellipse
are shown in Figure 2.3.1. The critical lattice of any K P Kccs gives rise to
hexagons hK and HK whose areas are related as

∆pKq “
1
3areaphKq “

1
4areapHKq. (2.3.1)
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Definition 2.3.8 (Critical Hexagon). For a convex disk K P Kccs, a hexagon
HK given by the construction of Theorem 2.3.7 is called a critical hexagon.

In the section on Reinhardt’s approach, we defined critical hexagons
differently. The following theorem shows that the definitions are compatible.
Theorem 2.3.9. Let K P Kccs. Let HK be a centrally symmetric hexagon of
least area circumscribing K. Then HK is a critical hexagon in the sense of
Definition 2.3.8.
Proof. Let sj be the edge midpoints of HK . These points lie on the boundary
of K. Since HK is centrally symmetric, the points sj satisfy the multi-point
conditions (2.2.2).

Tile the plane with translates of HK . Let L be the lattice generated by s0
and s1. The centers of the tiles form the sublattice 2L generated by 2s0 and
2s1. A lattice point with one or two odd coordinates is the midpoint of an
edge of a translate of HK centered at an adjacent even lattice point. Thus,
none of the nonzero lattice points of L lie in the interior of K. That is, L
is K-admissible. Note that HK is a fundamental domain for the lattice 2L.
Thus, 4∆pKq “ detp2Lq “ areapHKq.

We claim that L is critical. Let L̃ be a critical lattice with critical hexagon
H̃K . Since HK and the critical hexagon H̃K both have smallest area among
centrally symmetric circumscribing hexagons, their areas must be equal. They
are both fundamental domains for the corresponding even sublattices 2L and
2L̃. Hence the determinants of the lattices are equal. This implies that L is a
critical lattice.

It is now easy to see that the properties of Theorem 2.3.7 all hold for HK ,
if we take ℓj to be the line through the jth edge of HK .
Corollary 2.3.10. Let K “ Kmin have worst greatest packing density. Then
K is irreducible.
Proof. By Reinhardt, every boundary point of K is a midpoint of an edge
of an area-minimizing centrally symmetric circumscribing hexagon HK . By
Theorem 2.3.9 and its proof, the boundary point is a lattice point of a critical
lattice L.

2.4 Boundary Parameterization of Minimizer
We return to Reinhardt’s setup from Section 2.2. Let K “ Kmin be a

centrally symmetric convex disk that gives the worst greatest density.
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We have seen that each point s0 on the boundary of K is associated with
other points s1, . . . , s5 that satisfy the multi-point conditions (2.2.2), with
area normalization (2.2.3).

Since the boundary of K does not contain any corners, we can parameterize
the boundary by a regular C1 curve t ÞÑ σ0ptq, traversing the boundary in the
counter-clockwise direction. We will call this the positive orientation. Then by
the above discussion, the point σ0ptq gives rise to other points σ1ptq, . . . , σ5ptq
which are subject to the multi-point conditions at each time t:

σjptq ` σj`2ptq ` σj`4ptq “ 0, σj`3ptq “ ´σjptq, detpσjptq, σj`1ptqq “

?
3

2 .

(2.4.1)

Definition 2.4.1 (Multi-point and multi-curve). A function s : Z{6Z Ñ R2

such that is called a multi-point if it satisfies the multi-point conditions (2.2.2)
with normalization (2.2.3). An indexed set of Ck curves σ : Z{6Zˆr0, tf s Ñ R2

is a Ck multi-curve if for all t P r0, tf s, j ÞÑ σjptq is a multi-point.

If the differentiability class Ck is not specified, then C1 is assumed. The
regularity of the curves will be established in the next section.

Example.

• The collection of sixth roots of unity s˚
j “ exp

`2πij
6

˘

P C, viewed as
points in R2, is an example of a multi-point.

• If θ : r0, tf s Ñ R is a C1 curve, then the rotation

σjptq “

ˆ

cospθptqq ´ sinpθptqq

sinpθptqq cospθptqq

˙

s˚
j

of a multi-point is an example of a multi-curve.

• Section B.1 in the Appendix gives an example of a hypotrochoid curve
in R2 which satisfies the multi-curve properties in Equation (2.4.1).

2.4.1 Regularity Properties of Multi-Curves
Lemma 2.4.2 (Hales [15]). Let K “ Kmin P Kccs be a centrally symmetric
convex disk that has the worst greatest packing density. Consider a C0 multi-
curve σ parameterization of its boundary. If t ÞÑ σ0ptq is a positively oriented
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C1 regular curve parameterizing the boundary of K, then so is σjptq for
j “ 1, . . . , 5.

Positively-oriented regular C1 parameterizations σ0 exist for the boundary
of K. For example, the arclength parameterization has this property. By
Lemma 2.2.7, the curves σjptq are continuous.

Proof. Given that σ1
0ptq is continuous, we show that σ1

2ptq exists and is con-
tinuous [15, Lemma 11]. Since K has no corners, the unit tangent uptq to
σ2ptq, with the orientation given by σ0, is a continuous function of t. It is
enough to check that the speed s2 of σ2 is continuous in t. We know that
detpσ0ptq, σ2ptqq does not depend on t.

We claim that detpσ0ptq,uptqq ‰ 0. Let hKptq be the hexagon given by
the convex hull of tσjptqu. If detpσ0ptq,uptqq “ 0, then the tangent line to
σ2 at t contains the edge of hKptq through σ2ptq and σ1ptq. This is contrary
to Lemma 2.2.6. In fact, detpσ0ptq,uptqq ă 0. Similarly, we claim that
detpσ1

0ptq, σ2ptqq ‰ 0. Otherwise the tangent line to σ0 at t lies along another
edge of hKptq, which is contrary to Lemma 2.2.6. In fact, detpσ1

0ptq, σ2ptqq ă 0.
Define a positive continuous function s2 : R Ñ p0,8q by the equation

detpσ1
0ptq, σ2ptqq ` detpσ0ptq,uptqqs2ptq “ 0. (2.4.2)

The curve
σ̃2ptq :“

ż t

t0

uptqs2ptqdt ` σ2pt0q,

has the same initial value at t “ t0 as σ2, the same tangent direction for all t,
and satisfies the same area relation

detpσ0ptq, σ̃2ptqq “ detpσ0ptq, σ2ptqq “
?

3{2

by (2.4.2). We conclude that σ2 “ σ̃2 and that σ1
2ptq “ uptqs2ptq. The

regularity condition is s2ptq ‰ 0. (Compare the proof of Lemma 2.4.5.)
Similar statements for other curves σj follow by iteration over j.

Lemma 2.4.3. Let σptq denote a C1 multi-curve parameterization of the
boundary of K “ Kmin P Kccs, giving worst greatest packing density. Assume
that the curve σ0 is parameterized according to arclength. Then, the tangents
σ1
j are Lipschitz continuous for all j.
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Proof. This is Hales [15, Lemmas 17,18]. We recall the proof. We start by
establishing the Lipschitz continuity of σ1

0. We parameterize the curve σ0
according to arclength s. Then σ1

0 is a unit tangent vector. The vector σ1
0

is continuous, because the convex region K has no corners, and the support
lines are unique.

For each value s of arclength, let γs be the hyperbola through σ0psq tangent
to the curve σ0 at s, whose asymptotes are the lines in direction σ1

jpsq through
σjpsq, for j “ ˘1. By Remark 2.2.4, locally near σ0psq, the arc γs lies inside
K. As s varies, by continuity over the compact boundary, the curvatures
of the hyperbolas γs at σ0psq are bounded above by some κ P R. (The
curvature of the hyperbola depends analytically on the parameters defining
the asymptotes and tangent lines. These parameters vary continuously along
the boundary of K. Thus, the curvature of the hyperbola varies continuously
along the boundary of K, even when the second derivative of σ0 and the
curvature of σ0 do not exist.) This means that an osculating circle of fixed
curvature κ can be placed locally in K at each point σ0psq so that σ1

0psq is
tangent to the circle. By convexity, the curve σ0 near s is constrained to pass
between the tangent line at σ0psq and the osculating circle of curvature κ. If
we parameterize the curve by arclength, then σ1

0psq has unit length. Lipschitz
continuity now follows from this bound κ on the curvature.

Now consider the Lipschitz continuity for j ‰ 0. By evident symmetries,
it is enough to consider j “ 2. Let t be the arclength parameter for the curve
σ0 and let s be the arclength parameter for the curve σ2. Write s “ sptq and
t “ tpsq for the reparameterizations. By Lemma 2.4.2, the functions sptq, tpsq
are C1. Set σ̃2psq “ σ2ptpsqq. The derivative of detpσ0ptq, σ2ptqq “

?
3{2 gives

detpσ1
0ptq, σ2ptqq ` detpσ0ptq,

dσ̃2psptqq

ds
q
ds

dt
“ 0.

The Lipschitz continuity of ds{dt (and of dt{ds) follows from the Lipschitz
continuity of the other functions σ1

0, σ2, σ0, and dσ̃2{ds in that equation.
Then we also have the Lipschitz continuity of

σ1
2ptq “

dσ̃2
ds

ds

dt
.

Corollary 2.4.4. The functions σ1
jptq are differentiable almost-everywhere.

Proof. This follows by Rademacher’s theorem and Lemma 2.4.3.
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Until further notice, we assume that the curve t ÞÑ σ0ptq is parameterized
according to arclength. See Proposition 3.1.9.

2.4.2 Convexity of Multi-Curves
This subsection investigates the convexity conditions on the curves σ.

Lemma 2.4.5 (Star conditions). Let K P Kccs be a convex disk with boundary
parameterized by the C1 regular multi-curve σ. At a given time t, let j ÞÑ

sj “ σjptq be a multi-point on the boundary of the convex disk K. Then for
each j and time t, the tangent σ1

jptq points into the open cone with apex sj
and bounding rays through sj`1 and sj ` sj`1.

Proof. This situation is depicted in Figure 2.4.1. This is asserted in Hales [15,
16] and is called the star condition. By convexity of the disk K, at any time
t the hexagon hKptq is a subset of K (as hK is the convex hull of the points
tsju). Now, the vector σ1

jptq cannot point into the hexagon, because continuity
would then create a non-convex piece of the curve σj . Dually, it cannot point
beyond the ray from sj through sj ` sj`1, as that would force σ1

j`2ptq to point
into hK . Thus, the tangent vector points into the closed cone.

If the vector σ1
jptq points along the edge sjsj`1 of the triangle, then it

would have to remain pointing in that same direction until reaching sj`1,
as it cannot point inward (by the above argument) or outward (as then it
would not be convex). This implies that σ1

jptq, σ1
j`1ptq, σ1

j`3ptq, and σ1
j`4ptq

are all parallel. The relation σ1
0ptq `σ1

2ptq `σ1
4ptq “ 0 implies that σ1

j`2ptq and
σ1
j`5ptq are parallel as well. However, the star domain of σ1

j`2ptq contains no
vectors in that direction, forcing σ1

j`2ptq “ 0. This contradicts the regularity
of the curve σj`2.

Finally, if σ1
jptq points along the edge sjpsj ` sj`1q, then σ1

j´1ptq points
along sj´1sj, and the argument can be repeated with j ´ 1 in place of j.

Apart from the star conditions, there is another condition on the curvature
of the boundary curve which needs to be imposed:

Lemma 2.4.6 (Curvature constraint). Consider a convex disk K P Kccs with
boundary parameterized by a C1 regular multi-curve σ with Lipschitz continu-
ous derivative. Then we have the following condition almost everywhere:

detpσ1
jptq, σ

2
j ptqq ě 0 j P Z{6Z. (2.4.3)
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K

Figure 2.4.1: Global convexity condition for the ellipse.

Proof. The derivatives exist almost everywhere by the Lipschitz assumption.
A well-known theorem (see Proposition 3.8 of Shifrin [42]) states that a simple
closed regular plane curve is convex if and only if its orientation can be chosen
in such a way so that its signed planar curvature is everywhere nonnegative.
The left-hand side of (2.4.3) is the planar curvature

detpσ1
jptq, σ

2
j ptqq

|σ1ptq|3
.

up to a positive factor depending on the parameterization. The assertion
follows.

2.4.3 A Characterization of Balanced Disks
Summarizing, we define a class Kbal Ă Kccs (the class of balanced disks) of

centrally symmetric disks K as those satisfying the properties that we have
established.

Definition 2.4.7. A centrally symmetric convex disk K P Kccs is balanced if
the following conditions hold.
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1. The boundary of K is parameterized counterclockwise by six regular C1

curves σj : R Ñ R2.

2. The derivatives σ1
j are Lipschitz.

3. For each t, j ÞÑ σjptq is a multi-point with normalization convention
(2.2.3).

4. For almost all t, we have the curvature constraint detpσ1
jptq, σ

2
j ptqq ě 0.

5. For each t, the vector σ1
jptq points into the open cone with apex σjptq

and rays passing through σj`1ptq and σjptq ` σj`1ptq.

6. The image of each curve σj : R{p6tfZq Ñ R2 is the same simple closed
curve in R2, where 6tf is the common period of the functions σj.

Let Kbal denote the set of all balanced disks. A balanced pair pK, σq consists
of a balanced disk K and a boundary parameterization by a multi-curve σ
satisfying the foregoing enumerated properties.

By convention, the area of the hexagon HK has area normalized to
?

12.
By the results of this section, every minimizer Kmin following this convention
belongs to Kbal.

By affine invariance, there is no loss of generality in assuming that the
sixth roots of unity ts˚

j | ju lie on the boundary of the convex disk K. We
make this multi-point the initial position of the multi-curve σ. Following
Hales [15], we call this representation the circle representation of the convex
disk K.

Problem 2.4.8 (Balanced Reinhardt Problem in Circle Representation).
Describe those Kmin P Kbal in circle representation for which

areapKminq “ inf
tKPKbal|K in circle representationu

areapKq,

where Kbal is the class of balanced disks.
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Chapter 3

A Control Problem

Now that we have a description of the set Kbal of balanced disks, we can
use this to restate the Reinhardt conjecture as an optimal control problem.
Optimal control problems solve for a policy that drives an agent in an
environment over a period of time such that a cost function is optimized. We
pin down our reformulation in three steps:

1. Recast the system as a dynamical system on a state space (which, in
our case, will be a manifold).

2. Introduce a well-defined cost functional.

3. Determine a well-defined control parameter.

This will be our focus in this section.

3.1 State Dynamics in the Lie Group
Let SL2pRq be the Lie group consisting of all 2 ˆ 2 matrices with real

entries and determinant 1. The multi-curve conditions give rise to a curve in
SL2pRq in the following sense.

Theorem 3.1.1 (Mahler [28], Hales [15]). Let σ be a Ck multi-curve, and let
s be any multi-point. Then σ determines a Ck curve g : r0, tf s Ñ SL2pRq, by
the conditions

σjptq “ gptqsj (3.1.1)
for all j and all t P r0, tf s.

49
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Proof. Given a multi-curve σ and t P r0, tf s, the value σptq is a multi-point.
It is enough to construct a 2 ˆ 2 real matrix gptq so that

σjptq “ gptqsj, j “ 0, 2,

because the multi-point conditions then imply by linearity that σjptq “ gptqsj
for all j P Z{6Z. A unique such matrix gptq can always be found by linear
independence:

detps0, s1q “ detps0, s2q ‰ 0.
The identity

detpσ0ptq, σ2ptqq “ detpgptqs0, gptqs2q “ detpgptqq detps0, s2q

gives detpgptqq “ 1, and gptq P SL2pRq. Thus, if we have a Ck curve of multi-
points σptq, we obtain a unique induced Ck curve g : r0, tf s Ñ SL2pRq.

Remark 3.1.2.

• If t0, t1, t2 are three time instants, and σkptiq “ gpti, tjqσkptjq, then
gpt2, t0q “ gpt2, t1qgpt1, t0q.

• Later in the book, the multi-point is s˚
j , and the multi-curves σj are

given by σjptq “ gptqs˚
j , where gptq P SL2pRq.

Let sl2pRq be the Lie algebra of 2 ˆ 2 matrices with real entries and trace
0. Let AdgpXq “ gXg´1 be the adjoint representation of SL2pRq on its Lie
algebra.

Similarly, the tangents tσ1
jptqu give rise to a corresponding curve in the

Lie algebra sl2pRq as follows.

Definition 3.1.3. For a C1 curve g : r0, tf s Ñ SL2pRq as above, define
X : r0, tf s Ñ gl2pRq by g1ptq “ gptqXptq.

Theorem 3.1.4. Assume that we have a convex disk K boundary parame-
terized by a regular C1 multi-curve σ. Let g be the induced curve in SL2pRq

for some multi-point s given by Equation (3.1.1), and define X by g1 “ gX.
Then

1. Xptq P sl2pRq.

2. σ1
jptq “ AdgptqpXptqqσjptq “ gptqXptqgptq´1σjptq for all j P Z{6Z.



3.1. STATE DYNAMICS IN THE LIE GROUP 51

3. X : r0, tf s Ñ sl2pRq is Lipschitz continuous.

Proof. First of all, the matrix Xptq belongs to sl2pRq because if g : r0, tf s Ñ

SL2pRq is any differentiable curve, then X “ g´1g1 P sl2pRq. Let σjptq “

gptqsj, for some multi-point sj. We then have

σ1
jptq “ g1

ptqsj “ gptqXptqsj “ gptqXptqgptq´1gptqsj “ AdgptqpXptqqσjptq.

To see that Xptq is Lipschitz, it is enough to show that Xptqsj “ gptq´1σ1
jptq

is Lipschitz for each j, which follows because σ1
j is Lipschitz by Lemma 2.4.3,

and g is a C1 curve on a compact interval.

Definition 3.1.5. Let

J :“
ˆ

0 ´1
1 0

˙

P sl2pRq.

J is the infinitesimal generator of the rotation group SO2pRq. This infinitesi-
mal generator gives rotations exppJtq P SO2pRq. In particular,

R :“ exppJπ{3q (3.1.2)

is counterclockwise rotation by angle π{3. The matrices J and R are global
notations throughout.

Corollary 3.1.6. For a balanced disk K P Kbal, with C1 boundary parameter-
ization σjptq “ gptqs˚

j , we have the following properties for X “ Xptq defined
in Definition 3.1.3 for all times t.

• We have ρipXq ą 0, for i “ 0, 1, 2, where

ρ0pXq :“ c `
?

3a
?

3
, (3.1.3)

ρ1pXq :“ c ´
?

3a
?

3
, (3.1.4)

ρ2pXq :“ ´p3b ` cq

2
?

3
(3.1.5)

and
X “

ˆ

a b
c ´a

˙

.

In particular,
?

3|a| ă c, 3b ` c ă 0, 0 ă c, and tracepJXq “ b ´ c ă 0.
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• detpXptqq ą 0 for all t.

We call the inequalities ρipXq ą 0 the star inequalities for X P sl2pRq.

Proof. At time t, the multi-point is given by gptqs˚
j . The star conditions in

Lemma 2.4.5 imply that the tangent vector σ1
jptq “ gptqXptqs˚

j lies in the
open cone with apex at the origin bounded by the rays through the points
gptqs˚

j`1 and gptqs˚
j`2. After cancelling a factor of gptq from both sides, and

writing X for Xptq, these open cone conditions become

Xs˚
j “ ρjpXqs˚

j`1 ` ρ̃j`1pXqs˚
j`2, (3.1.6)

for some unknowns ρjpXq, ρ̃jpXq ą 0, for j P Z{6Z and X P sl2pRq. By
central symmetry, ρj`3 “ ρj and ρ̃j`3 “ ρ̃j. Solving this systems of linear
equations for ρj, ρ̃j in terms of the matrix entries a, b, c of X, we obtain for
all j that ρj is given by the statement of the lemma. Also, ρ̃j “ ρj . It follows
that ?

3|a| ă c 3b ` c ă 0.
In particular, c ą 0. Using these values, we have by direct calculation that

detpXq “ ρ0ρ1 ` ρ1ρ2 ` ρ2ρ0 ą 0. (3.1.7)

Remark 3.1.7 (Reconstructing the hexagon). Given X P sl2pRq satisfying
the star inequalities in the conclusion of the corollary, we can reconstruct a
centrally symmetric hexagon whose edge midpoints are the points s˚

j and such
that the hexagon satisfies the star conditions. The edge direction at s˚

j is Xs˚
j .

Two elements in the Lie algebra give the same hexagon if one element is a
positive multiple of the other.

The vertices of the hexagon are constructed as the solutions to linear
equations; each vertex is the point of intersection between the line through s˚

j

in direction Xs˚
j and the line through s˚

j`1 in the direction Xs˚
j`1. Explicitly,

by solving the equations, the vertex is

s˚
j `

ρj`2pXq

detpXq
Xs˚

j “ s˚
j`1 ´

ρjpXq

detpXq
Xs˚

j`1. (3.1.8)

Each s˚
j is manifestly an edge midpoint, given as the midpoint of vertices

s˚
j ˘ ρj`2pXqXs˚

j { detpXq.
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The following fact is an easy corollary of Reinhardt’s observations about
the significance of hyperbolic arcs.
Lemma 3.1.8. Suppose that K P Kccs. Assume the boundary is parameterized
by a C1 multi-curve σ. If two curves σi´1 and σi`1 move along straight lines
during some time interval, then the third curve σi moves along a hyperbolic
arc, whose asymptotes are the lines determined by σi´1 and σi`1.

Proof. For simplicity and without loss of generality, take i “ 0. The curves
˘σ1 and ˘σ´1 trace out lines that form four of the edges (forming a fixed
parallelogram PK) of the time dependent critical hexagon HKptq. The tangent
lines to ˘σ0ptq form the final two edges of the critical hexagon, and ˘σ0ptq
are the midpoints of those edges. As t varies, the area cut off by these two
tangent lines from the parallelogram PK is constant, because the areas of
PK and HKptq are both constant. As Reinhardt observed, the pencil of lines
cutting a constant area from (two adjacent edges of) a parallelogram has an
envelope that is a hyperbola whose asymptotes are the lines extending the
edges of the parallelogram. The midpoints σ0ptq must lie on that envelope, a
hyperbola with the required properties.

If K P Kbal has boundary parameterization σjptq “ gptqs˚
j , then the

midpoint hexagon HK of K at the multi-point gpt0qs˚
j is the left translate

by gpt0q of the hexagon constructed in the Remark 3.1.7 using X “ Xpt0q “

g´1g1pt0q.
We have one equation for our state space dynamics viz., equation g1 “ gX.

Before deriving dynamics in the Lie algebra, we shift to a more convenient
choice of parameterization.
Proposition 3.1.9. Let s denote the arclength parameter of σ0, and let
X̃ptq denote the reparameterization of the matrix-valued curve X, using the
reparameterizion of g to a time variable t such that detpX̃ptqq “ 1. Then we
have that t ÞÑ X̃ptq is a Lipschitz continuous function.
Proof. Reparameterize g̃ptq :“ gpsptqq. In this new parameterization, we
define X̃ by the differential relation dg̃ptq{dt “ g̃ptqX̃ptq. We have by the
chain rule:

dg̃ptq

dt
“

d

dt
gpsptqq “

d

ds
gpsptqq

ds

dt

“ gpsqXpsq
ds

dt
.
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So that X̃ptq “ Xpsptqqds
dt

. Now we require detpX̃ptqq “ 1, which forces

ds

dt
“

1
detpXpsqq1{2 ,

which gives us the reparameterization equation. By Corollary 3.1.6 we have
detpXpsqq ą 0 so that the right-hand side is real and finite. Recall that we
have that Xpsq is Lipschitz by Theorem 3.1.4 and detpXpsqq is bounded away
from zero since it a continuous function on a compact interval. Then ds{dt is
Lipschitz. This proves that X̃ is Lipschitz as well.

By abuse of notation, we let t denote the new parameter, so that detpXptqq “

1.

Corollary 3.1.10. With respect to the parameterization making detpXptqq “

1, the curve X is differentiable almost everywhere.

Proof. This follows from Rademacher’s theorem and Proposition 3.1.9.

Corollary 3.1.11. A parameterization which makes detpXptqq a constant
also makes X ` X´1X 1 P sl2pRq almost everywhere, and conversely.

Proof. This is immediate from the Jacobi’s formula for the derivative of a
determinant (Lemma 3.1.12):

detpXq1

detpXq
“ trace

`

X´1X 1
˘

, (3.1.9)

and from tracepXq “ 0.

Lemma 3.1.12 (Jacobi’s formula). Let A be a differentiable function taking
values in GLnpCq. Then

detpAq
1

“ detpAqtrace
`

A´1A1
˘

.

(The same formula holds without the assumption that A is invertible, if
detpAqA´1 is replaced with the adjugate of A.)
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Proof. Both sides of the Jacobi formula are polynomials in the matrix coeffi-
cients of A and A1. It is therefore sufficient to verify the polynomial identity
on the dense subset where the eigenvalues of A are distinct and nonzero.

If A factors differentiably as A “ A1A2, then

trpA´1A1
q “ trpA´1

1 A1
1q ` trpA´1

2 A1
2q.

In particular, if L is invertible, then I “ L´1L and

0 “ trpI´1I 1
q “ trpLpL´1

q
1
q ` trpL´1L1

q.

Since A has distinct eigenvalues, there exists a differentiable complex invertible
matrix L such that A “ L´1DL and D is diagonal. Then

trpA´1A1
q “ trpLpL´1

q
1
q ` trpD´1D1

q ` trpL´1L1
q “ trpD´1D1

q.

Let λi, i “ 1, . . . , n be the eigenvalues of A. Then

detpAq1

detpAq
“

n
ÿ

i“1
λ1
i{λi “ trpD´1D1

q “ trpA´1A1
q,

which is the Jacobi formula for matrices A with distinct nonzero eigenvalues.

3.2 The Cost Functional
We now compute the cost functional in terms of the matrix-valued curve

X parameterized as above. From the balanced Reinhardt problem 2.4.8 in
circle representation, we see that the quantity to be minimized is the area
of a convex disk in Kbal. Our strategy is to compute this area using Green’s
theorem, by using the pullback of the one-form xdy ´ ydx on R2. We let ¨tr

denote the transpose of a matrix.

Lemma 3.2.1. Let g : r0, tf s Ñ SL2pRq be a path so that g1 “ gX as above
and let u P R2. Define γ : r0, tf s Ñ R2 by γptq :“ gptqu. Consider the
one-form θ “ xdy ´ ydx on R2. Then we have the following formula for the
pullback of θ to r0, tf s:

γ˚θ “ ´utrJXu dt.
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Proof. If we write γptq “ pγ1ptq, γ2ptqq, then

γ˚θ “ θpγptqq

“ pγ1ptqγ
1
2ptq ´ γ2ptqγ

1
1ptqq dt

“ pdetpγ, γ1
qq dt

“ pdetpgu, gXuqq dt

“ pdetpu, Xuqq dt

“ ´utrJXu dt,

since detpgq “ 1 and

detpu, Xvq “ ´utrJXv, (3.2.1)

for all X P sl2pRq and u,v P R2.

The lemma above enables us to compute pullbacks of θ by the multi-
curves σj. Indeed, the boundary BK of an arbitrary balanced convex disk
K P Kbal is a simple closed curve parameterized by the curves σ, given by
σjptq “ gptqs˚

j “ gptqpRjs˚
0q.

Lemma 3.2.2. Let Y P sl2pRq. Then we have

JY ` pR2
q
trJY R2

` pR4
q
trJY R4

“
3tracepJY q

2 I2,

where I2 is the 2 ˆ 2 identity matrix.

Proof. This is a simple computation.

We now derive a formula for the area of K P Kbal. By Green’s theorem
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and the lemmas from above, we have

areapKq “
1
2

¿

BK

θ

“
1
2

ż tf

0
γ˚θdt

“

ż tf

0
σ˚
0θ ` σ˚

2θ ` σ˚
4θdt (by Lemma 3.2.1)

“

ż tf

0
´utrJXu ´ pR2uq

trJXpR2uq ´ pR4uq
trJXpR4uqdt

“ ´

ż tf

0
utr

`

JX ` pR2
q
trJXR2

` pR4
q
trJXR4˘udt

“ ´

ż tf

0
|u|

23tracepJXq

2 dt (by Lemma 3.2.2).

The parameterization of convex disk K is of the form σ0ptq “ gptqs˚
0 , which

means that u “ s˚
0 “ p1, 0q. So |u| “ 1 and

areapKq “ ´
3
2

ż tf

0
tracepJXqdt, (3.2.2)

which is the quantity to be minimized.

Example. We show that the area of a unit disk K is π, as expected, by using
(3.2.2). In this case,

gptq “ exppJtq, Xptq “ J, tf “ π{3 (one-sixth the circumference),

where expp´q is the matrix exponential. Note that X is a constant curve in
this case. Then

areapKq “ ´
3
2

ż tf

0
tracepJXqdt “ ´

3
2tracepJ2

q

ż π{3

0
dt “ ´

3
2p´2q

π

3 “ π.

3.3 Control Sets
We now investigate the control parameters which affect this cost. It is

intuitively obvious that the curvature of the curves making up the boundary
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of the convex disk K P Kbal affect its area. So, it makes sense to allow the
curvatures to play the role of the controls. Problems in which curvature plays
the role of a control are well-studied in the literature, the Dubins-Delauney
problem being one a prominent such example [20]. Other examples, such as
Kirchoff’s problem and the elastic problem are discussed in [21].

To begin, recall that Lemma 2.4.6 says that detpσ1
jptq, σ

2
j ptqq ě 0 almost

everywhere in t. Now since our convex disk is in circle representation, we
have σjptq “ gptqs˚

j . Then we have, for j “ 0, 1, 2,

κjptq :“ detpσ1
2jptq, σ

2
2jptqq “ detpg1

ptqs˚
2j, g

2
ptqs˚

2jq

“ detpgXs˚
2j, pgX

2
` gX 1

qs˚
2jq

“ detpXs˚
2j, pX

2
` X 1

qs˚
2jq

“ detps˚
2j,

`

X ` X´1X 1
˘

s˚
2jq ě 0, (3.3.1)

almost everywhere in t. Here we used Proposition 3.1.9 and Corollaries
3.1.6 and 3.1.10. We call κjptq the state-dependent curvature as it depends
on where we are in the state space. Note the indexing conventions j Ø 2j
relating κj and σ2j.
Lemma 3.3.1. Let g : r0, tf s Ñ SL2pRq be C1 with Lipschitz derivative
satisfying the star and curvature conditions (3.3.1). Then almost everywhere,
there exists an index j so that κjptq ą 0.
Proof. Take X “ g´1g1. Assuming κ0, κ1 “ 0, a short calculation shows
almost everywhere that

κ2ptq “ detps˚
4 ,
`

X ` X´1X 1
˘

s˚
4q “

?
3 detpXq

ρ0pXq
.

This is strictly positive by the star inequalities in Corollary 3.1.6. (This
gives a second interpretation of the functions ρi in terms of state-dependent
curvatures.)

A second proof can be obtained from Lemma 3.1.8: if two of the state-
dependent curvatures are zero, then the third curvature is such that associated
curve is an arc of a hyperbola. Hence the third curvature is positive.

A third proof appears at the end of the proof of Theorem 3.4.2, which
gives a formula for κ0 ` κ1 ` κ2 as a ratio of negative numbers.

Since the state-dependent curvatures κjptq depend on X and X 1 in general,
they are not suitable as control variables for our control problem. To this end,
we introduce normalizations of the state-dependent curvatures as follows.



3.3. CONTROL SETS 59

Definition 3.3.2 (control variables). For each j “ 0, 1, 2, define control
variables given by the normalized state-dependent curvatures as

uj :“ κj
κ0 ` κ1 ` κ2

.

Note that the denominator is positive by Lemma 3.3.1. The control
variables ui evidently satisfy 0 ď ui ď 1 and u0 ` u1 ` u2 “ 1. Note also that
the control variables are functions of time.
Definition 3.3.3 (Triangular control set). The triangular or simplex control
set is the set

UT :“ tpu0, u1, u2q | 0 ď ui ď 1, u0 ` u1 ` u2 “ 1u ,

which is just the two-simplex in R3.
We map the control set UT into the Lie algebra sl2pRq using the following

transformation:

Zu “

˜

u1´u2?
3

u0´2u1´2u2
3

u0
u2´u1?

3

¸

P sl2pRq, u “ pu0, u1, u2q P UT . (3.3.2)

This control matrix Zu P sl2pRq is uniquely determined by the equations

uj “ detps˚
2j, Zus˚

2jq j “ 0, 1, 2. (3.3.3)

In summary, the optimal control function of the control problem takes
values in the two-simplex UT . The values in UT specify the values of curvature
functions, which determine the boundary curves of a convex disk K P Kbal.
The optimal control function minimizes the area of K.

Henceforth, we adopt the notation xX, Y y :“ tracepXY q, for any two
matrices X, Y P sl2pRq. This form is a nondegenerate invariant bilinear form
on sl2pRq.

We can now prove an equivalent star condition.
Lemma 3.3.4. The star inequalities on X hold if and only if xZu, Xy ă 0
for all controls u P UT .
Proof. An easy calculation gives the following identity.

xZu, Xy “ ´
2

?
3

pρ2pXqu0 ` ρ1pXqu1 ` ρ0pXqu2q.

The right-hand side is everywhere negative on UT if and only if ρjpXq ą 0,
for j “ 0, 1, 2. These are the star inequalities on X.
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3.4 Lie Algebra Dynamics
Let us first collect a number of results about matrices in sl2pRq which we

will need. All of these are elementary and so we admit them without proofs.
Let rX, Y s “ XY ´ Y X be the Lie algebra commutator of two matrices
X, Y P sl2pRq.

Lemma 3.4.1. We have the following results about matrices in sl2pRq.

1. If X P sl2pRq, xX,Xy “ ´2 detpXq.

2. If X, Y are any two matrices in sl2pRq, and s is a multi-point

detpsj, Xsjq “ detpsj, Y sjq, j “ 0, 1, 2,

then X “ Y .

3. If X, Y P sl2pRq then XY ` Y X “ xX, Y y I2.

4. For any matrices X, Y, Z P sl2pRq we have xX, rY, Zsy “ xrX, Y s, Zy.

We return to X as the trajectory defined by g1 “ gX. Let us now derive
the control-dependent dynamics for X.

Theorem 3.4.2 (Dynamics for X). The dynamics for X (which is control-
dependent) is given by

X 1
“

rZu, Xs

xZu, Xy
.

It is shown in Lemma 3.3.4 that the star conditions imply xZu, Xy ă 0,
for all controls u P UT . The denominator xZu, Xy appearing in the theorem
is therefore nonzero.

Proof. By Corollary 3.1.11, we find X ` X´1X 1 P sl2pRq. From Equations
(3.3.1) and (3.3.3) we find

uj “ detps˚
2j, Zus˚

2jq

κj “ detps˚
2j,

`

X ` X´1X 1
˘

s˚
2jq,

for each j. Let κ “ κ1 `κ2 `κ3. Since, by Definition 3.3.2, we have κuj “ κj ,
by Lemma 3.4.1,(2) we obtain that

X ` X´1X 1
“ κZu,
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from which we obtain
X 1

“ XpκZu ´ Xq. (3.4.1)

Taking traces and using tracepX 1q “ 0, we obtain κ “ xX,Xy { xX,Zuy “

´2{ xX,Zuy, where the last equality uses Lemma 3.4.1,(1). Let P “ Zu{ xX,Zuy.
We have xP,Xy “ 1 and

rP,Xs “ PX ´ XP “ ´2XP ` pPX ` XP q

“ ´2XP ` xP,Xy I2 from Lemma 3.4.1, p3q

“ ´2XP ` I2

“ κXZu ´ X2 from Lemma 3.4.1, p1, 3q

“ X 1,

which proves the claimed differential equation.

Remark 3.4.3.

1. The equation X 1 “ rP,Xs where P,X are time-dependent matrices is
called the Lax equation and X,P so related are called a Lax equation.
Lax equations are well-studied in the theory of integrable systems (see
Perelomov [39], Jurdjevic [21], Babelon et al. [3]). Lax representations
of integrable systems are quite desirable since the evolution of a Lax
equation is isospectral, meaning that the spectrum of the matrix X is
an invariant of motion.

2. The dynamics for X is Hamiltonian for a particular Hamiltonian defined
on sl2pRq, with respect to a Poisson structure on sl2pRq called the Lie-
Poisson structure. See Appendix A.8 for more details.

3. As explained in Perelomov [39, p. 52], the spectral invariants guaranteed
by the dynamics for X are trivial integrals, and so it is more accurate to
consider the dynamics for X as giving a control-dependent infinitesimal
generator for the (co)adjoint action of SL2pRq on sl2pRq, rather than to
regard it as describing the dynamics of an integrable system.

4. The equation (3.4.1) appears in [16], where its Lax equation reformula-
tion was not explicitly recognized.
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3.5 Initial and Terminal Conditions
We now have dynamics for g and X in the Lie group and Lie algebra

respectively. We also have an associated cost objective. The only thing
remaining is to specify initial and terminal conditions. Since our convex disk
is in circle representation, this means that σjp0q “ s˚

j so that we start out
at the sixth roots of unity, and so we set gp0q “ I2. The initial condition
Xp0q “ X0 may be an arbitrary matrix in sl2pRq of determinant 1, provided
it satisfies the star conditions in Corollary 3.1.6.

The terminal conditions gptf q should be such that the curves σj close up
seamlessly to form a simple closed curve:

gptf qs˚
j “ gp0qs˚

j`1 ô gptf q “ R, (3.5.1)

where R is the usual rotation matrix. For terminal conditions on X, note
that we have the following conditions on g which we obtain by the remark
following Theorem 3.1.1 (and setting t0 “ 0 there):

gpt ` tf qs˚
j “ gpsptqqs˚

j`1 “ gpsptqqRs˚
j ; gpt ` tf q “ gpsptqqR,

for some orientation-preserving reparameterization sptq such that sp0q “ 0.
Differentiating, we obtain

Xpt ` tf q “ R´1XpsptqqR
ds

dt
,

which gives us Xptf q “ R´1X0Rds{dt. Using detpXq “ 1 and ds{dt ą 0, we
get ds{dt “ 1, sptq “ t, and

Xptf q “ R´1X0R.

3.6 Reinhardt Optimal Control Problem
Summarizing the discussion so far, we are finally ready to state the

Reinhardt conjecture as an optimal control problem. Let us begin with a
well-known proposition on the trivialization of the tangent and cotangent
bundles of a Lie group.

Proposition 3.6.1. Let G be any real Lie group and let g be its Lie algebra.
Then we have T ˚G – Gˆ g˚ and TG – Gˆ g, where g˚ is the linear dual of
g.
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Proof. The Lie algebra g is the tangent space of G at the neutral element
e P G. Let Lg : G Ñ G be left-multiplication by g, given by Lgphq :“ gh, The
tangent map

TLg : ThG Ñ TghG,

at h “ e is an isomorphism from TeG to TgG, the tangent spaces at e and g.
This isomorphism gives the trivialization of the tangent bundle TG – G ˆ g.
Dually, each fiber T ˚

g G of the cotangent bundle is canonically isomorphic to
the dual T ˚

e G “ g˚. This trivializes the cotangent bundle.

The above proposition and remark apply to SL2pRq. Using this, we group
together the state equations, controls and cost functional to give a well-defined
control problem.

Problem 3.6.2 (Reinhardt Control Problem). The convex disks in Kbal in
circle representation arise via the following optimal control problem. On the
manifold SL2pRq ˆ sl2pRq – TSL2pRq, consider the following optimal control
problem with free-terminal time.

g1
“ gX, g : r0, tf s Ñ SL2pRq; (3.6.1)

X 1
“

rZu, Xs

xZu, Xy
, X : r0, tf s Ñ sl2pRq; (3.6.2)

´
3
2

ż tf

0
xJ,Xydt Ñ min, J “

ˆ

0 ´1
1 0

˙

, (3.6.3)

where the set of controls for this problem is the image of the two-simplex UT
in R3 inside the Lie algebra sl2pRq via the affine map Zu.

Z : UT “

#

pu0, u1, u2q |
ÿ

i

ui “ 1, ui ě 0
+

Ñ sl2pRq (3.6.4)

Zu “

˜

u1´u2?
3

u0´2u1´2u2
3

u0
u2´u1?

3

¸

. (3.6.5)

The initial conditions are gp0q “ I2 P SL2pRq and Xp0q “ X0 P sl2pRq

satisfying the star conditions. Also, the terminal conditions are gptf q “ R
and Xptf q “ RX0R

´1 where R is the usual rotation matrix (3.1.2).
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Chapter 4

The Upper Half-Plane

Now that we have the optimal control problem fully stated, a natural
next step would be to write down the necessary conditions for optimality of
trajectories. But before we do that, we will first cut down the state space of
the problem.

4.1 The Adjoint Orbit
Recall that the star conditions (Corollary 3.1.6) on the matrix X imply

that xJ,Xy is negative. We have also imposed the condition detpXq “ 1. We
begin with a characterization of such matrices.

Lemma 4.1.1. The set of matrices X P sl2pRq with detpXq “ 1 and xJ,Xy ă

0 is the adjoint orbit OJ :“ tAdgJ | g P SL2pRqu in sl2pRq of the infinitesimal
generator J .

Proof. The adjoint orbit OJ of J in sl2pRq consists of elements gJg´1 for
g P SL2pRq. The Iwasawa decomposition of SL2pRq implies that g belongs to
a left coset h SO2pRq where

h “

ˆ

1 x
0 1

˙ˆ ?
y 0

0 1{
?
y

˙

, y ą 0.

Since SO2pRq centralizes J , the orbit consists of elements

gJg´1
“ hJh´1

“

ˆ

x{y ´px2 ` y2q{y
1{y ´x{y

˙

“: Φpzq, z “ x`iy P h. (4.1.1)

65
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This is precisely the form of a general element X satisfying the conditions of
the lemma. Hence, the result follows.

Remark 4.1.2. Since sl2pRq admits a nondegenerate invariant symmetric
bilinear form x¨, ¨y, the Lie algebra can be identified with its linear dual, by
identifying X P sl2pRq with the linear functional

Y ÞÑ xY,Xy

on sl2pRq. Under this identification, the coadjoint orbits and adjoint orbits
become identified. See Appendix A.10 and also Chapter 5 of Jurdjevic [19].

4.2 Transfer of Dynamics to the Upper Half-
Plane

The group SL2pRq acts on the upper-half plane

h “ tx ` iy | y ą 0u

by linear fractional transformations (or Möbius transformations).

SL2pRq ˆ h Ñ h,

ˆ

a b
c d

˙

¨ z “
az ` b

cz ` d
. (4.2.1)

We denote the action by p¨q.
By the orbit-stabilizer theorem, we have OJ – SL2pRq{SO2pRq, since the

stabilizer of J in SL2pRq under the conjugation action (the centralizer) is
SO2pRq. Viewing this in a different way, the group SL2pRq acts on the upper
half-plane h by linear fractional transformations, with stabilizer of i P h being
given by SO2pRq. Thus, the quotient is isomorphic to the Poincaré upper
half-plane h. Putting all of this together, we have

Lemma 4.2.1. The following map Φ is a isomorphism.

Φ : h Ñ OJ

z “ x ` iy ÞÑ Φpzq :“
ˆ

x{y ´px2 ` y2q{y
1{y ´x{y

˙

.

Remark 4.2.2.
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• Note that OJ “ OΦpzq as Φpzq P OJ .

• We write X in place of Φpzq for simplicity, bearing in mind that Φ is
surjective onto OJ .

• Note that Φpzq is a regular semisimple element of the Lie algebra sl2pRq

because the element J is.

• The map Φ is SL2pRq-equivariant for the action by linear fractional
transformations on h. That is, for every g P SL2pRq,

gΦpzqg´1
“ Φpg ¨ zq.

This map Φ allows us to move back and forth between the upper half-
planes and the adjoint orbit in the Lie algebra sl2pRq. Also, the map Φ
is more than just a bijection — we show later that this map is actually
an anti-symplectomorphism and use this to transfer the state and costate
dynamics from the Lie algebra to the upper half-plane. But first, we compute
the tangent map TΦ at a z P h.

Lemma 4.2.3. For any X P sl2pRq, we have

TXOX “ trY,Xs | Y P sl2pRqu – sl2pRq{RX,

where RX is the span of the element X and TXOX denotes the tangent space
to OX at X.

Explicitly, the first equality views the tangent space at X of the manifold
OX as a subspace of sl2pRq – TXsl2pRq, the tangent space at X of the ambient
space sl2pRq. The isomorphism on the right is given by rY,Xs ÞÑ Y ` RX.

Proof. Note that OX “ tAdgX | g P SL2pRqu. We have to describe tangent
vectors to OX . For any Y P sl2pRq, AdexpptY qX is a curve in OX . Thus, the
tangent vector to this curve is computed as

d

dt
AdexpptY qX

ˇ

ˇ

ˇ

t“0
“ adYX :“ rY,Xs P TXOX .

This calculation is actually finding infinitesimal generators of the adjoint
action. There is an isomorphism

sl2pRq{sl2pRqX – trY,Xs | Y P sl2pRqu, Y ÞÑ rY,Xs,
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where sl2pRqX is the isotropy algebra (the centralizer) of the element X. The
element X is regular in the rank one algebra sl2pRq, so that its centralizer
sl2pRqX is the span RX of X.

We write rY s for the coset Y ` RX in sl2pRq{RX.

Lemma 4.2.4. We have the following expression for the tangent map TΦ.

TΦ : Tzh Ñ TXOX – sl2pRq{RX (4.2.2)

pr1
B

Bx
` r2

B

By
q ÞÑ

ˆ

r2{2y pyr1 ´ r2xq{y
0 ´r2{2y

˙

mod RX. (4.2.3)

Proof. We have, at z “ x ` iy and X “ Φpzq:

TzΦpr1, r2q “
d

dt
Φpx ` tr1, y ` tr2q

ˇ

ˇ

ˇ

t“0
(4.2.4)

“ r1
BΦ
Bx

` r2
BΦ
By

P TXOX . (4.2.5)

We know by the previous lemma that there exists a matrix Yz such that

TzΦpr1, r2q “ r1
BΦ
Bx

` r2
BΦ
By

“ rYzpr1, r2q, Xs.

Using this equation to solve for this matrix Yz gives us the following.

Yz ”

ˆ

r2{2y pyr1 ´ r2xq{y
0 ´r2{2y

˙

mod RX. (4.2.6)

So, for any arbitrary vector pr1, r2q P Tzh we obtain its image inside the
quotient space sl2pRq{RX.

4.3 The Cost Functional in Half-Plane Coor-
dinates

We can also compute the cost functional that we derived in Section 3.2 in
half-plane coordinates. From equation (3.2.2), we have

´
3
2

ż tf

0
xJ,Xy dt “

3
2

ż tf

0

x2 ` y2 ` 1
y

dt Ñ min. (4.3.1)
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The cost functional is SO2pRq-invariant, because if A is any rotation
matrix, then

xJ,AdAXy “ xAdA´1J,Xy “ xJ,Xy .

The circular symmetry is also apparent in this reinterpretation. The level
sets of px2 ` y2 ` 1q{y are concentric circles (with respect to the hyperbolic
metric) centered at the point i in the upper half-plane. Thus, the cost is
SO2pRq-invariant.
Lemma 4.3.1. The global minimizer of the Reinhardt control problem has
terminal time tf ă π{3.
Proof. The global minimizer has area less than the area π of the unit circle
K. We have px2 ` y2 ` 1q{y ě py ` 1{yq ě 2, so that

π ą areapKminq “
3
2

ż tf

0

x2 ` y2 ` 1
y

dt ě
3
2

ż tf

0
2 dt “ 3tf .

Remark 4.3.2. The Poincaré upper half-plane is conformally equivalent
to other models of hyperbolic geometry such as the Poincaré disk and the
hyperboloid model. The cost functional derived above can also be derived
in these models. In the disk model, D “ tw P C | |w| ă 1u, for example, the
cost of a path w : r0, tf s Ñ D becomes

3
ż tf

0

1 ` |w|2

1 ´ |w|2
dt Ñ min.

In the hyperboloid model of hyperbolic geometry, the model is the upper sheet
of the two-sheeted hyperboloid. In that model, the cost functional becomes
the integral of the height function on the hyperboloid sheet. See [16].

4.4 The Star Domain in the Upper Half-Plane
We can now prove our first state space reduction result.

Theorem 4.4.1. The dynamics of the Reinhardt control problem is con-
strained to an ideal triangle in the upper half-plane.

h‹ :“
"

x ` iy P h | ´
1

?
3

ă x ă
1

?
3
,

1
3 ă x2 ` y2

*

. (4.4.1)

Thus, the new state-space of the control problem is SL2pRq ˆ h‹.
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Proof. The star conditions on X in Corollary 3.1.6 applied to X “ Φpzq “

Φpx ` iyq give us the conditions on x and y which an admissible trajectory
should satisfy.

This region, called the star domain, is the interior of an ideal triangle in
the upper half-plane. The vertices of this triangle are the points z “ ˘ 1?

3
and z “ 8. A picture of the star domain is shown in Figure 4.4.1.

x = − 1√
3

x = 1√
3

Figure 4.4.1: The star domain in the upper half-plane.

Summarizing the results so far, we have parameterized the boundary of
convex disks in Kbal as UT -controlled paths pgptq, zptqq P SL2pRq ˆ h‹ subject
to the terminal conditions. Our task is to find a control function uptq P UT
which minimizes the area enclosed by the resulting curve, given in hyperbolic
coordinates by equation (4.3.1).

4.5 Control Problem in the Half-Plane
Evolution of Xptq “ hptqJhptq´1 by adjoint action in OJ corresponds to

evolution by linear fractional transformations of the corresponding element
z0 in the upper half-plane picture. If Φpz0q “ X0 and Φpzptqq “ Xptq, then
by the SL2pRq-equivariance of Φ, the initial and terminal conditions derived
in Section 3.5 are transformed as

Xp0q “ X0 ðñ zp0q “ z0,

Xptf q “ R´1X0R ðñ zptf q “ R´1
¨ z0,
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where R is the usual rotation matrix (3.1.2).
Thus, we obtain the following reformulation of the Reinhardt conjecture

from the coadjoint orbit of the Lie algebra to the Poincaré upper half-plane.

Problem 4.5.1 (Half-Plane Control Problem). On the set SL2pRq ˆ h‹ Ă

TSL2pRq, consider the following free-terminal time optimal control problem.

g1
“ gX, X “

ˆ

x{y ´px2 ` y2q{y
1{y ´x{y

˙

“ Φpx ` iyq,

x1
“ f1px, y;uq :“ y p2ax ` b ´ cx2 ` cy2q

2ax ` b ´ cx2 ´ cy2
,

y1
“ f2px, y;uq :“ 2y2pa ´ cxq

2ax ` b ´ cx2 ´ cy2
,

3
2

ż tf

0

x2 ` y2 ` 1
y

dt Ñ min,

g : r0, tf s Ñ SL2pRq, x, y : r0, tf s Ñ h‹,

where the coefficients a, b, c are the following affine functions of the control
(3.6.5).

a “ apuq “
u2 ´ u1

?
3

, b “ bpuq “
u0 ´ 2u1 ´ 2u2

3 , c “ cpuq “ u0,

with u “ pu0, u1, u2q P UT , which is the two-simplex in R3. This problem
has intial conditions gp0q “ I2 P SL2pRq and zp0q “ z0 P h‹ and terminal
conditions gptf q “ R and zptf q “ R´1 ¨ z0 where R is the usual rotation.

Lemma 4.5.2. The ODE (3.6.2) for X implies the system of ODEs for x1, y1

in the half-plane optimal control problem 4.5.1.

Proof. We compute
ˆ

pyx1 ´ xy1q{y2 ˚

´y1{y2 ˚

˙

“ Φpzptqq
1

“
rZu,Φpzqs

xZu,Φpzqy
“

ˆ

pyf1 ´ xf2q{y2 ˚

´f2{y
2 ˚

˙

.
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Comparing the left and right-hand sides of this equation, find that x1 “ f1
and y1 “ f2. This also shows that

TΦpf1, f2q “

„

Zu
xZu, Xy

ȷ

P TXOX . (4.5.1)

Thus, we have transferred the Lie algebra dynamics to the upper half-
plane. In Appendix A.10, we also prove that the map Φ is actually an anti-
symplectomorphism onto the upper half-plane. Thus, it is entirely equivalent
to study the control problem in the Lie algebra picture or the half-plane
picture. We may also transfer the dynamics to other models of hyperbolic
geometry: for example, the Poincaré disk model or the hyperboloid model.
Each picture has its advantages, with some simplifying equations while others
are better since the symmetries are more apparent.

We have finally reached the end of the reduction chain and have trans-
formed a problem in discrete geometry to an optimal control problem on
TSL2pRq. Already, we see that this problem is remarkably rich, with connec-
tions to Hamiltonian mechanics and hyperbolic geometry.

4.6 Dihedral Symmetry
The dihedral group Dih6 of order 12 of the hexagon acts on the sixth

roots of unity through orthogonal transformations. This action of the dihedral
group extends to many of the constructions throughout this book.

Let σ be a multi-curve parameterizing the boundary of K P Kbal. We
assume that K is in the circle representation, and that σjp0q “ s˚

j . Let A be
an element of the dihedral group of the hexagon, considered as an element of
the orthogonal group O2pRq. Let ϵA “ detpAq P t˘1u be the determinant. Let
σjptq “ gptqs˚

j as usual, with gp0q “ I2. Then g̃ptq “ AgpϵAtqA
´1 determines

a multi-curve
σ̃jptq “ AgpϵAtqA

´1s˚
j ,

parameterizing the boundary of a convex disk AK P Kbal with the same
area as K. The sign ϵA is chosen to make the multi-curve parameterize the
boundary of AK in a counterclockwise direction. Then the action extends to
the Lie algebra

pg̃´1g̃1
qptq “ X̃ptq “ ϵAAXpϵAtqA

´1.
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Generators of the dihedral group are the rotation R and the reflection across
the vertical axis:

S “

ˆ

´1 0
0 1

˙

,

with ϵS “ detpSq “ ´1. Writing X “ Φpzq, the reflection acts by z ÞÑ ´z̄,
where z̄ is complex conjugation:

ϵSSΦpzqS´1
“ Φp´z̄q.

This preserves the upper-half plane, but is not orientation preserving. The
rotation R (with ϵR “ 1) acts by linear fractional transformation

RΦpzqR´1
“ ΦpR ¨ zq.

The actions of the dihedral group Dih6 on the multi-point sj , on multi-curves,
on the control set, on the star conditions, on the ideal triangle, and on the
upper half plane through Möbius transformation are all compatible. That is,
many of our maps are equivariant with respect to the dihedral group. Recall
that the linear fractional action of exppJθq on h acts on the tangent space
Tih at i “

?
´1 by a clockwise rotation by angle 2θ. R3 “ ´I2 acts trivially,

so that the action of the dihedral group of the hexagon factors through the
dihedral group of an equilateral triangle – the symmetric group on three
letters.

The action of the dihedral group permutes the star inequalities. In terms
of the linear functions ρj : sl2pRq Ñ R defined in Corollary 3.1.6, we have

ρjpϵSSXS
´1

q “ ρ1´jpXq,

ρjpRXR
´1

q “ ρj´1pXq, j P Z{6Z.

It follows that the dihedral group acts on the star domain h‹. The group
permutes the ideal vertices of h‹. The action on the ideal vertices ˘1{

?
3 and

`8 is by linear fractional transformations on RP1. Here we are viewing the
boundary of the upper-half plane, consisting of the real axis and the point at
infinity, as a real projective line. We have

R ¨ p`8q “ 1{
?

3, R ¨ p1{
?

3q “ ´1{
?

3, R ¨ p´1{
?

3q “ `8,

S ¨ p˘1{
?

3q “ ¯1{
?

3.
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We describe a fundamental domain for the action of the dihedral group
(the symmetric group on three letters) on h‹. The positive imaginary axis
is a geodesic in the upper-half plane. Under the action, the orbit of this
geodesic is a set of three geodesics. The other two geodesics are the circles
of radius 2{

?
3 centered at the two cusps p0,˘1{

?
3q on the real axis. These

three geodesics meet at z “ 0 ` i P h‹ and partition h‹ into six sectors. Each
of these sectors is a fundamental domain for the action. See Figure 4.6.1.
Specifically, one such fundamental domain is given by

tz “ x ` iy P h‹
| x ě 0, px ´ 1{

?
3q

2
` y2 ď 4{3u.

+∞+∞

(
1√
3
, 0
)(

− 1√
3
, 0
)

i

Figure 4.6.1: A fundamental domain for the dihedral action on h‹ is shaded in
gray. The generators of the dihedral group R and S take the shaded domain
to the other unshaded ones.

The dihedral group acts on everything in sight, such as the control set UT ,
and so forth. The dihedral group acts on the control by the rule

ϵAAZuA
´1

“ ZA¨u, A P Dih6, u P UT .
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Explicitly,

R ¨ p0, 0, 1q “ p0, 1, 0q R ¨ p0, 1, 0q “ p1, 0, 0q, R ¨ p1, 0, 0q “ p0, 0, 1q P UT .

RZp0,0,1qR
´1

“ Zp0,1,0q, RZp0,1,0qR
´1

“ Zp1,0,0q, RZp1,0,0qR
´1

“ Zp0,0,1q.

´SZp0,1,0qS
´1

“ Zp0,0,1q, ´SZp1,0,0qS
´1

“ Zp1,0,0q.

The action on UT is such that if X is a solution to the Lie algebra state
equation with constant control u, then the transform X̃ by A is a solution to
the state equation with constant control ũ “ A ¨ u, as can be checked directly
from the ODE X 1 “ rZu, Xs{xZu, Xy.

For example, the trajectory with control p0, 0, 1q has state-dependent
curvatures κ0 “ 0 and κ1 “ 0, so that gptqs˚

0 and gptqs˚
2 are straight lines,

while gptqs˚
4 moves in a hyperbolic arc. Taking A “ R, we see that σ̃2ptq “

RgptqR´1s˚
2 “ ´Rgptqs˚

3 also moves in a hyperbolic arc, and its control is
ũ “ p0, 1, 0q “ R ¨ p0, 0, 1q.
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Chapter 5

Compactification of the Star
Domain

While the star domain is a reduction of the state space, it is an ideal
triangle with one vertex at infinity. Thus, it is open and unbounded in
the upper half-plane. Our task in this section will be to explore a further
reduction of this admissible region.

Empirical observations show that if z P h‹ is close to the boundary curves
of the star domain, then the corresponding critical hexagon (constructed in
Lemma 5.0.3) is close to a parallelogram. Classical results of Mahler and
Reinhardt state that the only convex disks in Kccs with a parallelogram for a
(degenerate) critical hexagon are parallelograms themselves. This suggests
that there is a neighborhood of the boundary of the star domain which gives
rise to convex disks in Kccs whose packing density is close to one and so these
convex disks can be excluded from consideration, since they are never optimal
for our control problem. We make this intuition precise presently.

Our hope is that if can cut down the state space to a compact region,
eventually computer numerical solutions of the dynamics will become feasible.
We have obtained the following compactification. In this chapter, by com-
pactification, we mean an explicit compact subset of the star domain h‹, such
that all trajectories of interest must lie inside that compact set. We have not
optimized parameters to obtain the smallest possible compact region. We
leave that for future work.

We define a horocycle in the upper-half plane to be a horizontal line, or a
Euclidean circle in the upper half-plane that is tangent to the real axis. We
define a horoball to be the region in the upper-half plane that is bounded by

77
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the horocycle: either the region above the horizontal line or the interior of
the circle. In general the image of the horocycle y “ y0 P h‹ under a linear
fractional transformation

A “

ˆ

a b
c d

˙

is a Euclidean circle tangent to the real axis, with center pA ¨8q`ir “ a{c`ir
and radius r “ detA{p2y0c2q.

Definition 5.0.1 (compactification). Let h‹‹ Ă h‹ be the compact set defined
by the following inequalities. The inequality y ą 4.5 defines an open horoball
Bpi8q around the cusp of h‹ at z “ `i8. By linear fractional transformations
R,R2 P SL2pRq acting on h, we obtain open horoballs Bp1{

?
3q and Bp´1{

?
3q

at the other cusps (that is, at the ideal vertices) z “ ˘1{
?

3 of h. If the linear
fractional transformation is A “ R˘1 and y0 “ 4.5, the radius r is 4{27, and
the center is pA ¨ 8q “ pR˘ ¨ 8q “ ˘1{

?
3.

The open half-plane Π`
0 defined by y ą 15p1{

?
3´xq includes the boundary

curve x “ 1{
?

3, y ą 0 of h‹. By linear fractional transformations R,R2, we
obtain transformed regions Π`

1 and Π`
2 around the other boundary curves. Set

h‹‹
“ h‹

zpBpi8q Y Bp1{
?

3q Y Bp´1{
?

3q Y Π`
0 Y Π`

1 Y Π`
2 q.

The set h‹‹ Ă h‹ is compact. See Figure 5.0.1. The shape of the compact-
ification h‹‹ has been chosen to be invariant under the action of the dihedral
group. The entire chapter is devoted to the proof of the following theorem.

Theorem 5.0.2. Let K be a convex disk in Kbal, with corresponding boundary
trajectory pg,Xq. Define a trajectory z in h‹ by Φ ˝ z “ X. If any point of
the trajectory z is not in h‹‹, then the cost of the trajectory is strictly greater
than the area of the smoothed octagon. Hence K is not a global minimizer.

Given a convex disk K in Kbal in the circle representation, we parameterize
the boundary multi-curve σjptq “ gptqs˚

j , with gp0q “ I2. At t “ 0, we obtain
an element z P h‹ such that Φpzq “ Xp0q “ g´1p0qg1p0q. Also associated with
K is a critical hexagon HK with midpoints at the points ts˚

j u. Conversely,
an element z P h‹ can be used to reconstruct a centrally symmetric hexagon
HK with midpoints ts˚

j u as follows.

Lemma 5.0.3. Every z P h‹ gives rise to a centrally symmetric hexagon
HKpzq whose midpoints are at ts˚

j u and whose oriented directions along the
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h˚˚

Figure 5.0.1: The central region away from the boundary of the star domain
is the compactification h‹‹ of the star domain.

edges point into the star domain. If z is constructed from the boundary
parameterization of a convex disk K P Kbal in the circle representation as
described above at multi-point ts˚

j u, then HKpzq is the critical hexagon at the
multi-point ts˚

j u of K.

Proof. The element z in the upper half-plane determines a matrix Φpzq in the
adjoint orbit of J in the Lie algebra sl2. The centrally symmetric hexagon
HKpzq is then reconstructed from Φpzq according to Remark 3.1.7.

Lower case bold letters will denote points pi,qi, ri, si. Upper case will
denote triangles Ti, T exti in the plane and convex regions H,K. We often use
the same upper case letter for a triangle and its area with respect to Lebesgue
measure. The correct interpretation can be inferred by context.

We consider subscripts modulo 6, as we do elsewhere in the book, with the
understanding that when it comes to area computations, the area is preserved
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0

p0

p2

p1q1

s0

s1

r

T0
r0

r̃0

A1T1A1

p3

p5

p4

s2

T2

s3

Figure 5.0.2: Critical Hexagon. (The figure has been rotated to make p0p1
horizontal, so that the sixth roots of unity si are also in a rotated position.)
The triangles shown in pink are a result of the construction in Lemma 5.0.5.
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under central reflection, so that area calculations have a smaller period of 3.
The situation is depicted in Figure 5.0.2. Recall that our convex disk is

in circle representation, having the sixth roots of unity on its boundary. Let
p0,p1,p2,p3,p4,p5 be the vertices of the critical hexagon with midpoints
at sj “ s˚

j . We define (interior) triangles T0 “ △s0p0s1, T1 “ △s1p1s2,
T2 “ △s2p2s3. Let q1 denote the point of intersection of the lines p3p2 and
p0p1 through nonadjacent edges of the hexagon. Similarly for q0 and q2. This
now determines the exterior triangles T ext0 “ △p1q1p2, T ext1 “ △p2q2p3, and
T ext2 “ △p0q0p1. (The latter two triangles are not depicted in the figure.)
For our compactification result, we will need the areas of these triangles in
terms of z “ x ` iy.

The functions ρ0, ρ1, ρ2 of Equation (3.1.3) are linear functions of X P

sl2pRq. Considering them as a function of z P h through the map X “ Φpzq, we
abuse notation slightly by writing ρjpzq for ρjpΦpzqq, where now ρj : h Ñ R.
The star domain h˚ is defined in h by the star inequalities ρjpzq ą 0 for
j “ 0, 1, 2.

Lemma 5.0.4. We have

areapT0q “

?
3

4 ρ0ρ2, areapT1q “

?
3

4 ρ0ρ1, areapT2q “

?
3

4 ρ1ρ2,

and

areapT ext0 q “
?

3ρ21, areapT ext1 q “
?

3ρ22, areapT ext2 q “
?

3ρ20,

where area is the Lebesgue measure on R2. Furthermore, we have

areapT0q ` areapT1q ` areapT2q “

?
3

4 .

Proof. Lemma 5.0.3 leads to an explicit construction of the coordinates of
the points pi and qi for i “ 0, 1, 2. Once we have coordinates of all these
points, finding the areas of the associated triangles is straightforward from
Equations (3.1.3), (3.1.6) and (3.1.8), with detpXq “ 1. For example,

p0 “ s0 ` ρ2Xs0 “ s0 ` ρ2pρ0s1 ` ρ1s2q

gives

areapT0q “
1
2 detppp0 ´ s0q, s2q “

1
2ρ2 detpXs0, s2q “

1
2ρ2ρ0 detps1, s2q “

?
3

4 ρ0ρ2.
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s0 s1

p0

r
r0 r1

Figure 5.0.3: Area of cutoff triangles.

We have q1 “ p1 ` 2ρ1Xs1 “ p2 ´ 2ρ1Xs3, and

areapT ext0 q “
1
2 detppp2 ´ q1q, pp1 ´ q1qq

“ ´2ρ21 detpXs3, Xs1q “ ´2ρ21 detps3, s1q “
?

3ρ21.

The other cases are similar, by shift of indices.
The sum of the areas Ti is obtained by Equation (3.1.7).

?
3

4 pρ0ρ2 ` ρ1ρ2 ` ρ0ρ1q “

?
3

4 detpXq “

?
3

4 .

To give a second proof that the sum of the areas of Ti is
?

3{4, an equilateral
triangle of edge length 1 can be dissected into three triangles congruent to
T1, T2, T3.

Lemma 5.0.5. As shown in Figure 5.0.3, in triangle △s0s1p0, let r̃0 and r0
be points on s1p0 and s0p0 respectively such that r0r̃0 is parallel to s0s1. If r
is any point on r̃0r0, then

△s0s1r “ △s0p0s1 ´
a

△r0p0r̃0△s0p0s1.

Proof. By an affine transformation, we may assume the angle at s1 is a right
angle, s0s1 “ 1, s1p0 “ 1, s1r̃0 “ r where r P p0, 1q. Then the identity to be
proved is

r

2 “
1 ´

a

p1 ´ rq2

2 ,

which is immediate.
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We now prove a lower bound on area. Let us denote by

hi :“
␣

z P h‹
| Tipzq ě T exti pzq

(

, i “ 0, 1, 2.

Here and below, we consider the indices modulo 6, but hi has period three:
hi “ hi`3. We derive a lower bound for all convex disks K having HKpzq as a
minimal midpoint hexagon, where z belongs to the regions h0, h1 or h2. For
i “ 0, 1, 2 define

areaipzq :“ Tipzq ´

b

T exti pzqTipzq.

Let Ii : h Ñ t0, 1u be the indicator function of the set hi.

Theorem 5.0.6. If K P Kbal is in circle representation and has HKpzq as a
critical hexagon, where z P h‹, then we have that

areapKq ě
3
?

3
2 ` 2

2
ÿ

i“0
Iipzqareaipzq.

Proof. As in the Figure 5.0.2 above, let p0p1p2p3p4p5 be the critical hexagon
of an undepicted convex disk K. The convex disk K is inscribed in this
hexagon and passes through the points s˚

j “ sj which are midpoints of its
sides.

We may assume that z P h‹ lies in the set

h0Yh1Yh2 “ tz P h‹
| T0pzq ě T ext0 pzq or T1pzq ě T ext1 pzq or T2pzq ě T ext2 pzqu.

Otherwise, the inequality to be shown reduces to areapKq ě areaphKq “

3
?

3{2, where hK is the convex hull of the points si. This area inequality
holds because K Ą hK . (This area inequality appears in Reinhardt’s 1934
article and was used in his proof of the existence of a minimizer.)

We show that the set h0 X h1 X h2 is empty. By the Cauchy-Schwarz
inequality and the area formulas of Lemma 5.0.4, we have
3
ÿ

i“1
Ti “

?
3

4 pρ0ρ2 ` ρ0ρ1 ` ρ1ρ2q ď

?
3

4 pρ20 ` ρ21 ` ρ22q “
1
4

3
ÿ

i“1
T exti ă

3
ÿ

i“1
T exti .

This shows we cannot have Tipzq ě T exti pzq for all i “ 0, 1, 2. So the inequali-
ties defining hi must hold individually or pairwise. The regions hi and the
other data have a three-fold symmetry given by shifting indices i modulo 3.
This gives us two cases.
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Case 1: Without loss of generality, by symmetry, assume that z P h0 and
z R h1 Y h2. That means T0pzq ě T ext0 pzq. In Figure 5.0.2 above, this gives an
inequality between areas △s0p0s1 ě △p1q1p2. Construct a triangle △r0p0r̃0
such that areap△r0p0r̃0q “ areap△p1q1p2q and such that the line segment
r0r̃0 is parallel to s0s1. The triangles with equal area are shown in pink.

We claim that there is at least one point r on the line segment r0r̃0 which
also lies on the boundary of the undepicted convex disk K. Otherwise, if
there were no such point, then the convex disk K would be contained in
the centrally symmetric hexagon with vertices r0, r̃0,q1, and their reflections.
This hexagon has the same area as the hexagon of p0p1p2p3p4p5, which has
minimal area. We reach a contradiction by constructing a centrally symmetric
hexagon containing K of even smaller area: make an inward parallel shift of
the line through the edge r0r̃0 (and its reflection) until it meets K.

The above argument exhibits the point r on r0r̃0 and its reflection ´r
on the reflected edge respectively, which are also on the boundary of the
convex disk K. Since K is convex, it contains the convex hull H of the points
s0, s1, s2, r and their reflections. Thus, we have

areapKq ěareapHq

“areaps0s1s2s3s4s5q ` 2△s0rs1

“
3
?

3
2 ` 2△s0rs1

“
3
?

3
2 ` 2

´

T0 ´
a

T ext0 T0
¯

(using Lemma 5.0.5).

Case 2: Assume without loss of generality that z P h0 X h1. We have
T0pzq ě T ext0 pzq and T1pzq ě T ext1 pzq. The above argument can also be
adapted here again to exhibit four points (two new points inside the triangles
△s0p0s1 and △s1p1s2 respectively, along with their reflections) also on the
boundary of the convex disk K, so that we have

areapKq ě
3
?

3
2 ` 2

´

T0 ´
a

T ext0 T0
¯

` 2
´

T1 ´
a

T ext1 T1
¯

.

Accounting for all cases, we have

areapKq ě
3
?

3
2 ` 2

ÿ

zPhi

Iipzqareaipzq.
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The regions h0, h1, h2 are shown in Figure 5.0.4. The boundaries of h0 and
h2 meet along the imaginary axis at px, yq “ p0,

?
3q.

-1.5 -1.0 -0.5 0.5 1.0 1.5

1

2

3

4

Figure 5.0.4: Covered boundary of the star domain. The shaded region along
the right edge is h0. The shaded region along the left edge is h2, and the
shaded region along the lower bounding circle is h1.

Recall that areapHKpzqq “
?

12. Let us write

δpzq :“ 1
?

12

˜

3
?

3
2 ` 2

ÿ

zPhi

Iipzqareaipzq

¸

“
3
4 `

ÿ

zPhi

Iipzqareaipzq
?

3
,

for the lower bound of the packing density for convex disks K P Kbal having
HKpzq as a critical hexagon. Also, let δoct denote the packing density of the
smoothed octagon. If z P h‹ is such that δpzq ą δoct, then by the above
theorem, the density of every convex disk K having HKpzq as a critical
hexagon is greater than δoct and is not a global minimizer. Such K can be
dropped from consideration. The next result shows that all but a compact
subset of h‹ can be excluded in this way. In the next lemma, we write I2, areai,
and δ as functions of px, yq instead of z “ x ` iy.

Lemma 5.0.7.

1. For all y ě 1, the function area0px, yq is monotonically increasing in x
on 0 ă x ă 1{

?
3.
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2. For all y ě
?

3, the function area0px, yq ` area2px, yq is monotonically
increasing in x on 0 ă x ă 1{

?
3.

3. For all fixed y ě
?

3, the function I0px, yqarea0px, yq`I2px, yqarea2px, yq

is minimized at x “ 0 on the domain x P p´1{
?

3, 1{
?

3q.

4. For all x P p´1{
?

3, 1{
?

3q and all y ě 4.5, we have

δpx, yq ą δoct.

Proof. The functions ρj are positive on h‹. Write p¨qx for the partial derivative
with respect to x. Then, ρ0,x ą 0 and ρ1,x ă 0 on h‹. The sign of ρ2,x “

?
3x{y

is the same as the sign of x.
(1) We compute the partial derivative with respect to x of

area0px, yq “

?
3

4

ˆ

ρ0ρ2 ´ 2
b

ρ0ρ21ρ2

˙

.

The partial derivative is positive on the given domain y ě 1 and 0 ă x ă 1{
?

3
because ρ0,xρ2 ą 0, ρ0ρ2,x ą 0, and ´pρ0ρ

2
1ρ2qx ą 0, the final inequality being

a polynomial inequality in x and y, which is easily checked.
(2) We consider the domain h‹ X tx ą 0, y ě

?
3u. We compute the

partial derivative with respect to x of

area0px, yq ` area2px, yq “

?
3

4

ˆ

pρ0 ` ρ1qρ2 ´ 2
b

ρ0ρ21ρ2 ´ 2
b

ρ20ρ1ρ2

˙

and show that this partial derivative is positive. The first term pρ0 ` ρ1qρ2 in
the numerator has positive partial derivative 2x{y2 ą 0 on the given domain.
It remains to show that

0 ą
pρ0ρ

2
1ρ2qx

?
ρ1

`
pρ20ρ1ρ2qx

?
ρ0

.

The two polynomial numerators on the right are separately negative when
x ě 1{4. When 0 ď x ď 1{4, the two terms on the right are separately
decreasing functions in x, and their sum is 0 at x “ 0. (This too is a
polynomial verification.) These routine checks prove the result.

(3) Along the boundary of hi, where Ii jumps, we have areaipx, yq “ 0.
Thus,

ÿ

i

Iipx, yqareaipx, yq (5.0.1)
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is continuous on h‹. Since it is monotonic increasing in x P p0, 1{
?

3q on each of
h0zh2 and h0Xh2, it is also monotonic increasing in x on h0Xtx ą 0, y ě

?
3u.

Note that area2px, yq “ area0p´x, yq, because ρ0p´x, yq “ ρ1px, yq. Since
the function (5.0.1) is even, it must be monotonic decreasing in x on h0 Xtx ă

0, y ě
?

3u. Thus, the critical point at x “ 0 is a minimum.
(4) Along the imaginary axis, for y ě

?
3, we have

area0p0, yq “ area2p0, yq “

?
3

4 p
?
ρ0ρ2 p

?
ρ0ρ2 ´ 2ρ1q .q

Both ρ0ρ2 “ py2 ´ 1{3q{p2y2q and ?
ρ0ρ2 ´ 2ρ1 are increasing functions of y.

Hence area0p0, yq is increasing. If x P p´1{
?

3, 1{
?

3q and y ě 4.5,

δpx, yq ě δp0, yq ě δp0, 4.5q “ 0.9059 . . . ą δoct.

Proof of Theorem 5.0.2. Everything in this subsection up until this point has
been equivariant with respect to the action of the dihedral group on h‹. The
region h‹‹ described in the statement of the theorem is likewise stable under
the action of the dihedral group. Thus, it is enough to prove the theorem for
all points z in a fundamental domain for the action of the dihedral group on
h‹. One such fundamental domain is given in subsection 4.6 as

tz “ x ` iy P h‹
| x ě 0, px ´ 1{

?
3q

2
` y2 “ 4{3u.

We work on the slightly larger subset of h‹ defined by the inequalities x ě 0
and y ě 1. The only horoball (among the three) meeting this set is Bpi8q,
and the only half-plane meeting this set is Π`

0 .
If any point of the trajectory pg,Xq passes through a point X “ Φpzq with

z “ x` iy, where y ą 4.5, then the previous lemma shows that δpx, yq ą δoct.
This shows that we may exclude all trajectories that enter the horoball Bpi8q.

Next we show that we can exclude all trajectories that meet the half-plane
Π`

0 defined by y ą 15p1{
?

3 ´ xq. We show that

δpzq ě δ0pzq :“ 3
4 `

area0pzq
?

3
ą δoct,

for all z P h‹ XΠ`
0 X t1 ď y ď 4.5u Ă h0. Proving this inequality will complete

the proof of the theorem, because the regions Π`
1 and Π`

2 do not meet the
fundamental domain.
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By the first part of the lemma, we have monotonicity of area0 in x along
each horizontal slice y “ y0 such that y ě 1. Thus, it is enough to prove the
inequality along the graph of the affine map ypxq “ 15p1{

?
3´xq. Furthermore,

we may assume that y ď 4.5. The preimage of r1, 4.5s under the map y is
contained in r0.277, 0.511s. On this domain, we have δ0px, ypxqq ą δoct.



Chapter 6

Hamiltonian and Maximum
Principle

6.1 Existence of Optimal Control
The existence of optimal solutions to problems such as the Reinhardt

control problem (Problem 3.6.2) is based on Filippov’s theorem which gives
conditions under which the corresponding attainable set of the control system
in question is compact. In informal terms, the attainable set corresponds
to all the points in the manifold which are reachable provided one is only
allowed to move according to the control. The compactness of attainable sets
implies the existence of optimal control. The optimal control function is a
measurable function.

Theorem 6.1.1 (Filippov). On a smooth manifold M , let q1 “ fpq, uq be an
optimal control system with an associated cost objective

şt

0 φpq, uqdt Ñ min.
Here u P U Ă Rm which is a compact set (the control set). Assume that the
velocity set fpq, Uq “ tfpq, uq | u P Uu is convex for each q P M and that the
support of f is a compact subset of M ˆ U . Then, the attainable sets are
compact and an optimal control exists.

For the Reinhardt control problem, all assumptions of the Filippov theorem
are shown to hold as follows.

• The control set is the simplex UT defined in Definition 3.3.3, which is
obviously compact.

89
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• The velocity sets are convex; in fact, each velocity set is the convex
hull of the velocities at the three vertices the control set, as shown in
Lemma 6.1.2 for the simplex UT .

• Recall that Reinhardt has proved the existence of a optimal solution to
the Reinhardt problem. We claim that the velocity sets can be assumed
to be compactly supported. By Definition 3.1.3 and Lemma 4.5.2, the
relevant vectors fields are

rZu,Φpzqs{ xZu,Φpzqy and gΦpzq, z P h‹. (6.1.1)
By Theorem 5.0.2, we may assume that z lies in the compact set h‹‹.
Then Φpzq is also confined to a compact set, as well as the first vector
field in (6.1.1). The second vector field gΦpzq lies in a compact set if
g P SL2pRq can be shown to be bounded. We have an upper bound
tf ď π{3 on the terminal time by Lemma 4.3.1. Gronwall’s inequality
applied to the ODE g1 “ gX gives a bound on g (Appendix A.1). This
shows that the vector fields are confined to a compact subset.
To make the vector field smooth, we can multiply the vector fields in
the star domain in the Reinhardt control problem 4.5.1 by a smooth
cutoff function of compact support ψ : h‹ Ñ R with ψ|h‹‹ “ 1, to obtain
smooth vector fields of compact support.

We can apply Filippov’s theorem to these smoothed vector fields of compact
support. Thus, the optimal control exists for the optimal control system. The
proof used the following lemma.
Lemma 6.1.2. Let fpx, y;uq “ pf1px, y;uq, f2px, y;uqq be the control-dependent
vector field on h‹ defined by the half-plane control problem 4.5.1. For each
z “ x` iy P h‹, the image fpx, y;UT q of UT in R2 is a convex set. Moreover,
the affine hull of the image fpx, y;UT q is all of R2.
Proof. Let ρj be the positive functions of z P h‹ from Lemma 5.0.4. Fix
z “ x ` iy P h‹ and let e1, e2, e3 be the standard basis of R3, giving the
vertices of UT . We prove that the image fpx, y;UT q is in fact the convex hull
of

tfpx, y; ejq | j “ 1, 2, 3u.

By explicit calculation, the basis vectors map to distinct points in the velocity
set. For example,

fpx, y, e3q ´ fpx, y, e2q “

ˆ

0, 2
?

3ρ0ρ1

˙

‰ p0, 0q,



6.2. THE PONTRYAGIN MAXIMUM PRINCIPLE 91

which is finite and nonzero by the star inequalities. Let L : R2 Ñ R be
the nonzero affine function that vanishes at fpx, y; eiq and fpx, y; ejq P R2

and takes value 1 at fpx, y; ekq, where pi, j, kq is any chosen permutation
of p1, 2, 3q. Computing, we find that Lpfpx, y;uqq is the ratio of two affine
functions of UT (depending on the parameters x, y), where the denominator
is positive on UT . For example, if u “ pu0, u1, u2q and pi, j, kq “ p1, 2, 3q, we
compute that

Lpfpx, y;uqq “
u2ρ0pzq

u0ρ2pzq ` u1ρ1pzq ` u2ρ0pzq
.

We observe that the numerator of L vanishes along the segment re1, e2s Ă UT
and that the numerator is nonnegative on UT (in fact strictly positive, except
on the edge segment). Similarly, for each permutation pi, j, kq of the vertices
of UT , the corresponding line L “ 0 defines a boundary segment of fpx, y;UT q.
We conclude that the image fpx, y;UT q is the convex hull of three points as
claimed. Since the image is a triangle, its affine hull is all of R2.

6.2 The Pontryagin Maximum Principle
The Pontryagin Maximum Principle (PMP) is a powerful first-order nec-

essary condition for optimality of solutions to an optimal control problem on
a smooth manifold M with closed control set U Ď Rm and free-terminal time.
We summarize the basic ideas below. For full details and a proof of the PMP,
we refer to [49].

Given a control system

q1
“ fpq, uq P TqM (6.2.1)

qp0q “ q0 P M (6.2.2)

on a manifold M with an associated cost objective

min
uPU

ż tf

0
φpq, uqdt,

we assume that the control-dependent vector field fpq, uq satisfies

1. q ÞÑ fpq, uq is a smooth vector field on M for any fixed u P U .

2. pq, uq ÞÑ fpq, uq is a continuous mapping for q P M,u P U ,



92 CHAPTER 6. HAMILTONIAN AND MAXIMUM PRINCIPLE

This optimal control system is denoted by the tuple pM,U, f, φq. We some-
times denote the vector field fpu, qq for u P U by fupqq. The PMP relies on
the following control-dependent Hamiltonian which is cost-extended on T ˚M :

Hpq, p, uq “ xp, fpq, uqy˚ ` λcostφpq, uq p P T ˚
qM λcost P Rď0,

where x¨, ¨y
˚

is the natural pairing between a vector space and its dual and
λcost, Pontryagin multiplier is a constant nonpositive scalar. Note that H is
linear in p.

Let u˚ “ u˚pp, qq denote a function defined implicitly as a function of
pq, pq P T ˚M by

H`
pq, pq :“ Hpq, p, u˚

q “ max
uPU

Hpq, p, uq. (6.2.3)

H` is called the maximized Hamiltonian. Note that it is quite possible that
u˚ might not be uniquely determined by the maximization condition. This is
related to singular subarcs, discussed later. See Definition 6.2.1. Regardless,
the value of the maximized Hamiltonian H` is independent of the choice of
u˚.

The PMP says that the extremals of the optimal control problem are
projections (from T ˚M to M) of the flow-trajectory of H⃗`, which is the
Hamiltonian vector field corresponding to H` with respect to the canonical
symplectic structure on the cotangent bundle T ˚M . Integral curves of the
vector field H⃗` satisfy

q1
“

BH`

Bp
“ fpx, u˚

q, p1
“ ´

BH`

Bq
. (6.2.4)

This trajectory pu˚ptq, qptq, pptqq in T ˚M is called the lifted controlled trajec-
tory.

The PMP (for free terminal time periodic problems) also guarantees the
following of lifted trajectories.

1. Transversality conditions (endpoint conditions for the co-state trajecto-
ries) hold.

2. The Hamiltonian Hpq, p, u˚q vanishes identically along the lifted con-
trolled trajectory.

3. The cotangent vector pλcost, pptqq P Rď0 ˆ T ˚
qptqM is nonzero for all

t P r0, tf s.
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4. The scalar λcost is constant, and when it is non-zero, may be taken to
be λcost “ ´1 by rescaling the covector, using the linearity of the ODE
for p.

The lifted curves which satisfy the conditions of the PMP are called
Pontryagin extremals or simply extremals.

Definition 6.2.1 (Normal, Abnormal and Singular extremals).

1. An extremal for which λcost “ 0 is called an abnormal extremal.

2. An extremal for which λcost ‰ 0 is called a normal extremal. Recall that
in the normal case a renormalization allows us to take λcost “ ´1.

3. If there is an open time interval on which equation (6.2.3) fails to
uniquely determine the function u˚ptq, the trajectory during that interval
is called a singular subarc.

Our strategy is to apply the maximum principle to our problem with the
hope that these necessary conditions will provide us more information about
the structure of the extremals. Recall the framework of the Reinhardt control
problem 3.6.2, where we have dynamics occurring in the Lie group SL2pRq

and the Lie algebra sl2pRq. If we apply the PMP to this problem, the lifted
trajectories live in

T ˚
pSL2pRq ˆ sl2pRqq – pSL2pRq ˆ sl2pRqq ˆ psl2pRq ˆ sl2pRqq ,

where we have used the cotangent bundle trivialization of Proposition 3.6.1
making T ˚SL2pRq – SL2pRq ˆ sl2pRq˚ and the identification sl2pRq˚ – sl2pRq

via the nondegenerate trace form as in Appendix A.8. So, for the state
variables q “ pg,Xq P SL2pRq ˆ sl2pRq the PMP gives corresponding costate
variables p “ pΛ1,Λ2q P sl2pRq ˆ sl2pRq.

Note that the PMP system is a Hamiltonian system on T ˚TSL2pRq and
is an instance of a higher-order variational system on a Lie group. Similar
problems and the background theory is described in Gay-Balmaz et. al. [12]
and Colombo and de Deigo [7].

We now derive expressions for the Hamiltonian and the costate equations
in both the Lie algebra coordinates and and the upper half-plane coordinates
via the isomorphism described in Lemma 4.2.1.
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6.3 Left-invariance
Definition 6.3.1 (Jurdjevic [19]). An arbitrary optimal problem with control
system dg{dt “ fpg, uq defined on a real Lie group G with control functions
uptq P U Ď Rm is said to be left-invariant if TLhfpg, uq “ fphg, uq for each
g, h P G. Here Lhpgq “ hg is the left-multiplication map, and TLh : TgG Ñ

ThgG is its tangent map.
Also, we require the associated cost function φpg, uq to be left-invariant:

φpg, uq “ φpe, uq for all g and u, where e P G is the neutral element.

The dynamical system breaks into the ordinary differential equation (ODE)
for the group (3.6.1) and the ODE for the Lie algebra (3.6.2). We refer to
these two subsystems as the dynamics at the Lie group level and the dynamics
at the Lie algebra level. The dynamics are coupled through X, which appears
in both levels.

The dynamics of the Reinhardt optimal problem at the Lie group level is
clearly left-invariant in the sense that the cost function depends on X but not
g and in the sense that the ODE for g can be left-multiplied by a constant
h P SL2pRq. Left-invariance of a dynamical system on a Lie group implies
that we can reduce its dynamics to co-adjoint orbits of the associated Lie
algebra.

Since the cost and dynamics for X are independent of g, we note that
the only purpose served by the Lie group dynamics for g is to describe an
endpoint (transversality) condition gptf q “ R. Because of the minor purpose
served by the Lie group dynamics, we can often focus on the control problem
exclusively at the Lie algebra level, and postpone the endpoint condition on
g until the very last step. In later sections, we will drop the group dynamics
and exclusively focus on state/costate dynamics in the Lie algebra.

6.4 Hamiltonian in the Lie Algebra
Following the Reinhardt optimal control problem 3.6.2, the Hamiltonian

is the sum of the Hamiltonians for the Lie group part and the Lie algebra
part.

The costate variable corresponding to the Lie group element g P SL2pRq

is denoted Λ1 P sl2pRq. Ignoring the Lie algebra dynamics for a moment, we
derive the Hamiltonian corresponding to the group element g. As pointed
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out earlier, the control problem is left-invariant (see Definition 6.3.1) and
Hamiltonians of left-invariant systems are functions of sl2pRq˚ only.

Proposition 6.4.1 (Jurdjevic [19]). Consider an arbitrary left-invariant
control system dg{dt “ fpg, uq on a real Lie group G, with control u P U Ď Rm.
Let us also assume that the Lie algebra g of G is equipped with a nondegenerate
invariant symmetric bilinear form x¨, ¨y. Then the Hamiltonian function
corresponding to this system is

Hpg, pq “ xp, fpe, uqy , p P g,

where e P G is the group identity.

Proof. Let x¨, ¨y
˚

be the canonical pairing between a vector space and its dual.
Let p̃ P T ˚

g G. Using the trivialization T ˚G – Gˆ g˚ of Proposition 3.6.1, we
write p̃ “ T ˚Lg´1ppq for some p P g˚. Then we have by the definition of the
Hamiltonian for a control system,

Hpg, p̃q “ xp̃, fpg, uqy
˚

“ xp, TLg´1 pfpg, uqqy
˚

“ xp, TLg´1 pTLgfpe, uqqy
˚

“ xp, fpe, uqy
˚
,

since the control system is left-invariant. Since g is equipped with a nonde-
generate invariant form x¨, ¨y, we have that g – g˚. Using this identification,
we have Hpg, pq “ xp, fpe, uqy, where p is now identified with an element of
g.

We need a slight extension of this result, where the control system has
the form

dg{dt “ fpg, TLgX, uq, u P U, X P g.

Left-invariance is expressed as TLhfpg, TLgX, uq “ fphg, TLhgX, uq, and the
corresponding Hamiltonian in the proposition becomes xp, fpe,X, uqy.

In our case, taking p “ Λ1 and fpe,X, uq “ X, this means that the term
the Hamiltonian corresponding to the group is xΛ1, Xy. The cost extended
term of the Hamiltonian is

H1pΛ1, Xq :“ xΛ1, Xy ´
3
2λcost xJ,Xy .
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The Lie algebra part of the Hamiltonian, corresponding to the costate
variable Λ2, is

H2pΛ2, X;Zuq :“ xΛ2, rZu, Xsy

xX,Zuy
“ ´

xrΛ2, Xs, Zuy

xX,Zuy
.

The form of the Hamiltonian suggests introducing a new variable ΛR :“
rΛ2, Xs. The full Hamiltonian of the problem is now

HpΛ1,ΛR, X;Zuq :“ H1pΛ1, Xq ` H2pΛ2, X;Zuq

“

B

Λ1 ´
3
2λcostJ,X

F

´
xrΛ2, Xs, Zuy

xX,Zuy

“

B

Λ1 ´
3
2λcostJ,X

F

´
xΛR, Zuy

xX,Zuy
. (6.4.1)

The maximum principle states that the extremals of the control problem
are integral curves of the maximized Hamiltonian, which is the pointwise
maximum of the control-dependent Hamiltonian over the control set. For
our immediate application, we take the control set to be the simplex UT (see
Definition 3.3.3).

H`
pΛ1,Λ2, Xq :“ max

uPUT

HpΛ1,ΛR, X;Zuq

“

B

Λ1 ´
3
2λcostJ,X

F

` max
uPUT

x´ΛR, Zuy

xX,Zuy
. (6.4.2)

6.5 Costate Variables in Lie Algebra
Proposition 6.5.1 (Lie algebra costate variables). The costate variables
evolve as

Λ1
1 “ rΛ1, Xs (6.5.1)

Λ1
R “ prP,ΛRs ´ xΛR, P y rP,Xsq `

„

´Λ1 `
3
2λcostJ,X

ȷ

, (6.5.2)

where P “ Zu{ xX,Zuy and ΛR :“ rΛ2, Xs.

Proof. Let H` denote the maximized Hamiltonian in equation (6.4.2). Let

pg,X,Λ1,Λ2q P SL2pRq ˆ sl2pRq ˆ sl2pRq ˆ sl2pRq – T ˚
pSL2pRq ˆ sl2pRqq
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denote the state and costate variables in the trivialized bundles. Since the
Hamiltonian is independent of SL2pRq, it is left-invariant.

By the maximum principle, we have that the state and costate equations
are Hamilton’s equations in the cotangent bundle with respect to an appro-
priate symplectic form. For the pg,Λ1q pair, the dynamics is Hamiltonian
with respect to the pullback of the canonical symplectic form on T ˚pSL2pRqq

to SL2pRq ˆ sl˚2pRq. These equations are called the Euler-Arnold equations
for a left-invariant Hamiltonian (see [8, pp. 285]) and are given by

g1
“ g

δH`

δΛ1
“ gX

Λ1
1 “ ad˚

δH`{δΛ1Λ1 “ ´adXΛ1 “ rΛ1, Xs,

where we identify sl2pRq˚ with sl2pRq as usual, sending the ad˚-operator to
ad-operator, as described in Appendix A.4. The expression δH`{δΛ1 denotes
the functional derivative of H` with respect to Λ1 and is defined in Appendix
A.8 in equation (A.2.1). For the pair pX,Λ2q P sl2pRqˆsl2pRq˚, the dynamics
is Hamiltonian with respect to the canonical symplectic structure on the
trivial cotangent bundle T ˚psl2pRqq which gives us Hamilton’s equations in
the usual form.

X 1
“
δH`

δΛ2
“ rP,Xs

Λ1
2 “ ´

δH`

δX
“ ´Λ1 `

3
2λcostJ ´ rΛ2, P s ` xrΛ2, P s, XyP.

Using this, we can derive

Λ1
R “ rΛ2, Xs

1
“ rΛ1

2, Xs ` rΛ2, X
1
s

“

„

´Λ1 `
3
2λcostJ,X

ȷ

` xrΛ2, P s, Xy rP,Xs ´ rrΛ2, P s, Xs ` rΛ2, rP,Xss

“

„

´Λ1 `
3
2λcostJ,X

ȷ

` xrΛ2, P s, Xy rP,Xs ` rP, rΛ2, Xss

“

„

´Λ1 `
3
2λcostJ,X

ȷ

´ xΛR, P y rP,Xs ` rP,ΛRs

“

ˆ

rP,ΛRs ´
xΛR, Zuy

xX,Zuy
rP,Xs

˙

`

„

´Λ1 `
3
2λcostJ,X

ȷ

.
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Remark 6.5.2.

• Note that the variable ΛR is constrained to lie in the two-dimensional
subspace tA P sl2pRq | xA,Xy “ 0u. Thus, we can consider ΛR to be
the reduced costate variable. (The subscript R stands for reduced.)

• In Appendix A.9, we show that there is a Poisson bracket with re-
spect to which the Reinhardt control system admits a Poisson bracket
representation.

Corollary 6.5.3 (Jurdjevic [19, 21]). The costate variable Λ1, whose dynamics
is given by a Lax equation, evolves in an adjoint orbit of sl2pRq through the
initial value Λ1p0q and its general solution is given by

Λ1ptq “ Adgptq´1pΛ1p0qq “ gptq´1Λ1p0qgptq.

Moreover, the determinant detpΛ1ptqq is a constant of motion.

Proof. This can be verified by differentiating. We immediately find the
determinant is constant. If the identification of the Lie algebra with its dual
is not made, the evolution is in a coadjoint orbit through the representation
Ad˚.

Corollary 6.5.4. In the ODE for ΛR in equation (6.5.2), the control depen-
dent term has the following expression.

ˆ

rP,ΛRs ´
xΛR, Zuy

xX,Zuy
rP,Xs

˙

“ adZu

δ

δZu

xΛR, Zuy

xX,Zuy
“ adZu

δH2

δZu
, (6.5.3)

where δ
δZu

denotes the functional derivative (defined in Section A.8).

Proof. The proof is by computation.

adZu

δ

δZu

ˆ

xΛR, Zuy

xX,Zuy

˙

“

„

Zu,
δ

δZu

ˆ

xΛR, Zuy

xX,Zuy

˙ȷ

“

„

Zu,
ΛRxX,Zuy ´ xΛR, ZuyX

xX,Zuy2

ȷ

“
rZu,ΛRs

xX,Zuy
´

xΛR, Zuy

xX,Zuy2
rZu, Xs

“ rP,ΛRs ´
xΛR, Zuy

xX,Zuy
rP,Xs.
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6.6 Transversality Conditions
For free terminal time optimal control problems, the Pontryagin Maximum

Principle specifies transversality conditions which are endpoint conditions
which the extremals need to satisfy.

On a manifold M , if pqptq, uptqq is the projection of the lifted extremal
trajectory pptq P T ˚

qptqM in the cotangent bundle, then transversality requires
that

xpptf q, vy
˚

“ 0 v P Tqptf qMf ,

where Tqptf qMf is the tangent space at qptf q of the final submanifold Mf

(which is the submanifold in which the terminal point qptf q is allowed to
vary).

More generally, if the initial point qp0q is also allowed to vary in an
initial submanifold M0, then transversality requires that the lifted extremal
trajectory pptq in the cotangent bundle annihilates the vectors in the tangent
spaces of the initial and terminal manifolds at the initial and terminal times.

xpp0q,vy
˚

“ 0, v P Tqp0qM0;
xpptf q,vy

˚
“ 0, v P Tqptf qMf .

Letting R be the usual rotation matrix, we have that our system is periodic
up to a rotation by R. In this case, the initial and terminal submanifolds
coincide after rotation by R and so, transversality simply means that the lifted
extremal trajectories are periodic functions modulo rotation by R. Rotations
act through the adjoint action Y ÞÑ AdRY “ RY R´1 on the Lie algebra
sl2pRq.

For our system, we have pptq “ pgptq, Xptq,Λ1ptq,ΛRptqq. We have already
seen endpoint conditions for g and X in Section 3.5. Collecting everything
we obtain

gptf q “ R

Xptf q “ R´1Xp0qR

Λ1ptf q “ R´1Λ1p0qR

ΛRptf q “ R´1ΛRp0qR.

(6.6.1)

Remark 6.6.1.
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• The transversality conditions in the Reinhardt problem require the
terminal time to satisfy

Xptf q “ R´1X0R,

where R is the usual rotation matrix. Thus, if we extend time, every
optimal solution can be made into a periodic one.

Xp3tf q “ X0.

The same requirement also holds of g,Λ1 and ΛR, except that the
period for g is larger: gp6tf q “ I2. Thus, every transversal trajectory
determines a periodic solution (with discrete rotational symmetry) of
the lifted trajectories in the cotangent bundle.

• The transversality condition for Λ1 is a consequence of the transversality
condition for g. In fact, we know the general solution for Λ1 in terms of
g. See Corollary 6.5.3.

6.7 Summary of State and Costate Equations
At this point, we have the state and costate equations fully stated in both

the coadjoint orbit picture and the upper half-plane picture. We also have
the transversality conditions stated. We collect them as
Problem 6.7.1 (State-Costate Equations). The Reinhardt control problem
3.6.2 is an optimal control problem on the manifold M “ SL2pRq ˆ sl2pRq.
This problem has the Hamiltonian

HpΛ1,ΛR, X;Zuq “

B

Λ1 ´
3
2λcostJ,X

F

´
xΛR, Zuy

xX,Zuy
.

We lift the state trajectories described by pg,Xq in the Reinhardt control
problem 3.6.2 to the following Hamiltonian system on the cotangent bundle
of M :

g1
“ gX

X 1
“ rP,Xs

Λ1
1 “ rΛ1, Xs

Λ1
R “ prP,ΛRs ´ xΛR, P y rP,Xsq `

„

´Λ1 `
3
2λcostJ,X

ȷ

,
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where P “ Zu{xZu, Xy. The transversality conditions described in Section 6.6
hold and the pair pX,ΛRq have equivalent dynamics in the upper half-plane
described in Lemma 4.5.2 and Theorem 6.8.3. The control dependent part
of the Hamiltonian also has an expression in the upper half-plane picture as
Theorem 6.8.2.

6.8 Hamiltonian and Costate Equations in the
Upper-half plane

An earlier preprint expressed the Hamiltonian and the maximum principle
in terms of the cotangent variables ν “ ν1dx ` ν2dy P T ˚

z h [16]. It turns out
that it is significantly simpler to express the costate differential equations
in terms of the coordinate ΛR P sl2pRq instead of pν1, ν2q. In this book we
use ΛR, rather than ν. However, for reasons of compatibility with the earlier
preprint, this section briefly reviews the correspondence between the two
coordinate system. This section will not be used elsewhere in the book.

With this aim in mind, we now proceed to transport the Hamiltonian
from Lie algebra coordinates to upper half-plane coordinates. Recall that we
have an isomorphism Φ : h Ñ OX Ă sl2pRq defined in Lemma 4.2.1. This
induces the tangent map TΦ : Tzh Ñ TXOX as described in Lemma 4.2.4.
This also induces the dual (cotangent) map: T ˚Φ : T ˚

XOX Ñ T ˚
z h.

Lemma 6.8.1.

T ˚
XOX – XK

“ trW,Xs | W P sl2pRqu,

where XK “ tY P sl2pRq | xY,Xy “ 0u.

Explicitly, the isomorphism identifies the cotangent space with the dual
of the tangent space, under the identification of the tangent space with the
quotient sl2pRq{RX of Lemma 4.2.3.

Proof. By a general fact in elementary linear algebra we have

T ˚
XOX – psl2pRq{RXq

˚
– RX˝

“ XK,

where
RX˝

“ tY P sl2pRq | xY,W y “ 0 for all W P RXu
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is the annihilator of the span of X. Here the annihilator, which is defined as
a subspace of the dual vector space, is identified with a subspace of the Lie
algebra itself via the nondegenerate trace form.

It is clear that any Lie algebra element of the form rW,Xs is orthogonal
to X since xrW,Xs, Xy “ xW, rX,Xsy “ 0. Dimension counting again gives
us that T ˚

XOX “ trW,Xs | W P sl2pRqu.

We define
ν :“ T ˚Φp´ΛRq “ ν1dx ` ν2dy P T ˚

z h. (6.8.1)
The covector ν P T ˚

z h is well-defined since ΛR P XK by Lemma 6.8.1.
Theorem 6.8.2 (Hamiltonian in Upper Half-Plane). Let Φ be as in Lemma
4.2.1 and let ΛR be as above. Then we have that the Hamiltonian HpΛ1,ΛR, X;Zuq

in equation (6.4.1) in upper half-plane coordinates becomes

HpΛ1, x, y, ν1, ν2;uq “

B

Λ1 ´
3
2λcostJ,X

F

` ν1f1 ` ν2f2.

Proof. The only part of the Hamiltonian in equation (6.4.1) which will change
is H2pΛ2, X;Zuq.

H2pΛR, X;Zuq “
x´ΛR, Zuy

xZu, Xy
“

B

´ΛR,
Zu

xZu, Xy

F

“

B

´ΛR,
Zu

xZu, Xy
` RX

F

“ x´ΛR, TΦpf1, f2qy by (4.5.1)
“ xT ˚Φp´ΛRq, pf1, f2qy˚

“ xν, pf1, f2qy˚

“ ν1f1 ` ν2f2,

where we have used the definition of the cotangent map and the fact that
ΛR P XK, the annihilator subspace of X in sl2pRq.
Theorem 6.8.3. The ODE for ΛR is transformed to the ODE

ν 1
“ ´dH “ ´

BH
Bx

dx ´
BH
By

dy,

where H is the Hamiltonian derived in equation (6.4.1).
Proof. We note that this equation is Hamilton’s equation for the costate. We
omit the long direct calculation that this equation is equivalent to the ODE
for ΛR. Details can be found in [48].
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Chapter 7

Bang Bang Solutions

We have a well-defined control problem on the cotangent bundle, and we
now turn to describing special solutions of this system. We start with the
easiest case, where the control is constant.

7.1 Solutions for Constant Control
Lemma 7.1.1. The quantity xX,Zuy for a fixed control matrix Zu is a
constant of motion along X.
Proof. The quantity in question is constant since

xX,Zuy
1

“ xX 1, Zuy “
xrZu, Xs, Zuy

xX,Zuy
“ 0, (7.1.1)

where we have used the fact that xrX, Y s, Zy “ xX, rY, Zsy.

Lemma 7.1.2. Assume that the control u P UT is constant. Then the speed
xX 1, X 1y

1{2 of X is constant. Moreover, the trajectory z in h, defined by
X “ Φ ˝ z, has constant speed with respect to the invariant Riemannian
metric on h.
Proof. Let P “ Zu{ xX,Zuy with constant control u P UT . By the previous
lemma, P is constant. To show that the speed is constant, we differentiate

xX 1, X 1
y

1
“ 2 xX2, X 1

y “ 2 xrP,Xs
1, X 1

y “ 2 xrP,X 1
s, X 1

y

“ 2 xP, rX 1, X 1
sy “ 0.

105
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The trajectory z also has constant speed because of the compatibility of
the invariant metric on the upper half plane with the trace form on sl2pRq,
by Lemma A.11.1.

In this section, we keep the control matrix Zu constant and derive general
solutions to the state and costate equations. This means that xZu, Xy is a
constant of motion (by equation (7.1.1)), and hence P “ Zu{xZu, Xy is also
constant. So, for gp0q “ I2 and Xp0q “ X0 (or, equivalently zp0q “ z0), write
P0 :“ Zu{xZu, X0y. The general solutions for pg,Xq are

gptq “ expptpX0 ` P0qq expp´tP0q, (7.1.2)
zptq “ exp ptP0q ¨ z0, (7.1.3)
Xptq “ expptP0qX0 expp´tP0q “ AdexpptP0qX0. (7.1.4)

As previously noted in Corollary 6.5.3, the general solution for Λ1 is
Λ1ptq “ Adgptq´1Λ1p0q “ gptq´1Λ1p0qgptq.

We also have a rather complicated (but ultimately elementary) expression
for the general solution for ΛR.

ΛRptq “ AdexpptP0qΛ̃Rptq,

where
Λ̃Rptq :“ ΛRp0q ´ rΨptq ` ψptqP0, X0s,

ψptq :“
ż t

0
xP0,ΛRp0q ´ rΨpsq, X0sy ds,

Ψptq :“
ż t

0
Adexpp´pX0`P0qsqΛ1p0q ´

3
2λcostAdexpp´P0sqJds.

The two quadratures can be carried out explicitly for any given matrices X0
and X0 `P0. The exponentials of these matrices are expressed in terms of the
exponentials exppλsq of the eigenvalues λ of these matrices. The integrands
are exponentials (possibly multiplied by polynomials), and the integrals are
easily computed. In computing the solution ΛR, we first compute Ψ, then ψ,
then Λ̃R, and finally ΛR.

By inspection of the formula for ψ, we note that if Λ̃R,0ptq is the special-
ization of Λ̃Rptq to the initial condition ΛRp0q “ 0, then the general solution
adds an affine term

Λ̃Rptq “ Λ̃R,0ptq ` ΛRp0q ´ t xP0,ΛRp0qy rP0, X0s.
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Lemma 7.1.3. The matrices P0 and X0 ` P0 have the same characteristic
polynomial (and hence the same eigenvalues). If detpZuq ă 0, the eigenvalues
are real: ˘

a

´ detpZuq{ xX0, Zuy.

The most important case occurs when u is a vertex of the control set UT ,
where detpZuq “ ´1{3 ă 0.

Proof. The characteristic polynomial of matrices P0, X0 ` P0 P sl2 is deter-
mined by the determinant. We have detpX0q “ 1, and xX0, P0y “ 1. Then by
Lemma 3.4.1, we have

´2 detpX0 ` P0q “ xX0 ` P0, X0 ` P0y

“ xX0, X0y ` 2 xX0, P0y ` xP0, P0y

“ ´2 detpP0q.

Recall that tracepZuq “ 0 and that Zu and P0 are scalar multiples of each
other. When detpZuq ă 0, the control matrix P0 has two real eigenvalues.

We analyze the solution zptq “ expptP0q ¨ z0 in greater detail. Let Z0 be
the value of Zu at t “ 0. If detpZ0q ă 0, let ˘λ be the real eigenvalues of P0,
chosen so that λ ą 0. The matrix P0 can be diagonalized over R:

expptP0q “ A diagpexpptλq, expp´tλqqA´1,

for some A P SL2pRq. The columns of A “ pv`,v´q are the column
eigenvectors v˘ of Z0, associated to the positive and negative eigenvectors,
respectively. The matrix P0 has the same eigenvectors. The solution is then

zptq “ A ¨ pexpp2tλqz̃0q, z̃0 :“ A´1
¨ z0.

The image of the trajectory t ÞÑ expp2tλqz̃0 is a Euclidean line through 0 ` 0i
and z̃0 P h. By adopting the convention that λ ą 0, this linear trajectory
tends to 0 as time t tends to ´8, reaches z̃0 at t “ 0, and tends to infinity as
t tends to infinity. Linear fractional transformations send generalized circles
(that is Euclidean circles or lines) to generalized circles. Thus, the image of z
is the unique generalized circle through A ¨ 0, z0 “ A ¨ z̃0, and A ¨ 8.

The boundary of h can be identified with the real projective line R Y t8u.
From the description of A as the column of eigenvectors, we have A ¨ 0 “ rv´s

and A ¨ 8 “ rv`s, where rv´s and rv`s are the lines through the origin
spanned by the eigenvectors, viewed as points in the real projective line.
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Thus, the trajectories are arcs of generalized circles, from rv´s to rv`s on the
boundary of h.

If detpZ0q ą 0, then the eigenvalues are pure imaginary. The solutions
zptq in h are then periodic. In fact, the solutions are circles whose center
(with respect to the hyperbolic metric) is the point z0 P h, defined by the fixed
point condition Z0 ¨ z0 “ z0. (Equivalently, pz0, 1q is a complex eigenvector
of Z0, chosen so that z0 P h.) Each trajectory moves at constant speed with
respect to the hyperbolic metric on h. When u “ p1{3, 1{3, 1{3q (the center
of UT ), Z0 “ J{3, and the fixed point is i P h.

If detpZ0q “ 0, then the eigenvalues are 0 (but Z0 has rank 1). (For
example, take control u “ p2{3, 1{6, 1{6q.) The solutions zptq in h move along
horocycles centered at an ideal point in the real projective line (viewed as
the boundary of h). That ideal point is the line formed by the kernel of Z0.

7.2 Constant Control at the Vertices
As we will see in Lemma 7.3.1, the constant controls at the vertices of

the control triangle have particular significance, because they often maximize
the Hamiltonian. Assume that the control remains at a vertex u of the
control triangle UT during some time interval t P rt1, t2s. By the construction
of the control from state-dependent curvatures, two of the state-dependent
curvatures κj, κj`1 are zero. Thus the corresponding trajectories

σiptq “ gptqs˚
i , i “ 2j, 2j ` 2,

move along straight lines. According to Lemma 3.1.8, the third curve σ2j`1ptq
moves along an arc of a hyperbola. The solution (7.1.2) gives explicit param-
eterizations of these straight lines and hyperbolic arcs.

If u is a vertex of the control triangle UT , then detpZuq “ ´1{3 ă 0, and
the eigenvalues of ´Zu are ˘1{

?
3. Let v˘ be eigenvectors for 1{

?
3 and

´1{
?

3 respectively. The remarks of the earlier paragraph apply, to show that
the trajectories in h are generalized circles moving from rv´s toward rv`s on
the boundary of h. The explicit parameterization is in terms of exponentials,
as described above.

If u “ p0, 0, 1q, the eigenvectors of ´Zu are computed to be

v´ “ p´1{
?

3, 1q, v` “ p1, 0q.
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Trajectories z are straight lines moving from the ideal vertex rv´s “ ´1{
?

3
toward the ideal vertex rv`s “ `8. Explicitly, we have

xptq “ rv´s ` C0 expprtq, yptq “ C0r expprtq,

where the constants of integration r, C0 ą 0 are uniquely determined at t “ 0.

x0 “ xp0q “ rv´s ` C0, y0 “ yp0q “ C0r.

If u “ p0, 1, 0q, the eigenvectors of ´Zu are computed to be

v´ “ p1, 0q, v` “ p1{
?

3, 1q.

The trajectories z are straight lines moving from the ideal vertex rv´s “ `8

toward the ideal vertex rv`s “ `1{
?

3. The trajectory is

xptq “ rv`s ` C0 expprtq, yptq “ C0r expprtq,

where now C0, r ă 0. Note that when u “ p0, ˚, ˚q, the matrix Zu is upper
triangular, so that the eigenvectors and exppPtq are trivial to compute.

If u “ p1, 0, 0q, the eigenvectors of ´Zu are computed to be

v´ “ p1{
?

3, 1q, v` “ p´1{
?

3, 1q.

The trajectories z are Euclidean circles moving from the ideal vertex rv´s “

1{
?

3 toward the ideal vertex rv`s “ ´1{
?

3.
Note that the solutions at the different vertices are related by linear

fractional transformations R, which rotates the star domain h‹, and permutes
the ideal vertices.

We record the preceding discussion in the form of a lemma.

Lemma 7.2.1. If the control function is a constant at one of the vertices of
UT , then the trajectories in the star domain are arcs generalized circles. If the
control is p0, 0, 1q or p0, 1, 0q, then each trajectory moves along a Euclidean
straight line.

Proof.
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u “ p0, 0, 1qu “ p0, 1, 0qu “ p1, 0, 0q

Figure 7.2.1: The trajectories with constant control u are generalized circles,
shown here in the star domain of the upper half-plane.

7.3 Partition of the Cotangent Space
Let K be a compact convex set in Rn. A nonempty convex subset F of K

is called a face if and only if for all x, y P K and all t P p0, 1q, the membership
tx ` p1 ´ tqy P F implies endpoint membership: x, y P F .

Lemma 7.3.1. Assume that the control set is U a compact convex set in
the affine plane tpu0, u1, u2q |

ř

ui “ 1u. For each point in the cotangent
space pg,X,Λ1,ΛRq, the set of controls u P U maximizing the Hamiltonian
HpΛ1,ΛR, X, Zuq in equation (6.4.2) is equal to a face of the control set.

Proof. Fix pg,X,Λ1,ΛRq. We consider the dependence of the control-dependent
part (denoted H2) of the Hamiltonian in equation (6.4.2). As a function of
u P U , the Hamiltonian is a ratio of two affine functions. Fixing u, v P U , the
dependence on t along the segment tu ` p1 ´ tqv P U , for 0 ď t ď 1, of the
control-dependent part of the Hamiltonian takes the general form

H2ptq “
a t ` b

c t ` d

with nonzero denominator. The derivative pad´bcq{pc t`dq2 of this expression
has fixed sign. Thus, Hamiltonian is monotonic along the segment. If an
internal point of the segment is a maximizer, then both endpoints are also
maximizers. According to the definition of face, the set of maximizers must
be a face.

Thus, if we consider the control set UT , the set of maximizers are either
the entire control set UT , or one of its edges or vertices.
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The control-dependent part of the Hamiltonian depends on state and
costate variables through pX,ΛRq. Such pairs can be identified with the
cotangent space of OJ :

T ˚OJ – tpX,ΛRq P OJ ˆ sl2pRq | ΛR P XK
u.

For each nonempty subset H ‰ I Ď t1, 2, 3u, we have a face pUT qI Ď UT
defined by the convex hull of tei | i P Iu, where e1 “ p1, 0, 0q, e2 “ p0, 1, 0q,
e3 “ p0, 0, 1q is the standard basis of R3. These subsets classify faces of UT .
For each I, there is a corresponding region of T ˚OJ .

pT ˚OJqI :“ tpX,ΛRq P T ˚OJ | argmaxuPUT
H2p¨,ΛR, X, Zuq “ pUT qIu.

As I runs over nonempty subsets of t1, 2, 3u, the sets pT ˚OJqI partition T ˚OJ

into locally closed subsets.
The union of the three sets pT ˚OJqI , for |I| “ 1 is a dense open subset

of pT ˚OJq. On this dense open subset, the Hamiltonian is maximized at a
uniquely determined vertex. In general, the control function u : r0, tf s Ñ UT
is allowed to be any measurable function. The solutions of the control system
ODEs do not change by modifying the control u on a set of zero measure
in r0, tf s. If the control u remains in the dense open subset for all t P r0, tf s,
(that is, if the image of the control function u is contained in the set of
vertices of UT ), we will call the solution a bang-bang solution. Note that the
control function is necessarily discontinuous where it jumps from one vertex
to another. This chapter is concerned with bang-bang solutions, but later
chapters will extend the investigation to solutions that are not bang-bang.

Definition 7.3.2 (Bang-bang control). A control function is said to be bang-
bang if its range is contained in the set of extreme points of the control set,
with discontinuous switching.

We call the three sets pT ˚OJqI , for |I| “ 2 the walls in T ˚OJ . The
walls have codimension 1 in T ˚OJ . The wall ti, ju is contained in boundary
between the open regions with indices I “ tiu and tju. Finally, there is a set
pT ˚OJqt1,2,3u, where the three walls meet.

7.4 Constant Control Splines
By a spline we mean a trajectory that has been pieced together from

constant control trajectories, by matching the endpoints of one trajectory on
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one subinterval with the initial conditions on the next subinterval. In this
section, we give explicit constructions of splines. In this section, we do not
assume that the curves satisfy the Pontryagin Maximum Principle conditions
in the cotangent space. However, the trajectories are assumed to satisfy the
state space ODEs (for pg,Xq) and controls at the vertices of UT .

Fix a vertex u0 “ ej P UT in the control simplex. For t ě 0 and initial
position z “ z0 P h, let g0pz, tq P SL2pRq be the trajectory with solving the
state ODE for g with constant control u0 and initial conditions

g0pz, 0q “ I2, g1
0pz, 0q “ Φpzq.

(As always, prime denotes the derivative with respect to t.) Let gipz, tq P

SL2pRq, for t ě 0, i P Z, and z P h be the trajectory

gipz, tq :“ Rig0pz, tqR´i.

We have
gipz, 0q “ I2, g1

ipz, 0q “ ΦpRi
¨ zq,

with constant control ui “ Ri ¨ u0, using the action of the cyclic subgroup
xRy of the dihedral group Dih6 on the control simplex UT .

We define a continuous (shifted) extension of gi that is non-constant only
for t P rt̃1, t̃2s:

gipz, t̃1, t̃2, tq :“

$

’

&

’

%

I2, if t ď t̃1;
gipz, t ´ t̃1q, if t̃1 ď t ď t̃2;
gipz, t̃2 ´ t̃1q, if t̃2 ď t.

The derivative g1
i has jump discontinuities at t̃1 and t̃2. Let zpz0, tq be the

solution to the ODE (4.5.1) with constant control u0 and initial condition z0.
For any tuple

I “ ppk1, t1q, pk2, t2q, . . . , pkn, tnqq,

with ki P Z and ti ě 0, and for any z0 P h‹, let

t̃0 “ 0;
t̃i`1 “ t̃i ` ti`1;
zi “ Rki´ki`1 .zpzi´1, tiq;

gpI, z0, tq “ gk1pz0, t̃0, t̃1, tqgk2pz1, t̃1, t̃2, tq ¨ ¨ ¨ gknpzn´1, t̃n´1, t̃n, tq.

(7.4.1)
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Note that on the right-hand side of the last equation, only one factor at
a time is non-constant. Then gpI, z, tq is continuous in t and has unit
speed parametrization. Set XpI, z, tq :“ gpI, z, tq´1g1pI, z, tq. Note that for
t P rt̃i´1, t̃is, when the ith factor is active, we have

XpI, z0, tq “ gkipzi´1, t̃i´1, t̃i, tq
´1g1

ki
pzi´1, t̃i´1, t̃i, tq

“ gkipzi´1, t ´ t̃i´1q
´1g1

ki
pzi´1, t ´ t̃i´1q

“ RkiXpzi´1, t ´ t̃i´1qR
´ki ,

whereXpz, tq “ g0pz, tq
´1g1

0pz, tq. Comparing left and right limits ofXpI, z0, tq
at the boundary value t “ t̃i, we find that XpI, z0q is continuous in t.

XpI, z0, t̃´i q “ ΦpRki .zpzi´1, tiqq “ ΦpRki`1 ¨ ziq;
XpI, z0, t̃`i q “ ΦpRki`1 ¨ ziq.

From this, it is easy to see that gpI, z0q is the general bang-bang trajectory
with finitely many switches (at times t̃0, . . . , t̃n), as we vary I and z0. The
control on the interval rt̃i´1, t̃is is u “ Rki ¨ u0 P U .

The total costpz0, r0, tsq of the trajectory (7.4.1) with initial condition z0
up to time t is an easy (freshman calculus) integral to compute from Equation
(4.3.1), which we do not display here. The total cost of gpI, z0, tq from time
0 to t̃n is the sum of the costs on each constant control segment.

n´1
ÿ

i“0
costpzi, r0, ti`1sq. (7.4.2)

7.5 Smoothed Polygons
In this section, we construct a family of Pontryagin extremals of the

control problem, all given by a bang-bang control. Reinhardt conjectured
that the smoothed octagon is the solution to his problem. The smoothed
octagon belongs to a family of smoothed p6k ` 2q-gons, which are all given
by bang-bang controls. The X-component of the trajectory of the smoothed
8-gon and the 14-gon are shown in Figure 7.5.1. These are periodic solutions
in h, repeatedly retracing the edges of equilateral triangles in h (with edges
formed by generalized circular arcs). The triangle has full dihedral group
symmetry about the center i P h with respect to the hyperbolic metric. The
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Figure 7.5.1: Periodic trajectories of the smoothed 8-gon and 14-gon in h‹.
The larger triangle is the orbit of the 8-gon, and the smaller is that of 14-gon.

triangles shrink toward the central point i P h‹ as k Ñ 8. In Kbal, the
smoothed polygons are converging to the circle as k grows.

The smoothed octagon comes from a periodic bang-bang control to the
state equations with three modes, corresponding to the three vertices of the
control simplex UT and the three edges of the triangle in h. The trajectory
moves in a counterclockwise direction around the triangle in h, at constant
speed in the hyperbolic metric, completing the four-step mode sequence one
vertex counterclockwise from the starting vertex. The smoothed octagon
itself can be visualized in 24 segments: 8 smoothed corners and 16 straight
half-edges. These 24 segments are arranged into four groups, each consisting
of a multi-curve of 6 arcs. The four groups are congruent to one another,
under the rotational symmetry R. These six arcs are shown in Figure 1.3.1.

Now we turn to the rigorous specification of these smoothed polygons,
generalizing the smoothed octagon as follows. Let k be a positive integer. We
consider a trajectory t ÞÑ gpI, z0, tq with a control mode sequence I of 3k ` 1
parts of the same switching time tsw, taking the form

I “ pp0, tswq, p´1, tswq, p´2, tswq, . . . , p´3k, tswqq, (7.5.1)

where tsw ą 0 and z0 P h are to be determined as functions of k ě 1 in
Lemma 7.5.5. We use the initial control u0 “ e3 “ p0, 0, 1q P UT .
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We impose the strong boundary condition

zpz0, tswq “ R´1
¨ z0, where z0 “ 0 ` iy0, y0 P p1{

?
3, 1q. (7.5.2)

This boundary condition imposes the congruence of the sides of the triangle in
h. The endpoints 1{

?
3 and 1 for y0 are natural; one endpoint is the boundary

of the star domain, and the other endpoint center i of the triangles. Solving
(7.5.2) for tsw (the switching time), we obtain

tsw “
lnp4{p3y20 ` 1qq

?
3y0

P p0, ln 2q. (7.5.3)

We view tsw as a function of a real variable y0 P p1{
?

3, 1q. It is useful to
delay imposing the transversality condition gptf q “ R for as long as possible,
which discretizes the problem using the parameter k, and to leave y0 as a
continuous variable for now.

The proof that the smoothed 6k`2-gon are extremals has been broken into
steps. Theorem 7.5.1 constructs one edge of the triangle in h. Lemma 7.5.3
shows the Hamiltonian maximizing property. Lemma 7.5.5 shows how the
terminal condition gptf q “ R places a discreteness condition on the size of the
triangle in h to give 6k ` 2-gons. Finally Theorem 7.5.6 proves extremality of
the 6k ` 2-gons.

We define the switching functions χij by

χijptq :“ xΛRptq, Pi,jptq ´ Pi,iy

Pi,jptq :“ Zej{
@

Zej , Xptq
D

, pX,ΛR with constant control u “ eiq
(7.5.4)

where X and ΛR are both computed with respect to the constant control
u “ ei. By (7.1.1), the matrix Pi,i is a constant Zei{ xZei , X0y.

Theorem 7.5.1. Let y0 P p1{
?

3, 1q, z0 “ 0 ` iy0, and let tsw ą 0 be given by
(7.5.3). Let zpz0, tq and gptq “ g0pz0, tq be the solutions to the state equations
with constant control u “ e3 “ p0, 0, 1q on r0, tsws. Then these solutions lift
uniquely (up to scalar factor) to a costate trajectory pΛ1,ΛR, λcostq satisfying

ΛRp0q P Xp0q
K, χ23p0q “ 0, (7.5.5)

and
Hu“e3 “ 0, χ31ptswq “ 0, (7.5.6)
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and strong transversality conditions

ΛRptswq “ R´1ΛRp0qR, Λ1ptswq “ R´1Λ1p0qR.

The trajectory is normal: λcost ‰ 0.

Proof. We start with the endpoint condition for Λ1. Using (6.5.3), we have
the condition

gptswq
´1Λ1p0qgptswq “ Λ1ptswq “ R´1Λ1p0qR. (7.5.7)

In other words, Λ1p0q P sl2pRq centralizes the element h :“ gptswqR´1 P

SL2pRq. A calculation using the explicit solution for gptswq shows that the
trace of h is r :“ 4{p1 ` 3y20q P p1, 2q. This implies that h is a regular elliptic
element. Its centralizer in sl2pRq is RΛ10, where

Λ10 :“ h ´ rI2{2 “
1

2y20p1 ` 3y20q

ˆ

0 4
?

3y40
´

?
3p1 ` y20qp3y20 ´ 1q 0

˙

P sl2pRq.

Thus Λ1p0q “ λ1Λ10, for some λ1 P R to be determined.
Next, we turn to the choice of ΛRp0q P sl2pRq. The two initial conditions

(7.5.5) force ΛRp0q to have the form

ΛRp0q “ λR

ˆ

0 y20
1 0

˙

,

for some λR P R. At this point, the initial state pΛ1p0q,ΛRp0q, λcostq is
determined by three scalars: λ1, λR, λcost, where y0 is held fixed. Equations
(7.5.6) place two independent homogenous linear relations on these three
variables, determining them up to a single scalar multiple. To avoid the zero
solution, we set λcost “ ´1. A calculation, using the explicit solutions for ΛR

gives

λ1 “ ´pp1 ` 3y20qp´3 ´ 6y20 ` p1 ` 3y20qℓpy0qqq{p12
?

3y40q,

λR “ ´p3 ´ 12y20 ´ 9y40 ` 18y60 ` p´1 ` 3y20 ` 21y40 ` 9y60qℓpy0qq{p24y60q,

where ℓpy0q “ lnp4{p3y20 ` 1qq.
Finally, we have the transversality conditions at tsw. Remarkably, a

calculation shows that the transversality conditions hold for the calculated
values of parameters λ1, λR.

Lemma 7.5.3 supplements the proof, which shows that the maximum
property is met for the Hamiltonian.
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Remark 7.5.2. We have a constant of motion

d “ dpy0q :“ detpΛ1ptqq “ λ21 detpΛ10q

“ p´1 ` 2y20 ` 3y40qp3 ` 6y20 ´ p1 ` 3y20qℓpy0qq
2
{p144y80q.

The function d is monotonic increasing in y0 P p1{
?

3, 1q with range p0, 9{4q.
Thus, the determinant uniquely determines the parameter y0 of the triangle.

Lemma 7.5.3. Fix y0 P p1{
?

3, 1q and corresponding time tsw. Let χij
be the switching functions, defined for the costate trajectory constructed in
Theorem 7.5.1 with constant control e3 “ p0, 0, 1q. Then the PMP conditions
hold:

χ31ptq ě 0, χ32ptq ě 0, for t P r0, tsws.

The functions are zero only when χ32p0q “ χ31ptswq “ 0.

Proof. An easy substitution gives

χ31ptsw ´ tq “ χ32ptq, t P r0, tsws.

Thus, it is enough to show that χ32ptq ě 0 with equality only at t “ 0.
We define new variables py, rq:

y “ 1 ` 3y20, r “ y expp
?

3y0tq.

The region defined by y0 P p1{
?

3, 1q and t P r0, tsws transforms to the triangle

T “ tpy, rq P r2, 4s
2

| y ď ru.

Note that t “ 0 is transformed to the diagonal y “ r of T . Discarding obviously
positive multiplicative factors, the inequality to be proved is fpy, rq ě 0 on
T , where

fpy, rq : “ 2rp´1 ` yqy lnprq

´ pr ´ yqprp´1 ` yq ` yp´5 ` 2yq ` y2 lnp4{yqq

´ 2rp´1 ` yqy lnpyq.

We show that f is nonnegative on the triangle T as follows. (These
calculations appear in the accompanying Mathematica code. There are
several thousand lines of Mathematica code that are used to support the
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claims in this book.) First, an easy substitution gives fpy, yq “ 0. (This was
already verified above in a different manner, when we showed that t “ 0 is a
switching time.) Second, the derivative is negative on the diagonal.

Bf

By
|r“y “ yppy ´ 4q ` y lnp4{yqq ď 0. (7.5.8)

Finally, the second derivative is positive on T .

B2f

By2
“ ´10 ´ 5r ` p2rq{y ` 7y ` 4r lnprq ´ 2pr ´ 3yq lnp4{yq ´ 4r lnpyq ě 0.

(We leave this last inequality as a tedious but elementary exercise for the
reader.) Nonnegativity follows.

Remark 7.5.4. Looking more closely at the cases of equality, we see that the
only zero of the switching function on r0, tsws occurs at t “ 0, and that the
derivative is strictly positive at t “ 0. (The derivative is zero in (7.5.8) at the
corner r “ y “ 4 of the disk, but this corresponds to the unrealizable limiting
case y0 “ 1.)

The following lemma uses transversality conditions to place an integrality
condition k on the size of the triangles in h.

Lemma 7.5.5. Consider a trajectory g : r0, tf s Ñ SL2pRq, with gp0q “ I2
following the dynamical system (7.5.1). The trajectory reaches gptf q “ R
after a sequence of 3k`1 control mode parts tf “ p3k`1qtsw of equal duration
tsw, provided

4
3y20 ` 1 “ 2 cos θk, where θk “

πk

3k ` 1 . (7.5.9)

Proof. Let gsw “ gpz0, tswq P SL2pRq be the position at the switching time.
By the spline equations, the condition gptf q “ R for (7.5.1) is

R “ gswpR´1gswR
1
qpR´2gswR

2
q ¨ ¨ ¨ pR´3kgswR

3k
q,

or equivalently,
pR´1gswq

3k`1
“ R´3k

“ p´I2q
k. (7.5.10)

Let λ, λ´1 be the eigenvalues of R´1gsw P SL2pRq. Comparing eigenvalues
on the two sides of (7.5.10), we obtain λ3k`1 “ p´1qk, and

λ “ exppπik{p3k ` 1q ` 2πiℓ{p3k ` 1qq, ℓ P Z.
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We pick the eigenvalues λ˘1 that place gsw in the smallest neighborhood of
1; that is, we take ℓ “ 0,´k. (Other pairs of eigenvalues will produce the
right boundary conditions, but the corresponding multi-curves σi will have
the wrong winding number around the origin.) Then

tracepR´1gswq “ λ ` λ´1
“ 2 cos θk.

The trace r “ 4{p1 ` 3y20q of R´1gsw “ R´1hR is computed in the proof of
Theorem 7.5.1.

Example (Smoothed Octagon). For example, k “ 1 for the smoothed octagon
Koct, and θk “ π{4. The trace is

?
2, and

y0 “

b

p
?

8 ´ 1q{3 « 0.781, tsw “ ln 2{

ˆ

2
b

?
8 ´ 1

˙

« 0.256.

If we initialize X0 “ Φp0 ` iy0q according to this value, then we can compute
the density of a packing of smoothed octagons in the plane using the cost
(3.2.2), terminal time tf “ 4tsw, and explicit ODE solution with constant
control (7.1.4).

δ “ areapKoctq{
?

12,

areapKoctq “ ´6
ż tsw

0
xJ,Xy dt

“
?

128 ´
?

32 ´ ln 2
?

8 ´ 1
« 3.126 ă π.

This value appears as (1.1.1).

Theorem 7.5.6. For each positive integer k, the smoothed 6k ` 2-gon is a
Pontryagin extremal given by a bang-bang control.

Proof. From (7.5.2), it follows that transversality for z from the half-plane
control problem (4.5.1) holds with tf “ p3k ` 1qtsw:

zpz0, tf q “ R´p3k`1q
¨ z0 “ R´1

¨ z0.

The strong transversality conditions for Λ1,ΛR imply the transversality con-
ditions at time tf “ p3k ` 1qtsw.
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7.6 Supplementary Remarks on Smoothed
Polygons

Remark 7.6.1. A discreteness condition on y0 comes from the transversality
condition gptf q “ R, described in Lemma 7.5.5. We have solved the nonlinear
equations (7.5.9) and (7.5.3) explicitly for tsw and y0 in the accompanying
code, but we do not display the solution here. For each positive integer k, the
trajectory for the smoothed 6k ` 2-gon is now completely determined by these
values of tsw and y0, given as solutions to nonlinear equations.

We can use Equation (7.5.9) and the lemma to define k as a continuous
function of y0. The cost function can then be interpolated to a function of a
real variable y0 (or k). Figure 7.6.3 graphs the area of the smoothed 6k`2-gon
as a function of k. It appears that the area function is increasing in k and
tends to the area π of the circular disk.

Remark 7.6.2. A related construction gives a trajectory with 3k ´ 1 parts in
the control mode sequence – the smoothed 6k ´ 2-gon, for k ě 2. The changes
are minor. We replace equation (7.5.1) with

I “ pp1, tswq, p2, tswq, p3, tswq, . . . , p3k ´ 1, tswqq. (7.6.1)

The parameters are

z0 “ 0 ` iy0, tsw “ ´
lnp4{p3y20 ` 1qq

?
3y0

, y0 ą 1.

The initial control mode is u “ e2.

Remark 7.6.3. It seems that the smoothed 6k ´ 2-gon is not a Pontryagin
extremal trajectory. Specifically, all of the conditions seem to hold, except that
the Pontryagin multiplier λcost ą 0 has the wrong sign. This suggests that
these smoothed polygons are Pontryagin extremal trajectories for the problem
of maximizing the area.

Remark 7.6.4. When k “ 1, the smoothed 6k ´ 2-gon degenerates to a
rectangle with corners (Figure 7.6.1) and area

?
12. Allowing k to be non-

integral, for small values of k ą 1, we obtained smoothed rectangles (that do
not quite satisfy the boundary conditions).
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Figure 7.6.1: By taking a smoothed 6k ´ 2-gon and interpolating formulas to
a fractional number of sides (here k “ 1.03), we see that the shape appears
to be tending to a rectangle of area

?
12 as k ÞÑ 1.

The trajectory X in h for the 6k ` 2-gon follows a triangle (with edges
following the arcs of Figure 7.2.1) centered at z “ i P h. It moves counter-
clockwise around i, traversing one edge for each control mode (Figure 7.6.2).
The trajectory X in h for the 6k ´ 2-gon also follows an inverted triangle
centered at z “ i P h. It moves clockwise.

Figure 7.6.2: The trajectory in the upper-half plane of a smoothed 6k` 2-gon
follows 3k ` 1 edges moving counterclockwise on a triangular path centered
at i P h (left). The trajectory for the smoothed 6k ´ 2-gon follows 3k ´ 1
edges moving clockwise on an inverted triangle centered at i P h (right).

The cost increases with k for the 6k ` 2-gon and decreases with k for
6k ´ 2-gon. In both cases, the limit of the cost is π as k ÞÑ 8. We show
a graph of the costs of the smoothed polygons as a function of the number
n “ 6k ˘ 2 of sides (Figure 7.6.3).

7.7 Smoothed Octagon is an Isolated Extremal
The previous section showed that the smoothed octagon is an extremal

trajectory. In this section we show that it is an isolated extremal.
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nπ

c

8 10 14 16 203.12

3.16

Figure 7.6.3: The graph interpolates the cost c of known critical points
as a function of the number n “ 6k ˘ 2 of straight edge segments in the
corresponding smoothed polygon. The cost tends to π as n increases. The
data is consistent with Reinhardt’s conjecture.

Theorem 7.7.1. The lifted trajectory of the smoothed octagon is an isolated
extremal. That is, in some neighborhood of the set of initial conditions in
the cotangent space, the only extremal trajectory satisfying the transversality
conditions at the endpoints is that of the smoothed octagon.

Proof sketch. Fix d ą 0 close to the value doct “ detpΛ1q obtained for a
smoothed octagon. In the proof, we ignore the transversality on the group
element g P G, and the discreteness parameter k it produces, until the final
lines of the proof. Instead, we let d run over a small interval containing doct.

We consider the five dimensional manifold M “ Md given by q “

pX,Λ1,ΛRq P sl2pRq3 in a neighborhood of the smoothed octagon param-
eters subject to four constraints:

detpXq “ 1, xX,ΛRy “ 0, detpΛ1q “ d, H “ 0.

Fix two vertices i, j of the control simplex UT . We consider the four-
dimensional Poincaré section Nd obtained by requiring the vanishing of
a switching function χij “ xΛR, Pi ´ Pjy “ 0. For each q0 P Nd, let qpt, q0q be
the extremal trajectory in M , starting at initial condition q0.

Fixing d, we let y0pdq be the real number constructed in Section 7.5.
Associated with y0 and d, we have constructed an extremal lifted periodic
trajectory qpt, qfixpdqq “ pXptq,ΛRptq,Λ1ptqq in Md starting at the appropriate
initial condition qfixpdq P Nd.
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Let tswpqfixpdqq ą 0 be the first positive switching time of the trajectory
qpt, qfixpdqq. By transversality of switching times (justified in the remark
following Lemma 7.5.3), there is a unique first switching time tswpq0q near
tswpqfixpdqq for the extremal trajectory qpt, q0q, when q0 is near qfixpdq.

Define a Poincaré map fd : Nd Ñ Nd by

fdpq0q “ AdpRqqptswpq0q, q0q,

where Ad acts componentwise on Nd Ă sl2pRq3. By the strong transversality
conditions for the trajectories in Section 7.5, fd has a fixed point at qfixpdq. If
q0 is a nearby initial condition that gives an extremal satisfying transversality,
then setting qi`1 “ fdpqiq, we have

AdpR´4
qq4 “ AdpR´1

qq0, or f 4q0 “ q0. (7.7.1)

The four is half the number of edges of the smoothed octagon; that is, the
terminal time is tf “ 4tswpqoctq.

Let Ad :“ Tfd : TqNd Ñ TqNd be the tangent map of fd at the fixed point
q “ qfixpdq. Direct calculation shows that the fixed point qoct :“ qfixpdoctq is
hyperbolic; that is, Adoct has no eigenvalues of absolute value 1. Then the
fixed point qfixpdq is also hyperbolic for the map f 4

d for sufficiently nearby
parameters d. By the implicit function theorem, for each d near doct, the
function f 4

d ´ I can be inverted in an open neighborhood of the fixed point
qfixpdq, forcing the fixed point to be isolated (where I is the identity map).
Thus, the only fixed points near qoct are the fixed points qfixpdq. For d near
doct, the only fixed point qfixpdq satisfying the final transversality conditions
(7.5.9) is qoct.

Remark 7.7.2. A different proof that the smoothed octagon is isolated appears
in the preprint [16].
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Chapter 8

Singular Locus

8.1 Edges of the Control Simplex

At the end of this section, Remark 8.1.6 shows that abnormal extremals
can be constructed to the Reinhardt control problem with an arbitrary
measurable control function, taking values in a fixed edge of the control set
UT . These anomalous abnormal extremals seem to be an artifact of way we
have chosen to encode the convexity conditions of the convex disk K into
the control problem. These abnormal solutions indicate that the Reinhardt
control problem has unnecessarily many extremals.

In this section, we consider a modified control problem (8.1.3), which
we call the edge control problem. As we will see, in this modified control
problem, these particular abnormal extremals disappear. We will then consider
trajectories that are extremal in two respects: with respect to the Reinhardt
optimal control problem, but also with respect to the edge control problem.

Definition 8.1.1 (Edge Control Problem). The edge control system on an
interval rt0, t1s with free terminal time t1 is the control problem with state
equations (8.1.3), control set r´1{2, 1{2s, endpoint conditions (8.1.4), cost
functional (8.1.5), and Hamiltonian (8.1.6). The state variables x, y, s :
rt0, t1s Ñ R have range restrictions y ą 0 and ´1{

?
3 ă x ă 1{

?
3.

Let pg,Xq : rt0, t1s Ñ SL2pRq ˆ h‹ be a trajectory of the Reinhardt state
equations whose control is restricted to the edge u “ p0, u1, u2q of the control
set UT . We show how to define state variables s, x, y and an edge control

125
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problem. We write the control in this edge as

uptq P

"ˆ

0, 1
2 ` uedge,

1
2 ´ uedge

˙

P UT | ´1{2 ď uedge ď 1{2
*

.

Thus the control function on an interval rt0, t1s is determined by a measurable
function uedge : rt0, t1s Ñ r´1{2, 1{2s.

The variables x, y are the same as in the Reinhardt problem: z “ x`iy P h‹.
The vector field on h‹ controlling the Reinhardt state equations (Lemma 4.5.2)
is

px1, y1
q “ pf1, f2q “ py, f2px, y, uedgeqq “

ˆ

y,
2
?

3y2uedge
´1 ` 2

?
3xuedge

˙

.

In particular, x1 “ y ą 0, so that x is monotonically increasing. In this
setting, we can solve the state ODE g1 “ gX with initial condition gpt0q “ g0
explicitly.

gptq “ g0hpt0q
´1hptq, where (8.1.1)

hptq “

ˆ

1 ´xptq
sptq 1 ´ sptqxptq

˙

, and sptq :“
ż t

t0

dt

yptq
. (8.1.2)

The state equations for the edge control problem take the form

s1
“ 1{y, x1

“ y, y1
“ f2px, y, uedgeq (8.1.3)

subject to boundary conditions

pspt0q, spt1q, xpt0q, xpt1q, ypt0q, ypt1qq “ ps0, s1, x0, x1, y0, y1q (8.1.4)

that are chosen to agree with the boundary conditions of the Reinhardt
trajectory pg,Xq. We can take s0 “ 0. (If a constant of integration is added
to s, the path gptq P SL2pRq is unchanged.)

Up to a positive constant, the cost is given by Equation (4.3.1).
ż t1

t0

1 ` y2 ` x2

y
dt “

ż t1

t0

ps1
ptq ` x1

ptqqdt `

ż t1

t0

φedgepx, yqdt

“ ps1 ` x1q ´ ps0 ` x0q `

ż

φedgepx, yqdt.

where φedgepx, yq “ x2{y. Subtracting a constant determined by the boundary
conditions, we can take the cost to be

ż

φedgepx, yqdt. (8.1.5)
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This data specifies a control problem with fixed initial time t0 and free
terminal time t1. The state variables are x, y, s, satisfying the ODE (8.1.3).
The control is measurable control uedge : rt0, t1s Ñ r´1{2, 1{2s.

The state variables px, y, sq take values in an open subset of R3. The
cotangent space is therefore T ˚R3 “ R6 with variables x, y, s, λ1, λ2, λ3. The
Hamiltonian is

H “
ÿ

i

λifi ` λcostφedge “ λ1y ` λ2f2px, y, uedgeq ` λ3{y ` λcostφedgepx, yq.

(8.1.6)
The term λcost is constant and is nonpositive. This completes our description
of the edge control system and its relation to the Reinhardt control problem
with edge-constrained control. By rotational symmetry, we obtain edge control
systems likewise for the other edges of UT .

Definition 8.1.2. We say that a trajectory pg,Xq is edge extremal, if on
every subinterval of the domain on which one of the components of the control
function u “ pu0, u1, u2q) is zero a.e. (say uj “ 0 a.e.), the trajectory is
extremal with respect to the corresponding edge control problem.

Proposition 8.1.3. The global solution of the Reinhardt problem is an
extremal for the Reinhardt control problem, and it is also edge extremal.

Proof. We have seen that the global minimizer must be extremal for the
Reinhardt optimal control problem for some optimal control function u taking
values in UT . On any subinterval of the domain where the optimal control
function takes values in an edge of UT , then the globally minimizing trajectory
must minimize cost among all trajectories with the same endpoint conditions
on the subinterval and that have their control function similarly restricted to
the edge. Thus, the global minimizer is also edge extremal.

The purpose of this section is to prove the following bang-bang behavior
on edges with finite switching.

Theorem 8.1.4. Consider an extremal lifted trajectory in the edge control
system on a closed interval rt0, t1s. Then the optimal control function uedge is
bang-bang with finitely many switches. That is, the control function is equal
a.e. to a piecewise constant function

uedgeptq “ ˘1{2, for all t P rt0, t1s,

with finitely many switches on rt0, t1s.
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Proof. The costate equations of the Hamiltonian (8.1.6) are

λ1
1 “ ´

BH
Bx

“
λ212y2u2edge

p1 ´ 2
?

3xuedgeq2
´

2λcostx
y

.

λ1
2 “ ´

BH
By

“
λ3
y2

´ λ1 ´
λ24

?
3yuedge

´1 ` 2
?

3xuedge
`
λcostx

2

y2
,

λ1
3 “ ´

BH
Bs

“ 0.

(8.1.7)

We note that λ3 is constant.
The only term of the Hamiltonian depending on the control is λ2f2. The

function f2 is monotonic decreasing in uedge. Maximizing the Hamiltonian,
when λ2 ‰ 0, the control is uedge “ ¯1{2 depending on the sign of λ2. Thus,
λ2 is a switching function for the control.

The functions x, y, s, λ1, λ2, λ3 are continuous by construction. The func-
tion λ1

2 is also continuous by the form of the ODE it satisfies. (Although
the ODE depends a measurable control function uedge, when λ2 has fixed
nonzero sign, the control function is constant and hence continuous. Also,
λ2f2px, y, uedgeq tends to zero with λ2. Thus, λ1

2 is continuous.)
We claim that at any point t2 P rt0, t1s where λ2pt2q “ λ1

2pt2q “ 0, the
costate is given by

λ3 “ ´xpt2q
2λcost, λ1pt2q “ 0, λ2pt2q “ 0, λcost ‰ 0. (8.1.8)

(In particular, ´λ3{λcost ě 0 and xpt2q “ ˘
a

´λ3{λcost.) In fact, under these
vanishing conditions on λ2 and λ1

2, we obtain a nonsingular linear system of
two equations and two unknowns

H “
BH
By

“ 0

for λ3 and λ1pt2q. The unique solution to this linear system is as given. If
λcost “ 0, then all of the costate variables are zero at t2, which is contrary to
the Pontryagin extremality conditions. Thus, λcost ‰ 0 and the solution is
normal.

In (8.1.8), since x is monotonic increasing, along any extremal lifted tra-
jectory, there are at most two times t P rt0, t1s such that xptq “ ˘

a

´λ3{λcost.
At any other switching time t with λ2ptq “ 0, the trajectory passes transver-
sally through the wall λ2 “ 0 (that is, λ1

2ptq ‰ 0). In such a case the zero of
the switching function λ2 is isolated.
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The next lemma shows that even at times when the conditions of (8.1.8)
are met, the zeros of the switching function λ2 are isolated. By translation in
time, we may assume without loss of generality that t2 “ 0 in the lemma.

In conclusion, all the zeros of the switching function λ2 are isolated and
there are at most finitely many switches on any finite time interval. Adjusting
the control uedge on a set of measure zero, we may assume that uedge is
piecewise constant, taking values ˘1{2.

In the next lemma, we write f1 “ Opf2q to mean that there exist t1 ą 0
and C1 ą 0 such that f1, f2 are defined on p´t1, t1q and

|f1ptq| ď C1|f2ptq|, for all t P p´t1, t1q.

Lemma 8.1.5. Fix constants λcost “ ´1, λ3 “ ´λcostx
2
0, where |x0| ă

1{
?

3, and y0 ą 0. Let t1 ą 0 and choose any measurable function uedge :
p´t1, t1q Ñ r´1{2, 1{2s. Let x, y, λ1, λ2 be solutions to the state (8.1.3) and
costate equations (8.1.7) on p´t1, t1q with initial conditions pxp0q, yp0qq “

px0, y0q, pλ1p0q, λ2p0qq “ p0, 0q, and control function uedge. Then there exist
an integer n ě 2 and a real nonzero constant C ‰ 0 (both n and C depending
on the initial data x0, y0 but not on the choice of control function uedge) such
that

λ2ptq “ Ctn ` Optn`1
q.

In particular, having this form, the switching function λ2 has an isolated zero
at t “ 0 with multiplicity n.

Proof. If x0 ‰ 0, set n “ 2. Otherwise, set n “ 3. If x0 ‰ 0, set C “

´x0p1 ` y0q{y20. Otherwise set C “ ´2{3. We approximate the functions
λ1, λ2 by the functions λ̃1, λ̃2, where

λ̃1ptq :“
ż t

0

2xpτq

ypτq
dτ, λ̃2ptq :“ ´

ż t

0

ˆ

xpτq2 ´ x20
ypτq2

` λ̃1pτq

˙

dτ.

Then it is enough to show that λ̃2ptq “ Ctn ` Optn`1q and λ2ptq “ λ̃2ptq `

Optn`1q. Consider the error term v “ pv1, v2q, where vi :“ λi ´ λ̃i. The
costate equations for λ1 and λ2, when expressed in terms of v, become
v1 “ ´Av ´ λ̃2b, where

A “

ˆ

0 f2x
1 f2y

˙

, v “

ˆ

v1
v2

˙

, b “

ˆ

f2x
f2y

˙

.
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Here f2x and f2y are the partial derivatives of f2 evaluated at pxptq, yptq, uedgeptqq.
If x0 ‰ 0, we compute

y “ y0 ` Optq,

x “ x0 ` y0t ` Opt2q,

x2 ´ x20
y2

“
2x0y0t
y20

` Opt2q,

λ̃1 “
2x0t
y0

` Opt2q,

λ̃2 “ ´

ż t

0

2x0p1 ` y0q

y20
τ ` Opτ 2qdτ “ Ctn ` Optn`1

q.

If x0 “ 0, we compute

y “ y0 ` Optq,

x “ y0t ` Opt2q,

λ̃1 “ t2 ` Opt3q,

λ̃2 “ ´
2t3
3 ` Opt4q “ Ctn ` Optn`1

q.

We use the Euclidean norm on R2 and the natural matrix norm on
the vector space of 2 ˆ 2 matrices. By the Cauchy-Schwarz inequality,
we have }v}1 ď }v1}. Pick 0 ă t2 ă t1 such that the denominator of
f2pxptq, yptq, uedgeptqq is bounded away from zero on p´t2, t2q. Then there
exists C0 ą 0 such that }Apxptq, yptq, uedgeptqq} ď C0 for all t P p´t2, t2q. We
have for some C1 ą 0,

}v}
1

ď }v1
} “ }λ̃2b ` Av} ď |λ̃2|}b} ` C0}v} ď C1|t|

n
` C0}v}.

In integral form,

}v} ď
C1 |t|n`1

n ` 1 ` C0

ż t

0
}v}dt.

By the Gronwall inequality (Corollary A.1.3), we have }v} “ Optn`1q. Then

|λ2 ´ Ctn| “ |v2 ` λ̃2 ´ Ctn| ď }v} ` |λ̃2 ´ Ctn| “ Optn`1
q.

This completes the lemma.
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We adjust the control function uedge along a set of measure zero in rt0, t1s
and assume without loss of generality that uedge P t´1{2, 1{2u.

If the conditions (8.1.8) hold, for each constant control uedge “ ˘1{2,
we can solve the state and costate ODEs explicitly for x˘, y˘, λ˘

1 , λ
˘
2 , λ

˘
3

as a function of t P rt0, t1s. The solutions for x, y agree with the solutions
obtained in Section 7.2. The costate ODEs can be solved without difficulty
in Mathematica, but we do not record the (rather unruly) formulas here.

Remark 8.1.6. We have an anomalous situation. In the proof of Theo-
rem 8.1.4, we showed that λcost ‰ 0 (that is, the trajectory is normal) when a
point exists on the trajectory such that both λ2pt2q “ λ1

2pt2q “ 0. At such a
point, the trajectory lies on the wall λ2 “ 0 and is tangent to the wall.

However, if we return to the full system of state and costate equations,
still restricting the control function to uedgeptq P r´1{2, 1{2s, we show that an
abnormal solution in fact exists! (This is similar to [17, Sec. 10], where the
existence of an abnormal solution can depend on how state constraints are
encoded.) Explicitly, there is an abnormal solution λcost “ 0 such that the
state equations are given by pg,Xq, where g is given by (8.1.1), X “ Φpzq,
and z “ px, yq given by ODE (8.1.3). The costate solutions are

ΛR “

ˆ

x y2 ´ x2

1 ´x

˙

, Λ1 “

ˆ

´x x2

´1 x

˙

.

It can be checked that ΛR and Λ1 satisfy the costate ODEs given in Section 6.5.
It can be checked that the Hamiltonian is identically zero for these choices.

In particular, the Hamiltonian is independent of the control. Thus any
measurable control function uedgeptq P r´1{2, 1{2s maximizes the Hamiltonian,
and we obtain a large family of abnormal trajectories. However, under the
alternative encoding that was used in this section, these abnormal trajectories
do not appear.

Remark 8.1.7. A result about edges similar to this section is claimed in the
preprint [16], but the proof there is shaky.

8.2 Singular Locus and Singular Subarcs
We have stated earlier that the optimal control matrix Z˚

u is implicitly
determined by the Hamiltonian maximization condition in equation (6.4.2).
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Singular subarcs arise when this maximization condition fails to produce
a unique candidate for the control matrix Z˚

u over an entire time interval.
Throughout this section, we let J denote the infinitesimal generator of the
rotation group, as usual.

Recall that we have partitioned the cotangent space T ˚OJ according
to subsets I of t1, 2, 3u, according to the set of maximizers in UT of the
Hamiltonian. The set I “ t1, 2, 3u corresponds to the part of the cotangent
space on which the Hamiltonian is independent of the control u P UT .

Lemma 8.2.1. For all X P sl2pRq and all Λ P XK, if the control dependent
term of the Hamiltonian H2pΛ, X, Zuq is independent of the control u P UT ,
then Λ “ 0. If Λ ‰ 0, then the set of controls maximizing the Hamiltonian is
a vertex or edge of the control set UT .

Proof. The part of the Hamiltonian that is dependent on the control can be
written

xΛ, Zu{ xX,Zuyy .

We fix X P sl2pRq and f be the vector field on TXOX defined by (4.5.1). The
affine hull of the image of the vector field under UT is the entire tangent space,
by Lemma 6.1.2. The value of H2 must then be zero, and Λ must lie in the
orthogonal complement t0u of the entire tangent space. Thus, Λ “ 0.

In contrapositive form, if Λ ‰ 0, then the Hamiltonian is not constant as
a function of the control. By Lemma 7.3.1, the set of maximizers is a vertex
or edge.

Lemma 8.2.2. The costate trajectory function Λ1
R is continuous at every

time t “ t0 such that ΛRpt0q “ 0. If ΛRpt0q “ Λ1
Rpt0q “ 0, for some t “ t0,

then
λcost ‰ 0, Λ1pt0q “

3
2λcostJ.

Proof. By inspection of the ODE, the right-hand side of the costate ODE for
Λ1
Rpt0q has a point of continuity when ΛRpt0q “ 0. The maximum principle

states that the Hamiltonian vanishes identically along the lifted extremal (See
Section 6.2). Thus, we have

HpΛ1,ΛR, X;Zuq “ xΛ1´
3
2λcostJ,Xy´

xΛR, Zuy

xX,Zuy
“ xΛ1,cost, Xy “ 0 at t “ t0,
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where we set
Λ1,cost “ Λ1 ´ 3λcostJ{2. (8.2.1)

Thus, Λ1,costpt0q P Xpt0q
K. The ODE for ΛR gives

0 “ Λ1
Rpt0q “ ´rΛ1,cost, Xpt0qs.

Together, these imply that Λ1,cost P RX X XK “ t0u at t “ t0. Thus,
Λ1,costpt0q “ 0 and Λ1pt0q “ 3

2λcostJ .
We must have λcost ‰ 0 for otherwise we will have λcost “ 0, ΛRpt0q “ 0

and Λ1pt0q “ 0, contradicting the non-vanishing of the costate variables in
the maximum principle (see Section 6.2).

The following theorem describes the behavior when ΛR vanishes on an
interval.

Theorem 8.2.3. If a lifted extremal has ΛR vanishing identically on an
interval pt1, t2q, then the control function is constant u “ p1{3, 1{3, 1{3q (the
center of the control set UT ) for t P pt1, t2q. Also, the optimal control matrix is
Z˚
uptq “ 1

3J on this interval, and this determines an arc gptqs˚
i of the circle as

a singular subarc. Moreover, the trajectory is normal, and X,Λ1 are constant:

λcost ‰ 0, X “ J, Λ1 “
3
2λcostJ, gptq “ g0 exppJtq.

Proof. Assume that along an extremal curve, for all t P rt1, t2s we have
ΛRptq ” 0. On this interval we have ΛRptq “ Λ1

Rptq “ 0. By the lemma,
λcost ‰ 0 and Λ1ptq ” 3λcostJ{2. The costate equation for Λ1 gives

0 “ Λ1
1 “ rΛ1, Xs “

3
2λcost rJ,Xs .

Thus, we have rJ,Xs “ 0 and X P RJ X OJ “ tJu. So X ” J on t P pt1, t2q.
Note that ΛR “ 0 means that the Hamiltonian (6.2.3) does not involve

the control matrix Z˚
u and so the maximization fails to uniquely determine

the control matrix in this interval. Thus, the lifted extremal in this interval
is singular (according to Definition 6.2.1). The unique control function
uptq which gives 0 “ X 1 “ rP,Xs “ rP, Js is uptq “ p1{3, 1{3, 1{3q (almost
everywhere) which is the centroid of the control set UT .

Now, the curve gptq “ exppJtq satisfies g1 “ gX “ gJ and this is a
rotation matrix in SL2pRq which gives rise to the circle in the packing plane
as a centrally symmetric convex disk, assuming gp0q “ I2.
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Thus, in the singular locus of the cotangent space, we must necessarily
have

gptq “ g0 exppJtq, Xptq “ J, zptq “ i,

Λ1ptq “
3
2λcostJ, ΛRptq “ 0,

where gp0q “ g0.

Definition 8.2.4 (Singular Locus). The region of the extended state space
T ˚pSL2pRq ˆ sl2pRqq given by

Ssing :“
"

pg,Λ1, X,ΛRq “

ˆ

g0,
3
2λcostJ, J, 0

˙

| g0 P SL2pRq, λcost ‰ 0
*

is called the singular locus. In the star domain of the upper half-plane, the
singular locus lies over the point z “ i P h‹. (That is, Φpiq “ J .)

Remark 8.2.5. Note that Ssing gives the initial conditions corresponding
to the circle in Kccs (which has g0 “ I2 P SL2pRq up to a transformation in
SL2pRq).

We have seen in Theorem 8.1.4 that every Pontryagin extremal of the edge
optimal control problem has a bang-bang control function with finitely many
switches. The other possibility is a singular arc along which the Hamiltonian
is independent of the control function. That is, the Hamiltonian-maximizing
face of UT is the entire two-simplex UT . This is the situation considered in
the following theorem.

Theorem 8.2.6. Consider a Pontryagin extremal to the Reinhardt problem
that contains a singular subarc along which the Hamiltonian is independent
of the control. Then during that time interval, the extremal remains in the
singular locus. Moreover, the unique solution to the system of state and
costate equations on that interval is a multi-curve of circular arcs, up to affine
transformation. Conversely, the lifted trajectory attached to a multi-curve of
circular arcs is a Pontryagin extremal singular subarc.

Proof. The proof is a summary of results already obtained.
If the maximum principle fails to determine a unique control over an open

time interval, then the trajectory remains in the set
ď

|I|ě2
pT ˚OJqI (8.2.2)
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By the assumptions of the theorem, the Hamiltonian is independent of the
control. Thus, a singular subarc must have the form of Lemma 8.2.1. That
is, ΛR “ 0 over some time interval. By Theorem 8.2.3, the singular subarc is
contained in the singular locus and gives an arc of a circle in Kccs.

Conversely, the multi-curve of circular arcs is represented by g “ expptJq,
and by the ODE g1 “ Xg, where X “ J , and X 1 “ 0, and g “ g0 exppJtq.
As remarked in the proof of Lemma 8.2.3, 0 “ X 1 “ rP,Xs implies that the
control function is constant almost everywhere, taking value p1{3, 1{3, 1{3q

at the center of the control set UT . Along the trajectory, the Hamiltonian
is then independent of the control. By Lemma 8.2.1, we have ΛR “ 0. By
Lemma 8.2.2, we have Λ1 “ 3

2λcostJ and λcost ‰ 0. These costate values lie in
the singular locus.

Although the multi-curve of circular arcs is a Pontryagin extremal, we
can invoke second-order conditions to show that it is not a global minimizer.
By considering a second variation, Mahler proved that the circle is not a local
minimizer of the Reinhardt problem [28].

Theorem 8.2.7. The global minimizer of the Reinhardt problem does not
contain any singular subarcs.

Proof. We assume for a contradiction that the global minimizer contains a
singular subarc. The previous theorem shows that the singular subarc comes
from a multi-curve of circular arcs.

We use second order conditions to show that the circular arc is not a local
minimizer on any time interval pt1, t2q so that the solution to the Reinhardt
problem contains no circular arcs. We consider a deformation of a circular
arc of the form

gsptq “ exp
ˆ

s

ˆ

ψ1ptq ψ2ptq
ψ2ptq ´ψ1ptq

˙˙

exppJtq “: Ψsptq exppJtq,

for sufficiently small s ą 0 and compactly supported C8 functions ψ1, ψ2 to
be determined on the interval rt1, t2s.

We point out that t is not a unit speed parameter so that detpXq need
not equal 1. The cost is

´
3
2

ż t2

t1

xJ,Xy dt “ ´
3
2

ż t2

t1

@

J, g´1dg
D

,
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where g´1dg is the Cartan-Maurer one-form on SL2pRq. This shows that the
cost is independent of parameterization. If gptq “ Ψptq exppJtq, where Ψ is
an invertible C8 matrix of t, then the product rule gives

@

J, g´1dg
D

“ xJ, Jy dt `
@

J,Ψ´1dΨ
D

.

Computing the cost of gs on rt1, t2s by this formula, we find that

costpgsq “ costpg0q ´ 3s2
ż t2

t1

pψ1
1ptqψ2ptq ´ ψ1ptqψ

1
2ptqq dt ` Ops3q.

This is a second order variation that is not detected by Pontryagin first
order conditions. Choose nonnegative C8 compactly supported functions
ψ1ptq, ψ2 ě 0 on pt1, t2q such that ψ1

1ptq ą 0 and ψ1
2ptq ă 0 on their common

support to make the s2-contribution negative. Then for all sufficiently small
s ą 0, we have

costpgsq ă costpg0q “ π.

The curvatures of the curves t ÞÑ σiptq “ gsptqe
˚
i are C8 functions of s and t.

The curvature functions converge uniformly to the constant positive curvature
of the circle as s tends to 0. We may pick s ą 0 sufficiently small so that the
curvatures of the curves are positive. The corresponding centrally symmetric
convex disk in Kccs shows that the circle is not a local minimizer of cost.

Remark 8.2.8. To obtain rough intuition about the perturbation of the circle
considered in the theorem, we consider piecewise linear continuous functions
ψ1 and ψ2 that are periodic modulo π{3, where

ψ1ptq “

$

’

&

’

%

0,
t ´ π{9,
´t ` 3π{9,

ψ2ptq “

$

’

&

’

%

t, if t P r0, π{9s;
´t ` 2π{9, if t P rπ{9, 2π{9s;
0, if t P r2π{9, 3π{9s.

Then ψ1
1ψ2 ´ ψ1ψ

1
2 “ π{9 ą 0 on pπ{9, 2π{9q and is zero on p0, π{9q and

p2π{9, π{3q. We plot the multi-curve σjptq “ exppJs0qΨsptq exppJtqs˚
j for t P

r0, π{3s, s “ 0.12, and s0 “ ´1{8 (to rotate the entire figure) in Figure 8.2.1.
The figure is approximately a smoothed octagon. The functions ψi are not C8

and s is so large that the simple closed curve is not convex. Nevertheless, this
crude numerical example suggests that the deformation in the theorem can
be used to smoothly interpolate between the circle and the smoothed octagon
along an interpolation path that is strictly decreasing in area.
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Figure 8.2.1: The deformation of Theorem 8.2.7 leads to a simple closed (multi)
curve exppJs0qΨsptq exppJtqs˚

j that approximates the smoothed octagon.

8.3 Non-chattering away from the Singular
Locus

Theorem 8.3.1. Consider an extremal lifted trajectory on rt1, t2s and t0 P

rt1, t2s such that the lifted trajectory does not meet the singular locus at time
t0. Assume that the trajectory is also edge-extremal (8.1.1). Then there exists
an edge ti, ju and a neighborhood of t0 in rt1, t2s on which

pXptq,ΛRptqq P
ď

IĎti,ju

pT ˚OJqI .

That is, near t0, the set of maximizers of the Hamiltonian is confined to a
single edge of UT .

Proof. We prove the theorem in contrapositive form. Assume that in every
neighborhood of t0, the set of maximizers of the Hamiltonian is not confined
to any edge of UT . Reparameterizing by a time translation, we may assume
that t0 “ 0. We will prove that the trajectory meets the singular locus at
t “ 0. We let pX,Λ1,ΛRq be the controlled trajectory with optimal control
function uptq. By the continuity of the Hamiltonian, our assumption gives

pXp0q,ΛRp0qq P pT ˚OJqt1,2,3u.

By Lemma 8.2.1, we have ΛRp0q “ 0.
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We let P ptq “ Zuptq{
@

Zuptq, Xptq
D

be the normalized control matrix. Set
Λ1,cost “ Λ1 ´ 3λcostJ{2. It satisfies (by the costate equations 6.7.1)

Λ1
1,cost “ rΛ1,cost, Xs `

3
2λcostrJ,Xs.

By the form of the right-hand-side, Λ1,cost is continuously differentiable. Define
Y ptq :“ ´

şt

0rΛ1,cost, Xsdt, and set Λ :“ ΛR ´ Y . Let

ApΛ, tq “ rP ptq,Λs ´ xΛ, P ptqy rP ptq, Xptqs,

viewed as a time-dependent linear function A on sl2pRq, along the state
trajectory given by P “ P ptq and X “ Xptq. The costate ODE for ΛR takes
the form

Λ1
“ ApΛ, tq ` ApY, tq.

We consider the initial value problem for Λ with initial conditions Λp0q “

ΛRp0q “ Y p0q “ 0. Identifying sl2pRq with R3, we use the Euclidean norm on
the Lie algebra and use the natural matrix norm for A. By Cauchy-Schwarz,
}Λ}1 ď }Λ1}. Then

}Λ}
1

ď }Λ1
} “ }ArΛs ` ArY s} ď C0}Λ} ` C0}Y },

where C0 ą 0 is any time-independent bound on the matrix norms }Ar¨, ts}
in a small neighborhood of t “ 0. In integral form

}Λ} ď C0

ż t

0
}Y }dt ` C0

ż t

0
}Λ}dt. (8.3.1)

We claim Λ1,costp0q “ 0. Note that Λ1,costp0q P Xp0qK by the vanishing of
the Hamiltonian xΛ1,cost, Xy´xΛR, P y at t “ 0. Thus, Λ1,costp0q “ 0 if and only
if rΛ1,costp0q, Xp0qs “ 0. Suppose for a contradiction that rΛ1,costp0q, Xp0qs ‰

0. Then }Y } “ C2t ` Opt2q, for some C2 ‰ 0, and the Gronwall inequality
(Corollary A.1.3) applied to (8.3.1) gives

}ΛR ´ Y } “ }Λ} “ Opt2q

and
ΛR “ Y ` Opt2q “ ´rΛ1,costp0q, Xp0qst ` Opt2q.
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The control dependent term of the Hamiltonian is

´ xΛR, P y “ t

C

rΛ1,costp0q, Xp0qs,
Zuptq

@

Xp0q, Zuptq

D

G

` Opt2q.

By Lemma 8.2.1, for sufficiently small t ą 0 (or for sufficiently small t ă 0q,
there exists a vertex or edge of UT , that maximizes this Hamiltonian. If
the set of maximizers is an edge when t has one sign, then the maximizer
is the complementary vertex of UT when t has the other sign. If the set of
maximizers is an edge (for a given sign of t), by the results of Theorem 8.1.4,
the control function has finite bang-bang switching near t “ 0. This is
contrary to the assumption that the set of maximizers is not confined to any
edge of UT .

We claim that Λ1
1,costp0q “ 0. The proof is similar, and we give a brief

sketch. By the form of the ODE for Λ1,cost, we have Λ1
1,costp0q P Xp0qK. It

is enough to show rΛ1
1,costp0q, Xp0qs “ 0. Suppose for a contradiction that

rΛ1,costp0q, Xp0qs “ 0, but rΛ1
1,costp0q, Xp0qs ‰ 0. We again use estimates on

the size of }Y } and the Gronwall inequality (Corollary A.1.3) to show that
ΛR has an isolated zero at t “ 0. Then a switching function has an isolated
zero at t “ 0, which again contradicts the hypothesis of the lemma.

Λ1,costp0q “ 0 implies Λ1p0q “ 3λcostJ{2. Also Λ1
1,costp0q “ 0 implies

0 “ Λ1
1p0q “ rΛ1p0q, Xp0qs “ p3{2qλcostrJ,Xp0qs.

The non-vanishing of the costate vector at t “ 0 implies that λcost ‰ 0.
Xp0q P RJ X OJ “ tJu, so Xp0q “ J . By definition, this is a point in the
singular locus.

Theorem 8.3.2. Consider a controlled extremal lifted trajectory that does
not meet the singular locus Ssing. Assume that the trajectory pg,Xq is also
edge-extremal. Then the control function is bang-bang with finitely many
switches.

Proof. According to the theorem, for every t0 P rt1, t2s, there exists a neigh-
borhood of t0 on which the control takes values in a single edge of UT almost
everywhere. By Theorem 8.1.4, the control is bang-bang with finite switching
along the edge of the control simplex in a neighborhood of each t0. By the
compactness of the interval rt1, t2s the finite switching holds for the entire
interval.
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Remark 8.3.3. In terms of Reinhardt’s problem, the theorem implies that a
trajectory pg,Xq that is extremal and edge-extremal that does not meet the
singular locus Ssing defines a balanced disk Kpg,Xq P Kbal whose boundary is
a smoothed polygon, consisting of finitely many straight edges and hyperbolic
arcs.

Lemma 8.3.4. An extremal trajectory with constant control at a vertex of
UT does not meet the singular locus.

(This lemma does not rule out the possibility of a chattering arc converging
to the singular locus, as discussed in the next part of the book.)

Proof. We assume for a contradiction that the trajectory meets the singular
locus at time t “ 0 with constant control u “ e3 P UT (say). Consider the
solutions to the state and costate ODEs with constant control at enumerated
the vertex e3 of UT and initial conditions at the singular locus. The solutions
are analytic. At the singular locus, we have Λ1,costp0q “ ΛRp0q “ 0 given by
(8.2.1) and Xp0q “ J .

Let Pi “ Zei{ xJ, Zeiy be the normalized control matrix, evaluated at t “ 0,
Xp0q, with the controls at the three vertices ei P UT . By using the costate
ODEs, we also compute Λ1

1,costp0q “ 0. The following derivatives exist and
have the following values.

Λ1
Rp0q “ Λ2

Rp0q “ 0, Λ3
Rp0q “ ´6λcostrJ, P3s.

The Lie bracket rJ, P3s is orthogonal to J and P3. Also P1 ` P2 ` P3 P RJ .
We have xrJ, P3s, P1y “ ´ xrJ, P3s, P2y ‰ 0. The leading term of the control
term of the Hamiltonian evaluated at control u “ ei is

´ xΛRptq, Piy “ ´
t3

3! xΛ3
Rp0q, Piy ` Opt4q

t3 xrJ, P3s, Piy ` Opt4q.

The leading term is zero when i “ 3, but it is nonzero with opposite signs
when i “ 1, 2. Hence, the maximizer of the Hamiltonian is never e3, when t
is small. This is contrary to first-order conditions of extremality.
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Chapter 9

Circular Control Set

We are interested in a modification of the triangular control set to a
circular disk. This will lead to a modified control problem that we view as a
toy control problem. Insights from the toy problem will be applied in Part V
to give a proof of Mahler’s First conjecture. This part of the book is logically
independent from the other parts, and it can be skipped without interrupting
the flow of the text.
Definition 9.0.1 (Circular control sets).

• The circumscribed or disk control set is the set UC which is the circum-
scribing disk of the two-simplex in R3:

UC :“
#

pu0, u1, u2q | 0 ď ui ď 1,
ÿ

i

ui “ 1,
ÿ

i

u2i ď 1
+

.

• The inscribed control set is the set UI which is the inscribed disk of the
two-simplex in R3:

UI :“
#

pu0, u1, u2q | 0 ď ui ď 1,
ÿ

i

ui “ 1,
ÿ

i

u2i ď
1
2

+

.

• Later (in Section 9.2), we will also be interested in control sets which
interpolate between UI and UC. For 1{3 ď r2 we define

Ur :“
␣

pu0, u1, u2q | u0 ` u1 ` u2 “ 1, u20 ` u21 ` u22 ď r2
(

.

We denote the boundary (relative to the affine hull) of these sets by BUC ,
BUI and BUr respectively.
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Remark 9.0.2. Controls pu0, u1, u2q from UCzUT give rise to boundary
curves σj of regions which fail to be convex. This is a consequence of the
interpretation of the state-dependent curvatures uj ě 0 as a nonnegative
curvature condition.

One motivation in considering these control sets is the following: we
can observe that the triangular control set is invariant under Z{3Z-rotations
while the disk control set is invariant under rotations by the circle group S1.
The latter is important for our investigations, as it will allow us to employ
Noether’s theorem to derive a first integral or a conserved quantity of the
dynamics. A conserved quantity is useful because it facilitates a reduction
in dimension of the original problem — if the group of symmetries is large
enough, reduction by that group may even lead to a direct solution. Other
motivations are enumerated in the introduction to the book.

Until now, we have been exclusively working with the simplex control set
UT . Now, we change our control set to be UC , the circumscribing disk of UT
as described in Definition 9.0.1. This change is motivated by the following
theorem.
Theorem 9.0.3. Let H be the Hamiltonian of the Reinhardt optimal control
problem. Assuming that the control set is closed under rotations (i.e., if
A P SO2pRq is a rotation and Zu is in the control set, then so is AdAZu),
the Hamiltonian H is invariant under the action of the subgroup SO2pRq of
SL2pRq.
Proof. The Hamiltonian depends on the quantities X,Λ1,ΛR and the control
matrix Zu. Ignoring Zu for the time being, if A P SO2pRq is an arbitrary
rotation, then let us see how these quantities transform. A acts on trajectories
in h by linear fractional transformations and so, equivalently, we have X ÞÑ

AdAX “ AXA´1 “: X̃ in the adjoint orbit picture. Now, Λ1 transforms
as Λ1 ÞÑ AΛ1A

´1 “: Λ̃1 since these transformed quantities satisfy the same
ODE:

Λ̃1
1 “ AdAΛ1

1 “ AdArΛ1, Xs “ rAdAΛ1,AdAXs “ rΛ̃1, X̃s.

Similarly, we can also see that ΛR transforms as ΛR ÞÑ AΛRA
´1. Now,

the control set transforms as Zu ÞÑ AZuA
´1, which may, in general, fall

outside the control set given by UT . So, if we modify the control set so
that it does not, a simple computation now using the expression for the
control-dependent Hamiltonian in equation (6.4.1) shows that it is unchanged
under these transformations by A.



9.1. CONSERVEDQUANTITY FOR THE CIRCULAR CONTROL SET145

Remark 9.0.4. Following the discussion at the end of Section 3.3, the control
set UT is only symmetric by discrete Z{3Z-rotations and not under general
SO2pRq rotations.

9.1 Conserved Quantity for the Circular Con-
trol Set

Recalling the discussion at the end of Section 3.3, we note that we enlarge
the control set UT to UC to have continuous SO2pRq-symmetry in order to
manufacture a conserved quantity for the dynamics. This is achieved by
Noether’s theorem.

The version of Noether’s theorem which we use for optimal control is the
one described by Sussmann [43]. Before recalling the statement, we begin
with a few definitions. We let Q “ pM,U, f, φq denote a general optimal
control system satisfying the regularity conditions of Section 6.2. Also, we
assume that the cost functional φ is independent of the control as in our case.
In what follows, we will denote the vector field fpu, qq P TqM for u P U by
fupqq. The definitions below are all from Sussmann [43].

Definition 9.1.1 (Symmetry of a control system). Let G be a Lie group
with Lie algebra g and let Q “ pM,U, f, φq be an optimal control system. A
symmetry of this optimal control system is a diffeomorphism ψ : V1 Ñ V2
where V1, V2 Ă M are open such that for every u P U there exist u1, u2 P U for
which dψpqqpfupqqq “ fu1pψpqqq and dψpqqpfu2pqqq “ fupψpqqq for all q P V1.

Definition 9.1.2 (Infinitesimal Group of Symmetries). An infinitesimal group
of symmetries of a control system Q is a smooth action τ : g Ñ Γ8pTMq,
which assigns to every Lie algebra element X P g a smooth vector field on M ,
such that every diffeomorphism expptτpXqq is a symmetry of Q.

Definition 9.1.3 (Momentum Map). To an infinitesimal group of symmetries
τ : g Ñ Γ8pTMq of an optimal control system Q, we associate the momentum
map Jτ : T ˚M Ñ g˚ given by

Jτ pq, pqpXq “ xp, τpXqpqqy
˚
,

where X P g, q P M, p P T ˚
qM and τpXqpqq P TqM .
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See Abraham and Marsden [1] for the general theory of momentum maps
in symplectic geometry.

Theorem 9.1.4 (Noether-Sussmann Theorem). Assume that Q “ pM,U, f, φq

is an optimal control system as above, let g be the Lie algebra of the Lie group
G and let τ : g Ñ Γ8pTMq be an infinitesimal group of symmetries of Q. Let
p be a lifted controlled trajectory in T ˚M satisfying the Pontryagin Maximum
Principle. Then the function Jτ : T ˚M Ñ g˚ is constant along the trajectory
p.

Problem 9.1.5 (Circular Control Problem). We start with problem 6.7.1
and enlarge the control set UT to its circumscribing disk UC. This control
problem is called the circular control problem.

Let us now apply the Noether-Sussmann theorem to the circular control
problem. Define the angular momentum to be A :“ xJsu,Λ1 ` ΛRy.

Theorem 9.1.6 (Angular Momentum). We have that the angular momentum
A “ xJ,Λ1 ` ΛRy is conserved along the optimal trajectory of the circular
control problem.

Proof. The proof analyzes the SO2pRq symmetry. Our optimal control system
consists of data pg,X,Λ1,Λ2q P T ˚pTSL2pRqq. Note that our Lie group here
is SO2pRq and hence its Lie algebra is one-dimensional so2pRq “ JR, where J
is the infinitesimal generator of rotations. This infinitesimal symmetry gives
rise to rotations exppJθq P SO2pRq, which in turn give rise to the following
action on our manifold:

SO2pRq ˆ T ˚
pTSL2pRqq Ñ T ˚

pTSL2pRqq

pexppJθq, pg,X,Λ1,Λ2qq ÞÑ pexppJθqg expp´Jθq,AdexppJθqX,AdexppJθqΛ1,AdexppJθqΛ2q,

where the action on g is by inner automorphisms and the rest are given by
the adjoint action on each copy of sl2pRq. (Note that throughout, we make
the identification sl2pRq˚ – sl2pRq via the nondegenerate trace form.) These
are symmetries by the proof of Theorem 9.0.3 and also since the rotation
action on the control matrix Zu is

Zu ÞÑ AdexppJθqZu P UC .

The momentum map is computed by the canonical pairing between the costate
variables pΛ1,Λ2q P T ˚

pg,Xq
pTSL2pRqq and tangent vectors in Tpg,XqpTSL2pRqq
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giving the infinitesimal rotation action. The first component of this tangent
vector is given by

d

dθ
exppJθqg expp´Jθq

ˇ

ˇ

ˇ

θ“0
“ Jg ´ gJ
looomooon

PTgSL2pRq

“ g
loomoon

PSL2pRq

pg´1Jg ´ Jq
loooooomoooooon

Psl2pRq

.

Thus, we can identify the first component with g´1Jg ´ J in the Lie algebra
sl2pRq. The second component is given by

d

dθ
AdexppJθqX “ adJX “ rJ,Xs,

which is already in the Lie algebra sl2pRq. So, putting all this together, we
obtain the momentum map.

Jτ ppg,Λ1, X,Λ2qq “ xpΛ1,Λ2q, pAdg´1J ´ J, rJ,Xsqy

“ xΛ1,Adg´1J ´ Jy ` xΛ2, rJ,Xsy

“ xΛ1,Adg´1Jy ´ xΛ1, Jy ´ xrΛ2, Xs, Jy

“ xΛ1,Adg´1Jy ´ xJ,Λ1 ` ΛRy ,

where, as usual, x¨, ¨y
˚

denotes the natural pairing between a vector space and
its dual. Note however, from Corollary 6.5.3, that Λ1ptq “ g´1Λ1p0qgptq and
so xΛ1,Adg´1Jy is a constant.

Thus, by the Noether-Sussmann theorem xJ,Λ1 ` ΛRy is a constant of
motion along the optimal trajectory of the circular control problem.

Remark 9.1.7.

• Since it is the conserved quantitiy arising from a rotational symmetry,
xJ,Λ1 ` ΛRy will be called the angular momentum.

• The spurious constant in the expression for the momentum map is a
consequence of the action of SO2pRq on SL2pRq by inner automorphisms.
This means that we could also modify the action to be g ÞÑ g expp´Jθq

to obtain a valid conserved quantity.

• We also obtain the same conserved quantity for a control set Ur which
is a disk of any radius r whenever r2 ą 1{3. (See Definition 9.0.1.)
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Conserved quantities are very useful since they introduce constraints and
cut down the dimension of the problem. But an immediate application is
that they give us a constraint on the optimal control matrix in terms of the
state-costate variables, which is what we aim to derive. But before we do,
we make a quick detour to understand the structure of the control sets when
viewed in the Lie algebra sup1, 1q of a unitary group.

9.2 Control Sets in the Special Unitary Group
The special unitary group SUp1, 1q and its Lie algebra sup1, 1q are intro-

duced in Appendix A.4. From that appendix, we know that the Lie algebras
sup1, 1q and sl2pRq are isomorphic. This isomorphism is given by the Cayley
transform.

Cayleypsl2pRqq “ sup1, 1q.

Under the Cayley transform to sup1, 1q, the image of the control matrix Zu,
given in equation (3.3.2), is

1
3

ˆ

´i 2pu0 ` ζu1 ` ζ2u2q
2pu0 ` ζ2u1 ` ζu2q i

˙

, (9.2.1)

where ζ “ expp2πi{3q is a primitive cube root of unity.
Now, let BUr denote the boundary of the disk control set Ur of radius r in

R3.
Ur :“

␣

pu0, u1, u2q | u0 ` u1 ` u2 “ 1, u20 ` u21 ` u22 ď r2
(

.

The following lemma gives a simplification of the control matrix.
Lemma 9.2.1. The set BUr and the circle

"

z P C | |z|
2

“

ˆ

3r2 ´ 1
2

˙*

are in bijection by the map pu0, u1, u2q ÞÑ u0 ` ζu1 ` ζ2u2.

Proof. Consider the affine plane Π “ tpu0, u1, u2q | u0 ` u1 ` u2 “ 1u and
consider the map L : Π Ñ C, defined by Lpu0, u1, u2q :“ pu0 ` ζu1 ` ζ2u2q.
This map is the restriction of the linear map

pu0, u1, u2q ÞÑ

¨

˝

1 1 1
1 ζ ζ2

1 ζ2 ζ

˛

‚

¨

˝

u0
u1
u2

˛

‚“

¨

˝

1
z
z̄

˛

‚,
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which has non-zero determinant and so L is an isomorphism of affine planes.
This isomorphism restricts to a bijection between the circles BUr and

tz P C | |z|
2

“

ˆ

3r2 ´ 1
2

˙

u

since

|pu0 ` ζu1 ` ζ2u2q|
2

“
3
2pu20 ` u21 ` u22q ´

pu0 ` u1 ` u2q
2

2

“
3r2 ´ 1

2 .

The above lemma shows that if the control set is Ur, then we can take Zu
in general to be

Zu “

ˆ

´iα βz
βz̄ iα

˙

P sup1, 1q, where

|z| “ 1, and β ą 0,
(9.2.2)

where z P C and α, β P R. Also, βz gives the polar coordinate decomposition
of upper-right matrix entry of Zu. With this notation, α “ 1

3 and β “
2
3 |u0 ` ζu1 ` ζ2u2|. We obtain

detpZuq “ pα2
´ β2

q “

1 ´ 4
´

3r2´1
2

¯

9 “
1 ´ 2r2

3 . (9.2.3)

Later chapters will use the parameter ρ instead of radius r, where

ρ :“ β{α, ρ2 “ 6r2 ´ 2.

Table 9.1 shows the square of the radii r2 of the circumscribing disk,
inscribed disk and center of the control simplex UT and their corresponding
radii when viewed as disks in the complex plane (following Lemma 9.2.1).
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detpZuq Relation to UT r2 Radius p3r2 ´ 1q{2 in C pα, βq ρ “ β{α

´1{3 Circumscribing disk UC 1 1 (1/3,2/3) 2
0 Inscribed disk UI 1{2 1/4 (1/3,1/3) 1

1{9 Center p1{3, 1{3, 1{3q 1{3 0 (1/3,0) 0

Table 9.1: Various control sets and their radii.

9.3 Quadratic Equation for Optimal Control
Henceforth, we let Z˚ denote the optimal control matrix for the costate

equations 6.7.1 (with the control set Ur). It depends on a complex control
variable z. We derive a constraint on Z˚ from angular momentum conserva-
tion.

We begin with a few lemmas.

Lemma 9.3.1. The set of maximizers of the Hamiltonian (considered as a
function of the control) when the control set is the disk Ur is either the entire
disk or just a point on BUr.

Proof. This is a direct corollary of Lemma 7.3.1.

Theorem 9.3.2. Let Z˚ be the optimal control matrix for the costate equations
(6.7.1) (with the control set Ur). We then have

B

Jsu, adZ˚

δ

δZ˚

xΛR, Z
˚y

xX,Z˚y

F

“ 0,

where δ
δZ˚ is the functional derivative with respect to Z˚.1

Proof. We give two proofs of this fact. For the first proof, we differentiate
the angular momentum (in Theorem 9.1.6) with respect to time, to obtain

1Note that the Jsu in this theorem is an element of sup1, 1q and is given by by Cayley
transform of J .

Jsu “ Cayley
ˆ

0 ´1
1 0

˙

“

ˆ

´i 0
0 i

˙

.
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the following.

0 “ xJsu,Λ1
1 ` Λ1

Ry “

B

Jsu, rΛ1, Xs ` rP ˚,ΛRs `

„

´Λ1 `
3
2λcostJsu, X

ȷ

´ xP ˚,ΛRyrP ˚, Xs

F

“ xJsu, rP
˚,ΛRs ´ xP ˚,ΛRyrP ˚, Xsy (9.3.1)

“

B

Jsu, adZ˚

δ

δZ˚

xΛR, Z
˚y

xX,Z˚y

F

(by Corollary 6.5.4),

where P ˚ “ Z˚{ xZ˚, Xy.
For the second proof, note that from Lemma 9.3.1, the Hamiltonian is

maximized at a point on BUr. By the form of the control matrix Z˚, on the
boundary of Ur we obtain two constraints.

xJsu, Z
˚
y “ constant, xZ˚, Z˚

y “ constant.

The Hamiltonian maximization of the maximum principle can be considered
as a constrained maximization problem subject to the above two constraints.
The functional derivatives of the above two constraints are Jsu and 2Z˚

respectively. By Lagrange multipliers, we find the derivative δH{δZ˚ should
lie in the span of the derivatives Jsu, Z˚ of the constraints. That is, adZ˚p δH

δZ˚ q

is in the span of adZ˚Jsu. Thus,
B

adZ˚

δH
δZ˚

, Jsu

F

“ 0,

which gives us the required.

We also have the following result, which shows that the angular momentum
and the Hamiltonian are in involution with respect to the Poisson bracket
t¨, ¨uex on the extended state space T ˚TSUp1, 1q.

Proposition 9.3.3. The angular momentum A Poisson commutes with
the Hamiltonian on T ˚pTSUp1, 1qq, provided the control set is rotationally
invariant.

Proof. We use the Poisson bracket on the manifold T ˚pTSUp1, 1qq derived
in Section A.9, which we recall here. If F,G are two left-invariant smooth
functions on T ˚TSUp1, 1qq, their extended space Poisson bracket is

tF,Guex :“
B

Λ1,

„

δF

δΛ1
,
δG

δΛ1

ȷF

`

B

δF

δX
,
δG

δΛ2

F

´

B

δF

δΛ2
,
δG

δX

F

.
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We compute using Theorem A.9.2 that

tA,Huex “ txJsu,Λ1 ` ΛRy ,Huex “ xJsu, tΛ1 ` ΛR,Huexy

“ xJsu,Λ1
1 ` Λ1

Ry “ 0,

where Λ1
1 and Λ1

R are shorthand for the expressions on the right-hand side of
the ODEs for Λ1 and ΛR.

Simplifying equation (9.3.1) above, we obtain a more symmetric expression
for the optimal control matrix, which is homogeneous in Z˚.

xJsu, rZ
˚, XsyxZ˚,ΛRy “ xJsu, rZ

˚,ΛRsyxZ˚, Xy. (9.3.2)

This is the same as saying
ˇ

ˇ

ˇ

ˇ

xrJsu, Z
˚s, Xsy xrJsu, Z

˚s,ΛRy

xZ˚, Xy xZ˚,ΛRy

ˇ

ˇ

ˇ

ˇ

“ 0. (9.3.3)

Proposition 9.3.4. The conservation of angular momentum gives the fol-
lowing constraint on the optimal control matrix.

xZ˚, rΛR, Xsy “
xZ˚, Z˚y

xZ˚, Jsuy
xJsu, rΛR, Xsy. (9.3.4)

Proof. From (9.3.2) and Proposition A.6.2 specialized to rJsu, Z
˚s, Z˚, X,

and ΛR, we obtain

0 “ xrJsu, Z
˚
s,ΛRy xZ˚, Xy´xZ˚,ΛRy xrJsu, Z

˚
s, Xy “ ´

xrrJsu, Z
˚s, Z˚s, rΛR, Xsy

2 .

(9.3.5)
For any Z˚, Jsu P sl2pCq, we have that

rZ˚, rZ˚, Jsuss “ padZ˚q
2Jsu “ 2 xZ˚, Z˚

y Jsu ´ 2 xZ˚, JsuyZ
˚.

If we substitute this equation back into (9.3.5), we obtain the result.

Definition 9.3.5 (Weighted Determinant). For

Λ “

ˆ

l11 l12
l21 ´l11

˙

P sl2pCq

and α, β P R, define the weighted determinant

detpΛ, α, βq :“ ´pα2l211 ` β2l12l21q.
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If Λ P sup1, 1q and α2, β2 P R, then detpΛ, α, βq P R. The ordinary
determinant has weights α “ β “ 1.

detpΛ, 1, 1q “ detpΛq.

Proposition 9.3.6. The optimal control (9.2.2) in the circular control case
Ur is given by the root z of the quadratic equation (9.3.8).

Proof. We know by Lemma 9.3.1 that the optimal control matrix Z˚ takes
values in the boundary of the disk. By equation (9.2.2), we can take

Z˚
“

ˆ

´iα βz
β{z iα

˙

, (9.3.6)

where |z| “ 1. With this notation, (9.3.4) becomes

xZ˚, rΛR, Xsy “
pα2 ´ β2q

α
xJsu, rΛR, Xsy, (9.3.7)

where α, β P R and α ą 0.
Simplifying this, we obtain the following quadratic equation in z

αrΛR, Xs21z
2

´ 2iβrΛR, Xs11z ` αrΛR, Xs12 “ 0, (9.3.8)

where the subscripts index matrix entries. We then solve for z to obtain two
roots

z˘ “ i

˜

βrΛR, Xs11 ˘
a

´ detprΛR, Xs, α, βq

αrΛR, Xs21

¸

. (9.3.9)

This determines the optimal control explicitly as a function of the state-
costate variables. We see how modifying the control set to be more symmet-
rical has resulted in a conserved quantity which has in turn given us valuable
information about the optimal control.
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Chapter 10

Hyperboloid Coordinates

10.1 Coordinates
We begin with the following lemma.

Lemma 10.1.1. The Cayley transform of
ˆ

a b
c ´a

˙

P sl2pRq is
ˆ

it z
z̄ ´it

˙

P sup1, 1q, (10.1.1)

where z “ pb ` cq{2 ` ia P C and t “ pb ´ cq{2 P R.

Proof. This is an easy calculation.

The matrices in sup1, 1q with a given determinant d “ detpXq are in
bijective correspondence with the points on a hyperboloid

ˆ

it z
z̄ ´it

˙

P sup1, 1q Ø tpt, zq P R ˆ C | t2 ´ |z|
2

“ du.

This observation justifies our nomenclature of hyperboloid coordinates, for
the Cayley transform of the sl2 coordinate system. A matrix in sup1, 1q is
determined by its determinant and the complex number z, up to the ambiguity
in the sign of t.

Notation.

• For a complex number z, and ϵ P t´1, 0, 1u, we set vzwϵ :“
a

ϵ ` |z|2,
and vzw :“ vzw1 “

a

1 ` |z|2.
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• We write
ℜpz1, z2q :“ ℜpz̄1z2q (real part)

to denote the R-bilinear form on C, derived from the real part of a
complex number.

We transform the ODE for X,Λ1,ΛRsl2pRq into ODEs given by hyper-
boloid coordinates. We now work consistently with the Cayley transformed
version of X,ΛR, and Λ1 in sup1, 1q. The ODEs from the costate equa-
tions 6.7.1 retain exactly the same form, except that J and Z˚ must be
replaced with their Cayley transforms Jsu “ diagp´i, iq and Zsup1,1q P sup1, 1q.
Using these, our assumptions, and Lemma 10.1.1, we can write

X :“
ˆ

´ivww w
w̄ ivww

˙

, Λ1 :“ d1

ˆ

ivbwϵ b
b̄ ´ivbwϵ

˙

, ΛR :“
˜

´iℜpc,wq

vww
c

c̄ iℜpc,wq

vww

¸

,

(10.1.2)
for variable complex numbers w, b, c P C, with |b|2 ě ´ϵ. The form of
the expressions ensure that the constraints detpXq “ 1 and xX,ΛRy “ 0
are satisfied. The parameters ϵ P t´1, 0, 1u and d1 P ℜ are constants of
motion, and detpΛ1q “ ϵd21. The sign of the upper-left matrix entry ´ivww

of X is determined by the sign convention on the orbit OJ , described in
Lemma 4.1.1. Note that pw, vwwq lies on the upper sheet of the hyperboloid
tpw, tq P C ˆ R | t2 ´ |w|2 “ 1u, which justifies our nomenclature.

Remark 10.1.2. The form of element Λ1 is general enough to represent
a general element of sup1, 1q. We take d1 P Rˆ, except when Λ1 “ 0. If
detpΛ1q “ 0, then Λ1 belongs to the nilpotent cone, which consists of three
conjugacy classes: the vertex of the cone (the zero element) and the positive and
negative cones (the two regular nilpotent classes). We can take d1 “ ϵ “ b “ 0
(for the zero element) or pd1, ϵq “ p˘1, 0q (for the regular nilpotent elements).
In the case of the zero element, we omit the ODE for b. When Λ1 is regular
semisimple (detpΛ1q ‰ 0), the scalar d1 parameterizes nonzero elements within
a given Cartan subalgebra. The hyperboloid has one or two sheets, depending
on whether Λ1 is split (detpΛ1q ă 0), or elliptic detpΛ1q ą 0. In the split case,
the coordinate system breaks down around the neck |b| “ 1 of the hyperboloid,
and a better coordinate system is introduced in Remark 10.2.5.

In the case of circular control, there are two real parameters α, β such
that detpZ˚q “ α2 ´ β2. See Table (9.1) and Equation (9.2.3). We assume
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in this chapter that α, β are both positive, and we set ρ “ β{α ą 0. In the
case of circular control, we assume the star condition in the form xX,Z˚y ă 0.
For a control matrix given by equation (9.3.6) (which is already in sup1, 1q

by the results of Section 9.2) and using Lemma 3.3.4, the star condition in
these coordinates can be expressed as

µpw, zq :“ vww ´ ρℜpw, zq “ ´
xX,Z˚y

2α ą 0.

We consider the system on a region slightly larger than the star domain
defined by the condition µpw, z˚q ą 0 (and c ‰ 0), where z˚ is the maximizing
root of the quadratic equation for the control.

10.2 Hyperboloid ODE
The ODEs in Lie algebra coordinates for X,Λ1 and ΛR were derived in

Sections 6.5 and 3.4. We now write them out in the hyperboloid coordinates
we have defined above. This will enable us to better understand the dynamics
near the singular locus.

Theorem 10.2.1 (ODE in Hyperboloid Coordinates). In hyperboloid coordi-
nates, the dynamics for X,Λ1 and ΛR take the form

w1
“ i

w ´ ρvwwz˚

µpw, z˚q
, (10.2.1)

b1
“ 2i pvbwϵw ` bvwwq , (10.2.2)

c1
“
ip1 ´ ρ2qℜpcξ0pw, cq, z

˚q

2vwwµpw, z˚q2
z˚

´ i pp2d1vbwϵ ` 3λcostqw ` 2bd1vwwqq . (10.2.3)

where z˚ is the Hamiltonian maximizing root of the quadratic equation for
the optimal control, and ξ0 “ ξ0pw, cq :“ 2 ` |w|2 ´ pwc̄{|c|q2. Here w, b, c are
complex valued functions, satisfying the restrictions of Section 10.1.

Proof. This is an elementary computation using the hyperboloid form of the
state and costate equations as in equation (10.1.2) and substituting them
into the state and costate ODE derived in Sections 3.4 and 6.5.
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Similarly, we have expressions for the Hamiltonian and the angular mo-
mentum.

A “ 2d1vbwϵ ´ 2ℜpw, cq

vww
(10.2.4)

H “ p2d1ℜpw, bq ` p2d1vbwϵ ` 3λcostqvwwq ´
ℜpw ´ ρvwwz˚, cq

µpw, z˚qvww
(10.2.5)

Corollary 10.2.2. The following additional ordinary differential equations
hold.

vww
1

“
ℜpw1, wq

vww
“ ρ

ℜpiw, z˚q

µpw, z˚q
, (10.2.6)

vbw1
ϵ “

ℜpb1, bq

vbwϵ
“ 2ℜpiw, bq, (10.2.7)

ˆ

ℜpw, cq

vww

˙1

“ 2d1ℜpiw, bq. (10.2.8)

Moreover, the overall form of the ODEs is pseudo-linear.
¨

˝

w
b
c

˛

‚

1

“ iA

¨

˚

˚

˝

w
b
c
z˚

˛

‹

‹

‚

(10.2.9)

where A is a 3 ˆ 4 matrix with real (rotationally invariant) entries.

A “

¨

˚

˚

˝

1{µ˚ 0 0 ´ρvww{µ˚

2vbwϵ 2vww 0 0

´3λcost ´ 2d1vbwϵ ´2d1vww 0 p1 ´ ρ2qℜpcξ0pw, cq, z
˚q

2vwwµ˚2

˛

‹

‹

‚

,

(10.2.10)
where µ˚ :“ µpw, z˚q.

Proof. These equations are direct consequences of Theorem 10.2.1.

Remark 10.2.3. The equations have a time-reversal symmetry. If pw, b, c, z˚q

is a solution, then so is pw̃, b̃, c̃, z̃˚q, where

w̃ptq “ w̄p´tq, b̃ptq “ b̄p´tq, c̃ptq “ c̄p´tq, z̃˚
ptq “ z̄˚

p´tq.
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Remark 10.2.4. To double-check answers, we rederive the fact that the
angular momentum and Hamiltonian are constant along trajectories. To show
the constancy of A, we show its derivative is zero. This is a direct consequence
of (10.2.7) and (10.2.8). The direct verification of the constancy of H is a
tedious but direct calculation.

Remark 10.2.5. As mentioned in Remark 10.1.2, in the split case ϵ “ ´1,
the coordinate system for Λ1 breaks down around the neck of the hyperboloid.
It is helpful to replace b with better coordinates pr, θq. In the split case, we
write

Λ1 “ d1

ˆ

ir exppiθq
?
r2 ` 1

expp´iθq
?
r2 ` 1 ´ir

˙

, r P R, d1 ą 0.

and we replace the ODE for b with the system

r1
“ 2

?
1 ` r2ℜpiw, exppiθqq,

θ1
“ 2vww `

2rℜpw, exppiθqq
?
r2 ` 1

.

10.3 Optimal Control
Assume c ‰ 0, and set

w̃ :“ c̄w{|c|, z̃ :“ c̄z{|c|, (10.3.1)

Note vww “ vw̃w and µpw, z˚q “ µpw̃, z̃˚q.

Lemma 10.3.1. If c ‰ 0, the optimal control is z˚ “ cz̃˚{|c|, where z̃˚ is a
root of the quadratic polynomial

Qpz̃q :“ ξ0 ` ξ1z̃ ` ξ2z̃
2,

where

ξ0 “ ξ0pw̃q :“ 2 ` |w̃|
2

´ w̃2
“ 2 ` |w|

2
´ pwc̄{|c|q2 “: ξ0pw, cq,

ξ1 “ ξ1pw̃q :“ 2ρpw̃ ´ ¯̃wqvw̃w,

ξ2 “ ξ2pw̃q “ ´ξ̄0 “ ´p2 ` |w̃|
2

´ ¯̃w2
q.

(10.3.2)



160 CHAPTER 10. HYPERBOLOID COORDINATES

Proof. The lemma follows from the explicit description of the quadratic
equation for the control in Proposition 9.3.6.

We can give a second proof as follows. The dependence of the Hamiltonian
on z̃ (that is, on the circular control set Ur), comes through the term

´
ℜpw ´ ρvwwz, cq

µpw, zqvww
“ ´

|c|ℜpw̃ ´ ρvw̃wz̃, 1q

µpw̃, z̃qvw̃w
“: H0pz̃q.

We compute
dH0pz̃ exppiθqq

dθ
|θ“0 “

´iQpz̃qρ|c|

4z̃µ2vw̃w
,

where Q is the given quadratic polynomial. Thus, the derivative vanishes and
the Hamiltonian is extremal when Qpz̃˚q “ 0.

Thus, the root z̃˚ is one of the two roots

pξ1 ˘
?

∆q

2ξ̄0
, ∆ :“ ξ1

2
` 4|ξ0|

2.

Let us now turn to selecting the Hamiltonian maximizing root.

Lemma 10.3.2. On a punctured neighborhood of the singular locus, the root
z̃˚ “ c̄z˚{|c| of the quadratic equation (10.3.2) giving the optimal control
satisfies z̃˚ “ 1 ` Op|w|q and z˚ “ c{|c| ` Op|w|q.

Proof. Near the singular locus, the coefficients are 0 ‰ ξ0 “ 2 ` Op|w|2q and
ξ1 “ Op|w|q. Using this, we find the discriminant of the quadratic polynomial
(10.3.2) is a positive real number and equals

∆ “ 4|ξ0|
2

` ξ1
2

“ 16 ` Op|w|
2
q.

Up to a positive scalar, the Hamiltonian (10.2.5) depends on the roots z̃ of
the quadratic through the term

ρvwwℜpz, cq ´ ℜpw, cq

|c|µpw, zqvww
“
ρvw̃wℜpz̃q ´ ℜpw̃q

µpw̃, z̃qvw̃w
“

˘ρ
?

∆
4 ` Op|w̃|q. (10.3.3)

The Hamiltonian is not constant in z̃, and ∆ ‰ 0. The star domain defines a
simply connected set given by the inequality

0 ă µp|w̃|, 1q “ vw̃w ´ ρ|w̃|.
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If follows that a coherent Hamiltonian-maximizing choice of the sign of ˘
?

∆
can be made throughout the star domain. The big-oh estimate (10.3.3) shows
that the sign of the square root should be positive. So, the maximizing root
z˚ of the quadratic in (9.3.8) is

z˚
“

c

|c|
z̃˚

“
c

|c|

pξ1 `
?

∆q

2ξ̄0
“

c

|c|
` Op|w|q, (10.3.4)

which gives the required.

10.4 Application to Abnormal Solutions
In this section, we assume that ρ “ 1 (inscribed circular control set),

λcost “ 0 (abnormal solution), and give a proof of the following theorem.

Theorem 10.4.1. If ρ “ 1 and λcost “ 0, then there does not exist a periodic
solution to the control system of ODEs such that ΛR is nowhere zero.

The first lemma gives a simple formula for the Hamiltonian and system of
equations.

Lemma 10.4.2. Assume ρ “ 1, λcost “ 0. Assume ΛRptq ‰ 0, for all t. Then

X 1
“ ´

rΛR, Xs
a

2xΛR,ΛRy
,

Λ1
R “ rΛR ´ K,Xs ,

H “ xX,Ky `

c

xΛR,ΛRy

2 ,

where

K :“
ˆ

iA{2 K12
K̄12 ´iA{2

˙

,

is a constant.
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Proof. ΛR ‰ 0 implies c ‰ 0. Let z̃˚ be the Hamiltonian maximizing root of
the quadratic equation (10.3.2). We claim

w ´ ρvwwz˚

µpw, z˚q
“ ´

ξ0c

|c|η
; (10.4.1)

´
ℜpw ´ ρvwwz˚, cq

µpw, z˚qvww
“

|c|η

2vww
, (10.4.2)

where ξ0 “ 2 ` |w|2 ´ pwc̄{|c|q2 is given by its usual formula, and where
η “ ηpξ0, ξ̄0q “

a

ξ0 ` ξ̄0 ą 0 (noting that ξ0 ` ξ̄0 is a positive real number).
We prove both identities at the same time. Let lhs and rhs be the left and
right-hand sides of the first claimed identity (10.4.1). Combined as a single
fraction, the numerator of lhs2 ´ rhs2 can be written as a polynomial in z̃˚

with coefficients that are functions of w̃, c, c̄. By a symbolic calculation in
Mathematica, this polynomial is zero modulo the quadratic relation (10.3.2).
Thus, lhs “ ˘rhs. We then substitute ˘rhs for lhs into the second claimed
identity (10.4.2) and choose the sign that makes the entire expression positive
(because this term is to be maximized in the Hamiltonian). With this choice
of sign, both identities hold.

We have by direct calculation that

xΛR,ΛRy

2 “
|c|2η2

4vww2
ą 0,

c

xΛR,ΛRy

2 “
|c|η

2vww
,

and the rightmost term is equal to the control-dependent term of the Hamil-
tonian (10.4.2). We compute

X 1
“ rrΛR, Xs, where w1

“ ircξ0{vww
2.

Comparing with the ODE (10.2.1) for w, the ODE for X follows.
The ODEs for w, b, c take the following form

w1
“ ´iξ0c{p|c|ηq, (10.4.3)

d1b
1

“ ´c1
“ 2id1 pvbwϵw ` bvwwq . (10.4.4)

Hence, K12 :“ bd1 ` c P R is a constant. Then using conservation of angular
momentum, K “ Λ1 ` ΛR equals the constant as stated in the lemma. The
Hamiltonian (10.2.5) is

H “ 2d1pℜpw, bq ` vbwϵvwwq `
|c|η

2vww
“ xX,Λ1y `

c

xΛR,ΛRy

2 .
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Expressing these formulas back in terms of X,ΛR, K, we obtain the result.
The ODE for ΛR is obtained by the ODE for c in (10.2.3), by setting ρ “ 1
and λcost “ 0.
Remark 10.4.3. If we assume the weaker condition ρ “ 1 and ΛR ‰ 0 then
a similar argument shows that the equations take a related form

g1
“ gX, Λ1

1 “ rΛ1, Xs,

X 1
“ ´

rΛR, Xs
a

2 xΛR,ΛRy
, Λ1

R “

„

´Λ1 `
3
2λcostJsu, X

ȷ

.

Lemma 10.4.4. If K,X,ΛR is a solution to the equations of Lemma 10.4.2,
then so is AdgK,AdgX,AdgΛR (where g P SUp1, 1q) and they also satisfy the
relations listed at the beginning of the section.

Proof. This is simple to verify once we use the fact that the trace form is a
non-degenerate invariant symmetric bilinear form and using properties of Lie
brackets and bilinear forms.
Lemma 10.4.5. Assume ΛRptq ‰ 0, for all t. Assume ρ “ 1, and λcost “ 0.
Then

xΛR,ΛRy
3

“ 0.

Proof. Let dR :“ xΛR,ΛRy. The ODE for ΛR gives d1
R “ 2r, where

r :“ xrΛR, Xs, Ky “ pcw̄ ´ c̄wqiA `
i

vww
pK̄12ξ0c ´ K12ξ̄0c̄q.

Using the conserved quantities K12 and A, the ODE (10.4.4) can be written

c1
“
iξ0c

vww
´ ipwA ` 2K12vwwq. (10.4.5)

We compute r1 by using (10.4.5) and (10.4.3) in a tedious Mathematica
calculation to obtain

ˆ

r1
` 2H

ˆ

|c|η

vww
´ p2ℜpw,K12q ` Avwwq

˙˙1

“ 0.

Since H “ 0 identically, we find that r1 is constant, and d3
R “ 0 as claimed.

(Adding the multiple of H before taking the final derivative significantly
simplifies the calculation.)
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Proof of Theorem. Set
dR “ xΛR,ΛRy.

By the preceding lemma, dR is a polynomial in t. If also periodic, dR is
constant. By the formulas derived in the previous proof, we have orthogonality:

d1
R “ 2xrΛR, Xs, Ky “ 0.

We write K as a linear combination of a basis of sup1, 1q:

K “ r1X ` r2ΛR ` r3rΛR, Xs.

Since K and rΛR, Xs are orthogonal, we have r3 “ 0. The vanishing Hamilto-
nian implies r1 “

a

dR{8. In particular, r1 is constant. Then

xK,Ky “ dRp´1{4 ` r22q,

and this implies that r2 is constant. Then using the ODE for X and ΛR, we
obtain

0 “ K 1
“ r1X

1
` r2Λ1

R “ p´1{4 ` r2p1 ´ r2qqrΛR, Xs.

This implies that r2 “ 1{2 and xK,Ky “ 0. But K ‰ 0. Thus, K is regular
nilpotent. We also have that xX,Ky is constant. This is the locus of a
horocycle in hyperbolic space. Also X 1, which is proportional to rΛR, Xs,
is never zero. Hence X is not periodic, moving along the horocycle for all
time.

Remark 10.4.6. We find that nonperiodic abnormal solutions exist. Follow-
ing the proof of the lemma, we impose the condition xΛR,ΛRy “ 8 and set
K “ X ` ΛR{2. Then K is a nilpotent constant, and the ODE for X becomes
X 1 “ ´rK,Xs{2, which is Lax’s equation with constant ´K{2, which is easily
solved.



Chapter 11

The Fuller System

In this chapter, we restrict to normal solutions, and take λcost “ ´1. The
singular locus, as defined in Section 8.2 is the region of the cotangent space
T ˚pTSL2pRqq given by

Ssing “

"ˆ

g0,´
3
2J, J, 0

˙

| g0 P SL2pRq

*

Ă SL2pRqˆsl2pRqˆsl2pRqˆsl2pRq.

Recall that Pontryagin extremals which avoid the singular locus that
are also edge-extremal are given by bang-bang controls with finitely many
switches. (See Theorem 8.3.2.) The global optimal trajectory of the Reinhardt
control problem with the control set UT cannot stay within the singular locus
for any positive interval of time. (See Theorem 8.2.7.)

By Lemma 8.3.4, if we are considering the control set UT , for a Pontryagin
extremal to approach the singular locus, the control must switch infinitely
many times around the boundary of UT in a finite interval of time. This is
the chattering phenomenon (see Fuller [11] and Zelikin and Borisov [50]).

If we use a control set Ur which has a smooth boundary, we would expect
the optimal control to perform infinitely many rotations along the boundary
BUr to approach the singular locus in finite time. A system with exactly this
behaviour is described in Manita and Ronzhina and the associated trajectory
is spiral-like [30]. The results of this section are motivated by that paper.

These results warrant a study of the behavior of the system near the
singular locus. To this end, we introduce convenient coordinates and re-
express the state, costate and optimal control equations in these coordinates.
Throughout this section, unless otherwise specified, we work with the circular
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control sets Ur and we assume that the control matrix parameter α is positive.
(See Section 9.2).

We will find that the system of equations we obtain is a special case of
the Fuller system, which we define in the following way.

Definition 11.0.1 (Length-n Fuller system). Let F “ R or F “ C. Let
zi : p0, ϵq Ñ Fm be functions, where zn is nonzero on p0, ϵq, and let A be a
nonsingular m ˆ m matrix with coefficients in F. Let } ¨ } be the Euclidean
norm on Fm. The Fuller system of length n, (real or complex) dimension m,
and multiplier A is the system of ODEs given by

z1
n “ zn´1, z1

n´1 “ zn´2, . . . z1
2 “ z1, z1

1 “
Azn
}zn}

. (11.0.1)

Remark 11.0.2. By identifying C with R2, a Fuller system of complex
dimension m can be written as a Fuller system of real dimension 2m. We are
particularly interested in the Fuller system of complex dimension 1. In that
case A “ γ P Cˆ, a nonzero complex scalar. By scaling each zj ÞÑ zj{γ, the
constant γ in equation (11.0.1) scales by γ ÞÑ γ{|γ|. Thus, there is no loss of
generality in assuming that |γ| “ 1.

11.1 Trajectories near the Singular Locus
An advantage of switching to hyperboloid coordinates is that at the

singular locus, we have w “ b “ c “ 0.

Assumptions. In general, the determinant d of Λ1 may be positive, negative
or zero. The determinant is constant along trajectories. Different coordinate
systems (other than the one presented below) need to be used when d “ 0 or
d ă 0. Here, we make the assumption d ą 0, because this is the case for the
singular locus, and set d1 “

?
d ą 0. We also assume that the sign of xJ,Λ1y is

positive, because that is the sign at the singular locus: xJ, 3Jλcost{2y “ 3 ą 0.
The sign d1 ą 0 in Λ1 is chosen (according to our assumptions) to make
xJsu,Λ1y ą 0. We also have ϵ “ 1 and vbwϵ “ vbw, based on the value of ϵ at
the singular locus.

Assumptions. At the singular locus

H “ 0, A “ 3, d1 “ 3{2, ϵ “ 1, λcost “ ´1. (11.1.1)
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These values are constant along extremal trajectories. We assume these
values of the constants throughout this section. We consider an extremal
trajectory with the property that cpt0q ‰ 0 but as we follow the trajectory back
in time there is a most recent time t1 ă t0 when cpt1q “ 0. We assume at
time t1, the trajectory meets the singular locus: wpt1q “ bpt1q “ cpt1q “ 0.
Reparameterizing by a time shift, we assume t1 “ 0 and find t0 ą 0 such that

wp0q “ bp0q “ cp0q “ 0, and cptq ‰ 0, for t P p0, t0q. (11.1.2)

Definition 11.1.1. We write

f1 “ f2 ` Opf3q (11.1.3)

to mean that for some t1 ą 0, and some C ą 0, we have |f1ptq ´ f2ptq| ď

C|f3ptq| for all t P p0, t1q. By a punctured neighborhood of the singular locus,
we mean an interval p0, t1q on which c is defined and nonzero. (The definition
of Landau’s O here departs slightly from the definition before Lemma 8.1.5,
because the definition here is one-sided and uses absolute values.)

The aim of this section is to analyze the asymptotic behavior of solutions
as t tends to zero. With minor modifications, the same analysis will apply to
trajectories approaching the singular locus from the left on p´t1, 0q.

Theorem 11.1.2. In the context of the assumptions of this section, let w, b, c
be a solution to the ODE of Theorem 10.2.1 on p0, t1q, with cptq ‰ 0 for all t P

p0, t1q. Assume the solution extends continuously to wp0q “ bp0q “ cp0q “ 0
at time t “ 0. The ODEs and solutions w, b, c satisfy the following estimates.

w1
“ ´iρ

c

|c|
` Op|w|q,

b1
“ 2iw ` Op|b|q,

c1
“ ´3ib ` Op|c| ` |bw2

| ` |b|2|w|q.

|w| “ Optq, |b| “ Opt2q, |c| “ Opt3q, |c| ` |bw2
| ` |b|2|w| “ Opt3q.

Remark 11.1.3. The proof uses the assumptions d1 “ 3{2 and λcost “ ´1,
but not the assumptions H “ 0 and A “ 3. If we do not assume the circular
control condition of Lemma 10.3.2, but only that |z˚| ď 1, then the ODE for
w takes the form

w1
“ ´iρz˚

` Op|w|q.
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Proof. We start with some easy approximations of the sizes of terms in the
ODEs. The terms vww and µpw, z˚q in the system of ODEs tend to 1 as
t Ñ 0. The right-hand side of the ODEs are bounded near t “ 0 and the
initial conditions are wp0q “ bp0q “ cp0q “ 0. Thus, |w|1 ď |w1| ď C, so that
|w| “ Optq. Similarly,

|b| “ Optq, |c| “ Optq.

Feeding these bounds back into the ODE (10.2.2) for b, we obtain |b|1 ď |b1| “

Optq. Thus, |b| “ Opt2q. Now

vww “ 1 ` Op|w|
2
q, vbw “ 1 ` Op|b|2q, µpw, z˚

q “ 1 ` Op|w|q.

We return to the ODE (10.2.1) for w and use Lemma 10.3.2 to write it

w1
“ ´iρvwwz˚

{µ ` iw{µ “ ´iρc{|c| ` Op|w|q.

We return to the ODE (10.2.2) for b and write it

b1
“ 2ivbww ` 2ibvww “ 2iw ` Op|b|q.

The ODE (10.2.3) for c takes the form c1 “ Apcq ` f , where

Apcq “
ip1 ´ ρ2qℜpcξ0pw, cq, z

˚q

2vwwµpw, z˚q2
z˚

“ Op|c|q

is a bounded operator, which is linear in the real and imaginary parts of c
through the subterm cξ0pw, cq “ 2c` |w|2c´ c̄w2. The inhomogeneous term
f is

´ip2bd1vww ` p2d1vbwϵ ` 3λcostqwq

“ ´3ibvww ´ 3ipvbwϵ ´ 1qw

“ ´3ib ` Op|b||w|
2

` |b|2|w|q.

So the ODE for c takes the form

c1
“ ´3ib ` Op|bw2

| ` |b|2|w| ` |c|q.

We then have |c|1 ď |c1| ď C0|c| ` Opt2q, for some C0 ą 0. So |c| “ Opt3q.
This completes the proof.
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11.2 Hamiltonian Dynamics of the Truncated
System

Following Theorem 11.1.2, we create a truncated system of ODEs given by

c1
F “ ´3ibF (11.2.1)
b1
F “ 2iwF (11.2.2)

w1
F “ ´iρ

cF
|cF |

, (11.2.3)

where the big-oh terms are discarded. This new system governs the dynamics
of the Reinhardt system very close to the singular locus. We introduce new
coordinates

z3 :“ cF {p6ρq, z2 :“ c1
F {p6ρq “ ´ibF {p2ρq, z1 :“ c2

F {p6ρq “ wF {ρ
(11.2.4)

so that the truncated system in equations (11.2.1), (11.2.2), (11.2.3) becomes

z1
3 “ z2, z1

2 “ z1, z1
1 “ ´i

z3
|z3|

. (11.2.5)

This is the Fuller system of length 3, complex dimension 1, and multiplier ´i.
We also write z0 “ ´iz3{|z3|, so that z1

1 “ z0. In this section, we study this
Fuller system.

The truncated Hamiltonian and angular momentum are defined as

HF :“ i

2 pz2z̄1 ´ z̄2z1q `
?
z3z̄3

AF :“ z2z̄2 ´ pz1z̄3 ` z̄1z3q .
(11.2.6)

Remark 11.2.1. These definitions come from the leading term of the Hamilto-
nian and angular momentum for the Reinhardt system. Writing the Reinhardt
quantities H and A as functions of w, b, c and z˚ “ c{|c| ` Optq and their
conjugates, we formally expand using (11.2.4).

HptwF , tw̄F , t
2bF , t

2b̄F , t
3cF , t

3c̄F , ¨ ¨ ¨ q “ 6ρ2t3HF ` Opt4q

AptwF , tw̄F , t
2bF , ¨ ¨ ¨ q “ 3 ` 6ρ2t4AF ` Opt5q,

Also, if a Hamiltonian for the Fuller system depends on a control through
a term ℜpz3, uq, where the control u satisfies |u| ď 1, then the maximized



170 CHAPTER 11. THE FULLER SYSTEM

Hamiltonian is achieved when u “ z3{|z3|, and the term in the Hamiltonian
becomes ℜpz3, uq “

?
z3z̄3, as we find in the formula for HF . Thus, HF is to

be viewed as the maximized Hamiltonian.

Theorem 11.2.2 (Fuller Hamiltonian System). The Fuller system (11.2.5)
is Hamiltonian with respect to a non-standard Poisson bracket (11.2.7). The
angular momentum is in involution with the Hamiltonian with respect to this
bracket (11.2.9). The Poisson bracket satisfies the Jacobi identity.

Proof. We regard z1, z2, and z3 as coordinate functions C3 Ñ C and let z̄j
denote the conjugates of these coordinate functions. For smooth functions
F,G : C3 Ñ C, expressed as functions of zj and z̄j, we define their non-
standard Poisson bracket as

tF,GuF :“
3
ÿ

j“1
p´1q

j2i
ˆ

BF

Bzj

BG

Bz̄4´j
´

BF

Bz̄4´j

BG

Bzj

˙

(11.2.7)

“
2
i

ˆ

BF

Bz1

BG

Bz̄3
´

BF

Bz̄3

BG

Bz1

˙

`
2
i

ˆ

´
BF

Bz2

BG

Bz̄2
`

BF

Bz̄2

BG

Bz2

˙

`
2
i

ˆ

BF

Bz3

BG

Bz̄1
´

BF

Bz̄1

BG

Bz3

˙

.

(11.2.8)

We can now verify directly that the Fuller equations (11.2.5) become

z1
1 “ tz1,HF uF ,

z1
2 “ tz2,HF uF ,

z1
3 “ tz3,HF uF ,

which are Hamilton’s equations for this Poisson bracket. We can also verify
that

tHF ,AF uF “ 0 (11.2.9)
and that the Jacobi identity is satisfied.

Definition 11.2.3 (virial action). Define the virial group to be the two-
dimensional scaling group G “ SO2pRq ˆ Rą0. The virial group acts on the
Fuller system (11.2.5) by the rule

pexppiθq, rq¨pz1ptq, z2ptq, z3ptqq :“ pexppiθqrz1pt{rq, exppiθqr2z2pt{rq, exppiθqr3z3pt{rqq.
(11.2.10)
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The name virial group comes from a similar group that goes by this name,
which acts on the Kepler dynamical system [8].

If z “ pz1, z2, z3q is a solution, then pexppiθq, rq ¨ z is also a solution. We
also have an involution given by time reversal

τ ¨ pz1ptq, z2ptq, z3ptqq :“ pz̄1p´tq,´z̄2p´tq, z̄3p´tqq

that carries solutions to solutions.
It is noteworthy that the rotation group SO2pRq is a symmetry of the

system and as a result of the classical Noether theorem, we recover AF as a
conserved quantity. The truncated angular momentum and the Hamiltonian
are exactly conserved for the truncated system. Both are identically zero
along trajectories that approach the singular locus. The next proposition
shows that the Poisson bracket in (11.2.7) arises via a symplectic structure
on C3.

Proposition 11.2.4. Let F,G be smooth, real-valued functions on C3. Con-
sider the following symplectic form on C3:

ωF :“
3
ÿ

j“1

p´1qj

2i dzj ^ dz̄4´j, (11.2.11)

Let F⃗ and G⃗ denote the Hamiltonian vector fields of smooth functions F,G
with respect to this symplectic form. Then we have

tF,GuF “ ωF pF⃗ , G⃗q.

Proof. We claim that

F⃗ “

3
ÿ

j“1
p´1q

j2i
ˆ

BF

Bz̄4´j

B

Bzj
´

BF

Bz4´j

B

Bz̄j

˙

. (11.2.12)

To see this, we check that if F⃗rhs is the right-hand side of (11.2.12), then the
defining conditions of F⃗ all hold

ωF pF⃗rhs, B{Bzkq “ xdF, B{Bzky
˚

“ BF {Bzk

ωF pF⃗rhs, B{Bz̄kq “ xdF, B{Bz̄ky
˚

“ BF {Bz̄k, k “ 1, 2, 3.
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We leave this as a routine exercise for the reader. Similarly,

G⃗ “
ÿ

j

p´1q
j2i

ˆ

BG

Bz̄4´j

B

Bzj
´

BG

Bz4´j

B

Bz̄j

˙

.

From these explicit formulas for F⃗ and G⃗, we find that the Poisson bracket
of two functions F and G is

tF,GuF “

A

dF, G⃗
E

˚
“ ωF pF⃗ , G⃗q “

ÿ

j

p´1q
j2i

ˆ

BF

Bzj

BG

Bz̄4´j
´

BF

Bz̄j

BG

Bz4´j

˙

.

and thus, we obtain the required.

We can also generalize to the length n Fuller system of complex dimension
1 and multiplier γ “ in.

z1
n “ zn´1, z1

n´1 “ zn´1, ¨ ¨ ¨ , z1
1 “ γzn{|zn| “ z0, γ “ in. (11.2.13)

Definition 11.2.5 (Fuller symplectic form). On Cn, we have the following
symplectic form.

ωn :“ γ̄
n
ÿ

j“1
p´1q

j´1 dzj ^ dz̄n´j`1.

Theorem 11.2.6. The length n Fuller system (11.2.13) is the Hamiltonian
vector field (with respect to the Fuller symplectic form) of the Hamiltonian.

Hn :“
n
ÿ

j“0
p´1q

jℜpzj, i
nzn´jq.

The angular momentum

An :“
n
ÿ

j“1
p´1q

jℜpin`1zj, zn´j`1q

is conserved along this system.
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Proof. If G is a smooth function, the above proof generalizes in a straightfor-
ward way to give the following expression for the Hamiltonian vector field of
G:

G⃗ “
1
γ̄

n
ÿ

j“1
p´1q

j´1
ˆ

BG

Bz̄n´j`1

B

Bzj
´

BG

Bzj

B

Bz̄n´j`1

˙

.

Using this expression, we can compute the Hamiltonian vector field of Hn

and we recover exactly the system (11.0.1), showing that

zj´1 “ tzj,Hnu, j “ 1, . . . , n.

Differentiating Hn and An along the length-n Fuller system shows that they
are conserved.

11.3 Log-Spiral Solutions
The system (11.2.5) admits the following outward-moving logarithmic

spiral solution, for t ą 0.

z˚
3 ptq “

1
10t

3´i (11.3.1)

z˚
2 ptq “

p3 ´ iq

10 t2´i

z˚
1 ptq “

p2 ´ iqp3 ´ iq

10 t1´i

z˚
0 ptq “ ´it´i

u˚
ptq “ ρt´i.

Here i “
?

´1 in the formulas.1 Other log-spiral solutions are obtained by
the action of the viral group G. Note that the log-spiral is self-similar by a
one-dimensional subgroup of G:

pr´i, rq ¨ z˚
“ z˚.

We can also verify that HF pz˚
3 , z

˚
2 , z

˚
1 q “ AF pz˚

3 , z
˚
2 , z

˚
1 q “ 0.

1The well-known Euler-Manchin identity p3 ´ iqp2 ´ iqp1 ´ iq “ ´10i is used to verify
the solution. In a different context, Manchin-like formulas are used to compute digits of π.
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Time-reversal τ transforms the outward log-spiral into an inward log-spiral.
The inward spiral is defined for t ă t1.

zτ3 ptq “ z̄˚
3 pt1 ´ tq “

1
10pt1 ´ tq3`i,

zτ2 ptq “ ´z̄˚
2 pt1 ´ tq “ ´

p3 ` iq

10 pt1 ´ tq2`i,

zτ1 ptq “ z̄˚
1 pt1 ´ tq “

p3 ` iqp2 ` iq

10 pt1 ´ tq1`i,

zτ0 ptq “ ´z̄˚
0 pt1 ´ tq “ ´ipt1 ´ tqi.

Here t1 is arrival time at the singular locus. The trajectory can be verified by
differentiating. During approach to the singular locus, the optimal control
for the inward log-spiral performs an infinite number of rotations along the
circle BUr in finite time.

11.4 Literature on Fuller Systems
Fuller systems (over R) were first described in Fuller [11] and arises as the

Pontryagin system of what is now called the classical Fuller optimal control
problem. This problem can be described as

x1
“ y, y1

“ u,

ż 8

0
x2dt Ñ min,

with initial conditions xp0q “ x0, yp0q “ y0 and u P r´1, 1s is a control
variable taking values in an interval. The optimal trajectory for this problem
consists of an arc whose control switches infinitely many times at the extremes
of the control set in a finite amount of time.

Generalizations of the Fuller phenomenon are studied in the book of
Zelikin and Borisov [50]. Problem 5.1 is Chapter 5 of this book is exactly the
length n Fuller system in equation (11.0.1) specialized to R. This system is
called the multi-dimensional Fuller problem with 1-dimensional control.

Our system in equation (11.0.1) is a mild generalization of that system.
Problem 7.2 of Zelikin and Borisov studies a Fuller problem with multidi-
mensional control. In particular, equation (7.11) on page 230 of thier book is
exactly our system (11.0.1) for n “ 4. Just as we did, Zelikin and Borisov
construct log-spiral solutions to the Fuller problem for 2-dimensional control
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but leave the exploration of other solutions as a research problem in Chapter
7.

The Fuller systems considered in the literature have even length. Our
system, because of left-invariance, has odd chain length. The same remark
also applies in our derivation of the extended state space Poisson bracket (see
Section A.9). Also, in our case, the extra dimension for the control and the
circular symmetry of the control set gives us an additional symmetry and
thus another conservation law.

At first, Fuller’s problem was viewed as an oddity [11], but was later
shown to be ubiquitous in a very precise sense in a paper of Kupka [24]: so
long as the extended state space of our optimal problem is of sufficiently high
dimension, one can find a Fuller trajectory as an extremal.

Recently, Zelikin, Lokutsievskii and Hildebrand [51] show that for a linear-
quadratic optimal problem with control variables in a two-dimensional simplex,
the extremals perform infinite switchings in finite time, and their switches
are chaotic in nature. Further, they prove that this behavior is generic
for piecewise smooth Hamiltonian systems near the junction where three
hyper-surfaces meet in a codimension 2 manifold. The main innovation in
Zelikin, Lokutsievskii and Hildebrand [51] is the so-called descending system
of Poisson brackets, which is a clever change of coordinates of the generic
system near the singularity made so that the results of the model problem
are applicable. This method is illustrated in the very recent paper of Manita,
Ronzhina and Lokutsievskii [41].

A Fuller system with chattering, which is similar to ours in some respects,
has been analyzed by Zelikin, Lokutsievskii, and Hildebrand [51] They have
found that on a set of full Lebesgue measure, the dynamics of their system
is particularly simple (page 24, sec 2.8). However, on a set of measure zero,
their dynamical system exhibits complex behavior: chaotic trajectories and
a “Cantor-like structure as in Smale’s Horseshoe.” However, in our Fuller
system, we prove that no such complexities appear. It remains to be seen
whether Zelikin-type results can be derived for the Reinhardt problem.
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Chapter 12

Global Dynamics of Fuller
System

In this chapter, we make a thorough analysis of the global dynamics of
the Fuller system (with circular control). Define

M :“ tz “ pz1, z2, z3q P pCˆ
q
3

| HF pzq “ AF pzq “ 0u,

where HF and AF are the truncated Hamiltonian and angular momentum,
defined in (11.2.6). Since AF and Hamiltonian HF are constant along trajec-
tories, the Fuller system (11.2.5) can be restricted to M .
Lemma 12.0.1. M is a real analytic manifold of real dimension four in C3.
Proof. At every point of M , the gradients of AF and HF are linearly inde-
pendent.

12.1 A Fiber Bundle
Define

Ω :“ tpx2, x3q P R2
| x2 ą 0, x3 ą 0, x3 ď x2,

1
2x

2
2 ď x3u Ă r0, 2s ˆ r0, 2s.

Let Ω0 be the interior of Ω, obtained by making the inequalities strict. Define
π : M Ñ R2 by

πpzq “ πpz1, z2, z3q :“
ˆ

|z2|

|z1|2
,

|z3|

|z1|3

˙

“ px2, x3q.

177
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Lemma 12.1.1. The image πpMq lies in Ω.

Proof. The equality AF “ 0, after applying the Cauchy-Schwarz inequality to
the term ℜpz1, z3q appearing in AF , gives that πpzq satisfies x22{2 ď x3. The
equality HF “ 0, after applying the Cauchy-Schwarz inequality to the term
ℜpz1, z2iq appearing in HF , gives that πpzq satisfies x3 ď x2. By definition,
on M we have zj ‰ 0. Thus, the image of π is contained in Ω.

Recall that the virial group acts as symmetries of the Fuller system. The
virial group G restricts to an action on M because of the homogeneities.

HF ptz1, t
2z2, t

3z3q “ t3HF pz1, z2, z3q

AF ptz1, t
2z2, t

3z3q “ t4HF pz1, z2, z3q,

for t ą 0. The morphism π : M Ñ Ω is equivariant with respect to the trivial
action of the virial group on Ω, and each fiber of π is a union of orbits of the
group action.

Lemma 12.1.2. The fiber of π over px2, x3q P Ω is given by

z1 P Cˆ,

z2 “ x2z1|z1|pϵ2 cos2 `i sin2q,

z3 “ x3z1|z1|
2
pcos3 `iϵ3 sin3q,

where

sin2 :“ x3{x2, cos2 :“
b

1 ´ sin2
2 “

a

1 ´ px3{x2q2,

cos3 :“ x22{p2x3q, sin3 :“
b

1 ´ cos23 “

b

1 ´ x42{p4x23q, (12.1.1)

and ϵ2, ϵ3 P t˘1u.

Remark 12.1.3. The fiber satisfies identities:

z2
|z2|

“
z1

|z1|
pϵ2 cos2 `i sin2q,

z3
|z3|

“
z1

|z1|
pcos3 `iϵ3 sin3q.
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Proof. We analyze the fibers of π : M Ñ Ω. Note that x2, x3 ą 0, and
sin2, cos3 P r0, 1s, so that the formulas are well-defined. Let px2, x3q P Ω.
Using the virial action on fibers, if the fiber over px2, x3q is nonempty, then
it contains a point with z1 “ 1, which we now assume without loss of
generality. Then |z2| “ x2 ě 0 and |z3| “ x3 ą 0. Thus, there exist
cos2, sin2, cos3, sin3 P R, and signs ϵ2, ϵ3 such that

z2 “ x2pϵ2 cos2 `i sin2q, z3 “ x3pcos3 `iϵ3 sin3q, where
1 “ cos22 ` sin2

2 “ cos23 ` sin2
3, cos2 ě 0, sin3 ě 0. ϵ2, ϵ3 P t˘1u.

The condition AF “ 0 gives an additional constraint cos3 “ x22{p2x3q ą 0,
and the condition HF “ 0 gives the constraint sin2 “ x3{x2 ą 0. Thus, every
point in the preimage of px2, x3q has the form asserted in the lemma.

Conversely, every pz1, z2, z3q of the given form belongs to M and maps to
px2, x3q in Ω. In particular, the image of π is Ω.

We let Ωϵ2,ϵ3 :“ Ω ˆ tϵ2u ˆ tϵ3u, where ϵ2, ϵ3 P t˘1u, be four copies of Ω.
Let BΩ`

ϵ2,ϵ3 (or B`
ϵ2,ϵ3 , for short) be the upper boundary curve of Ωϵ2,ϵ3 defined

by x3 ď x2. Let BΩ´
ϵ2,ϵ3 (or B´

ϵ2,ϵ3 , for short) be the lower boundary curve of
Ωϵ2,ϵ3 defined by x22{2 ď x3.

We glue these four copies of Ω together along boundaries to form a
topological plane R2

Ω as follows. Along the boundary edge x2 “ x3, we
identify Ω`1,ϵ3 with Ω´1,ϵ3 (for ϵ3 “ ˘1), and along the boundary edge
x3 “ x22{2, we identify Ωϵ2,`1 with Ωϵ2,´1 (for ϵ2 “ ˘1). All four copies of
the corner p2, 2q P Ω˘,˘ are identified by this process. The corner p0, 0q is
excluded from Ω and from Ω˘,˘ by definition.

R2
Ω “

˜

ď

ϵ2,ϵ3

Ωϵ2,ϵ3

¸

{tB
`
´` “ B

`
``, B

`
´´ “ B

`
`´, B

´
´´ “ B

´
´`, B

´
`´ “ B

´
``u.

Visually, it helps to imagine R2
Ω as follows. We take a conformal transfor-

mation of Ω0
ϵ2,ϵ3 onto the open pϵ2, ϵ3q quadrant, which sends the point p0, 0q

to 8, the point p2, 2q to p0, 0q, and the boundary B`
ϵ2,ϵ3 with equation x2 “ x3

to the vertical axis, and the boundary B´
ϵ2,ϵ3 with equation x3 “ x22{2 to the

horizontal axis. See Figure 12.1.1.
Lemma 12.1.2 shows that there is a multiplicity of signs ϵ2, ϵ3 along each

fiber. This suggests that we should extend π : M Ñ Ω to a map π : M Ñ R2
Ω
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p0, 0q

p2, 2q

B
´
``B

`
``

Ω`` :

p0, 0q

p2, 2q

B
´
`´B

`
`´

Ω`´ :

p0, 0q

p2, 2q

B
´
´´B

`
´´

Ω´´ :

p0, 0q

p2, 2q

B
´
´`B

`
´`

Ω´` :

B
´
´`

B
´
´´

p2, 2qB
´
``

B
´
`´

B
`
´´ B

`
`´

B
`
``B

`
´`

Ω´` Ω``

Ω´´ Ω`´

Figure 12.1.1: The four regions Ω˘,˘ map conformally to the four quadrants
in the plane. Identifying boundary edges, they form a topological plane R2

Ω.

(overloading the notation π) as follows. Set

ϵ2 “ signpℜpz2z̄1qq P t˘1u

ϵ3 “ signpℑpz3z̄1qq P t˘1u,
(12.1.2)

and extend the definition of π so that

πpz1, z2, z3q “

ˆ

|z2|

|z1|2
,

|z3|

|z1|3
, ϵ2, ϵ3

˙

P Ωϵ2,ϵ3 . (12.1.3)

Along the boundary edges of Ωϵ2,ϵ3 that have been identified, there are
ambiguities, but the definition of π has been crafted in such a way that
π : M Ñ R2

Ω is well-defined. For example, the sign ϵ2 cannot be determined
from the given formula when cos2 “ 0, but this occurs precisely along the
edge x2 “ x3, where Ω`,ϵ3 is glued to Ω´,ϵ3 .

Theorem 12.1.4. π : M Ñ R2
Ω is a trivial principal topological bundle of the

virial group.
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Proof. By the preceding constructions, each fiber π´1px2, x3, ϵ2, ϵ3q is a single
orbit of the virial group, given by the formula of Lemma 12.1.2. Note that the
virial group acts simply transitively on z1 P Cˆ, which serves as a coordinate
along each fiber.

We give a global trivialization of the bundle M » R2
Ω ˆG, by constructing

a global section:

ψpx2, x3, ϵ2, ϵ3q “ pz1, z2, z3q, where
z1 “ 1, z2 “ x2pϵ2 cos2 `i sin2q, z3 “ x3pcos3 `iϵ3 sin3q

and sin2, cos2, sin3, cos3 are given as above.
This section is continuous. In fact, the jumps in signs ϵ2, ϵ3 occur exactly

where cos2 “ 0 or sin3 “ 0, and this occurs along the identifications of the
boundary curves of R2

Ω. The section gives the global trivialization of the
bundle.

12.2 A Vector Field on the Base Space
We define a vector field pv2, v3q on Ωϵ2,ϵ3 taking value

v2 “ ϵ2 cos2 ´2x2ϵ3 sin3,

v3 “ x2pϵ2 cos2 cos3 `ϵ3 sin2 sin3q ´ 3x3ϵ3 sin3
(12.2.1)

at px2, x3, ϵ2, ϵ3q, where cos2, sin2, cos3, sin3 are the functions given earlier
(12.1.1). We remark that this gives a well-defined vector field on R2

Ω, because
the definitions agree, wherever there might be an ambiguity along boundary
curves that are identified to form R2

Ω.

Lemma 12.2.1. Consider the vector field f on M given by the Fuller system.
Then pv2, v3q is the scaled image of f in the tangent space of R2

Ω. That is,
|z1|Tπpfq “ pv2, v3q P TR2

Ω, which is independent of the point on the fiber
over px2, x3, ϵ2, ϵ3q.

The rescaling factor |z1| only affects the integral curves of the vector field
by a time reparameterization.

Proof. Let z “ pz1, z2, z3q follow a trajectory of the Fuller system in M let
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πpzq “ px2, x3, ϵ2, ϵ3q be the image trajectory. We compute for j “ 2, 3:

|z1|
d

dt
p|zj|{|z1|

j
q “ |z1|ℜpzj´1,

zj
|zj|

q|z1|
´j

´ |z1|j|zj||z1|
´j´1ℜpz0,

z1
|z1|

q

“ xj´1rj ´ jxjr1, where

rj “ ℜ
ˆ

zj´1

|zj´1|
,
zj

|zj|

˙

.

The functions rj are invariant under the virial group and descend to R2
Ω. It is

enough to show that pv2, v3q “ px1r2 ´ 2x2r1, x2r3 ´ 3x3r1q. This is a routine
calculation.

12.3 Equilibrium Points
In this section, we investigate the qualitative behavior of the vector field

pv2, v3q. The vector field pv2, v3q is odd: the values of the vector field at
px2, x3, ϵ2, ϵ3q and at px2, x3,´ϵ2,´ϵ3q have opposite signs. This means that
trajectories are the same, except reversed in time at points with opposite
signs. Earlier, we introduced a time-reversal operation τ on trajectories on
M . The image under π of a time reversed trajectory in M is the sign reversed
ϵj ÞÑ ´ϵj trajectory in R2

Ω.
Next we analyze the zeros of the vector field.

Lemma 12.3.1. The vector field pv2, v3q is zero if and only if px2, x3, ϵ2, ϵ3q
is one of the following three points:

px2, x3q “ p2, 2q (all choices of signs give the same point),
px˚

2 , x
˚
3q :“ p2{

?
10,

?
2{5q where ϵ2 “ ϵ3 P t˘1u (one point for each sign choice).

Moreover, the image under π of the outward log-spiral z˚ “ pz˚
1 , z

˚
2 , z

˚
3 q

constructed in (11.3.1) is the single point q˚
` :“ px˚

2 , x
˚
3 ,`,`q P Ω``, while

the image of the inward log-spiral is the single point q˚
´ :“ px˚

2 , x
˚
3 ,´,´q P Ω´´.

Proof. It is clear that these three points give zeros of the vector field, by
direct substitution into the formulas for pv2, v3q. By the observation that
the vector field is odd, we can assume that ϵ2 “ `1. Then we consider the
different regions Ω0

`1,ϵ3 and its boundary, solving the equations v2 “ v3 “ 0
for x2 and x3.
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We illustrate the case Ω0
``, leaving the other cases as exercises. From the

formulas for v2, v3, we find that a zero in Ω0
`` satisfies the equations

cos2 “ 2x2 sin3, cos2 cos3 “ 2 sin2 sin3,

which has px˚
2 , x

˚
3q “ p2{

?
10,

?
2{5q as the unique solution.

Each spiral trajectory is contained in a single orbit of the virial group
and must map to a single point in R2

Ω. Explicit formulas have been given for
the log spirals and for the map π, and it is an easy calculation to determine
which spiral is mapped to which zero of the vector field.

Next we analyze stability at the equilibrium points. Because of a square
root, the vector field pv2, v3q is not differentiable at px2, x3q “ p2, 2q and we
cannot compute a Jacobian. However, we can compute eigenvalues of the
Jacobian for the other two equilibrium points.

Lemma 12.3.2. Let Jac be the 2 ˆ 2 Jacobian matrix with entries Bvj{Bxk,
where j, k P t2, 3u. The eigenvalues of Jac are ´

?
2˘i

?
3 at q˚

`. In particular,
the eigenvalues have negative real part, and q˚

` is a stable equilibrium point.

By symmetry, the equilibrium point q˚
´ is unstable.

Proof. This is an elementary calculation.

12.4 Global Behavior
Remark 12.4.1. We warn the reader that the square roots appearing in the
definition of cosi, sini cause the vector field pv2, v3q to be non-Lipschitz along
the boundary curves of Ωϵ2,ϵ3. Thus, trajectories are not uniquely determined
by the vector field pv2, v3q. This is not an idle warning. The trajectories
truly fail to be unique. Along these boundary curves where uniqueness breaks
down, we make reference to the trajectory upstairs in M (where trajectories
are uniquely determined) to determine which path the trajectory downstairs
should follow. Nevertheless, on each interior part Ω0

ϵ2,ϵ3, the trajectories are
uniquely determined by the vector field.
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Figure 12.4.1: The dynamical system on R2
Ω. The unstable q˚

´ P Ω´´ and
stable fixed points q˚

` P Ω`` are shown. In the four frames, the two edges
marked A are to be identified, as are the two edges marked B, the two marked
C, and the two marked D. In this way, the four frames belong to a single
dynamical system in the topological plane R2

Ω. The four red points have
coordinates p

?
2,

?
2q. The direction of the flow across the upper boundary is

reversed at p
?

2,
?

2q.
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Figure 12.4.1 depicts the dynamical system in the plane R2
Ω and two fixed

points. A third fixed point p2, 2q P R2
Ω lies at the upper corner of the figures.

The main result of this chapter is the following theorem. From Figure 12.4.1,
we observe that the theorem is geometrically plausible.

Theorem 12.4.2. Let zptq be any Fuller trajectory in M . Assume that
πpzptqq R tq˚

˘u. Then

• The trajectory zptq is defined for all t P R.

• The trajectory πpzptqq remains bounded away from p0, 0q P R2
Ω.

• If U Ď R2
Ω is any neighborhood of q˚

`, the trajectory πpzptqq eventually
enters and remains in U .

• If U Ď R2
Ω is any neighborhood of q˚

´, the trajectory πpzptqq was in U
for all sufficiently negative times.

The proof appears at the end of the chapter in Section 12.6, after a series
of lemmas. The first of these lemmas describes the movement of trajectories
in R2

Ω across the boundaries of the regions Ωϵ2ϵ3 .

Lemma 12.4.3. Along each boundary curve between regions Ωϵ2,ϵ3 the vector
field points along the tangent to the curve. At the boundary curve x3 “ x22{2
(excluding endpoints p0, 0q and p2, 2q), the images πpzptqq of Fuller trajectories
pass from Ωϵ2´ into Ωϵ2`, for ϵ2 “ ˘1. At the boundary curve x3 “ x2
(excluding endpoints p0, 0q and p2, 2q), the images of Fuller trajectories pass
from Ω´ϵ3 into Ω`ϵ3 if x2 “ x3 ă

?
2; and they pass in the other direction

from Ω`ϵ3 into Ω´ϵ3 if x2 “ x3 ą
?

2, for ϵ3 “ ˘1.

Proof. Along the boundary x2 “ x3 the vector field has the form v2 “ v3, so
that the vector field is tangent to the boundary. Similarly, the vector field
along the boundary x3 “ x22{2 is also tangent to the boundary. However,
because of non-uniqueness of trajectories, the flow does not move along the
boundaries!

We obtain a better approximation to the flow near a boundary of Ωϵ2,ϵ3

by taking the section p “ ψpx2, x3, ϵ2, ϵ3q P M , then expanding the Fuller
trajectory zptq with initial condition p at t “ 0 in a Taylor approximation f ,
then taking πpzptqq.
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Following this procedure at the boundary point px2, x3, ϵ2, ϵ3q “ ps, s2{2, ϵ2, ϵ3q,
for s P p0, 2q, with normal u “ ps,´1q, we find that the trajectory moves
from Ωϵ2´ to Ωϵ2`.

u ¨ πpzptqq “ ´
p4 ` 7s2q

8 t2 ` Opt3q ϵ2 “ ϵ2, ϵ3 “ signptq.

Following this procedure at the boundary point px2, x3, ϵ2, ϵ3q “ ps, s, ϵ2, ϵ3q,
for s P p0, 2q, with normal u “ p´1, 1q, we find that the trajectory moves
from Ω´ϵ3 to Ω`ϵ3 if s ă

?
2, and the direction between regions reverses when

s ą
?

2.

u ¨ πpzptqq “ ´
ps2 ´ 2q2

8u t2 ` Opt3q, ϵ2 “ signptp2 ´ s2qq, ϵ3 “ ϵ3.

The next lemma analyzes behavior near px2, x3q “ p0, 0q.
Lemma 12.4.4. Let z be a Fuller trajectory in M , defined on some open
time interval. The trajectory z extends to a trajectory in M for all t P R.
Moreover, the image t ÞÑ πpzptqq is bounded away from px2, x3q “ p0, 0q.

Proof. The vector field pv2, v3q is bounded. The base space R2
Ω fails to be

compact because of the omission of the corner point p0, 0q from Ω. The
image πpzptqq of a Fuller trajectory on an open time interval can be extended
in R2

Ω to all time, then lifted to M to extend zptq, provided the trajectory
downstairs remains bounded away from p0, 0q. Thus, the lemma will follow
if we prove that trajectories downstairs are bounded away from p0, 0q, the
common endpoint of all boundary curves.

We use polar coordinates px2, x3q “ pr cospθq, r sinpθqq. We may assume
that px2, x3q is not on a boundary edge of Ωϵ2,ϵ3 , because earlier analysis
shows that Fuller trajectories cross the boundary edges at isolated times. We
analyze several subcases according to small neighborhoods of p0, 0q in the
following separate pieces. We use a hodgepodge of arguments.

On Ω`´,
v3 “ 2x3 ` Opr2q,

so that x3ptq is increasing, moving away from p0, 0q.
On Ω0

``, we consider two subcases. In the first subcase, if x3 ď x2{2 in a
small neighborhood of p0, 0q, then θ is decreasing and

r1
“ cos θ

a

1 ´ tan2 θ ` Oprq,
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so that r1 is positive and bounded away from 0, so that the trajectory moves
away from p0, 0q. In the other subcase, if x3 ě x2{2 in a sufficiently small
neighborhood of p0, 0q, then the sign of the planar curvature of px2ptq, x3ptqq

is positive and the tangent to the curve separates the trajectory from p0, 0q.
Next, consider Ω0

´´. In the subcase near p0, 0q where x3 ě x2{10, the
curvature argument from Ω`` also applies here. In the subcase near p0, 0q

where x3 ď x2{10, then v2 ă 0 and v3 ą 0. Along a trajectory, x3 is a function
of x2, and we have

dx3
dx2

“
v3
v2

ď
?

2x3. (12.4.1)

Integrating this differential inequality, we obtain
a

2x3ptq ě x2ptq ` c,

where c “
a

2x3p0q ´ x2p0q is positive on the interior of Ω´´. This inequality
bounds the trajectory away from p0, 0q.

Finally, consider Ω0
´`. We have v2, v3 ă 0. In this case, inequality (12.4.1)

holds, and we proceed as in the previous case.

12.5 A Special Trajectory
Modulo the action of the virial group, there is a unique Fuller trajectory

whose image in R2
Ω passes through equilibrium point q2,2 :“ px2, x3, ϵ2, ϵ3q “

p2, 2,´1, 1q. Using the section ψ of the bundle, the Fuller trajectory is
determined by the initial condition pz1p0q, z2p0q, z3p0qq “ p1, 2i, 2q “ ψpq2,2q
at t “ 0. We call this particular trajectory zspec the special Fuller trajectory.
Figure 12.5.1 shows the image (in red) of the special Fuller trajectory in
Ω´` and its subsequent trajectory in Ω``. The signs pϵ2, ϵ3q are discarded,
so that the figure shows Ω´` superimposed on Ω``. At the point where
πpzptqq meets the edge x2 “ x3, with x2 ă 2, the curve crosses from Ω´`

to Ω``. Figure 12.5.2 shows that the crossing occurs at the positive zero
of πpzptqq ¨ p1,´1q near t “ 0.9. When t is large, the special trajectory
approaches the stable equilibrium point q˚

` P Ω``.
At px2p0q, x3p0qq “ p2, 2q, the image trajectory px2ptq, x3ptqq moves from

Ω`´ to Ω´` (so that p2, 2q is not a true fixed point, when higher order
information from the Fuller trajectory in M is retained).

x2ptq “ 2´
17
4 t

2
`Opt3q, x3ptq “ 2´

9
2t

2
`Opt3q, ϵ2 “ ´signptq, ϵ3 “ signptq.
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The special trajectory invariant under time reversal τ . Its trajectory for
negative times is obtained by symmetry.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 12.5.1: This figure shows the image (in red) in Ω of the special Fuller
trajectory through z “ p1, 2i, 2q. (All four regions Ω˘˘ are superimposed in
this figure.) The red curve meets the boundary x2 “ x3 of Ω`` at two points:
at p2, 2q at time zero and at a second point at about time t “ 0.9. For large
values of t, the curve approaches the stable equilibrium point q˚

` in Ω``.
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Figure 12.5.2: This figure shows u ¨ πpzptqq, where u “ p1,´1q. The graph
gives the deviation of πpzptqq from the boundary curve x2 “ x3. Here zptq is
the special Fuller trajectory with initial condition z “ p1, 2i, 2q at t “ 0. The
signs pϵ2, ϵ3q are ignored, but πpzptqq P Ω´` for t less than the positive zero
near t “ 0.9, then πpzptqq passes into Ω``.

Let tc « 0.9 be the time at which qc :“ πpzspecptcqq P tx2 “ x3u. Let
Ωspec` be the narrow region in Ω´` bounded by πpzspecptqq, for t P r0, tcs, and
by the linear segment rqc, p2, 2qs from qc to p2, 2q along the edge x2 “ x3. By
our analysis of boundary behavior, trajectories in Ωspec`, must enter through
Ω`` along the segment rp

?
2,

?
2q, p2, 2qs and exit back into Ω`` along the

segment rqc, p
?

2,
?

2qs. The component v3 of the vector field is negative on



12.6. PROOF 189

Ωspec`, so that the trajectories always progress southward monotonically from
entrance to exit.

12.6 Proof
Proof. We sketch a proof of Theorem 12.4.2, relying on a few numerical
calculations as needed. The first two claims of the theorem follow from
Lemma 12.4.4.

Consider trajectories in Ω´`zΩspec`. The component v3 of the vector
field is negative on Ω´`. Trajectories must enter from Ω´´ along the lower
boundary x3 “ x22{2 and have a soutward drift until exiting along the edge
x2 “ x3 into Ω`` along the open segment between p0, 0q and qc.

Let Ωspec´ Ă Ω`´ be the region obtained from Ωspec` by reversing signs
ϵ2 ÞÑ ´ϵ2 and ϵ3 ÞÑ ´ϵ3. Then the flow on Ω`´zΩspec´ is obtained by reversing
the flow on Ω´`zΩspec`: the trajectories move northward, entering from Ω´´

and exiting into Ω`` along the lower boundary x3 “ x22{2.
Similarly, the behavior on Ωspec´ Y Ω´´ will be the time reversal of

Ωspec` Y Ω``, which we describe next.
Finally, we describe the flow on Ωspec` Y Ω``. The flow on Ωspec` is

described in the previous section. Consider Ω``. The point q˚
` is a stable

equilibrium point. By a constructive procedure using the Lyapunov equation,
there exists an explicit Lyapunov function on a small disk

Dr “ tx “ px2, x3q | }x ´ q˚
`} “ ru.

around q˚
` [37]. Let t1 be the time at which πpzspecptqq enters the disk Dr. We

consider the curve γ from qc to q˚
` to given by the arc πpzspecptqq for t P rtc, t1s

followed by the linear segment from πpzspecpt1qq to q˚
`.

We compute detpppx2, x3q ´ q˚
`q, pv2, v3qq ě 0 on Ω`` with equality if and

only if px2, x3q is one of the three points p0, 0q, p2, 2q, or q˚
`. This means

that the trajectories always wind monotonically around the fixed point q˚
`.

In particular, as it winds, every trajectory must meet the curve γ. By
the uniqueness of trajectories, a trajectory meeting the special trajectory
πpzspecptqq must equal the special trajectory. Every other trajectory must
meet γ inside Dr. Thus, every trajectory (excluding the fixed point at q˚

´)
must enter the Lyapunov disk Dr, and from there be attracted q˚

`.
The point q˚

´ is related to q` by time reversal, so the final claim of
Theorem 12.4.2 follows from what we have already proved about q˚

`.
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Part V

A Proof of Mahler’s First
Conjecture
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Chapter 13

Fuller System for Triangular
Control

13.1 Introduction
The Reinhardt conjecture of 1934 asserts that among centrally symmetric

convex disks, the smoothed octagon has the least greatest packing density.
The smoothed octagon is a modification of the regular octagon obtained by
rounding its corners with hyperbolic arcs. In 1947, Kurt Mahler conjectured
a weak form of the Reinhardt conjecture, when he wrote

It seems highly probable from the convexity condition, that the
boundary of an extreme convex domain consists of line segments
and arcs of hyperbolae. So far, however, I have not succeeded in
proving this assertion. –Mahler 1947.

We refer to this assertion as Mahler’s First conjecture. The next year, Mahler
rediscovered Reinhardt’s conjecture from 1934, which we call Mahler’s Second
conjecture.

In this part of the book, we give a proof of Mahler’s First conjecture.
The basic outline of the proof is as follows. We make a detailed study of the
Fuller system. By restriction of the dynamical system to switching times,
the Fuller system becomes a discrete dynamical system with dynamics given
by a Poincaré first recurrence map. We blow up the space at the singular
locus. Doing so introduces an exceptional divisor, which becomes the focus of
attention. We find that the discrete Fuller-Poincaré map has exactly two fixed

193
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points on the exceptional divisor. One is stable and the other is unstable.
The fixed points are exchanged by a time-reversing symmetry. (These fixed
points can be interpreted as inward and outward self-similar spirals of the
Fuller system.) We analyze the global dynamics of the Fuller system on the
exceptional divisor and show that the basin of attraction of the stable fixed
point is the entire exceptional divisor (excluding the other fixed point).

Returning to the Reinhardt dynamical system, we consider its discrete
Poincaré map. We study the stable and unstable manifolds at the two fixed
points (which are also fixed points of the Reinhardt dynamics). We show that
any trajectory of the discrete Reinhardt dynamical system that has a cluster
point on the exceptional divisor, must approach the exceptional divisor along
the stable manifolds of the fixed points. However, we show that the stable and
unstable manifolds at the fixed points do not contain any periodic trajectories,
as required by the solution to the Reinhardt problem. We conclude that
the solution of the Reinhardt problem is given by a trajectory that does not
meet the singular locus. From this, it follows that the solution is bang-bang
with finitely many switches. It then follows that the solution the Reinhardt
problem is a smoothed polygon.

13.2 Fuller system for Triangular Control
We define the Fuller system for triangular control to be the following

controlled system of ordinary differential equations, taking values in C.

z1
3 “ z2, z1

2 “ z1, z1
1 “ ´iu, uptq P t1, ζ, ζ2u “: VT , (13.2.1)

where ζ “ expp2πi{3q is a primitive cube root of unity. The control function
u is a measurable function of a real variable, taking values in VT . We set
z0 :“ ´iu so that z1

1 “ z0. When u P C is constant, we can solve the Fuller
system ODEs, to obtain

z0 “ ´iu,

z1ptq “ ´itu ` z01 ,

z2ptq “ ´it2u{2! ` z01t ` z02 ,

z3ptq “ ´it3u{3! ` z01t
2
{2! ` z02t ` z03 ,

(13.2.2)

with initial conditions pz01 , z
0
2 , z

0
3q at t “ 0.
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13.2.1 Hamiltonian
The Hamiltonian for the Fuller system is

HF pz, uq “ ℜpz1, z2iq ` ℜpu, z3q, z “ pz1, z2, z3q (13.2.3)

“
1
2

3
ÿ

j“0
p´1q

jℜpz3´j, izjq. (13.2.4)

We seek solutions on an interval rt1, t2s for which the control function u
maximizes the Hamiltonian.

HF pzptq, uptqq ě HF pzptq, ζkq, ζk P t1, ζ, ζ2u, (13.2.5)

and such that
HF pzptq, uptqq “ 0, @t P rt1, t2s. (13.2.6)

We define the maximized Hamiltonian to be

H`
F pzq :“ max

uPVT
HF pz, uq.

It is easy to check that HF is constant along every segment with constant
control. Also, if u is chosen according to the maximum principle, then HF is
constant along trajectories.

13.2.2 Switching Function
We say that u P VT is the first control, if it is the optimal control starting

at switching time t “ 0 until the first positive switching time tsw ą 0, for
a given initial condition z0 P C3z0. (It will become clear from the proof of
Lemma 13.2.6 that t “ 0 is an isolated zero of the relevant switching function,
and that the notion of first control is well-defined.)

Let z0 “ pz01 , z
0
2 , z

0
3q P C3. We write the initial conditions in polar coordi-

nates: z0j “ rje
iθj . Let z3pt, u, z0q be the solution (13.2.2) to the Fuller

system with first control u “ ζk and initial condition z0. Set r0 “ 1,
θ0 “ p2πk{3q ´ π{2, and z00 “ ´iu “ r0e

iθ0 . The switching function from
control ζ i to ζj is

χukui´ujptq “ χkijptq “ χukij ptq :“ 1
?

3
ℜpui ´ uj, z3pt, uk, z

0
qq.
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When k “ i, we drop the superscript and write χij for χiij. We assume i ‰ j

mod 3 so that |ui ´ uj| “
?

3, and write

ui ´ uj “
?

3eiθij , i, j P Z, pand i “
?

´1q.

Then χuijptq “ ℜpeiθij , z3pt, u, z
0qq. We have

θi,i`1 “ ´π{6 ` 2πi{3
θi`1,i “ 5π{6 ` 2πi{3, θi,i´1 “ π{6 ` 2πi{3, i P Z.

The switching function simplifies to the form

χkijptq “

3
ÿ

m“0

tm

m!r3´m cospθ3´m ´ θijq.

13.2.3 Symmetry
We consider the symmetries of the system. We start with positive scaling.

Lemma 13.2.1. If pz1, z2, z3, uq is a solution to the Fuller system on rt1, t2s
satisfying (13.2.5) and (13.2.6), then pz̃1, z̃2, z̃3, ũq is a solution on rt1r, t2rs
satisfying the same constraints, where z̃jptq “ rjzjpt{rq, ũptq “ upt{rq, and
where r is real and positive.
Proof. This holds by direction substitution into the Fuller system and into
the Hamiltonian.

There is a discrete rotational symmetry.
Lemma 13.2.2. If pz1, z2, z3, uq is a solution to the Fuller system satisfying
(13.2.5) and (13.2.6) with initial value z0 “ pz01 , z

0
2 , z

0
3q, then pζz1, ζz2, ζz3, ζuq

is also a solution with initial value ζz0 satisfying the same constraints.
Proof. Again, this holds by direct substitution.

We call the group G generated by discrete rotational symmetry and
rescalings the virial group. (This virial group is analogous to but not identical
to the virial group that was introduced earlier for circular control.) We say
that z and z̃ are equivalent and write z ” z̃ if one can be carried to the other
by the virial group, that is, by a combination of scaling and discrete rotations,
as described by Lemmas 13.2.1 and 13.2.2.

There is also a time-reversal symmetry. Let ¯̈ denote complex conjugation.
If pz1, z2, z3q P C3, set τpz1, z2, z3q “ pz̄1,´z̄2, z̄3q.



13.2. FULLER SYSTEM FOR TRIANGULAR CONTROL 197

Lemma 13.2.3. If pz1, z2, z3, uq is a solution to the Fuller system on rt1, t2s
satisfying (13.2.5) and (13.2.6), then pz̄1p´tq,´z̄2p´tq, z̄3p´tq, ūp´tqq is a
solution on r´t2,´t1s satisfying the same constraints and with terminal value
τpz0q.

Proof. Direct substitution.

The following simple lemma will allow us to draw powerful conclusions
about the discontinuities of Fuller system dynamics. It relates the multiplici-
ties of roots of one switching function to the multiplicities of roots of another
switching function at time t “ 0.

Lemma 13.2.4. Let t0 P R, z0 P C3, and u P C. Let z˚ “ zpt0, z
0, uq be the

value of the Fuller ODE at time t0, with initial condition z0 at time t “ 0,
using constant control u for all t. For any v1 ´ v2 P C, the switching function
satisfies

χuv1´v2pt0 ´ t, z0q “ χūv̄1´v̄2pt, τpz˚
qq.

Proof. Direct substitution.

We also have invariance with respect to multiplication by ζ.

χζuζpv1´v2q
pt, ζz0q “ χuv1´v2pt, z0q. (13.2.7)

We say that u P VT is the most recent control, if it is the optimal control
for small negative time t ă 0 until switching time t “ 0, for a given initial
condition z0 P C3z0.

For each z0 “ pz01 , z
0
2 , z

0
3q P C3, and u P VT , let zpt, z0, uq be the solution

to the Fuller ODE with initial condition pz01 , z
0
2 , z

0
3q and control u.

Lemma 13.2.5. We have for each t P R,

τpzp´t, z0, uqq “ zpt, τpz0q, ūq.

Also, the most recent control of z0 is u, if ū is the first control of τpz0q.
Moreover, the most recent switching time for initial condition z0 is ´tsw,
where tsw is the first positive switching time for τpz0q.

Proof. The lemma follows from the time-reversal symmetry (Lemma 13.2.3).
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13.2.4 Walls
We consider the Hamiltonian maximization condition (13.2.5) in more

detail. The part of the Hamiltonian depending on the control u is ℜpz3, uq. At
a switching time, up to equivalence by a discrete rotation, the maximization
principle takes the form

ℜpz3, ζq “ ℜpz3, ζ
2
q ě ℜpz3, 1q.

This defines the switching between controls ζ and ζ2. The set of solutions in
z3 is Rď0. We call this set a wall. Now allowing discrete rotations, we define
the set of walls

W :“ Rď0 Y Rď0ζ Y Rď0ζ
2

“: W0 Y W1 Y W2.

Switching of controls can only occur when z3 P W .

13.2.5 Switching Times
Define the following function

v : pC3
z0q ˆ VT Ñ R3

vpz0, uq “ pℜpz03 , uq,ℜpz02 , uq,ℜpz01 , uqq.

(Note the backwards indexing.) We call vpz0, uq the control vector of u.
We define the lexicographic order on vectors v “ pv1, . . .q by

0 ă v ô 0 “ v1 “ v2 “ ¨ ¨ ¨ “ vk, 0 ă vk`1

u ă v ô 0 ă v ´ u

Lemma 13.2.6. Suppose z0 “ pz01 , z
0
2 , z

0
3q P C3z0. Let VT,max Ă VT “

t1, ζ, ζ2u be the set of controls that have the maximum lexicographical value
among tvpz0, 1q,vpz0, ζq,vpz0, ζ2qu. (That is, let VT,max “ arg maxuPVT vpz0, uq Ď

VT .) Then

• If VT,max “ tuu, then u is the first control.

• If VT,max “ tζ i, ζ i`1u has two elements, then the first control is ζ i.

• VT,max ‰ VT .
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Proof. If two vectors have the same lexicographical order then the two vectors
are equal. If VT,max “ VT , then all three control vectors are equal. This
implies that z0 “ 0, which is contrary to hypothesis. Thus, VT,max is a proper
subset of VT .

The first control is determined by the maximum principle for t small
and nonnegative. By the maximum principle at t “ 0 and the form of
the Hamiltonian, the first control must be among the controls u P VT that
maximize ℜpz03 , uq. If there is more than one maximizer, then we break
the tie by passing to the first-order term in the control function z3ptq “

z03 ` z02t ` ¨ ¨ ¨. That means we consider terms ℜpz02 , uq. If again, there is a
tie, we consider terms ℜpz01 , uq. In this way, the first control must maximizes
the lexicographical order.

Finally, if VT,max contains two controls, we break the tie by considering the
highest order term ´iut3{3! of z3ptq, where now u is itself the first control. By
rotational symmetry, assume without loss of generality that VT,max “ t1, ζu.
Assume for a contradiction that the first control is u “ ζ. By the maximum
principle we obtain the following contradiction for t small and positive,

´
t3

4
?

3
“ ℜp´iζt3{3!, ζ ´ 1q ě 0.

This contradiction implies that u “ 1.

Corollary 13.2.7. Let pz1, z2, z3q P C3z0 satisfy |zi| ď ri, for i “ 1, 2, 3. Let
u be the first control. Then the switching function from u to u{ζ has a positive
root that is less than 10r. In particular, the first switching time tsw is less
than 10r.

Proof. Permuting by VT , we may assume without loss of generality that the
first control mode is u “ ζ.

We claim that vpz, ζq is greater than vpz, 1q in the lexicographic order.
By the choice of first control mode, vpz, ζq is at least as great as vpz, 1q.
Assume for a contradiction, that the two vectors are equal. By the lemma
VT,max “ tζ, 1u. Again, by the lemma, this implies that the first control is
u “ 1, which is contrary to hypothesis.

The switching function from u “ ζ to u{ζ “ 1 is

?
3χptq “ ℜpζ ´ 1, z3ptqq “ ´

t3

4
?

3
`

2
ÿ

k“0
ℜpζ ´ 1, z3´kq

tk

k! .
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The highest order term has negative coefficient, and by our claim about
control vectors, the lowest order nonzero coefficient of the polynomial is
positive. Hence a positive root exists. If t ě 10r, then the bound

t´3
2
ÿ

k“0
|ℜpζ´1, z3´kq|tk{k! ď

ÿ?
3|z3´k|tk´3

{k! ă
?

3
ÿ

10k´3
{k! ă 1{p4

?
3q

on the lower order terms of χptq implies that χptq ă 0. This completes the
proof.

The switching function has a simple but remarkable symmetry.

Lemma 13.2.8. Fix z0 P C3zt0u, with z03 P Rď0, the wall between control
modes ζ and ζ2. Then the switching functions with initial conditions z0 at
t “ 0 satisfy

χζ,ζ2ptq ` χζ2,ζptq “ 0,
for all t.

Proof. This is an easy computation.

As a corollary, as we switch back and forth between control modes ζ and
ζ2, the consecutive switching times are given by the consecutive spacings
between roots of a single cubic polynomial. Upon reaching the largest root of
the cubic, the control mode is forced to switch to u “ 1.

13.3 Singular Locus
We define the singular locus to be the origin in C3. The next lemma

shows that we cannot reach the singular locus, with a bang-bang solution
with finitely many switches.

Lemma 13.3.1. Let z0 P C3z0 with z03 P W and let z be the trajectory for
t ě 0 with initial condition zp0q “ z0 at t “ 0 with constant control given by
the maximum principle. Then zptq ‰ 0, for all t.

Proof. Up to equivalence, we can assume that the constant control is u “ 1.
Assume for a contradiction that zpt0q “ 0. Solving the system of linear
equations (13.2.2) with control u “ 1, we obtain

z0j “ p´1q
j`1itj0{j!, j “ 1, 2, 3.
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By assumption z0 ‰ 0, so that t0 ‰ 0. Then z03 “ it30{6 R W, which is
contrary to assumption. Thus, zptq ‰ 0, for all t.

Let UT Ă C be the convex hull of VT . The Fuller system has a singular
arc given by z1ptq “ z2ptq “ z3ptq “ 0 and uptq “ 0 (the center of UT ) for all
t. This is an obvious solution to the Fuller ODE. We show the nonexistence
of singular arcs, other than this one. The nonexistence of singular arcs was
proved previously for the Reinhardt system. It comes as no surprise that it
holds for the Fuller system.

Lemma 13.3.2. Let pz1, z2, z3, uq, zj : rt1, t2s Ñ C3 absolutely continuous,
u : rt1, t2s Ñ UT measurable, be a controlled Fuller trajectory satisfying the
maximum principle for the Hamiltonian HF . Suppose that the trajectory is
singular in the sense that for all t P rt1, t2s, the set of controls maximizing the
Hamiltonian is a face (and not a vertex). Then pz1, z2, z3q is identically zero,
and the control function is zero almost everywhere.

Proof. We may assume t1 “ 0. Let u : r0, t2s Ñ UT be a measurable
control function. Let u3 be a solution to the initial value problem u3

3 “ u,
up0q “ u1p0q “ u2p0q “ 0. (More precisely, we assume that u2

3 is absolutely
continuous and its derivative is u almost everywhere.) A solution to the initial
value problem is

u3ptq “
1
2

ż t

0
upsqpt ´ sq2 ds. (13.3.1)

This representation of a solution leads to an estimate

|u3| ď
1
2

ż t

0
s2 ds “ Opt3q.

Then
z3ptq “ ´iu3 ` z01t

2
{2! ` z02t ` z03 . (13.3.2)

We consider two cases. In the first case, suppose that over the interval
r0, t2s, the Hamiltonian is independent of the control in UT , so that the set of
maximizers is all of UT . Since UT spans C, by the form of the Hamiltonian,
this implies that z3ptq “ 0 on r0, t2s. By the form of the solution z3 and
the Opt3q estimate on u3, we have z01 “ z02 “ z03 “ 0. Then z3 “ ´iu3 “ 0,
identically. Then also uptq “ u3

3 ptq “ 0, almost everywhere. This is the
singular arc described above.
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In the second case, assume for a contradiction that over the interval r0, t2s,
the Hamiltonian is independent of the control function uptq taking values
in the edge rζ, ζ2s Ă UT (say). If uptq P rζ, ζ2s, then ℜpuptqq “ ´1{2 and
ℜpu3ptqq “ ´t3{12. The independence of the Hamiltonian and (13.3.2) imply

0 “ ℜpz3ptq, ζ ´ ζ2q “

?
3

2
t3

3! ` pquadratic in tq

for all t. This is absurd.

13.4 Blowing up Fuller
We describe a (weighted) blowing up process at the singular locus. Set

φpzq “ φpz1, z2, z3q :“
˜

3
ÿ

j“1
|zj|

6{j

¸1{6

, z “ pz1, z2, z3q P C3.

Then
φprz1, r

2z2, r
3z3q “ rφpz1, z2, z3q, r ą 0.

Set Ξ :“ tξ P C3 | φpξq “ 1u. We have a diffeomorphism

C3
z0 Ø pRą0 ˆ Ξq,

pz1, z2, z3q ÞÑ pr, pξ1, ξ2, ξ3qq “ pr, pz1{r, z2{r
2, z3{r

3
qq, r “ φpzq,

pz1, z2, z3q “ prξ1, r
2ξ2, r

3ξ3q Ð[ pr, pξ1, ξ2, ξ3qq.

We will often move between the two sides of this diffeomorphism without
warning, considering the right-hand side as weighted spherical coordinates
for the left-hand side. Let πrad : Rą0 ˆ Ξ Ñ Rą0 and πang : Rą0 ˆ Ξ Ñ C3

be the first (radial) and second (angular) projections. We refer to πradpqq as
the radial component of q and πangpqq as the angular component, by analogy
with spherical coordinates. We refer to the left-hand side as the Cartesian
coordinates.

From a slightly different perspective, Rě0 ˆ Ξ Ñ C3 can be viewed as an
oriented weighted real blowup of C3 at the origin (the singular locus), where Ξ
is a weighted space, t0u ˆ Ξ is the exceptional divisor over the origin 0 P C3,
and each Rě0 ˆ tξu is a real positive ray through the origin.
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The diffeomorphism is equivariant with respect to the virial group, where
rescalings act by multiplication on the radial component and the cyclic group
VT acts by scalar multiplication on the angular component of Rą0 ˆ Ξ.

Set
ΞW “ tpξ1, ξ2, ξ3q P Ξ | ξ3 P Wu.

We view it as the Poincaré section for the Fuller system. Let ΞW{VT be the
quotient of ΞW by the cyclic group action of VT on ΞW , acting diagonally.
Under the group action, the three walls of W are identified with one another.

13.5 Dynamical System and Equilibrium Points
We define a discrete-time autonomous dynamical system F : pRą0ˆΞqW Ñ

pRą0 ˆ ΞqW as follows. Let q P pRą0 ˆ ΞqWi . The point q has Cartesian
coordinates z0 P C3z0 with z03 lying in the ith wall. Let zptq be the solution
to the Fuller differential equations with initial condition zp0q “ z0 at time
t “ 0 and control defined by the maximum principle. Let tsw ą 0 be the first
positive switching time. Then let F pqq P pRą0 ˆ ΞqW equal zptswq, rewritten
in spherical coordinates Rą0 ˆ Ξ. By the equivariance of the construction
with respect to cyclic rotations VT , we find that F descends to a well-defined
map (denoted by the same symbol):

F : pRą0 ˆ ΞqW{VT Ñ pRą0 ˆ ΞqW{VT .

We can go further by considering scaling symmetries of the Fuller system.
By the scaling symmetries, it is clear that if the angular components πangpq1q “

πangpq2q are equal, then the angular components πangF pq1q “ πangF pq2q of
the images are equal. Thus, F gives a well defined discrete-time autonomous
dynamical system

Fang : ΞW Ñ ΞW , and by equivariance Fang : ΞW{VT Ñ ΞW{VT .

By Poincaré map, we will always mean a map that discretizes a bang-bang
dynamical system, by passing from one switching time to the next. In this
sense, we think of ΞW as the Poincaré section and Fang as the Poincaré
map of the Fuller dynamical system on the angular component (with the
understanding that the virial group symmetries have been built into Fang).
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Remark 13.5.1. The notation F will be used in this chapter for various
versions of the Poincaré map in a context-dependent way. The symbol F can
denote either the Poincaré map for the Fuller system or the Poincaré map
for the Reinhardt system, depending on the context. For the Fuller system,
various domains are possible:

C3
zt0u, ΞW , ΞW,0, ΞW{VT , ΞW,0{VT ,

or various coordinate charts of these domains.

We analyze the equilibrium points of the dynamical system Fang.

Lemma 13.5.2. The dynamical system Fang has exactly two fixed points in
ΞW{VT at which the Hamiltonian vanishes. They are the switching points
qout, qin of outward and inward triangular spirals. They are related by time-
reversing symmetry: τpqoutq “ qin. After virial rescaling to make the real part
of the first coordinate equal to ´1, the fixed point qout takes the form

qout ” p´1 ` i
´1 ` r

?
3p1 ` rq

,´
´1 ` r3

?
3p1 ` r3q

` i
1 ´ 3r ´ 2r2 ´ 3r3 ` r4

3p1 ` r ` r3 ` r4q
,

´2p1 ` r ´ 4r3 ´ 7r4 ´ 9r5 ´ 7r6 ´ 4r7 ` r9 ` r10q

9p1 ` rq2p1 ´ r ` r2qp1 ` r3 ` r6q
q mod G,

(13.5.1)

where r “ rscale « 6.27 is the unique real root greater than 1 of the palindromic
polynomial

1 ´ 5r ´ 7r2 ´ 5r3 ´ 7r4 ´ 5r5 ` r6.

The first switching time of the initial conditions on the right-hand side of
(13.5.1) is

tsw “
2p1 ` r ` r2q

?
3pr ` 1q

« 7.4

Proof. Let q be a lift to ΞW of a fixed point in ΞW{VT . Let u P VT be the
control, starting at t “ 0 until the first positive switching time tsw. Let
z0 P C3z0 be the Cartesian coordinates of p1, qq P Rą0 ˆ ΞW . The fixed-point
conditions are

zjptswq “ rjζ1z
0
j , pmodulo Gq, (13.5.2)
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for some r ą 0 and some ζ1 P VT , where zjptswq is given by (13.2.2). Solving
the linear equations (13.2.2) for z03 , we find

z03 “ ´i
t3swup1 ` 2rζ1 ` 2r2ζ1 ` r3ζ21 q

6p´1 ` rζ1qp´1 ` r2ζ1qp´1 ` r3ζ1q
.

It follows that z03 ‰ 0 (because r ą 0, tsw ą 0 and ζ1 P VT ). From the control
u, at times t “ 0, tsw we must have by the maximum principle

ℜpz03 , uq ě ℜpζ2z
0
3q, @ζ2 P VT

r3ℜpz03ζ1, uq “ ℜpz3ptswq, uq ě ℜpζ2z3ptswqq, @ζ2 P VT

ℜpz03 ūq “ ℜpz03ζ1ūq ě ℜpz03ζ
2
1 q,

z03 ūζ
2
1 P Rď0.

This final condition implies that the scaling factor in the virial group is

pr, ζ1q P tp1, ζq, prscale, ζ
2
q, p1{rscale, ζ

2
qu Ă Rą0 ˆ VT ,

where the scaling factor rscale « 6.27 and 1{rscale are the only two real roots
of the palindromic polynomial given in the lemma, and ζ “ expp2πi{3q. If
r “ 1, then HF pz0, uq “ 1{p4

?
3q ‰ 0, and the solution is rejected. The two

other solutions are the outward triangular spiral with parameters pr, ζ1q “

prscale, ζ
2q and the inward triangular spiral with parameters p1{rscale, ζ

2q. The
coordinates in the statement of the lemma have been rotated by VT , choosing
the first control u “ ζ21 , to make the third coordinate real and negative.

Remark 13.5.3. The fixed point qout of Fang is an outward triangular spiral
for F in a precise sense. By (13.5.2), the iterates of F satisfy

F k
pqoutq “ prscale, ζ

2
q
k

¨ qout,

where ¨ is the virial action. These are discrete points on a logarithmic spiral.
The points move outward because rscale ą 1. Similarly, F kpqinq are points on
an inward moving logarithmic spiral.

Remark 13.5.4. The fixed point qfix corresponding to pr, ζ1q “ p1, ζq P G in
the proof has the form

qfix “ p1,´i{2,´1{2q mod G.
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This fixed point has a nice interpretation. In Section 7.5, we constructed a one-
dimensional family of Pontryagin extremals of the Reinhardt control problem,
indexed by a parameter y0 P p1{

?
3, 1q. This family includes the smoothed

octagon and the smoothed 6k` 2-gons. Setting y0 “ 1 ´r, we may express this
one-parameter family of extremals in coordinates pz1prq, z2prq, z3prqq, following
a procedure described below in Section 14.2. Letting r tend to zero, we have
asymptotics

pz1prq, z2prq, z3prqq “ qfix ` higher order terms mod G.

Thus, in a precise sense, qfix is the fixed point in the Fuller system coming
from the family of extremals in Reinhardt system that includes the smoothed
octagon. It is particularly noteworthy that the Fuller-system Hamiltonian
is not zero at qfix, although it is constructed as a limit of points in the
Reinhardt-system Hamiltonian zero set.

By the constancy of the Hamiltonian, the map F restricts to the zero set
of the Hamiltonian.

Lemma 13.5.5. Restrict Fang to the subset ΞW,0{VT of ΞW{VT on which the
Hamiltonian vanishes. On that subset, the fixed point qout P ΞW,0{VT is an
asymptotically stable equilibrium, and the fixed point qin is unstable.

Proof. The second assertion follows from the first, because qin is obtained
by time reversal from qout. It suffices to show that qout is asymptotically
stable. This is a routine stability calculation. An open neighborhood of qout in
ΞW,0{VT is diffeomorphic to an open subset of R3. An explicit calculation of
the eigenvalues of the Jacobian matrix in terms of local coordinates centered
at qout gives the result. Numerically, the three eigenvalues have absolute value
less than 0.1. The calculations were made in Mathematica.



Chapter 14

Stable and Unstable Manifolds
at Fixed Points

In this chapter, we return to the Reinhardt dynamical system. More
specifically, we return to the blowup of the Reinhardt system and consider the
Fuller system as the restriction of the Reinhardt system to the exceptional
divisor of the blowup. We describe the stable and unstable manifolds at the
fixed points qin and qout, now viewed as fixed points in the blowup of the
Reinhardt system.

We use the parameter values d1 “ 3{2, ϵ “ 1, ρ “ 2, λcost “ ´1.
Any trajectory that meets the singular locus must have these parameter
values. Figure 14.0.1 gives a schematic representation of the Poincaré map
for Reinhardt system trajectories meeting the singular locus. This chapter
and the next one will prove theorems about the qualitative features of this
picture. In particular, the trajectories approach the singular locus toward the
fixed point qin along a stable curve W spqinq. The flow along the exceptional
divisor is governed by the Fuller system, and every point except qin lies in the
basin of attraction of qout. The unstable manifold W upqinq flows into the fixed
point qout. The trajectories exit the exceptional divisor along an unstable
curve W upqoutq at qout that meets the boundary of the star domain.

14.1 Lie Algebra Coordinates
In much of this book, we have worked with hyperboloid coordinates in

both Cartesian z and spherical pr, ξq coordinate form. We now return to Lie

207
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Figure 14.0.1: Schematic representation of the Poincaré map of the Reinhardt
system along trajectories that meet the singular locus. The picture is four-
dimensional and the exceptional divisor is three dimensional. The picture has
a time-reversing symmetry that reverses the direction of arrows.
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algebra sl2pRq coordinates. Moving forward, we will use the explicit solutions
to the ODEs with constant control, expressed in Lie algebra coordinates. For
computer calculations, sl2 coordinates have the slight advantage of avoiding
complex numbers.

In the interest of developing asymptotic formulas near the singular locus,
for any X,Λ1,ΛR P sl2 subject to the usual conditions detpXq “ 1, detpΛ1q “

d21 “ 9{4, we write1

X “ J ` rX̃, Λ1 “ p´3{2qJ ` r2Λ̃1, ΛR “ r3Λ̃R, (14.1.1)

for some X̃, Λ̃1, and Λ̃R P sl2, where r ą 0 is a real parameter. Let X̃, Λ̃1
and Λ̃R have matrix entries x̃ij, ℓ̃ij and ℓ̃Rij, respectively.

X̃ “

ˆ

x̃11 x̃12
x̃21 x̃22

˙

Λ̃1 “

ˆ

ℓ̃11 ℓ̃12
ℓ̃21 ℓ̃22

˙

Λ̃R “

ˆ

ℓ̃R11 ℓ̃R12
ℓ̃R21 ℓ̃R22

˙

.

We are particularly interested in points where r is small and positive, and
where x̃11 ą 0. We make the representation (14.1.1) unique by scaling by
r ą 0 so that x̃11 “ 1.

In Lie algebra coordinates, the rotational group action by the cyclic group
of order three is the action by powers of AdR. The walls are determined by
the vanishing of the switching functions. Up to rotational symmetry, we can
assume that the trajectory starts at the wall χ23 “ 0 between control matrices
Z010 and Z001.

To introduce a coordinate system, we restrict the domain by the conditions

0 ă r, x̃11 “ 1, ℓ̃21r
2

ă 3{2. (14.1.2)

Suppose Φpzq “ J`rX̃, z “ x` iy P h‹, with x ą 0. We have x̃21 ď
?

3´1{r
if and only if x ě 1{

?
3, which lies outside the star domain h‹ Ă h. Therefore

we assume x̃21 ą x̃˚
21prq :“

?
3 ´ 1{r. Set

H˚ :“ tpr, x̃q P R4
| x̃21 ą x̃˚

21prq, ℓ̃21r
2

ă 3{2u.

where we write x̃ :“ px̃21, ℓ̃11, ℓ̃21q P R3.
If r ą 0 and x̃21 ą x̃˚

21, then

1 ` rx̃21 ě 1 ` rx̃˚
21 “

?
3r ą 0.

1Here, Λ̃R is unrelated to an earlier term with the same name.
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Hence, we may invert 1 ` rx̃21. Then X is determined uniquely by r and x̃21.
Specifically,

X̃ “

˜

r ´p1`r2q

1`rx̃21
1 ` rx̃21 ´r

¸

.

The element Λ1 is uniquely determined by r, l̃11 and l̃21 when ℓ̃21r
2 ă 3{2

via the relations detpΛ1q “ 9{4, tracepΛ1q “ 0. Furthermore, ΛR P sl2 is
uniquely determined as a function of pr, x̃q P H˚ with r ą 0 by the three
linear equations

xX,ΛRy “ HpZ010, X,Λ1,ΛRq “ χ23pX,ΛRq “ 0, (14.1.3)

(which is always a full rank system of linear equations for ΛR). The diagonal
entries of ΛR have order Opr4q and the off-diagonal entries have order Opr3q.
The entries of ΛR are polynomials in r, x̃ij , ℓ̃ij , p1`rx̃21q´1, and p3{2´ℓ̃21r

2q´1.
In summary, pr, x̃q P H˚ with r ą 0 is a local coordinate for pX,Λ1,ΛRq.

14.2 Asymptotics
Let

x̃ “ px̃21, ℓ̃11, ℓ̃21q P R3, x̃11 “ 1.
We construct a uniquely determined element ξpx̃q P ΞW,0 as follows. For each
r ą 0 sufficiently small, we have 1`rx̃21 ‰ 0, ℓ̃21r2 ă 3{2, and these conditions
allow us to form a triple pXpr, x̃q,Λ1pr, x̃q,ΛRpr, x̃qq, as just described. By the
Cayley transform to SUp1, 1q, expressed in terms of hyperboloid coordinates,
the triple determines pwr, br, crq P C3. We set

ẑ1pr, x̃q “ wr{ρ, ẑ2pr, x̃q “ ´ibr{p2ρq, ẑ3pr, x̃q “ cr{p6ρq, ρ “ 2,

according to the truncation rules of Equation (11.2.4). We use Landau O to
describe asymptotic behavior as r tends to 0. A calculation gives

ẑ1pr, x̃q “
r

2px̃21 ` ix̃11q ` Opr2q,

ẑ2pr, x̃q “
r2

3! pℓ̃11 ´ iℓ̃21q ` Opr3q,

ẑ3pr, x̃q “
r3

4! pℓ̃R12 ` ℓ̃R21q ` Opr4q.
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Then we define ξpx̃q P ΞW,0 to be the angular component of

zpx̃q :“ lim
rÑ0

pẑ1pr, x̃q{r, ẑ2pr, x̃q{r2, ẑ3pr, x̃q{r3q.

(This limit exists and is nonzero.) By developing in a series, we have an
asymptotic relation between the Hamiltonians in the Reinhardt and Fuller
systems.

HpZu, Xpr, x̃q,Λ1pr, x̃q,ΛRpr, x̃qq “ 24r3HF pũ, zpx̃qq ` Opr4q,

where controls u P teju for Reinhardt and ũ P VT for Fuller correspond by
ej ÞÑ ζj´1, for j “ 1, 2, 3. The equations (14.1.3) imply

HF pzpx̃q, ζq “ HF pzpx̃q, ζ2q “ 0.

We are particularly interested in the controls Z010 (and ζ P VT ), because they
are the controls at the fixed point qout, when represented according to our
conventions.

Remark 14.2.1. For example, if we take

x̃out :“ px̃21out, ℓ̃11out, ℓ̃21outq “

ˆ

x1
y1
,
3x2
2y21

,
´3y2
2y21

˙

« p´2.39,´4.90,´1.12q,

where zout,i “ xi ` iyi, then ξpx̃outq is equal to the outward fixed point qout of
the Fuller system modulo the virial group.

We can write the Reinhardt-Poincaré map F in local coordinates pr, x̃q ÞÑ

F pr, x̃q. We expect asymptotic expansions in r of the Reinhardt system whose
leading term is given by the Fuller system. By Lemma 13.2.1, when taking
asymptotics, we should work with a rescaled time

s :“ t{r.

Remark 14.2.2. A general strategy is given by Manita and Ronzhina in
their inverted pendulum paper. We produce essentially equivalent results by
working with our explicit solutions to the constant control ODEs and computing
asymptotics using Mathematica. Their paper has also inspired our discussion
of blowup.
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The next lemma shows that the leading term in the constant control
solution for pX,Λ1,ΛRq is given by the Fuller system. By cyclic symmetry,
we may confine ourselves without loss of generality to the constant control
matrix Z010. For a given x̃, the first control of pXpr, x̃q,Λ1pr, x̃q,ΛRpr, x̃q is
u “ e2 for all sufficiently small r ą 0, provided we assume

ℓ̃11 ` ℓ̃21x̃21 ă 0, and ℓ̃21 ă 0.

Lemma 14.2.3. Let pX,Λ1,ΛRq be solutions (expressed in local coordinates
as prpsq, x̃psqq in rescaled time s “ t{r0) to the Reinhardt ODE with constant
control Z010 and initial condition pr0, x̃

0q (in local coordinates). Let z “

zpsq “ pz1psq, z2psq, z3psqq be solutions to the Fuller ODE with constant control
u “ ζ P VT and initial condition zpx̃0q. Then for each s such that rpsq ă 1,
we have

ẑ1prpsq, x̃psqq “ z1psqr0 ` Opr20q

ẑ2prpsq, x̃psqq “ z2psqr20 ` Opr30q

ẑ3prpsq, x̃psqq “ z3psqr30 ` Opr40q.

That is, the leading term of the solutions of the Reinhardt and Fuller systems
are in agreement.

Proof. We go from the SL2 picture to SUp1, 1q by means of the Cayley
transform, then switch to hyperboloid coordinates. Use the explicit solutions
on both sides and expand as a series in the parameter r0.

Lemma 14.2.4. With the same setup and matching initial conditions as in
the previous lemma, we have switching function asymptotics

χ21pXpsr0q,Λ1psr0q,ΛRpsr0qq “ 24r30ℜpζ ´ 1, z3psqq ` Opr40q (14.2.1)

Note that the term on the right is the switching function of the Fuller
system for the control mode transition ζ Ñ 1. Similar formulas hold for the
other switching functions.

Proof. Expand both sides in an explicit series.
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14.3 Analytic Extension of the Reinhardt sys-
tem

The following is the key lemma. It shows that we have succeeded in trans-
forming the behavior near the singular locus into something quite pleasant.

Lemma 14.3.1. Let x̃out P R3 be the parameter associated with the outward
fixed point of the Fuller system. The Reinhardt-Poincaré map F (initially
defined for r ą 0) extends to an analytic diffeomorphism in a neighborhood of
the fixed point p0, x̃outq P R4 (including non-positive values of r), such that F
coincides with the Fuller-Poincaré map at r “ 0.

Remark 14.3.2. Similar analytic extensions across r “ 0 can be carried out
under more general conditions in a neighborhood of other points x̃. However,
we must be cautious when the least positive root of the cubic of the Fuller
system (14.2.1) is not simple, when s “ 0 is a root of the cubic, or when the
resultant of two Fuller switching functions is zero.

Proof. We begin by establishing analyticity of F on some neighborhood of
the fixed point, expressed in the coordinates pr0, x̃0q. (We add subscript 0
to suggest that these are initial conditions of the Reinhardt ODEs.) We
can take these coordinates with values in either R or C. Lie algebra co-
ordinates pX0,Λ10,ΛR0q are rational functions with nonzero denominators
(and hence analytic) in the variables pr0, x̃0q and p1 ` r0x̃21q´1. (The de-
nominators are nonzero in a neighborhood of the fixed point.) The constant
control Z010 solutions pXptq,Λ1ptq,ΛRptqq to the Reinhardt ODEs are given
by matrix exponentials and are hence analytic in time t and initial conditions
pX0,Λ10,ΛR0q. We make a substitution t “ sr0 to give reparameterized time.

By Lemma 14.2.4, by division of power series, the function

χ21pXpsr0q,Λ1psr0q,ΛRpsr0qq{r30

extends to an analytic function χ̃21ps, r0, x̃0q in a neighborhood of r0 “ 0.
Restricting at first to real coordinates and r0 ě 0, the switching time in

rescaled coordinates is defined by the least positive zero ssw “ sswpr0, x̃0q of
χ̃21ps, r0, x̃0q “ 0. At the fixed point pr0, x̃0q “ p0, xoutq, the least positive zero
ssw,out « 8.84 ą 0 is a simple zero, and s “ 0 is not a zero. If we remove the
condition r0 ě 0, then by the analytic implicit function theorem, we have a
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unique analytic extension of the switching time sswpr0, x̃0q to a neighborhood
of the fixed point such that

χ̃21psswpr0, x̃0q, r0, x̃0q “ 0, sswp0, xoutq “ ssw,out.

Evaluating the solutions to the ODEs at the unscaled switching time
tsw “ r0ssw, and rotating by cyclic virial symmetries (adR´1), we obtain
analytic functions of pr0, x̃0q:

Yswpr0, x̃0q :“ adR´1pY pr0sswpr0, x̃0q, r0, x̃0qq, where Y “ X,Λ1,ΛR.

We write X “ Xpt, r0, x̃0q, etc. to make the dependence on initial conditions
pr0, x̃0q explicit. The rotation is chosen to make the fixed point property hold
exactly, and not just up to rotation. These functions give the value of the
Reinhardt-Poincaré map.

Finally, we show that we can analytically convert the Lie algebra coordi-
nates pX,Λ1,ΛRq back to the coordinate system pr, x̃q. The matrix coefficients
of

Xpr0ssw, r0, x̃0q ´ J, and Λ1pr0ssw, r0, x̃0q ` p3{2qJ

are divisible by r0, and r20, respectively (regardless of the precise form of
ssw). The same is true of Xsw ´ J and Λ1sw ` p3{2qJ . Because of our
convention x̃11 “ 1, we must take the reciprocal of the p1, 1q matrix coefficient
of pXsw ´ Jq{r0. The value of this matrix coefficient at p0, x̃outq is

rscale « 6.27 ‰ 0.
This is the scaling factor, obtained as a root of the palindromic polynomial
considered above. Since this p1, 1q matrix coefficient is an analytic function
that is nonzero in a neighborhood of the fixed point, its reciprocal is an
analytic function. This completes the proof of analytic continuation to a
neighborhood of the fixed point.

The asymptotic formulas given above show that the restriction of (the
analytic continuation of) F to r “ 0 is precisely the Fuller system.

Next, we show that the Reinhardt-Poincaré map is a diffeomorphism. In
similar way to what we have done, we can show analyticity and analytic
continuation of the Reinhardt-Poincaré map F´1 that moves backwards
in time. When the parameter r0 is positive and in a sufficiently small
neighborhood of the fixed point, we have that F and F´1 are inverse functions.
By analytic continuation, they are inverse functions in a neighborhood of the
fixed point. Hence, F is a diffeomorphism.
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We refer to the hypersurface r “ 0 as the exceptional divisor. We refer to
Irwin for background material about local unstable and stable manifolds near
a hyperbolic fixed point of a diffeomorphism [18]. A brief summary appears
in Appendix A.3. We write F for the analytic diffeomorphism that we have
constructed, which extends the Reinhardt-Poincaré map.

Theorem 14.3.3. The fixed point p0, x̃outq of the diffeomorphism F is hy-
perbolic. The local unstable manifold is a C8 curve. In a neighborhood of
the fixed point, the local stable manifold coincides with the three-dimensional
exceptional divisor r “ 0.

Remark 14.3.4. By time reversal, the Reinhardt-Poincaré map F has a hy-
perbolic fixed point at p0, xinq P R4, its local stable manifold is one-dimensional,
and its local unstable manifold is the three-dimensional exceptional divisor.

Proof. Near the fixed point, the analytic continuation F of the Reinhardt-
Poincaré map agrees with the Fuller-Poincaré map, when r “ 0, when we
use coordinates x̃ P R3 for points on the exceptional divisor ξpx̃q P ΞW,0
as above. The exceptional divisor r “ 0 is a three-dimensional invariant
subset of the diffeomorphism. We have seen that the linearization of the
Fuller-Poincaré map F near the fixed point is a contraction on the three
dimensional exceptional divisor. Moving away from the exceptional divisor in
the radial direction, the Reinhardt-Poincaré map has scaling factor rscale ą 1.
The Fuller-Poincaré map is therefore hyperbolic, with three eigenvalues |λ| ă 1
and one eigenvalue |λ| ą 1. By general theory, the unstable curve is C8,
because the diffeomorphism is C8.

14.4 A Computation of the Unstable Mani-
fold

We extend the local unstable manifold to the global unstable manifold.
The previous theorem shows the existence of a C8 curve (the global unstable
manifold around the fixed point p0, xoutq):

t ÞÑ prptq, x̃ptqq P R4, prp0q, x̃p0qq “ p0, xoutq, t ě 0,

for some local parameter t. In fact, we use t “ r (the first coordinate of the
system (14.1.1)) as the local parameter. Figure 14.4.1 shows a numerical
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Figure 14.4.1: The unstable curve r ÞÑ pr, x̃21prqq (in blue) starts at the
outward fixed point x̃21out « ´2.39 and continues to the boundary x̃˚

21prq “?
3 ´ 1{r of the star domain (in red). The curve has been approximated in

Mathematica, using the ListLinePlot command to create a piecewise linear
curve joining 434 data points.

computation of the unstable curve. Although we have not done so because it
did not seem especially worthwhile, these calculations might be repeated using
more rigorous numerical methods such as interval arithmetic. The numerical
situation is favorable: because of contraction in the stable directions, any
numerical errors in computing the unstable curve will tend to be self-effacing
(in the same way that under mild assumptions, Von Mises iteration of matrix
powers converge to the dominant eigenvalue). Another numerical advantage
is that three contractive eigenvalues are small (less than 0.1 according to the
proof of Lemma 13.5.5).

As we move away from the fixed point, computations use the unscaled
switching time tsw “ tswpr, x̃prqq rather than the scaled switching time. We
check that the other switching functions χij remain positive, so that the
switching sequence is always cyclical 3 ÞÑ 2 ÞÑ 1 ÞÑ 3 ÞÑ ¨ ¨ ¨ . The unstable
curve reaches the boundary of the star domain near pr, x̃21q « p0.21,´3.03q.
Once r is at least about 0.065, a Reinhardt trajectory starting on the unstable
curve reaches the boundary of the star domain before the next switching time,
and the forward step of the Reinhardt-Poincaré map is no longer defined.

Theorem 14.4.1. A trajectory of the Reinhardt system that emanates from
the fixed point pr, x̃q “ p0, xoutq on the exceptional divisor does not return to
the exceptional divisor. A trajectory of the Reinhardt system that tends to the
fixed point pr, x̃q “ p0, xinq on the exceptional divisor did not emanate at an
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Figure 14.4.2: Outward triangular spirals of the Reinhardt system that start
at the singular locus. The figure shows the image of trajectories zptq P h‹ in
the upper half plane.

earlier time from the exceptional divisor.

Proof. All switches must be on the unstable curve, which meets that ex-
ceptional divisor at a single point p0, xoutq. Any trajectory that returns to
the singular locus must chatter (that is, must use infinitely many switches
to arrive). This would require the unstable curve to contain a sequence of
forward iterates of points tending to the exceptional divisor. This does not
happen, because the unstable curve hits the boundary of the star domain.

The second statement follows from the first by time reversal.

Figure 14.4.2 shows the resulting outward spiral trajectories zptq P h‹

(where Φpzptqq “ Xptq). Trajectories chatter as they exit from the singular
locus, and move in a triangular spiral until they hit the boundary of the star
domain in finite time. The switching points are clearly visible as corners of
the triangular spirals. The unstable curves, which are related by rotations,
are obtained by joining these switching points by smooth curves.
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Chapter 15

Geometry of the Fuller-Poincaré
Map

Throughout this section, dropping the subscript on Fang, we let F denote
the Poincaré map for the Fuller system on the Poincaré section ΞW,0{VT or
on the domain given by the cells covering ΞW,0{VT , as described below.

15.1 Three-Cells
Let z “ pz1, z2, z3q P C3. Write zj “ rje

iθj “ xj ` iyj, for j “ 1, 2, 3.
Assume that z3 P W, a wall. By passing to a VT -equivalent point, we may
assume that z3 “ ℜpz3q “ x3 ď 0.

Assume that the Hamiltonian vanishes at z “ pz1, z2, z3q for some control
u P VT . The vanishing Hamiltonian condition implies

x3 “ 2r1r2 sinpθ1 ´ θ2q “ ´2r1r2 sinψ, (15.1.1)

where ψ :“ θ2 ´ θ1. If x3 ă 0, this implies r1r2 ‰ 0 and ψ P p0, πq (modulo
integer multiples of 2π).

Lemma 15.1.1. For each z “ pz1, z2, z3q ‰ 0 satisfying (15.1.1), there is a
unique rescaling by a positive scalar in the virial group so that r1 ` r2 “ 1
(and r1, r2 ě 0).

Proof. If r1 “ r2 “ 0, then z “ 0 by (15.1.1), which is contrary to assumption.
Hence, we may assume r1 ` r2 ą 0. Solve the following quadratic equation

219
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for its unique positive root s ą 0,

r1{s ` r2{s2 “ 1.

Then scale ri ÞÑ ri{s
i.

Thus, we may write r1 “ 1 ´ r2, with r2 P r0, 1s.
The time reversal symmetry τ , when expressed in terms of coordinates

pr2, ψ, θ2q takes the form

τpr2, ψ, θ2q “ pr2, π ´ ψ,˘π ´ θ2q.

If θ2 P r´π, πs, then the sign ˘π in the third coordinate ˘π ´ θ2 is chosen to
give a value again in r´π, πs.

We now enumerate the cells partitioning the domain ΞW,0{VT starting
with the two three-dimensional cells. We use notation Ckpu,mA,mBq for
cells. The subscript k denotes the dimension of the cell; u is the first control;
mA (resp. mB) is the multiplicity of t “ 0 in the switching polynomial
χA “ χuu´1 (resp. χB “ χuu´ū). Let χA,mA

:“ χA{tmA and χB,mB
:“ χB{tmB .

Let ∆A,mA
,∆B,mB

be the discriminants of χA,mA
and χB,mB

. We sometimes
also affix a superscript CA

k or CB
k to indicate whether the active switching

function is χA,mA
or χB,mB

.

Definition 15.1.2. The cell C3pζq0 “ C3pu,mA,mBq0 “ C3pζ, 0, 1q0 is de-
fined by conditions x3 ‰ 0 and y2 ą 0. The cell C3pζ

2q0 “ C3pu,mA,mBq0 “

C3pζ2, 0, 1q0 is defined by conditions x3 ‰ 0 and y2 ă 0. We call C3puq0 the
big open cells.

(We will construct compactifications C3pu, 0, 1q of the open cells below.)
C3pζq0 is a three-dimensional open rectangle in R3 with coordinates r2 P p0, 1q,
ψ P p0, πq, and θ2 P p0, πq. The first control is ζ. Also, C3pζ

2q0 is a three-
dimensional open rectangle in R3 with coordinates r2 P p0, 1q, ψ P p0, πq, and
θ2 P p´π, 0q. The first control is ζ2. The complement of C3pζq0 YC3pζ

2q0 is a
union of strata of dimension at most two. Thus, these two three-dimensional
cells cover most of the domain. We also refer to C3pζq0 and C3pζ

2q0 as the first
and second big cells, respectively. The involution τ is given by τpr2, ψ, θ2q “

pr2, π´ψ, π´θ2q on the first big cell and by τpr2, ψ, θ2q “ pr2, π´ψ,´π´θ2q
on the second big cell.

Note that χA,0p0q ‰ 0 and χB,1p0q ‰ 0 on the big open cells, and the
roots are nonzero. As above, let ∆A,0 and ∆B,1 be their discriminants, and
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let resAB be the resultant of χA,0 and χB,1. The first switching time tsw is
a discontinuous function on the cell. The discontinuities can only appear
along the loci ∆A,0 “ 0, ∆B,1 “ 0 and resAB “ 0. However, the loci do not
always force a discontinuity in tsw. For example, resAB “ 0 does not give a
discontinuity when it represents the equality of negative roots of χA,0 and
χB,1.

We study the boundaries of the first and second big cells, with the aim of
extending the dynamical system continuously to the boundaries (with noted
exceptions).

We identify points along the face r2 “ 0, if they have the same image under
the mapping f : r0, πs ˆ r0, πs, fpψ, θ2q “ θ2 ´ ψ “ θ1 P r´π, πs on the first
cell, and the mapping f : r´π, 0s ˆ r0, πs, fpψ, θ2q “ θ2 ´ ψ “ θ1 P r0, 2πs on
the second cell. (When r2 “ 0, the coordinate z2 “ r2e

iθ2 does not depend on
θ2.) On each cell separately, we identify points along the face r2 “ 1, if they
have the same image under the projection fpψ, θ2q “ θ2, for similar reasons:
the coordinates z1 “ r1e

iθ1 does not depend on θ1. We do not identify points
θ2 “ 0 on the bottom face of the first big cell with points θ2 “ 0 on the top
face of the second big cell, because they have different first controls u and
behave differently in the Fuller dynamical system. For the same reason, we
do not identify points θ2 “ π on the top face of the first big cell with points
θ2 “ ´π on the bottom face of the second big cell.

Figure 15.1.1 shows shaded in red those points p0 on the boundary of the
two cells where the first switching time satisfies limpÑp0 tswppq “ 0, where the
limit is taken over interior points of the cells. Although the switching time is
zero, the dynamical system is best treated as nontrivial (by refraining from
identifying VT -equivalent points on the boundary of the cells).

By taking points in the big open cells near the boundary, we can determine
that the Fuller-Poincaré map acts in the following way on the (red-shaded
regions of the) boundary (by continuous extension of the map on the interior
of the cells). The bottom face θ2 “ 0` of the first big cell maps to the top face
θ2 “ 0´ of the second big cell (by the identity map pr2, ψq ÞÑ pr2, ψq. The
bottom face θ2 “ p´πq` of the second big cell maps to the top face θ2 “ π´

of the first big cell by the map pr2, ψ, θ2q ÞÑ pr2, ψ, 2π ` θ2q. The boundary
region ψ P t0, πu, θ2 P r0, π{3s on the first big cell is shifted to VT -equivalent
points pψ, θ2q ÞÑ pψ, θ2 ` 2π{3q on the same faces. Also, the boundary region
ψ P t0, πu, θ2 P r´π{3, 0s on the first big cell is shifted to VT -equivalent points
pψ, θ2q ÞÑ pψ, θ2 ´ 2π{3q on the same faces. Finally, the right and left faces
r2 “ 0 and r2 “ 1 of the cells have been collapsed to edges along the front
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Figure 15.1.1: Shaded regions are points on the boundary of the first and
second big cells where the first switching time tsw has limiting value 0. Smaller
cells y2 “ 0 will be attached to the top faces of both 3-cells to cap the top
faces, and further smaller cells z3 “ 0 will be attached to the unshaded regions
of the front and back faces to fill the unshaded regions of the faces.

and back faces ψ P t0, πu, and their behavior is dictated by the behavior on
the other faces. (As stated above, all these boundary behaviors are obtained
by studying the behavior of the dynamical system on the interior of the cells
and taking limits to the boundary.)

15.2 Smaller cells
In this section, we partition the complement of the union C3pζ

˘1q0 into
cells of lower dimension. We find that the cells of lower dimension can be
attached to the faces of the first and second big cells in a way that preserves
continuity. We continue to use polar coordinates zj “ rje

iθj “ xj ` iyj. We
may assume r2 “ 1 ´ r1 P r0, 1s and x3 “ ´2r1r2 sinψ, ψ “ θ2 ´ θ1 P r0, πs
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by (15.1.1).
We begin with the cases such that x3 ‰ 0. To be in the complement of

the big open cells, we must have sin θ2 “ 0 and y2 “ 0. The two-dimensional
cells of this form have parameters u P tζ˘1u, pmA,mBq “ p0, 2q. That is, χB
has a double root at t “ 0. We denote these cells C2pu,mA,mBq, according
to the their parameters.

The cell C2pu,mA,mBq “ C2pζ, 0, 2q is defined by x3 ‰ 0 and θ2 “ π.
Coordinates are r2 P p0, 1q, ψ P p0, πq. The first control is ζ. The switching
function χB,2 never has a positive root. Thus, the switching function is always
χA,0. By Descartes’s rule of signs, χA,0 always has a unique positive root.
The first switching time is then a continuous function on the cell. If we
identify this cell with the top face θ2 “ π of the first three-cell C3pζq0, then
the dynamical system extends continuously from the interior of the first big
cell to its top face.

The cell C2pu,mA,mBq “ C2pζ2, 0, 2q is defined by x3 ‰ 0, and θ2 “ 0.
Coordinates are r2 P p0, 1q, ψ P p0, πq. The first control is ζ2. If we identify
this 2-cell with the top face θ2 “ 0 of the second three-cell C3pζ2q0, then the
dynamical system extends continuously from the interior of the second big
cell to its top face (with exceptional discontinuities, where the dynamical
system is already discontinuous on C2pζ

2, 0, 2q, as noted below) .
Note that we cannot have parameter values pmA,mBq “ p0, 3q. In fact,

if mB “ 3, the y1 “ y2 “ 0. This implies that r1 “ 0, r2 “ 0 or θ1, θ2 P πZ.
Then x3 “ ´2r1r2 sinψ “ 0 by (15.1.1), and mA ą 0.

In the remaining region, z3 “ 0 (and mA ą 0). By (15.1.1), we have
r2 P t0, 1u, or sinψ “ 0. Each angle θ2 is VT -equivalent to a unique angle
θ2 P pπ{3, πs. We define a closed 2-cell C2pζq “ C2pζ, 1, 1q with first control
u “ ζ as follows. The coordinates are r̃1 P r´1, 1s and θ2 P rπ{3, πs. If we
define the first switching time tsw over the entire closed 2-cell by continuous
extension of the first switching time on the interior of the closed 2-cell, then
Figure 15.1.1 shows the parts of the boundary where the continuous extension
gives tsw “ 0. Setting r1 “ r̃1e

iψ, and r2 “ 1 ´ r1, with ψ P t0, πu and
r1 P p0, 1q, we recover the coordinates pr2, ψ, θ2q. (Exceptionally, on the
segment r̃1 “ 0, r2 “ 1, we disregard ψ and only use θ2.) If we attach each
point pr2, ψ, θ2q of this cell to the point on the front and back boundary faces
ψ P t0, πu of the first 3-cell with the same coordinates pr2, ψ, θ2q, then the
dynamical system on the interior of the 3-cell extends continuously to the
front and back faces, in agreement with the dynamics on the 2-cell C2pζq.
Note that the segment r̃1 “ 0 maps to the right face of the 3-cell, which has
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been collapse to a segment, and with this collapsed right face, the map from
the 2-cell to the front and back faces of the 3-cell is continuous.

In a similar way, by VT -equivalence, the angle θ2 can be brought into the
interval θ2 P p´π,´π{3s by the VT -action. In this case, the first control is
u “ ζ2 and a closed cell C2pζ

2, 1, 1q can be attached in a similar way to the
front and back faces of the second 3-cell C3pζ2q0 in a way that agrees with
the dynamics.

Remark 15.2.1. A symmetry of VT carries the closed cell C2pζ, 1, 1q to
C2pζ

2, 1, 1q, but we refrain from identifying these two closed cells with each
other. Instead, we consider the two closed big cells as disjoint from each
other. We will see that F´1pC2pζqq and F´1pC2pζ2qq are the two sides of a
hypersurface Bres in the first big cell, along which the Fuller-Poincaré map is
discontinuous. Because of this discontinuity, it is best to keep the two two-cells
separate.

We summarize our results in the following lemma.

Proposition 15.2.2. Every point in the domain of ΞW,0{VT is equivalent
to a point in the union of the closures C3pζ˘1q of the first and second big
cells (with identifications on the boundaries of each cell as given above). The
first control u is ζ on the first big cell and ζ2 on the second big cell. The
dynamics on the faces of the cells is given as the continuous extension from
the dynamics on the interior of the cells. Every point on every face of the
cells that is not identified with a point in the domain ΞW,0{VT is a point with
vanishing (limiting) first switching time tsw “ 0.

Proof. See the discussion leading up to the statement of the proposition.

15.3 Involution
Let F be the Fuller-Poincaré map, and let τ be the time reversing symmetry.

Both have domain given by the union of two closed 3-cells. Since F´1 “ τ˝F ˝τ
and τ “ τ´1, it follows that ιτF :“ τ ˝ F is an involution: ιτF “ ι´1

τF . In this
section, we use properties of this involution to describe discontinuities of the
Fuller-Poincaré map.

We say that two subset D, D̃ of the domain are in involution if ιτF pDq “ D̃
(and ιτF pD̃q “ D). Let C2pζ, 1, 1q be the closed 2-cell defined above, viewed
as a subset of the front and back faces of the first big cell. Define the resultant
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locus as Bres “ ιτF pC2pζqq. By Lemma 13.2.4, the resultant of the switching
functions χA0 and χB1 is zero along Bres. By construction Bres and C2pζ, 1, 1q

are in involution. Define BA “ ιτF pC2pζ, 0, 2qq, where C2pζ, 0, 2q is viewed as
the top face θ2 “ π of the first big cell. By Lemma 13.2.4, the discriminant of
the switching function χA0 is zero along BA and F is discontinuous along BA.
By construction BA and C2pζq are in involution. The locus Bres Y BA lies in
the first big cell and geometrically partitions the first big cell into two parts.
(Here, by a geometric partition of a set, we mean a collection of regular closed
subsets covering the set whose interiors are disjoint. A closed set is regular, if
it is the closure of its interior.)

Let D1 be the part of the geometric partition containing the face C2pζ, 0, 2q

(that is, the face θ2 “ π). There are no further discontinuities in D1; that is,
F on the interior of D1 extends continuously to a function F1 with domain
D1, with first control u “ ζ and switching function χA0. The domain D1 is
in self involution. The two fixed points qin, qout P D1 are in involution. See
Figure 15.3.1.

We geometrically partition the 2-cell C2pζ
2, 0, 2q. according to the active

switching function (Figure 15.3.2). On one part CA
2 , we have ∆A,0 ě 0. By

Descartes’s rule of signs, χA,0 has two positive roots (counted with algebraic
multiplicity). The first switching time is a root of χA,0 and is continuous on
CA

2 . On the interior of the part CB
2 , we have ∆A,0 ă 0. In this case, χA,0 has

no positive root, and the first switching time is the unique root of the linear
polynomial χB,2. The map F is discontinuous along the discriminant locus
∆A,0 “ 0. However, the first switching time and the Fuller-Poincaré map F
extend continuously to give FA with domain CA

2 and FB with domain CB
2 .

Set BA,ζ2 :“ ιτF pCA
2 q. It is a subset of the second big cell, and it geometri-

cally partitions the big cell into two parts. The discriminant ∆A,0 vanishes
along BA, by Lemma 13.2.4. Let D2 be the part that contains CA

2 . The
active switching function on D2 is χA,0. The Fuller-Poincaré map F extends
continuously from the interior of D2 to a continuous function F2 with domain
D2, and the restriction of F2 to CA

2 is FA. The part D2 is in self involution.
Let D3 be the other part of the partition of the second big cell. The active

switching function on D3 is χB,1, and F extends continuously to a function
F3 with domain D3.

Let D4 :“ ιτF pD3q. It is a subset of the first big cell, that shares the
boundary Bres (and part of the boundary BA with D1. Finally, let D0 be the
closure of the complement in the first big cell of the union of D1 and D4. The
boundary of D0 consists of BB :“ ιτF pCB

2 q and a subset of BA. Along BB, the
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Figure 15.3.1: Geometric partition of the first big cell into parts D0,D1,D4.
The two panels show two different views of the boundary separating D1 from
D0 Y D4 in the first big cell. On the red shaded part Bres of the boundary,
the resultant vanishes. On the yellow shaded part BA of the boundary, the
discriminant ∆A,0 vanishes. These red and yellow boundaries extend to the
blue perimeter, even if the displayed graphics stop short due to imperfect
rendering. The blue perimeter is in involution with the perimeter of the red
region in the first frame of Figure 15.1.1. The part D1 lies above and to the
right of the boundary in the first panel and to the lower right of the boundary
in the second panel. The parts D0 and D4 lie below the boundary in the first
panel and to the upper left in the second panel. The boundary BB between D0
and D4 is not shown. The part D0 is a very small bubble, which is attached
to the yellow part BA of the boundary.
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Figure 15.3.2: Geometric partition of the second big cell into parts D2 (lower
left panel) and D3 (lower right panel). The top left panel CA

2 and top right
panel CB

2 are given by ∆A,0 ě 0 and ∆A,0 ă 0, respectively in the top face
θ2 “ 0 of the second big cell. The lower left panel D2 and lower right panel
D3 are separated by the discriminant locus ∆A,0 “ 0. The part D2 is in
involution with itself, and the involution exchanges its top face CA

2 with the
locus separating D2 from D3. The involution exchanges D3 and D4, sending
the top face CB

2 of D3 to the boundary BB separating D4 from D0.
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discriminant vanishes: ∆B,1 “ 0.

Remark 15.3.1. The fixed point qin P D1 is given by coordinates

pr2in, ψin, θ2inq « p0.267949, 0.1705935, 2.91574q.

The fixed point is remarkably close to the triple juncture of D0,D1, and D4.
In fact, the line segment

r2 ÞÑ pr2, ψin, θ2inq, r2 P r0, 1s

meets the boundary BB (separating D4 from D0) at r2 « 0.2677, then meets
the boundary BA (separating D0 from D1) at r2 « 0.267905, then reaches
the fixed point at r2 « 0.267949. The fixed point qout P D1 with coordinates
pr2, π ´ ψin, π ´ θ2inq P D1 is far from the other parts D0,D4.

In summary, we have the following proposition.

Proposition 15.3.2. Let Di, i “ 0, 1, 2, 3, 4 be the geometric partition of the
two big cells defined as above. The Fuller-Poincaré map extends continuously
from the interiors of Di to functions Fi on the closures Di, for i “ 0, 1, 2, 3, 4.
The involution acts on the parts by D3 Ø D4. Moreover, D1,D2,D0 are each
in self involution.

Proof. The proof is contained in the discussion leading up to the proposition.
To briefly summarize the argument, any discontinuity in the interior of a
big cell must appear along one of the loci resAB “ 0, ∆A0 “ 0, or ∆B1 “ 0.
By Lemma 13.2.4, the involution maps the interior discontinuities to the
boundary faces of the big cells.

The Fuller-Poincaré map is continuous on the boundary cells C2pζ
˘1, 0, 2q

and C2pζ, 1, 1q, again with exceptions where a resultant or discriminant
vanishes. Analyzing cases on two-cells, the only discontinuity is given by
∆A0 “ 0 on C2pζ

2, 0, 2q. Using the involution to map these parts of the faces
back into big cells, we obtain a complete description of the discontinuities.



Chapter 16

Global Basin of Attraction and
Mahler’s First

Throughout this chapter, dropping the subscript on Fang, we let F denote
the Poincaré map for the Fuller system on the two big cells. Also, Fi denotes
the continuous extension of F to Di.

16.1 Main result on Basin of Attraction
Theorem 16.1.1 (Global Basin). Let q ‰ qin be a point in ΞW,0{VT . Then
the iterates F kq under the Fuller-Poincaré map tend to the fixed point qout.

Proof. The proof follows the strategy of containment functions from interval
arithmetic. However, the proof is simple enough that it is not necessary to
adopt the entire infrastructure of interval arithmetic.

We work with the representation of ΞW,0{VT as the union of two closed
big cells C3pζ

˘1q. Let D0, . . . ,D4 be the geometric partition of the cells, and
let Fi be the continuous extension of F from the interior of Di to Di.

We further partition D1 into 9 rectangles. Set

Dij :“ tpr2, ψ, θ2q P C3pζq | r2 P r0, 1s, ψ P rai, ai`1s, θ2 P rbi`1, bisu,

D1,ij :“ D1 X Dij, i “ 0, 1, 2, j “ 0, 1, 2,

where pa0, a1, a2, a3q “ p0, π{3, 2π{3, πq and pb0, b1, b2, b3q “ pπ, π´ 1.1, 1.1, 0q.
We have qin P Din :“ D1,22 and qout P Dout :“ D1,00 “ D00.

229
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Din Dout D4 D2 D0 D3 D1zDin

Din * * * * * * *

Dout *

D4 ¨ * *

D2 ¨ *

D0 ¨ *

D3 ¨ *

D1zDin *

Table 16.1: Upper triangular structure of the Fuller-Poincaré map on the
two big cells. The dots ¨ are placeholders along the diagonal. The nontrivial
diagonal entries appear in the first, second, and last rows.

We claim that we have the following domain and range restrictions. Let
D,D˚ run over the sets in Table 16.1.

D,D˚
P tDin,Dout,D4,D2,D0,D3,D1zDinu.

Assume D Ď Di. We claim that FipDq Ă YpD,D˚q„˚ D˚, where D˚ is included
in the union whenever the row-column entry pD,D˚q of Table 16.1 is marked
with an asterisk. (The dots ¨ are placeholders along the diagonal of the table
and do not indicate inclusion in the union.)

We justify the claim and the associated table as follows. Whenever D Ă Di

is topologically a closed ball with boundary BD, then in order to show that
FipDq Ă D̃, where D̃ is a closed convex subset of R3, it is enough to show
FipBDq Ă D̃. In practice, BD consists of a small number of analytic surfaces
(such as the six faces of a cube), and the proof of the containment FipDq Ă D̃
reduces to the containment of the images of the faces, which we compute
numerically without difficulty in Mathematica. We call this the boundary
method. In fact, by using the involution ιτF , we can mostly avoid direct use
of the Fuller-Poincaré map.

We start with the second row. We compute the interval containment
F1pDoutq Ă Dout by the boundary method. The image F1pDoutq and the fixed
point qout are shown in Figure 16.1.1. The forward iterates F k

1 pDoutq quickly



16.1. MAIN RESULT ON BASIN OF ATTRACTION 231

Figure 16.1.1: The bounding box is the set Dout Ă D1 and the shaded region
is the image F1pDoutq, showing the contraction of Dout toward the fixed point
qout P Dout.

shrink toward qout. The Jacobian calculation at the fixed point (appearing
earlier) shows that qout is an asymptotically stable fixed point.

The first row asserts that the range of Din can be anything, and there is
nothing to prove in this case. For the D4 row, the image satisfies F4pD4q “

τpιτF pD4qq “ τpD3q, which is contained in the second big cell, covered by
D2 Y D3. For the next row, F2pD2q “ τpιτF pD2qq “ τpD2q Ă D3. (Note that
θ2 P r´π{3, 0s holds on D2, so that θ2 P r´π,´2π{3s holds on τpD2q, to see
the containment in D3.)

Turning to the row for D0, we note that F0pD0q “ τpιτF pD0qq “ τpD0q.
The boundary of τpD0q consists of τιτF pCB

2 q and a subset of τpBAq. Both of
these boundary components lie in Dout, which is a subset of D1zDin. The
containment F0pD0q Ă D1zDin follows by the boundary method.

Next consider the row D3. We have F3pD3q “ τpιτF pD3qq “ τpD4q, which
is a subset of the first cell. Recall that the first big cell is covered by the union
of D0, D1, and D4. The inequality θ1 “ θ2 ´ψ ď 0 holds on D4, D0, and Din,
but θ1 “ θ2 ´ ψ ě 0 holds on τpD4q. Hence by exclusion, τpD4q Ă D1zDin.
(In the boundary case θ2 “ ψ, the edge given by equations r2 “ 0, θ2 “ ψ



232CHAPTER 16. GLOBAL BASIN OF ATTRACTION ANDMAHLER’S FIRST

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 16.1.2: The shaded region is the convex hull of the projection to the
pψ, θ2q-plane of the iterated image F 2D3. The black lines show the boundary
of the projection of Dout. The conclusion is that F 2D3 Ă Dout.

belongs to both D1 and D4, but we still have τpD4q Ă D1zDin.)
We have that F 2D3 Ă D00, as shown by the calculation in Figure 16.1.2.

Applying the function F ˝ τ to both sides of this inclusion, we obtain

D4 Ă F pD22q, (16.1.1)

because
D4 “ ιτF pD3q “ FτF 2D3 Ă FτD00 “ F pD22q.

The last row of the table is justified below by taking an interval refinement.
We claim that F1pD1zDinq Ă C3pζqzDinq. (Note that if q1 P D1zDin and
F1pq1q P C3pζqzDin, then using facts C3pζq “ D0 Y D1 Y D4 and D0 Ă Din

and D4 Ă FD22 S F pq1q, we get F1pq1q P D1zDin to complete the justification
of the row.)

The cases pi, jq “ p0, 0q, p2, 2q are the cases Din,Dout, which are treated
elsewhere. For pi, jq ‰ p0, 0q, p2, 2q, we break the claim into a series of
subclaims. The domain D1zDin is covered by the sets D1,ij , for pi, jq ‰ p2, 2q.
The subclaims are the following domain and range restrictions for pi, jq ‰

p0, 0q, p2, 2q; subclaimij: we have F1pD1,ijq Ă Yk,ℓ Dkℓ, where the union runs
over pk, ℓq ă pi, jq. Here we use the lexicographic total order păq on ordered
pairs given by

pk, ℓq ă pi, jq ô pk ă iq or pk “ i and ℓ ă jq.



16.2. CLASSIFICATION OF OUTWARD FULLER TRAJECTORIES233

These subclaims are established by the boundary method through direct
computation, explained above. The convex hulls of planar projections of
the images are shown in Figure 16.1.3. The domain and range restrictions
follow by observing that the blue regions are subsets of the yellow regions.
The three-dimensional images F1pD1,21q F1pD1,01q are shown in Figure 16.1.4.
Their projections appears in panels p2, 1q and p0, 1q of Figure 16.1.3.

We are ready to prove that qout has a global basin. Let q ‰ qin. Assume
first that q P Din. By time reversal symmetry, for every q P Din, with q ‰ qin,
the iterates F kq must eventually exit Din (because the iterates F´kpτqq exit
Dout for all sufficiently large k). Note the upper triangular structure of the
first table, with diagonal entries only for Din and D1zDin. Hence, if q ‰ qin,
the iterates F kq lie in D1zDin for all sufficiently large k.

Note that the total order păq gives a strict triangular structure with
respect to domain and range interval containments. Hence, if q P D1zDin, the
foward iterates F kq must then eventually all lie in D1,00 “ Dout. As already
noted, once in the small rectangle Dout containing qout, the iterates rapidly
converge to the fixed point qout.

16.2 Classification of Outward Fuller Trajec-
tories

In this section we return to the Fuller-Poincaré map F : pC3z0q Ñ pC3z0q

(including the radial component) and restore the subscript Fang when referring
to the Fuller-Poincaré map on the angular component.

Theorem 16.2.1. Consider the Fuller-Poincaré dynamical system F on
pC3z0q{VT . Every outward trajectory that emanates from the singular locus
has all its switching points in the set Rą0 ˆ tqoutu modulo VT . Every inward
trajectory to the singular locus has all its switching points in the set Rą0ˆtqinu

modulo VT .

Proof. By time reversal symmetry, it is enough to prove the second statement
of the lemma. Let q P ΞW{VT be any switching point of any trajectory. If
q “ qin, then it is the inward spiral.

Otherwise, q ‰ qin. In this case, by the Fuller basin theorem and by the
stability calculation near qin, for large j, the iterates F j

angpqq approach the
outward spiral. For every r ą 0, this implies that the angular component of
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Figure 16.1.3: Projections of images F1pD1,ijq in panel pi, jq. The coordinates
are pψ, θ2q and projection map is pr2, ψ, θ2q ÞÑ pψ, θ2q. The gray square labeled
ti, ju is the projection of Dij, containing the domain. The blue region is
the convex hull of the projection of F1pD1,ijq. The yellow squares are the
projections of Dkl such that pk, lq ă pi, jq. The subclaims follow from the
observation that the each blue region is contained in the corresponding yellow
region.
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Figure 16.1.4: The right panel shows the image F1pD1,21q in the first big cell.
The projection of this region appears in panel p2, 1q of Figure 16.1.3. The left
panel shows F1pD1,01q, corresponding to panel p0, 1q of Figure 16.1.3.

the Fuller trajectory zptq with initial conditions pr, qq approaches the outward
spiral. The outward spiral moves away from the singular locus (because of
the scaling factor rscale ą 1), and the Fuller trajectory must then also move
away from the singular locus. In particular, pr, qq is not the initial condition
of a forward trajectory that converges to the singular locus.

16.3 Mahler’s First: Bang-bang with Finitely
Many Switches

In this section, we return to the Reinhardt dynamical system, and F now
denotes the Reinhardt-Poincaré map.

We prove Mahler’s First conjecture from 1947. Theorem 16.3.1 is our
main result.

Theorem 16.3.1 (Mahler’s First conjecture). The global minimizer of the
Reinhardt optimal control problem is a bang-bang solution with finitely many
switches. In particular, the minimizer Kmin of the Reinhardt problem is a
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finite-sided smoothed polygon with rounded hyperbolic arcs at each corner of
the sort described by Reinhardt and Mahler.

By the sort described by Reinhardt and Mahler, we mean more precisely
that the minimizer Kmin has no corners and the boundary alternates between
straight edge segments and hyperbolic arcs, whose asymptotes are lines
extending the straight edge segments of the boundary, as in Figure 1.1.1.

Proof. A bang-bang trajectory with finitely many switches is a polygon with
rounded corners of the sort described by Reinhardt, so the second statement
of the theorem follows from the first.

By Proposition 8.1.3, any globally minimizing trajectory that avoids the
singular locus is is an extremal for the Reinhardt control problem and is also
edge-extremal. By Theorem 8.3.2, such a trajectory is a bang-bang trajectory
with finitely many switches. A trajectory cannot remain on the singular locus
for any positive interval of time by Theorem 8.2.7. A trajectory cannot reach
the singular locus with finitely many switches by Lemma 8.3.4.

The proof then reduces to the consideration of a trajectory such that the
infinite sequence of switching points has a subsequence tending to the singular
locus. Passing to the blow-up, which has a compact exceptional divisor, the
sequence of switching points has a subsequence tending to a limit on the
exceptional divisor in finite time. By Theorem 16.4.1, which appears below,
the limit is qin and the sequence approaches qin along the stable curve W spqinq.
By Theorem 14.4.1 and its time reversal, the stable curve W spqinq did not
come from the exceptional divisor at an earlier time. Thus, the trajectory is
not periodic. This is contrary to the boundary conditions of the Reinhardt
conjecture.

16.4 Cluster Point Theorem
The proof of Mahler’s First relies on the following theorem.

Theorem 16.4.1. If the sequence of switching points of a Pontryagin extremal
Reinhardt trajectory has a cluster point on the exceptional divisor of the blow-
up, reached in finite time, and if the switching points themselves are not on
the exceptional divisor, then that cluster point is the fixed point qin and the
switching points lie on the stable curve W spqinq.

The proof of Theorem 16.4.1 will be presented after some preparations.
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16.4.1 Coordinates
We return to the hyperboloid coordinate system pw, b, cq P C3 for the

Reinhardt dynamical system. We use parameters

ρ “ 2, d1 “ 3{2, λcost “ ´1, ϵ “ 1,

We recall that we have rescaled variables

pz1, z2, z3q “ pw{ρ,´ib{p2ρq, c{6ρq, pw, b, cq “ pρz1, 2ρiz2, 6ρz3q, ρ “ 2,

that were introduced in Equation (11.2.4). We assume that pz1, z2, z3q ‰ 0.
Formulas involving hyperboloid variables from previous chapters can be
rewritten in terms of z. We do so without further comment.

Returning to earlier notation, we let r be the radial variable in the angular
decomposition of C3zt0u. As usual, we call r and ξ the radial and angular
components of z. We have coordinates

zk “ rkξk, ξ “ pξ1, ξ2, ξ3q P C3, φpξq “ 1, r ą 0.

The set
tξ P C3

| φpξq “ 1u

is a compact manifold. This is the angular component in this context. For
now, we do not impose the vanishing of the Hamiltonian. That will be
reimposed later.

16.4.2 Reinhardt Switching functions as cubic polyno-
mials

In Section 14.2, the asymptotic formulas in r0 for the Reinhardt switching
functions are functions of rescaled time s. These switching functions (and
their derivatives with respect to s) are approximated as r0 Ñ 0 by the Fuller
switching functions, as functions of s. The Fuller switching functions are
cubic polynomials, whose leading coefficients are nonzero constants. For r0
sufficiently small, the third derivative of the Reinhardt switching functions
are also nonzero. This implies that the Reinhardt switching functions behave
qualitatively as cubic polynomials: the third derivative has fixed sign, the
second derivative is monotonic with at most one zero, the first derivative
is convex with at most two zeros, and the function itself has at most one
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inflection point, has at most two local minima, and has at most three zeros.
In summary, the Reinhardt switching function behaves qualitatively like a
monic cubic polynomial.

We can make this polynomial behavior precise using Weierstrass prepa-
ration. Let zpsq be the solution to the Reinhardt system in hyperboloid
coordinates with initial condition pr, ξ0q, rescaled time t “ sr, and first con-
trol u “ ζk. We view the Reinhardt switching functions χkijpsq{r3 from ζ i

to ζj as analytic functions of the variables s, r,ℜpξ0kq,ℑpξ0kq. By the earlier
asymptotic formulas (adapted to this system of variables), the switching
functions extend analytically to a neighborhood of r “ 0. When r “ 0, the
Reinhardt switching function agrees with the Fuller switching function and is
a cubic polynomial in s.

For a given initial condition ξ0 on the angular component, the restriction of
the switching function χps, r, ξ0q “ χkijps, r, ξ

0q to r “ 0 is a cubic polynomial
with roots s1, s2, . . . having algebraic multiplicities mi, where

ř

imi “ 3.
Applying the Weierstrass preparation theorem centered at the point ps, r, ξq “

psi, 0, ξ0q, we obtain a (monic) Weierstrass polynomial of degree mi.

χW,ips, r, ξq “

mi
ÿ

m“0
ps ´ siq

mbmpr, ξq,

where bmi “ 1. For m ă mi, the coefficients bm are analytic functions of pr, ξq

near p0, ξ0q such that bmp0, ξ0q “ 0. If mi “ 1, then si ´ b0pr, ξq is simply the
implicitly defined root of χ near psi, 0, ξ0q.) Set χW ps, r, ξq “ ΠiχW,ips, r, ξq,
which is defined for all s and for all pr, ξq in some open neighborhood of
p0, ξ0q. Since χ is a real analytic function, the nonreal roots si come in
complex conjugate pairs, and the corresponding Weierstrass polynomials
come in pairs. By the uniqueness of the Weierstrass polynomials, χW ps, r, ξq

takes real values on real inputs. By Weierstrass division, and the continuous
dependence of roots on their coefficients, the polynomial χW captures all real
roots of χ for all pr, ξq in some neighborhood of p0, ξ0q. Thus χW can be used
as the switching function.

Now we drop the subscript W , and take the switching function χ to be
a cubic polynomial in s, whose coefficients are analytic in pr, ξq. A monic
polynomial switching function χpsq “ s3 ` b2s

2 ` b1s` b0, determines complex
analytic varieties for each ℓ ď 3 by the equations bipr, ξq “ 0 for i ă ℓ. We
have truncations

χℓpsq “

3
ÿ

m“ℓ

bms
m´ℓ.
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On this complex analytic variety, we have χℓpsq “ χpsq{sℓ.
We have defined cells Ck for the Fuller system by conditions on the first

control, multiplicities mA,mB of the zero at s “ 0 of the switching functions
χA, χB. We have defined a further geometric partition according to inequalities
on the discriminants ∆A,mA

, ∆B,mB
, and the resultant resp∆A,mA

,∆B,mB
q, and

according to the active switching function. All of these defining conditions can
be carried over to the Reinhardt dynamical system in terms of the switching
functions of the Reinhardt system. We use the superscript R to designate
an extension from the exceptional divisor to a neighborhood, according to
Reinhardt dynamics. In this way, we extend the definitions of cells Ck to
a neighborhood CR

k of the exceptional division using the Reinhardt system
dynamics. Upon restriction to r “ 0, the cells agree with the cells defined for
the Fuller system. There is a shift in dimension of each cell by one, because
the Fuller system exceptional divisor has codimension one (if we restrict to
the vanishing set of the Hamiltonian in both cases).

The rule for the first control for the Fuller system extends to give first
control u on the two big cells CR

3 puq. We obtain a geometric partition of the
two big cells into five regular closed sets DR

i , i “ 0, 1, 2, 3, 4 and a continuous
extension Fi of the Reinhardt-Poincaré map F from the interior of DR

i to
all of DR

i . The restriction of each DR
i to the exceptional divisor r “ 0 is the

previously defined Fuller-system part Di.
Similarly, where we have refined the partition into smaller parts (such as

D1,ij), we choose a corresponding refinement of the parts, such as DR
1 into

DR
1,ij . The precise definitions of these subparts will not matter as long as they

agree with previously established subparts D1,ij on the exceptional divisor
r “ 0.

16.4.3 Proof
Proof. We now turn to the proof of Theorem 16.4.1. Consider a sequence of
switching points of a Pontryagin extremal trajectory that has a cluster point
on the exceptional divisor. Assume that the switching points themselves are
not on the exceptional divisor.

Note that a periodic set of switching points does not approach the excep-
tional divisor. Hence the sequence of switching points is injective, and the
set of switching points is countably infinite.

We consider the various possibilities for the cluster points on the excep-
tional divisor. If qin is a cluster point, then by the definition of the stable
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manifold, the switching points lie on the stable manifold W spqinq. This case
appears as a possibility in the statement of the theorem. In this case, qin is
the only cluster point of the trajectory. (If the sequence of switching points
has qin as a cluster point, then the finite time hypothesis implies that the
limit of the sequence exists and equals qin, because of the time required to
travel from outside an ϵ-ball with center qin to a point inside an ϵ{rscale-ball
with center qin; once entering an ϵ{rscale-ball, a finite time sequence must
eventually remain inside the ϵ-ball. Here time is measured with respect to
the unscaled time parameter t.)

We now assume that qin is not a cluster point of the trajectory. We assume
for a contradiction that the trajectory has a cluster point other than qin.

We claim that qout is not a cluster point. Otherwise, for a contradiction, we
find that the switching points lie on the stable manifold W spqoutq. (Again, the
finite time hypothesis is used to convert a cluster point to a limit.) However,
this stable manifold is a subset of the exceptional divisor, which is contrary to
the assumption that the switching points are not on the exceptional divisor.

Consider the set of cluster points on the exceptional divisor, viewed as
a union of the two big cells C3puq. If a cluster point q lies in two or more
parts Di (where boundaries meet), then we can assign q to Di, if a convergent
subsequence pqnk

q of pqnq has limit q, with qnk
P DR

i . Each cluster point q
can be assigned to at least one part Di in this way.

We claim that with respect to the order on parts imposed by the upper
triangular structure of containment relations in Table 16.1, if q is a cluster
point in D, then there is also a cluster point in some D̃, which is smaller with
respect this order. (Here D, D̃ are the parts Di or subparts D1,ij, etc. of the
geometric partitions that appear in the proof of Theorem 16.1.1.) In fact, if
qnk

Ñ q, with qnk
P DR

i , then Fipqnk
q lies in a finite union of lesser parts D̃R

(extending D̃ to D̃R). Passing again to a subsequence, we may assume that
Fipqnk

q P D̃R converges to a limit in some lesser D̃. Repeating the argument
of Theorem 16.1.1, eventually we obtain a cluster point q P DR

out.
However, a cluster point in the local stable manifold DR

out contradicts the
local structure of the stable and unstable manifolds at qout. (The dynamics
are analytic on DR

out, and the set of cluster points being closed, we would find
that qout itself would be a cluster point, which has already been ruled out.)
Thus, the cluster point q cannot exist.
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Appendix A

Background Material

A.1 Gronwall inequality
We give two versions of Gronwall’s inequality.

Lemma A.1.1 (Gronwall inequality). Let I Ă R be an interval, t0 P I, and
let ψ1, ψ2, x be continuous nonnegative functions on I. If

xptq ď ψ1ptq `

ˇ

ˇ

ˇ

ˇ

ż t

t0

ψ2psqxpsqds

ˇ

ˇ

ˇ

ˇ

, for all t P I,

then for all t P I,

xptq ď ψ1ptq `

ˇ

ˇ

ˇ

ˇ

ż t

t0

ψ1psqψ2psq exp |

ż t

s

ψ2pτqdτ |ds

ˇ

ˇ

ˇ

ˇ

.

Proof. See [2, p.90].

Here is the second version.

Lemma A.1.2. Let x : rt0, t1s Ñ Rn be absolutely continuous and satisfy

}x1
ptq} ď ψ2ptq}xptq} ` ψ1ptq, t P rt0, t1s a.e.,

where ψ1, ψ2 P L1pt0, t1q, with ψ2 nonnegative. Then, for all t P rt0, t1s, we
have

}xptq ´ xpt0q} ď

ż t

t0

expp

ż t

s

ψ2ptqdτqpψ2psq}xpt0q} ` ψ1psqqds

243
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Proof. [5, Th.6.41].

Corollary A.1.3. Let x : r0, t1s Ñ R be a nonnegative continuous function,
let n be positive integer, and let C,C1 nonnegative real numbers. Assume

xptq ď Ctn ` C1

ż t

0
xptqdt, for all t P r0, t1s.

Then xptq “ Optnq for t nonnegative and sufficiently close to t “ 0.

A.2 Functional derivative
Definition A.2.1 (functional derviative). Consider a real finite-dimensional
vector space V , and its linear dual V ˚. Let F : V Ñ R be smooth. We define
the functional derivative δF {δv P V ˚ in terms of the directional derivative
F 1 of F at v P V by

F 1
pv;wq :“ lim

tÑ0

1
t

pF pv ` twq ´ F pvqq “:
B

w,
δF

δv

F

˚

(A.2.1)

for all directions w P V , where x¨, ¨y˚ is the natural pairing between a vector
space and its dual.

A.3 Stable and Unstable Manifolds
We review basic facts about stable and unstable manifolds at a hyperbolic

fixed point [18, Chapter 6]. Let M be a manifold and let f : M Ñ M be a
diffeomorphism with fixed point p “ fppq. The global stable set at p is the set
of all q P M such that limnÑ8 f

npqq “ p. If U Ď M is open, the local stable
set at p is the set of all q P U such that limnÑ8 f

npqq “ p.
A fixed point p is hyperbolic if the tangent map Tpf : TpM Ñ TpM has

no eigenvalues of absolute value 1. At a hyperbolic fixed point, the tangent
space TpM is a direct sum of two summands, according to the factorization
of the characteristic polynomial of Tpf into two factors: the stable factor with
eigenvalues |λ| ă 1 and the unstable factor with eigenvalues |λ| ą 1.

Theorem A.3.1 (Irwin [18]). Let p be a hyperbolic fixed point of a Cr

diffeomorphism (r ě 1) of M . Then, for some open neighborhood U of p,
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the local stable set W sppq of f |U at p is a Cr embedded submanifold of M ,
tangent at p to the stable summand of Tpf . The global stable set at p is a Cr

immersed submanifold of M , tangent at p to the stable summand of Tpf .

There are corresponding statements for local and global unstable manifolds
W uppq. Unstable for f means stable for f´1.

A.4 Classical Lie Groups and Lie Algebras
Let GLnpCq be the general linear group, consisting of all invertible linear

transformations Cn Ñ Cn. Let SLnpCq be the special linear subgroup, consist-
ing of all linear transformations of determinant 1. Let GLnpRq and SLnpRq be
the general linear and special linear groups of linear transformations Rn Ñ Rn.
All of the groups GLnpCq, SLnpCq, GLnpRq, and SLnpRq are Lie groups.

The Lie algebras of these groups are glnpCq (nˆ n matrices with complex
entries), slnpCq (complex entries and trace zero), glnpRq (real entries), and
slnpRq (real entries and trace zero).

The unitary group Up1, 1q of signature p1, 1q is

Up1, 1q “ tg P GL2pCq | ḡtrJsug “ Jsuu,

where Jsu “ diagp´i, iq. The special unitary group SUp1, 1q is the determinant
1 subgroup of Up1, 1q. The Lie algebra sup1, 1q of SUp1, 1q is given by

tX P sl2pCq | X̄ trJsu ` JsuX “ 0u “

"ˆ

it z
z̄ ´it

˙

| t P R, z P C
*

.

The special orthogonal group SOpm,nq is the subgroup of SLm`npRq

preserving a symmetric matrix A of signature pm,nq:

SOpm,nq “ tg P SLm`npRq | gtrAg “ Au,

where ´tr is the transpose. Different choices of matrices A of the same pm,nq

or reversed pn,mq signature give isomorphic Lie groups. The Lie algebra is

sopm,nq “ tX P slm`npRq | X trA ` AX “ 0u.

For a general Lie group G, the Lie algebra g can be defined as the
tangent space TeG at the neutral element e P G. The group G acts as inner
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automorphisms (conjugation) on itself. Passing to the tangent spaces, the
differential of inner automorphism affords a representation Ad : G Ñ GLpgq

on the Lie algebra g, called the adjoint representation. Again by taking
derivatives, this in turn affords a representation of the Lie algebra ad : g Ñ

glpgq, called the adjoint representation of the Lie algebra.
Let g˚ be the linear dual of the Lie algebra g. The coadjoint representation

Ad˚ : G Ñ GLpg˚q of G is defined by
@

Ad˚
gY,X

D

˚
“ xY,Adg´1Xy

˚
,

for all Y P g˚ and X P g. The coadjoint representation ad˚ : g Ñ glpg˚q of
the Lie algebra g is defined by

xad˚
ZY,Xy

˚
“ xY,´adZXy

˚
,

for all Y P g˚ and X P g.
The Cayley transform of a 2 ˆ 2 matrix X is defined as

CayleypXq :“ A´1XA, where A “
1

?
2

ˆ

1 i
i 1

˙

P SL2pCq.

A.5 Exceptional Isomorphisms in Rank One
Lemma A.5.1. • There is an isomorphism of Lie groups:

SL2pRq – SUp1, 1q (A.5.1)

• There are isomorphisms of Lie algebras:

sl2pRq – sup1, 1q – sop2, 1q (A.5.2)

Proof. The isomorphism between the special linear and special unitary group
is provided by the Cayley transform. We have

CayleypSL2pRqq “ A´1 SL2pRqA “ SUp1, 1q (A.5.3)
Cayleypsl2pRqq “ A´1 sl2pRqA “ sup1, 1q. (A.5.4)

To establish the isomorphism with the special orthogonal Lie algebra
consider the adjoint representation of g “ sl2pRq.

ad : sl2pRq Ñ glpgq.
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We set xX, Y y “ tracepXY q, for X, Y P sl2pRq. This is a quadratic form
of signature p2, 1q on sl2pRq. The linear transformation adX preserves the
quadratic form in the sense that

xadXY, Zy ` xY, adXZy “ 0.

This implies that the image of the adjoint representation is contained in
a special orthogonal Lie subalgebra of glpgq of signature p2, 1q. This is an
isomorphism.

A.6 Matrix Identities
We collect the following properties of matrices in sl2pCq.

Proposition A.6.1. For matrices X, Y P sl2pCq we have

ad2
X Y “ rrY,Xs, Xs “ ´2 detpXqY ´ 2XYX

“ 2 xX,XyY ´ 2 xX, Y yX.

Proposition A.6.2. For matrices X, Y, Z,W P sl2pCq, we have

xX,Zy xY,W y ´ xY, Zy xX,W y “ ´
1
2 xrX, Y s, rZ,W sy

Proof. Compute.

Proposition A.6.3. For matrices X, Y, Z,W P sl2pCq such that xY, Zy “ 0,
we have

xrX, Y s, rZ,W sy “ ´2 xX,Zy xY,W y

Proof. This is immediate from the previous proposition.

The matrix exponential is defined by the power series, which converges
for all n ˆ n matrices X:

exppXq “

8
ÿ

k“0

Xk

k! .
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Lemma A.6.4. If X P sl2pRq and d “ detpXq, then exppXq P SL2pRq, and

expptXq “ cosh pt
?

´dqI2 `
sinh pt

?
´dq

?
´d

X, pd ă 0q

“ cos pt
?
dqI2 `

sin pt
?
dq

?
d

X, pd ą 0q

“ I2 ` tX, pd “ 0q.

(A.6.1)

Proof. By the Cayley-Hamilton theorem, for X P sl2pRq, the matrix expo-
nential expptXq is a linear combination of I2 and X. The lemma makes this
linear combination explicit. The lemma is a variant of the classical Rodrigues
formula, which holds for rotation matrices. The two sides of the identity are
equal, both being the unique solution of the initial value problem

F 1
ptq “ XF ptq, F p0q “ I2.

The determinant of exppXq is given by the formula

detpexppXqq “ expptracepXqq “ 1

since tracepXq “ 0.

A.7 Symplectic Geometry
For any finite dimensional vector space V with dual V ˚, we have a

nondegenerate pairing between the exterior power ΛkpV ˚q and ΛkV that
sends

v˚
1 ^ v˚

2 ¨ ¨ ¨ ^ v˚
k P Λk

pV ˚
q, w1 ^ w2 ¨ ¨ ¨ ^ wk P ΛkV

to detpxv˚
i ,wjy˚

q. We can regard an element ω of the exterior power ΛkpV ˚q

as an alternating multilinear map on V k by using this pairing.

ωpw1, . . . ,wkq “ xω,w1 ^ w2 ¨ ¨ ¨ ^ wky
˚
.

Recall that the cotangent bundle T ˚M of a smooth manifold carries
the tautological one-form θ. Each element v of T pT ˚Mq defines both an
element v˚ P T ˚M (by projection) and an element v˚ P TM (by the tangent
map of T ˚M Ñ M). The tautological one-form is defined by the relation
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xθ,vy
˚

“ xv˚,v˚y
˚
. The exterior derivative ω “ dθ defines a canonical two-

form on T ˚M , giving the cotangent bundle the structure of a symplectic
manifold.

Each differentiable function F on a symplectic manifold pM,ωq defines a
vector field F⃗ by

ωqpF⃗ ,v˚q “ xdF,v˚y
˚
,

for v˚ P TqM . The Poisson bracket is defined by tF,Gu “ ωpF⃗ , G⃗q. Hamil-
ton’s equation corresponding to a Hamiltonian H is the ODE

p1
“ tp,Hu.

A.8 Lie-Poisson Dynamics on the Lie Algebra
The dual vector space g˚ can be equipped with a Poisson bracket called

the ˘ Lie-Poisson bracket: if F,G are two smooth functions on g˚, then the
bracket is given by

tF,GupX˚
q “ ˘

B

X˚,

„

δF

δX˚
,
δG

δX˚

ȷF

˚

X˚
P g˚

Here we identify g – g˚˚.
Hamilton’s equations with respect to this bracket are called Lie-Poisson

equations and take the following form (Marsden and Ratiu [31, Proposi-
tion 10.7.1]).

Proposition A.8.1 (Lie-Poisson equations). Let G be a Lie group. The
equations of motion for a smooth Hamiltonian H : g˚ Ñ R with respect to the
˘ Lie-Poisson brackets on g˚ are

dX˚

dt
“ ¯ad˚

δH{δX˚X˚ X˚
P g˚ (A.8.1)

Assume further that our Lie algebra g is semisimple: it can be equipped
with a nondegenerate bilinear form, which we denote by x¨, ¨y. This bilinear
form satisfies the following relation:

xX, rY, Zsy “ xrX, Y s, Zy , X, Y, Z P g (A.8.2)
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Using this bilinear form, we can identify g˚ with g as follows:

X˚
pY q “ xX, Y y X, Y P g, X˚

P g˚, (A.8.3)

where X˚ maps to X, under this isomorphism.
This isomorphism maps the operator ad to ad˚ and so equation (A.8.1)

becomes
dX

dt
“ ¯adδH{δXX “ ¯

„

δH
δX

,X

ȷ

, X P g.

Armed with this background material, in this section we recast the dy-
namics for X in our system, as given in Lemma 4.5.2, as the Lie-Poisson
equation of a control-dependent Hamiltonian on the vector space sl2pRq˚. To
do this we shall need to exhibit a Hamiltonian function. Recall that we have
defined xX, Y y “ tracepXY q for matrices X, Y P sl2pRq.

Proposition A.8.2. If HpXq “ ´
xX,Xy

2 ln xX,Xy

xX,Z0y
then

X 1
“ ´adδH{δXX “ ´

xX,Xy

2xX,Z0y
rZ0, Xs

Proof. The function H is well-defined since xX,Xy “ ´2 and on the star-
domain, by Lemma 3.3.4, we have that xX,Z0y ă 0. Now we have that

adδH{δXX “

„

δH
δX

,X

ȷ

“

„

δ

δX

ˆ

´
xX,Xy

2 ln xX,Xy

xX,Z0y

˙

, X

ȷ

“

„

´X ln xX,Xy

xX,Z0y
´

xX,Xy

2

ˆ

xX,Z0y

xX,Xy

2X xX,Z0y ´ xX,XyZ0

xX,Z0y
2

˙

, X

ȷ

“
xX,Xy

2 xX,Z0y
rZ0, Xs “ ´X 1

Thus, we see that the dynamics for X is Lie-Poisson with respect to the
Hamiltonian HpXq “ ´

xX,Xy

2 ln xX,Xy

xX,Z0y
.

Remark A.8.3. Note that, with the parameterization of Section 3.4, the
Hamiltonian becomes HpXq “ lnp´ xX,Z0yq.



A.9. POISSON REDUCTION OF THE EXTENDED STATE SPACE 251

A.9 Poisson Reduction of the Extended State
Space

The Poisson manifold T ˚TSL2pRq can be Poisson-reduced by left-translation
symmetries arising from the left-multiplication action of SL2pRq. This re-
duction results in a Poisson bracket on the reduced Poisson manifold, which
we call the extended space Poisson bracket. For preliminaries on Poisson
reduction, we refer to Chapter 10 of Marsden and Ratiu [31].

This reduction procedure also reduces a Hamiltonian system on T ˚TSL2pRq

to a system on the quotient

T ˚TSL2pRq{SL2pRq – sl2pRq
˚

ˆ sl2pRq ˆ sl2pRq
˚

– sl2pRq ˆ sl2pRq ˆ sl2pRq,
(A.9.1)

by means of the invariant bilinear form on sl2pRq. Thus, for example, the
Hamiltonian system arising from the Pontryagin Maximum Principle gets
reduced this way. We have already seen expressions for integral curves of the
reduced Hamiltonian vector field in Section 6.5.

These ODEs for X,Λ1,ΛR on the quotient Poisson manifold can be written
in Poisson bracket form with respect to the extended space Poisson bracket.
We have the following expression for this bracket, which appears in multiple
sources. See Jurdjevic [21], Gay-Balmaz et al. [12, pp. 34] and Esen et al. [10,
pp. 13].

Theorem A.9.1. If F and G are left-invariant smooth functions on T ˚pTSL2pRqq,
then we can identify them with functions on the quotient (A.9.1), which is iso-
morphic to sl2pRq3. By using coordinates pX,Λ1,Λ2q introduced in Section 6.2,
their extended space Poisson bracket on the quotient Poisson manifold is
given by

tF,Guex :“
B

Λ1,

„

δF

δΛ1
,
δG

δΛ1

ȷF

`

B

δF

δX
,
δG

δΛ2

F

´

B

δF

δΛ2
,
δG

δX

F

which is the sum of the Lie-Poisson bracket on sl2pRq˚ and the canonical
Poisson bracket on T ˚psl2pRqq (where sl2pRq is identified with the dual sl2pRq˚

as needed). Here δ{δX denotes the functional derivative with respect to X.

Using this bracket, we can deduce the following theorem.
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Theorem A.9.2. The Reinhardt system defined in problem 6.7.1 can be
written in Poisson bracket form as follows.

X 1
“ tX,Huex,

Λ1
1 “ tΛ1,Huex,

Λ1
R “ tΛR,Huex,

where HpΛ1,ΛR, X;Zuq “
@

Λ1 ´ 3
2λcostJ,X

D

´
xΛR,Zuy

xX,Zuy
and ΛR “ rΛ2, Xs as

usual.

In the theorem, the bracket is applied to each matrix entry, and we identify
sl2pRq˚ – sl2pRq via the nondegenerate trace form.

Proof. This is a routine calculation. We show the derivation for X and omit
the others. For an arbitrary constant Y P sl2pRq, we have

txX, Y y,Huex “

B

δ

δX
xX, Y y ,

δH
δΛ2

F

“

B

Y,
δ

δΛ2

xΛ2, rZu, Xsy

xZu, Xy

F

“

B

Y,
rZu, Xs

xZu, Xy

F

“ xX 1, Y y .

which proves the first equation.

A.10 Symplectic Structure of Coadjoint Or-
bits

On a Lie group G with Lie algebra g, Kirillov [22] has defined a symplectic
structure on the coadjoint orbit OZ˚ :“ tAd˚

g´1Z˚ | g P Gu through Z˚ P g˚

(the linear dual of the Lie algebra g). This two-form ωK on OZ˚ is given by

ωKZ˚pad˚
XW

˚, ad˚
YW

˚
q :“ xW ˚, rX, Y sy

˚
, W ˚

P OZ˚ , X, Y P g

where ad˚
XW

˚, ad˚
YW

˚ P TW˚OZ˚ . We specialize this general construction to
our setting with G “ SL2pRq.
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Since the Lie algebra sl2pRq carries with it the nondegenerate trace form:
xX, Y y “ tracepXY q, this sets up a linear isomorphism sl2pRq˚ – sl2pRq,
which we use to transport the symplectic structure from coadjoint orbits to
adjoint orbits.

In this section, we prove that the Kirillov symplectic structures on the
adjoint orbit OX Ă sl2pRq and the symplectic structure on the Poincaré upper
half-plane h are (anti)-equivalent. Recall that we have the following map.

Φ : h Ñ OJ

z “ x ` iy ÞÑ

ˆ

x{y ´px2 ` y2q{y
1{y ´x{y

˙

“: Φpzq,

from the upper half-plane to adjoint orbit OX “ OJ in sl2pRq.

Lemma A.10.1. The map Φ (defined in Lemma 4.2.1) is an anti-symplectomorphism.

Proof. Let ω be the symplectic form of the upper half-plane.

ω “
dx ^ dy

y2

and let ωK be the Kirillov two-form on the coadjoint orbit OX . We have
to show ωK pulls back to the two-form ´ω on the upper half-plane by
Φ : h Ñ OX . So, at a point z “ x ` iy P h and tangent vectors v,w P Tzh:

Φ˚ωKz pv,wq “ ωKΦpzqpTzΦpvq, TzΦpwqq

“

B

Φpzq,

„ˆ v2
2y

v1y´v2x
y

q

0 v2
2y

˙

,

ˆ w2
2y

w1y´w2x
y

q

0 w2
2y

˙ȷF

“ ´
v1w2 ´ v2w1

y2
“ ´ωzpv,wq

This proves that Φ˚ωK “ ´ω.

A.11 Riemannian Metric on Coadjoint Orbits
Let X P OJ . Then X is regular semisimple, and RX is a rank one

Cartan subalgebra of sl2pRq, where RX is the span of X. There is a Cartan
decomposition sl2pRq “ RX ‘ pX decomposition adapted to sl2pRq, where
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pX “ XK is the two-dimensional orthogonal complement of RX with respect
to the trace form on sl2pRq.

Explicitly,
pX “ trX, Y s | Y P sl2pRqu.

From Lemma 4.2.3, pX is the tangent space TXOJ , which is also identified
with Tzh, where X “ Φpzq.

By transport of structure, the trace form on sl2pRq restricts to pX and
defines a symmetric bilinear form on Tzh. By general theory, this quadratic
form is positive definite on pX .

Lemma A.11.1. The symmetric bilinear form on Tzh determined by the
trace form on pX is twice the usual invariant Riemannian metric on h:

2dx
2 ` dy2

y2
.

Proof. Set
ẽ1 “

ˆ

0 1
0 0

˙

, ẽ2 “

ˆ

1{p2yq ´x{y
0 ´1{p2yq

˙

.

Under the map TΦ : Tzh Ñ TXOJ of Lemma 4.2.4, the preimage of ẽ1
and ẽ2 is the basis e1 “ B{Bx, e2 “ B{By of R2 “ Tzh. The isomorphism
sl2pRq{RX Ñ pX “ XK is Y ÞÑ rY,Xs. Thus, it is enough to check that

xrẽi,Φpzqs, rẽj,Φpzqsy “
2δij
y2

,

where δij is the Kronecker delta. This is easily computed.



Appendix B

Extensions of the Theory

B.1 Hypotrochoids
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Figure B.1.1: A hypotrochoid resembling the smoothed octagon.

A hypotrochoid is a roulette curve which is traced by a point which is at a
distance r0 from the center of a circle of radius r1 as it rolls without slipping
on the inside of a circle of a fixed circle of radius r2. The parametric equation
of a hypotrochoid in the complex plane C is given by

zptq “ pr2 ´ r1q exppitq ` r0 exp
ˆ

´
pr2 ´ r1q

r1
it

˙

.

255



256 APPENDIX B. EXTENSIONS OF THE THEORY

This section was motivated by the striking figure in Figure B.1.1, which
depicts a hypotrochoid with parameters r1 “ 2.498, pr2 ´ r1q{r1 “ 1{7, and
r0 “ ´10. As we can see, the Figure 1.1.1 resembles the smoothed octagon.

If ζ is a primitive cube root of unity, and n, j are integers, define
σ2jptq :“ r exppitqζj ` r0 expp´it{nqζ´j, (B.1.1)

which is a closed curve of period 2πn. We recover a hypotrochoid from σ0 by
setting 1{n “ pr2 ´ r1q{r1 and r “ pr2 ´ r1q.

The smoothed octagon is given by a bang-bang control and hence is not a
real analytic curve. But the following proposition shows that the hypotrochoid
is a multi-curve, realized by a curve in SL2pRq.
Proposition B.1.1. If |r0| ‰ |r| and if n ” 1 mod 3, then there exists a
curve in SL2pRq which realizes the hypotrochoid σ0.
Proof. We will prove the following identities of the curves σ2jptq:

σ0ptq ` σ2ptq ` σ4ptq “ 0,
ℜpiσ0ptq, σ2ptqq “ constant,

σ2jpt `
2πn

3 q “ σ2j`2ptq.

The first identity is a result of 1 ` ζ ` ζ2 “ 0. The second identity follows
from

σ̄0ptqσ2ptq “ r20ζ
2

` r2ζ ` 2r0rℜpζ exppit ` it{nqq

The third follows from the definition of σ2j. Identifying C with R2 we get
that

ℜpiσ0ptq, σ2ptqq “ detpσ0ptq, σ2ptqq “ constant.
This means that there is a constant s ą 0 such that the rescaled curves s σ2j
(and their negations ´s σ2j) form a multi-curve as in Definition 2.4.1. We can
go through the same construction now as in Section 3.1 to construct a curve
g : r0, tf s Ñ SL2pRq so that s σ2jptq “ gptqe˚

2j.
Remark B.1.2. This hypotrochoid result might allow us a further speculation.
We can compute the curvatures κjptq of the curves σ2jptq defined in that section
and compute their normalization and label them as controls. This then shows
that a hypotrochoid determines a control function in the control vector space
tpu0, u1, u2q | u0 ` u1 ` u2 “ 1u.

We might then ask for an optimal control problem which has a particular
hypotrochoid as a global optimizer and investigate how it might relate to the
smoothed octagon.
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B.2 Chaos in Numerical Experiments
This appendix describes some numerical experiments for the Reinhardt

control problem with circular control set for various choices of parameters.
Here we use the hyperboloid coordinates w, b, c introduced in Section 10.1
with fixed angular momentum A0.

A numerical experiment suggests that for some values of the parameters,
the trajectories might be chaotic. See Figure B.2.1. However, for other
parameter values, the trajectories appear to be periodic. See Figure B.2.2.
The only difference in parameter values for these two figures is A0 “ 3 in the
first figure and A0 “ 2.5 in the second. We cannot guarantee the accuracy of
these numerical solutions.

Much further numerical exploration of the solutions would be desirable,
both for circular control sets and for triangular control sets.

-20 -10 10 20

0.5

1.0

1.5

2.0

Figure B.2.1: The graph of |w| as a function of time. For nearby initial
conditions, the trajectories of |w| drift apart in a way that suggests the onset
of chaos. The parameter values are ρ “ 1.1, d1 “ 3{2, ϵ “ 1, A0 “ 3,
and ϵb “ 1. The two solutions (in orange and blue) have initial values
pw0, c0q “ p1.5, 0.5q and pw0, c0q “ p1.495, 0.5q, respectively. The figure was
produced using NDSolve, Mathematica’s numerical ODE solver.
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Figure B.2.2: The graph of |w| as a function of time. For other nearby
initial conditions, the trajectories of |w| remain close to each other. The
trajectories appear to be periodic. The parameter values are ρ “ 1.1, d1 “ 3{2,
ϵ “ 1, A0 “ 2.5, and ϵb “ 1. The two solutions (in orange and blue) have
initial values pw0, c0q “ p1.5, 0.5q and pw0, c0q “ p1.495, 0.5q, respectively. The
graphic was produced by the numerical solver NDSolve.

B.3 Kuperberg’s Area Formula
Greg Kuperberg has given an area formula for centrally symmetric disks

satisfying the minimality conditions of Reinhardt [23]. Write g P SL2pRq as

g “

ˆ

1 x
0 1

˙ˆ

y1{2 0
0 y´1{2

˙ˆ

cos θ ´ sin θ
sin θ cos θ

˙

, y ą 0.

Then g ¨ i “ x ` iy.
Let K be a balanced disk in the Euclidean plane, given by a path g :

r0, tf s Ñ SL2pRq. Let g̃ : r0, tf s Ñ h be the image g̃ptq “ gptq ¨ i of the path
in the upper-half plane. Note that with the usual boundary conditions on g,
we have gptf q “ gp0qR, and g̃ptf q “ g̃p0q, so that the curve in the upper-half
plane is closed.

Based on the formula (3.2.2), there is a cost one-form, which expressed in
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the coordinates px, y, θq gives

´
3
2tracepJg´1dgq “ 3dθ ´

3dx
2y , (B.3.1)

where g´1dg is the Cartan-Maurer one-form on SL2pRq, and J is the infinites-
imal generator of the rotation group SO2pRq. On any disk with hexagonal
symmetry, θptf q “ π{3. Also,

dpdx{yq “
dx ^ dy

y2
,

which is the invariant two-form ω on h. Thus, the area is

areapKq “ π ´
3
2

ż

ω (B.3.2)

where the integral is the signed hyperbolic area of the region in the upper-
half plane enclosed by the path g̃. The Reinhardt problem is asking for a
maximization of the signed area given by the integral.

Note that the upper-half plane occurs in two contexts now: as the codomain
of the path g̃ : r0, tf s Ñ h and as the parameter space for the tangent
X “ Φpzq, z P h. Roughly speaking, the derivative of the first h is the second
h, according to the relation g1 “ gX.

Example. If K is the circle, then gptq “ i is constant, and the signed area
ş

ω “ 0. The area formula reads areapKq “ π.

Example. We can imagine the proof of the local optimality of the smoothed
octagon in Figure B.3.1 by the way that the smoothed octagon is approximately
an area maximizing circle. Also shown are the smoothed 10-gon, 20-gon, and
62-gon. In general the smoothed 6k ´ 2-gon will have turning number ´k
(and negative area), and the smoothed 6k ` 2 will have turning number `k
(and positive area).

B.4 Research Problems
We begin with a few questions related to circular control sets.
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Figure B.3.1: Kuperberg representation of the smoothed octagon, 10-gon,
20-gon, 62-gon

1. In the context of a circular control set, determine numerically, the
parameter regions that give chaos.

2. Give a comprehensive description of the global dynamics for circular
control, building on the description of global dynamics for the Fuller
system.

Here are some research questions related to triangular control UT .

1. We do not give an upper bound on the number of edges in the smoothed
polygon. It seems to us that an extension of the methods presented here
might lead to an explicit upper bound on the number of edges. (In fact,
we expect that our analysis of the singular locus completes the most
difficult stage of the proof of the full Reinhardt conjecture.) To obtain a
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bound on the number of edges, it would be useful to extend our analysis
from trajectories that meet the singular locus to include trajectories
that come within a small neighborhood of the singular locus. It might
then be possible to obtain an upper bound on the number of control
mode switches for trajectories that avoid a given small neighborhood of
the singular locus.

2. We have a family of dynamical systems parameterized by d “ detpΛ1q.
For each d, the Poincaré section is a four-dimensional space. Short of
giving the complete solution to the Reinhardt problem, the Reinhardt
problem might be solved for particular d (such as d “ 0).

3. In the particular case d “ detpΛ1q “ d21 “ 9{4, we might ask whether
our analysis of the behavior of the dynamical system around the singular
locus (the stable and unstable manifolds at the fixed points) gives the
comprehensive picture. That is, do trajectories generally start at the
boundary of the star domain, start to move inward toward the fixed
point qin, only to veer toward the other fixed point qout, and finally
move back out to the boundary of the star domain?

4. We have described the global behavior of trajectories that meet the
singular locus, including the global behavior of the Fuller system. To
what extent do the methods introduced there (such as the involution ιτF ,
the geometric partition of the domain, and a block triangular structure
of the Poincaré map) generalize to the Reinhardt system? Are these
ideas sufficient to give a full proof of the Reinhardt conjecture?
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greatest packing, 27
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qout, qin, 193
Frenet-Serret formula, 19
Fuller dynamical system, 193
Fuller system, 165

multi-dimensional, 174
triangular control, 194
ubiquity, 175

Fuller-Poincaré section, 203, 210
functional derivative, 97, 98, 150,

244

general linear group, 245
generalized eigenspace, 244
geometric partition, 225
Green’s theorem, 55
Gronwall inequality, 90, 130, 138,

139

Hamilton’s equation, 249
Hamiltonian

control-dependent, 20, 92
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cost-extended, 92
Fuller system, 194
maximized, 20, 92

hexagon
critical, 40
inscribed, 38

hexagon, critical, 31
horoball, 77, 78
horocycle, 77, 164
hyperbolic

fixed point, 215
geometry, 19
metric, 69

hyperbolic fixed point, 244
hyperboloid

coordinate, 155, 156
model of hyperbolic geometry,

72
hypotrochoid, 41, 255

ideal triangle, 69
infinitesimal group of symmetries,

145
initial submanifold, 99
inverse function theorem, 123
involution, 224
involution with respect to the

bracket, 170
irreducible disk, 38
isospectral, 61
isotropy algebra, 68
Iwasawa decomposition, 65, 258

Jacobi’s formula, 54

Kepler dynamical system, 171
Kuperberg, Greg, 258

Landau big oh, 129, 160, 167

lattice, 28
admissible, 37
critical, 38

Lax equation, 61
level of ODE subsystem, 94
lexicographic order, 198
Lie algebra, 50, 63
Lie group, 49, 63
Lie-Poisson

bracket, 249
dynamics, 249
equations, 249

Lie-Poisson structure, 61
line, support, 32
linear fractional transformation, 66
Lipschitz

continuity, 42
log spiral, 173
Lyapunov function, 189

Möbius transformation, 66
Mahler’s First conjecture, 18, 236
Mahler, Kurt, 16, 193
manifold

stable, unstable, 215
Mathematica, 117, 131, 162, 163,

189, 206, 211, 216, 230
NDSolve, 257

measurable, 89
Minkowski sum, 35
Minkowski, Hermann, 16
momentum map, 145
multi-curve, 18, 41
multi-point, 33, 41

nilpotent cone, 156
Noether’s theorem, 23, 144
Noether-Sussmann theorem, 145



272 INDEX

norm
Euclidean, 130
natural matrix, 130, 138

normal extremal, 93

octagon
smoothed, 29

odd function, 182
orbit-stabilizer theorem, 66
overloading, 179

packing, 27
lattice, 28

Pontryagin Maximum Principle,
20, 91

PMP, Pontryagin Maximum
Principle, 20, 91, 146

Poincaré map, 204
first recurrence map, 193
Fuller-Poincaré F , 204
Reinhardt-Poincaré, 204

Poincaré section, 122
Poisson

bracket, 151, 170, 249
commuting, 151
descending bracket, 175
extended bracket, 251
structure, direct sum, 252

Poisson bracket, 249
Pontryagin extremal, 21, 93
positive orientation, 41
punctured neighborhood of

singular locus, 167

Rademacher’s theorem, 43
radial component, 202
reduced costate, 98
regular

nilpotent class, 156

semisimple element of sl2, 156
semisimple element of Lie

algebra, 253
regular closed set, 225
Reinhardt

conjecture, 15
optimal control problem, 19

Reinhardt dynamical system, 193
Reinhardt problem

balanced, 55
Reinhardt, Karl, 14
Riemannian metric

invariant, 105
on h, 254

Rodrigues formula for rotations,
248

roulette curve, 255

section of a bundle, 181
semisimple Lie algebra, 249
singular extremal, 21
singular locus, 125, 134, 165, 193,

200
singular subarc, 92, 93
smoothed octagon, 17
smoothed polygon, 113
special Fuller trajectory, 187
special linear group, 245
special orthogonal group, 245
special unitary group, 245
sphere packing problem, 13
split

semisimple element of sl2, 156
semisimple element of Lie

algebra, 159
stability at equilibrium point, 183
stable

manifold, 215
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stable manifold, 244
star

condition, 44
domain, 69, 70
inequality, 52

state equations, 19, 63
state space, 49
support, 32
symmetric, centrally, 27
symmetrization, 28
symplectic vector field F⃗ , 249
symplectomorphism, 67

tautological one-form, 249
time reversal, τ , 171, 193
toy control problem, 143
trace, 51, 246
transversality, 99

trivial principal topological bundle,
180

trivialization of a bundle, 181

unitary group, 245
unpackable, 14, 29
upper-half plane, 19, 66

Viazovska, Maryna, 13
virial

action, 170
group, 196

Von Mises iteration, 216

wall, 111, 198
Weierstrass

polynomial, 238
preparation, 238

weighted determinant, 152
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«, approximate equality, 15, 29
–, isomorphism, 246
ă, lexicographic order, 198, 232

p´,´q, edge between endpoints, 35
p´,´q, ordered pair, 27
p´,´q Ă R, open interval, 133
´1, derivative, 42

directional, 244
´ ¯ , complex conjugate, 73
´ ˜ , transformed quantity, 53, 72,

144
´⃗ , vector field of function, 171,

248
´˚, dual

isomorphism, 249
linear, 62, 145

´˚, pullback of differential form,
55

´˚, special value
optimizer, 157
spiral solution, 173

´0 or ´0, initial value, 194
´0, interior, 177, 220
´˝, annihilator, 101
´K, orthogonal complement, 101
´‹, star domain, 69
´‹‹, truncated star domain, 77

´cr, crop, 30
´tr, transpose, 55, 245
´F , Fuller truncation, 169
´X , centralizer of X, 68
´x, partial derivative, 86
0.902414 . . ., smoothed octagon

density, 30
r´,´s, Lie bracket, 60
r´,´s, linear segment between

endpoints, 188
r´s, line through ´, 107
v´w “ v´w1, 155
v´wϵ “

?
ϵ ` ´2, 155

¯̈, complex conjugation, 196
x´,´y, bilinear form

nondegenerate, 249
trace form on Lie algebra, 59,

246, 250
x´,´y

˚
, canonical pairing, 92, 244

¨, action
linear fractional on h, 66
of dihedral group on control,

74
virial, 170

˝, function composition, 78
8, boundary point of h, 107
B, boundary, 35, 148

275
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B, boundary locus, 224
BA, BB, discriminant locus, 224
Bres, resultant locus, 224

} ´ }, norm, 130, 166
^, wedge product of differential

forms, 171, 253
t´,´u, Poisson bracket, 249

´F , Fuller, 170
´ex, extended, 151, 251
Lie-Poisson, 249

△, triangle, 81

A, matrix or linear map, 54, 129
3 ˆ 4 system of ODEs, 158
A : sl2pRq Ñ sl2pRq, 137
as bounded operator, 168
Cayley transform matrix, 246
in dihedral group, 72
nonsingular, 166
of eigenvectors, 107
rotation, 69, 144

A, angular momentum, 146, 151
AF , truncated, 169
An, of length n Fuller, 172
in hyperboloid coordinates, 158

ai, bi, real numbers, 229
aj, bj P C, complex coefficients, 172
a, b, c, d, matrix entries, 155

of X, 51
of linear fractional

transformation, 66, 78
Ad, adjoint representation of Lie

group, 50, 245
Ad˚, coadjoint representation of

the Lie group, 98, 246
ad, adjoint representation of the

Lie algebra, 67, 245

ad˚, coadjoint representation of
the Lie algebra, 97, 246

area
areai, area of a triangle, 83
Lebesgue measure on R2, 27

B, horoball at a cusp, 78
Bn, unit ball, 13
b P R2, vector, 129
b, c, hyperboloid coordinates, 157

bF , cF , truncated, 169

C,C0, C1, C2, local real constant,
109, 129–131, 138, 167, 168

Ck, differentiability class, 41
Ckpu,mA,mBq cell of dimension k,

220
Cayley, Cayley transform, 148, 246
cosi P R, cosine coordinate over Ω,

178
cosh, hyperbolic cosine, 247
cost, cost function, 113, 136

D, matrix, 54
Dr, small disk, 189
Dj, parts of a geometric partition,

225
D1,ij, geometric partition of D1,

229
Dih6, dihedral group of order 12,

72
D, disk model of hyperbolic

geometry, 69
diag, diagonal matrix, 156
d, determinant

d “ detpΛ1q, a constant of
motion, 117

d P R, 122
d1, detpΛ1q “ d “ ϵd21, 156, 207
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dR “ xΛR,ΛRy P R, 163
doct “ detpΛ1q, for smoothed

octagon, 122
detpLq, determinant of a lattice, 37
detpΛ, α, βq, weighted determinant,

152
detpv1,v2q, 2 ˆ 2 determinant,

columns vi, 33

ei, standard basis
ẽi, image of standard basis.,

254
of R2, 254
extreme point of the control

set, 90, 111, 112
e P G, neutral element, 63
exp, exponential and matrix

exponential, 57, 247
solution to ODE, 145

F , Poincaré map, 203
Fi extension to Di, 229
Fang, angular component, 203
first recurrence, 203

F , face of a convex set, 110
F,G, smooth functions, 151, 170,

171, 244, 248, 251
F “ R or C, archimedean field, 166
f , function

f : R2 Ñ R, 117
fi, 129

f , term of an ODE, 168
f , vector field, 89, 145

f2, component, 126
on M , 181

fi, function, 167

G, Lie group, 63, 145, 245
g, Lie algebra, 63, 145, 245

G, virial group, 170, 196
g, group element

pg,Xq, state variables, 93
gpI, z, tq P SL2pRq, trajectory

with bang-bang control,
112

gptq, curve in SL2, 49
gi, trajectory in SL2pRq,

constant control, 112
gsw P SL2, at switching time,

118
gsptq, deformed curve in SL2,

135
affine transformation, 29
in SL2pRq, 65
in SUp1, 1q, 163

GLn, general linear group, 54, 245
gln, Lie algebra, 245

H, Euclidean region
H,K, convex regions in the

plane, 79
H˚ Ă R4, coordinate chart,

209
convex hull, 84

H, Hamiltonian, 92
H`, maximized, 195
H1, Lie group level term, 95
H2, Lie algebra level term, 95
HF , Fuller system, 169, 195
Hn, length n Fuller system,

172
H`, maximized, 92
in hyperboloid coordinates, 158
Lie-Poisson, 249, 250

h, upper-half plane, 66
h‹‹, star domain

compactification, 77
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hi, subset of h‹, 83
h‹, star domain, 69

h P G, element of Lie group, 94
hptq P SL2pRq, 126
component of Iwasawa

decomposition, 65
in SL2pRq, 116

HK , critical hexagon, 30, 40
hK , inscribed hexagon, 33, 38

h, hexagon, 38

I, identity map, 123
I, identity matrix, 54
I Ď t1, 2, 3u, 111, 131
I2, 2 ˆ 2 identity matrix, 56
Ii, indicator function, 83
I, tuple of control data, 112
i “

?
´1, 33, 173, 194

i, j, integers, 33

J , infinitesimal generator of
rotations, 51

Jsu “ diagp´i, iq, Cayley
transform of J , 156, 245

Jτ , momentum map, 145
Jac, Jacobian matrix, 183

K, conserved matrix, 161
K12 P C, matrix entry, 161

K, convex disk, 27
Kpg,Xq, attached to data

pg,Xq, 140
Kmin, minimax optimizer, 29,

236
Koct, smoothed octagon, 119
Ksym, symmetrization, 28
body, 13
compact convex set in Rn, 110

k, integer, 49, 112

K, set of convex disks, 13
Kbal, balanced, 45
Kccs, centrally symmetric

convex, 13, 27

L, affine function, 90, 148
L, matrix, 54
Lg, left multiplication by g, 63
L, lattice, 28

l, lattice element, 30
ℓi, support line, 39
ℓpy0q P R, 116
lij, matrix coefficients of Λ, 152
lhs, left-hand side, 162
ln, natural log, 250

M , manifold
Md, for smoothed octagon, 122
for Fuller system dynamics,

177
for Noether-Sussmann, 145
optimal control on, 99

m, integer dimension, 89, 166
multiplicity of root, 220

Nd, Poincaré section, 122
n, length of Fuller system, 166

O, Landau big oh, 129, 167, 210
O2, orthogonal group, 72
O´, adjoint or coadjoint orbit, 65,

252
0, origin, 27, 37, 79

P , normalized control matrix, 96,
137

P ˚, optimal, 150, 152
P0, constant, 106
Pi,j, at mixed controls ej, ei,

115



INDEX OF NOTATION 279

Lax equation, 61
PK , parallelogram, 53
P packing, 13
pX “ XK, component of Cartan

decomposition, 253
pi,qi, ri, points in the plane, 79
p, point in bundle

p̃ P T ˚
g G, cotangent vector, 95

lifted controlled trajectory, 146
lifted extremal trajectory, 99
value of section ψ, 185
vector in cotangent space, 92

Q, quadratic polynomial, 159, 160
Q, optimal control system, 145
q, point on manifold, 89, 145

q0, in submanifold, 122
q˚

˘, image of the log-spiral, 182
qc, arrival point on boundary,

188
qi, 122
q2,2, equilibrium point, 187
qin, qout, qfix, fixed points, 204

R, rotation by π{3, 51
ℜp´,´q, sesquilinear form, 155
RX, span of X, 67
R2

Ω, topological plane, 179
r, point in the plane, 79
r, real number, 27, 82, 117

r “ xrΛR, Xs, Ky, 163
ri, hypotrochoid parameter,

255
ri, scalar, 68
rj, subexpression in vector

field, 181
rscale « 6.27, scaling factor,

204

homothety, 30
polar coordinate, 186
radial component of ODE, 159
radius, 78, 148
scalar, 161, 164
slope of ODE solution, 109,

131
trace, 116

rhs, right-hand side, 162
RP1, real projective line, 73

S P sl2pRq, reflection matrix, 73
Ssing, singular locus, 134, 165
si, multi-point, 33, 79

s˚
j , sixth roots of unity, 33

s, real parameter
sptq, reparameterization, 126
s “ t{r, rescaled time, 211
s P p0, 2q, local parameter, 185
s P R, deformation parameter,

135
arclength, 43
dummy integration variable,

106
speed, 42

sini P R, sine coordinate over Ω,
178

sinh, hyperbolic sine, 247
SLn, special linear group, 19, 49,

245
sln, Lie algebra, 50, 245

SO, special orthogonal group
so, Lie algebra, 245
On, orthogonal group, 72
SOn, compact orthogonal, 51

SUp1, 1q, special unitary group,
163, 245

Up1, 1q, full unitary group, 245



280 INDEX OF NOTATION

sup1, 1q, Lie algebra, 148, 245

T , triangle, 33, 79, 117
T ext, exterior triangle, 79

T ˚
qM , cotangent space at q, 63
TqM , tangent space at q P M , 67
Tf : TqM Ñ TfpqqN , tangent map

of f , 63
t, real number, 110, 155

t0, t1, scalars, 35
matrix entry, 245
scalar, 178

t P R, time, 41
t̃i, time parameter, 112
t0, t1, 167
t1, 129
t2, 130
tc, arrival time at boundary,

188
tsw, switching time, 114, 122,

197

U , control set, 145
pUT qI , face, 111
UC , circumscribed, 143
UI , inscribed, 143
UT , triangular, 59
Ur, intermediate, 143, 148

u, arbitrary multi-point, 35
u, vector

u0,u1 P R2, 37
in R2, 33, 55, 56
normal, 185
unit tangent, 42

u, control
uedge, on edge, 126
u, v P U , 110
u P r´1, 1s, classical Fuller

control, 174

u P VT , 194
u˚, optimal, 92
ui P U , 145
uj, jth component of control,

58

V , vector space, 244, 248
VT “ t1, ζ, ζ2u, vertices of control

set, 194
Vi Ă M , open neighborhood of a

manifold, 145
v, vector

pv2, v3q, vector field, 181
vpz, uq, control vector, 198
v,w, vectors, 244
v,w P Tzh, tangent, 253
v˚ P T ˚M , 248
v˚ P TM , 248
v˘, eigenvectors, 107
vi P R2, 37
vi, wi P R, components of v,w,

253
components vi, 129
in T pT ˚Mq, 248
tangent vector, 99

W P sl2pRq, 101
W ˚, Z˚ P g˚, 252
W spqq,W upqq, stable and unstable

manifolds, 207
W ,Wi, wall, 198
w, vector

in R2, 55
w path in the hyperbolic disk, 69
w, hyperboloid coordinate

w̃ “ c̄w{|c|, 159
w, b, c coordinates, 156
wF , truncated, 169
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in C, 157

X, Lie algebra element
X, Y, Z,W P sl2, 60, 105, 152,

155, 247
X, Y, Z P g, 145, 249
X “ g´1g1, curve in Lie

algebra, 50
X P sl2, 50
X˚ P g˚, 249
X0, initial condition for Xptq,

62
XpI, z, tq, Lie algebra trajectory

with bang-bang control,
112

x̃˚
21prq “

?
3 ´ 1{r, star domain

boundary curve, 209
x, function of time, 244
x, real part of z, 65
x, y, coordinates of the classical

Fuller problem, 174
xi, coordinates px2, x3q of Ω, 177

Y P g, Lie algebra element, 249
in sl2, 56, 68, 137, 214

y, imaginary part of z, 65
y P R, local variable, 117
y0, 0 ` iy0, smoothed polygon

initial condition, 114, 122
Zu, control matrix, 59, 209

Z0, constant, 250
Zu, constant, 106
Z˚
u , optimal, 131

z, optimal control, 148, 153
z̃ “ c̄z{|c|, 159
z˚, 157

z P C, 155, 245
z P h

z̄, complex conjugate, 73
z̃0, 107
z “ x ` iy, 66

zi, Fuller system
z “ pz1, z2, z3q P C3, 177, 194
zspec, special trajectory, 187
component, 166, 169

α, β, control matrix parameters,
149, 152, 166

Γ8, smooth sections of a vector
bundle, 145

γ, planar curve, 55, 189
γs, hyperbolic arc, 43

γ P Cˆ, Fuller system multiplier,
166

∆, discriminant, 160, 220
∆pKq, minimal determinant, 38
δ, density

δpKq, greatest, 13
δpK,Lq, of lattice packing, 28
δpK,Pq, packing, 13, 28
δpzq density bound, 85
δ0pzq, density bound, 87
δLpKq, greatest lattice, 28
δmin, minimax, 29
δoct, of smoothed octagon, 85

δ{δX, functional derivative, 97,
150, 244

δij, Kronecker delta, 254
ϵ P t´1, 0, 1u, sign

ϵ P t´1, 0, 1u, sign detpΛ1q,
155, 207

ϵA, determinant of A, 72
ϵi P R, sign coordinate over Ω,

178
ζ “ expp2πi{3q, cube root of unity,

148, 194, 256
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θ, angle, 73, 146, 159, 170, 186, 196
θk “ πk{p3k ` 1q, 118

θ, differential one-form, 55, 248
ιτF “ τ ˝ F , involution, 224
κ, curvature

κ “ κ1 ` κ2 ` κ3, 60
κj, state-dependent curvature,

58
planar, 43

Λ, costate
Λ P sl2pCq, 152
ΛR P sl2, reduced, 96
Λi P sl2, 93
Λ1,cost “ Λ1 ´ 3λcostJ{2, 133,

137
Λ10 P sl2pRq, 116
λ1, λR, multiplier, 116
λi, on edge, 127
λcost, cost multiplier, 92, 207
Λ̃R, solution specification for

ΛR, 106
λ̃, approximation to costate on

edge, 129
λ, eigenvalue, 54, 106, 118
µ : C2 Ñ R, star denominator, 157

µ˚ “ µpw, z˚q, 158
ν P T ˚

z h, cotangent variable, 102,
132

ν1, ν2, components of ν, 102
Ξ, 202

ΞW ,ΞW,0, Poincaré section,
203, 210

ξi, quadratic control equation
coefficients

ξ0 “ 2 ` |w̃|2 ´ w̃2, 159
ξ0 “ 2 ` |w|2 ´ pwc̄{|c|q2, 157
ξ1 “ 2ρpw̃ ´ ¯̃wqvw̃w, 159

ξ, angular component, 202

Π, affine plane, 148
Π`
i , open half-plane, 78

π, projection
πrad, πang, radial and angular

projections, 202
π : M Ñ R2, function, 177
π “ 3.14 . . ., 16
ρ “ β{α ą 0, control parameter,

149, 156, 207
ρj, star function, 51, 59

ρjpzq :“ ρjpΦpzqq, 81
ρ̃j, 52

σi, multi-curve, 41, 256
τ , dummy variable of integration,

129, 130
τ , infinitesimal group of

symmetries, 145
τ , time reversal involution, 171,

196
Φ : h Ñ sl2pRq, 65, 66
φ, cost integrand, 89, 145

φedge “ x2{y, on edge, 126
φ, weighted norm, 202
χij, switching function, 115, 137,

196
χA,mA

, χB,mB
, reduced

switching, 220
χW , Weierstrass polynomial of,

238
Ψ, auxiliary function in ODE

solution of ΛR, 106
Ψsptq “ exppsp´qq, deformation of

identity matrix, 135
ψ, local auxiliary function or

integral, 243
ψ, section of a bundle, 181
ψ, solution specification for

ΛR, 106
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ψ : V1 Ñ V2, diffeomorphism of
open neighborhoods, 145

ψ : h‹ Ñ R, cutoff function, 90
ψi, compactly supported

functions, 135
ψ “ θ2 ´ θ1, phase difference, 219
Ω Ă r0, 2s2, 177

Ωϵi,ϵj , copies of Ω, 179
Ωspec` Ă Ω´`, subregion, 188
Ωspec´ Ă Ω`´, sign reversal of

Ωspec`, 189

BΩ`
˘,˘ “ B

`
˘,˘, upper boundary

curve of Ω˘,˘, 179
BΩ´

˘,˘ “ B
´
˘,˘, lower boundary

curve of Ω˘,˘, 179
ω, two-form

ωK , Kirillov, 252, 253
ωn, for length n Fuller system,

172
on C3, 171
on h, 253, 259
on symplectic manifold, 248
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