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Abstract

This book uses optimal control theory to prove that the most unpackable
centrally symmetric convex disk in the plane is a smoothed polygon. A
smoothed polygon is a polygon whose corners have been rounded in a special
way by arcs of hyperbolas. To be highly unpackable means that even densest
packing of that disk has low density.

Motivated by Minkowski’s geometry of numbers, which investigates lattice
packings of convex bodies, researchers (notably Blaschke and Courant) began
to search for the most unpackable centrally symmetric convex disk (in brief,
the most unpackable disk) starting in the early 1920s. In 1934, Reinhardt
conjectured that the most unpackable disk is a smoothed octagon. Working
independently of Reinhardt, but also motivated by Minkowski’s geometry of
numbers, Mahler attempted without success in 1946 to prove that the most
unpackable disk must be a smoothed polygon. This book proves what Mahler
set out to prove: Mahler’s First conjecture on smoothed polygons. His second
conjecture is identical to the Reinhardt conjecture, which remains open.

This book explores the many remarkable structures of this packing problem,
formulated as a problem in optimal control theory on a Lie group, with
connections to hyperbolic geometry and Hamiltonian mechanics. Bang-bang
Pontryagin extremals to the optimal control problem are smoothed polygons.
Extreme difficulties arise in the proof because of chattering behavior in the
optimal control problem, corresponding to possible smoothed “polygons with
infinitely many sides” that need to be ruled out. To analyze and eliminate the
possibility of chattering solutions, the book introduces a discrete dynamical
system (the Poincaré first recurrence map) and gives a full description of
its fixed points, stable and unstable manifolds, and basin of attraction on a
blowup centered at a singular set. Some proofs in this book are computer-
assisted using a computer algebra system.
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Chapter 1

Introduction

This book shows how the still-unsolved Reinhardt conjecture in discrete
geometry can be formulated as a problem in optimal control theory. A proof of
Mahler’s First conjecture is presented, which is a weak form of the Reinhardt
conjecture, asserting that the most unpackable centrally symmetric convex
disk is a smoothed polygon.

Discrete geometers are interested in the class of problems which minimize
or maximize the packing density §(K,P) of a conver body K — R™; that is, a
convex compact set with nonempty interior[] A convex body in R? is called
a conver disk. The packing density is roughly the fraction of space taken
up by non-overlapping congruent copies of a convex body K when they are
arranged according to the packing P in Euclidean space R". Since §(K,P) is
function of two variables, different flavors of this question may be posed: we
may restrict the classes of convex bodies K under consideration, or we may
restrict the type of packings P.

For example, the sphere packing problem fixes the convex body K to be
B™ (the unit ball in R™) and asks us to determine 6(K) := supp d(B", P),
where the supremum ranges over all possible packings P. Determining §(K)
for an arbitrary convex body K is an extremely hard optimization problem
in general, even in low dimensions. In three dimensions, the sphere packing
problem is the Kepler conjecture, which was asserted over 400 years ago, but
not solved until 1998 [14]. In 2022, Maryna Viazovska received a Fields medal
for the solution of the sphere packing problem in eight dimensions [6].

!This and other terms are defined at the beginning of Chapter 2.
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Invalid

Valid

Figure 1.0.1: Valid and Invalid Convex Centrally Symmetric Disks.

1.1 Karl Reinhardt’s Problem

Let K be the set of convex disks in the plane, and let K..; = K be the set
of centrally symmetric convex disks in the plane R%. Examples of compact
sets belonging to (and not belonging to) K. are shown in Figure The
Reinhardt problem is to determine the infimum

KL, S = Jnf sup §(K, P)

and also that centrally symmetric convex disk which whose greatest packing
density achieves this minimum. The Reinhardt problem is structured as a
minimax problem: finding the infimum of a supremum (or to find that disk
whose greatest packing density is the least). In our situation, a centrally
symmetric convex disk achieving this minimum exists. We will see below that
an affine transformation does not change the greatest packing density of a
centrally symmetric convex disk. The minimizer is conjectured to be unique
up to affine transformation.

Figure 1.1.1: The Smoothed Octagon.
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Although a plausible first guess for the minimizer is the circular disk
in the plane, it turns out that there is a candidate which is slightly worse.
(We say that one convex disk is worse than another if its greatest packing
density is smaller. To be worse is to be less packable and more unpackable.)
In 1934, Reinhardt conjectured that the minimum is achieved by the so-called
smoothed octagon pictured in Figure [40]. Independently, Kurt Mahler
arrived at the same conjecture in 1947 [29].

Conjecture (Reinhardt [40], Mahler [29]). The smoothed octagon achieves
the least greatest packing density among all other centrally symmetric convex
disks in the plane. Its density is given by

. 8 —+/32—-In2
KIE%ECS(S(K> B V8 —1

~ 0.902414. (1.1.1)

Figure 1.1.2: Construction of the Smoothed Octagon starting from a regular
octagon. The hyperbolic arcs clipping each vertex are shown in red.

The smoothed octagon is constructed by clipping the vertices of a regular
octagon by hyperbolic arcs which are tangent to the two edges at the vertex,
and whose asymptotes pass through two further edges of the octagon, as shown
in Figure The density formula appears in Fejes Téth [47, p.106]. A
calculation of the density formula appears in an example before Theorem [7.5.6
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1.2 History of the Reinhardt Problem

The earliest mention of the Reinhardt problem is as Problem 17 in §27 of
a 1923 book by Wilhelm Blaschke, where it is called Courant’s conjecture [4],
stating that the worst of all centrally symmetric convex disks is the circular
disk (whose greatest packing density in the plane is m/1/12).

Less than a decade later, Richard Courant’s conjecture was shown to be
false by Reinhardt in his 1934 article, by his construction of the smoothed
octagon. In his article, Reinhardt also proved fundamental results on the
existence, structure, and regularity of a minimizer. The title and motivation
for Reinhardt’s article came from Minkowski’s work from 1904 on the lattice
packings of convex bodies [32]. Reinhardt wrote,

“Bei unseren Bereichen kommt diejenige Figure in Betracht, welche
aus einem regelmdapigen Achteck ensteht, wenn man jede Ecke
durch diejenigen Hyperbel abschneidet, die die beiden austoflenden
Seiten berihrt, und die beiden wieder an diese grenzenden Seiten
zu Asymptoten hat” [40, p. 230].

Among our regions, that figure comes into consideration which
arises from a regular octagon, if one cuts off each corner with that
hyperbola which is tangent to the two outgoing sides, and again
has the two sides bordering on these as asymptotes. (Compare

Figure [1.1.2])

More than a decade later, Kurt Mahler was also led to the smoothed
octagon in a series of articles in 1946-47. Mabhler’s first article used the
calculus of variations to refute Courant’s conjecture by proving the existence
of a convex disk whose packing density was worse than the circular disk [29]. In
this paper, Mahler formulates the packing problem, considers a parameterized
family of convex domains adapted to this problem, and writes down necessary
conditions these domains should satisfy. Making the assumption that the
boundary is sufficiently smooth, and by disregarding the convexity constraint,
he shows that the only solution to the Euler-Lagrange equation is a circle, up
to affine transformation. He then takes a second variation of the circle to show
that it is not second-order optimal. In this way, he learns that the convexity
condition cannot be disregarded. Our treatment of the circle is similar to
his [15, §5.1,§5.2]. Like Mahler, we use parameterizations in SLy(R).

In the same article, Mahler makes the final remark:
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It seems highly probable from the convexity condition, that the
boundary of an extreme conver domain consists of line segments
and arcs of hyperbolae. So far, however, I have not succeeded in
proving this assertion.

We refer to this final remark as Mahler’s First conjecture: the most
unpackable centrally symmetric convex disk is a smoothed polygon.

In a follow-up article, Mahler gives an explicit construction of the smoothed
octagon [28]. The term smoothed octagon appears explicitly in a later article
by Mahler and Ledermann in 1949 [25]. Although we may tend to cite Mahler
more frequently than Reinhardt, and although they worked from different
perspectives, we wish to make it clear that priority for many early results
belongs to Reinhardt.

Further progress was achieved by V. Ennola in 1961 and Paul Tammela
in 1969 where they showed that infgcg,, 0(K) = 0.8926... [9] [44]. Fedor
Nazarov proved that the smoothed octagon is a local minimum in the space
of convex disks equipped with the Hausdorff metric [36]. Discussions of the
Reinhardt conjecture appear in the books by Janos Pach and Pankaj Agarwal
and by L. Fejes T6th [38] [46]. Hales’s earlier work treats the Reinhardt
problem as a problem in the calculus of variations [15].

As of 2024, the full Reinhardt conjecture is still beyond our immediate
reach, having remained open since 1934. However, we firmly believe that
optimal control theory is the proper framework for the study of this conjecture.
This book uses optimal control theory to give a proof of Mahler’s First
conjecture.

1.3 Book Summary

This book is an extension of a 2017 preprint of Hales in which the Reinhardt
problem is reduced to an optimal control problem on the tangent bundle of
the Lie group SL2(R) [16]. The book also grows out of the 2022 PhD thesis
of Vajjha, which considerably extends the theoretical framework [48]. We
include all the results from that preprint and thesis, and we carry the program
much further still.

As we show, the Reinhardt optimal control problem has a remarkable
amount of structure with deep connections with hyperbolic geometry, Hamil-
tonian mechanics and the theory of chattering control. It is our belief that the
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Reinhardt conjecture has now been transformed from an impossible problem
to a difficult, but approachable one.

In Part I of the book, we recall Reinhardt’s and Mahler’s results, which will
be essential for the construction of our control problem. In the formulation
of the control problem, properties proved by Reinhardt himself in 1934 play
an essential role. As an example, Reinhardt proved that the boundary of the
minimizer is described by six points moving to generate six curves, which
close up seamlessly into a single simple closed curve. The origin and any
three of these consecutive points form a parallelogram whose area remains
fixed as the three points move around the boundary. This is shown in Figure
The six curves (with centrally symmetric pairs colored similarly) form
a multi-curve, in a sense made precise in Definition [2.4.1

Figure 1.3.1: Multi-curves generating the smoothed octagon. The parallelo-
grams all have the same area.

The points move along the boundary curves in a way that yields the
convexity of the enclosed disk. Convexity is imposed locally via a local
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curvature nonnegativity condition and globally via conditions on the tangents
to the six curves. The curvatures of these curves play a role in determining
the packing density of the resultant disk in the plane. The control problem
reformulation takes all these conditions into account.

A noteworthy feature of our control problem is that the set of controls is
the standard two-simplex in R3. Each point in the control set can be viewed
as a normalized ordered triple of curvatures, which are used to specify the
planar curvatures of the six curves describing the boundary of a minimizer
K. The bounding edges of the two-simplex constrain the planar curvatures
to be nonnegative, enforcing the convexity of K. We prove an analogue of
the Frenet-Serret formulas, showing that the six curves are determined from
the curvature control function, by solving a second order ordinary differential
equation with initial values. These differential equations appear in what we
call the state equations of the Reinhardt control problem (equations
and in problem [3.6.2).

The six curves describing the boundary of a minimizer K can be generated
in a uniform way from a single curve, taking values in the Lie group SLy(R)
of 2 x 2 matrices with real entries and determinant one. The control problem
will occur naturally on a manifold that is closely related to this Lie group
(its tangent bundle).

Symmetry is visible throughout this book and plays an important role.
The control problem alluded to above is a left-invariant control problem on
a Lie group, and it is well known that such problems admit a reduction
in dynamics to coadjoint orbits in the corresponding Lie algebra [19]. The
Poincaré upper-half plane (a well-known model of hyperbolic geometry) and
its invariant metric also appear in a natural way — being symplectomorphic
to this coadjoint orbit. Lemma shows that many important trajectories
of the control problem have constant speed with respect to the Riemannian
metric on the upper-half plane.

Another prominent symmetry is the discrete dihedral symmetry of the
equilateral triangle (expanded on in Section arising from the standard
two-simplex, which is our control set. Using the isomorphism between SLy(R)
and the special unitary group SU(1,1), we transfer the dynamics to the
hyperboloid model of the hyperbolic plane. In the hyperboloid model, the
symmetries take a particularly nice form.

Part II of this book explores the Reinhardt optimal control problem |3.6.2
and highlights its remarkable structure and these connections with hyperbolic
geometry and Hamiltonian mechanics.
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The state space of the control problem is unbounded. In Chapter [5], the
state space is compactified by cutting down the region of interest to a compact
set containing the global minimizer K. This compactification is achieved
by giving a geometric interpretation to trajectories that stray outside the
compact set. In a sense that we make precise, such trajectories correspond to
convex disks that are approximately parallelograms. Any such approximate
parallelogram yields a packing in the plane with high density. In particular,
it cannot have the worst greatest packing density, and thus it can be ruled
out. Our motivation for compactifying the state space has been to make the
Reinhardt control problem more amenable to numerical computer experiments
and possibly also more amenable to computer-assisted proof.

First order necessary conditions for optimality of an optimal control prob-
lem are given by the Pontryagin Maximum Principle (PMP) which states
that the optimal trajectory is given by a projection of the lifted controlled tra-
jectory (living in the cotangent bundle of the underlying manifold) [49]. This
means that our control problem is a higher-order variational problem since it
involves the cotangent bundle of the tangent bundle of a Lie group [7]. The
lifted controlled trajectory is the Hamiltonian flow of the mazimized Hamilto-
nian, which is the pointwise maximum of a control-dependent Hamiltonian
function on the control set.

A control function is said to be bang-bang if its range is contained in
the set of extreme points of the control set, with discontinuous switching.
In our setting, the extreme points of the control set are the vertices of the
two-simplex. Critical points of control problems are frequently given by bang-
bang controls. The smoothed octagon is an example of an explicit solution
to the Reinhardt optimal control problem with bang-bang control. In earlier
research, we viewed the Reinhardt conjecture as a problem in the calculus
of variations [15]. However, one of our primary reasons to reformulate the
conjecture as a problem in optimal control theory is the bang-bang behavior
of the smoothed octagon. This behavior can be seen geometrically in the
way its boundary switches suddenly between linear segments and segments
that are as curved as possible at the rounded corners. This insight explains
its shape. Lemma shows that the rounded corners of the smoothed
octagon are indeed as highly curved as possible, subject to the constraints of
the problem.

In Part I1I, we construct explicit solutions to the Reinhardt optimal control
problem A bang-bang control function with finitely many switches
always produces a smoothed polygon, and a smoothed polygon with the
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corner-rounding of sort considered by Reinhardt and Mahler has a bang-bang
control function with finitely many switches. In particular, in Section the
smoothed octagon is shown to be a critical point of the optimization problem
(a Pontryagin extremal) given by a bang-bang control. More generally, for
each £k = 1,2,..., Theorem constructs a smoothed 6k + 2-gon that
is a Pontryagin extremal of the Reinhardt optimal control problem. The
associated control is bang-bang. As k tends to infinity, the smoothed 6k + 2-
gon converges to the circle, which is also a Pontryagin extremal, but its
control function is not bang-bang. Among this explicit list of extremals, the
smoothed octagon has the worst greatest packing density.

If we examine the initial and terminal conditions of the optimal control
problem, we find that the boundary conditions are periodic modulo a rotation
by angle 7/3. We can use the rotational symmetry of the boundary condi-
tions to extend every extremal trajectory to a periodic orbit with a discrete
rotational symmetry. In this way, the global minimizer of the Reinhardt
control problem can be viewed as a periodic orbit of the dynamical system.
Because of this, the research focus should be on the periodic Pontryagin
extremals. For example, if we could classify the periodic extremals, then the
global minimizer could be picked out from among them.

No other extremals have been found, but we have no proof that no other
extremals exist. In light of our results, a proof that no other extremals exist
would complete a proof of the Reinhardt conjecture. However, we do not
hazard a guess about whether other extremals might exist.

Singular arcs in optimal control problems arise when the maximization
condition in the Pontryagin maximum principle fails to determine a unique
control over an interval of time. In such a case, a face of the control two-
simplex can be found such that the entire face satisfies the maximization
condition (by Lemma [7.3.1). When that face is an edge of the two-simplex,
an anomalous situation occurs. Abnormal Pontryagin extremals exist, but
those abnormal extremals are obviously spurious solutions. In this case, we
modify the control problem slightly to form what we call the edge control
problem. In the modified control problem, the spurious extremals disappear,
and every Pontryagin extremal of the edge control problem has a bang-bang
control with finitely many switches. This is Theorem [8.1.4

As we have just mentioned, associated to each singular arc is a maximizing
face of the control two-simplex. That face can be the entire control simplex.
In this case, Theorem gives a characterization of singular extremals. The
result states that up to an affine transformation, the arc of a circle (generating
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the circular disk K in the plane) is the unique such singular extremal of
the Reinhardt optimal control problem. Although the arc of a circle is an
extremal in the sense of Pontryagin, it does not satisfy the necessary second
order conditions to be a global minimizer. Theorem proves that the
global minimizer contains no singular arcs.

The region of state space where singular behavior might appear is called
the singular locus. As mentioned, the global minimizer does not remain in the
singular locus during any positive time interval. Nevertheless, it is possible
for trajectories to approach the singular locus, without remaining in the locus
during a positive time interval. Extremals that completely avoid the singular
locus have a simple form, as follows.

Theorem (8.3.2). Every Pontryagin extremal of the Reinhardt control problem
which does not meet the singular locus is given by a bang-bang control function
with finitely many switches.

In terms of the centrally symmetric convex domain K, this theorem implies
that any such extremal is a smoothed polygon whose corners are rounded by
hyperbolic arcs, according to Reinhardt’s corner-smoothing procedure. Thus,
if the global minimizer avoids the singular locus, then the global minimizer
is a smoothed polygon. We eventually show that the global minimizer does
indeed avoid the singular locus, and this yields a proof of Mahler’s First
conjecture, which is the main result of the book.

Theorem (Mahler’s First [16.3.1)). The global minimizer of the Reinhardt
optimal control problem is a bang-bang solution with finitely many switches.
In particular, the minimizer K, of the Reinhardt problem is a finite-sided
smoothed polygon with rounded hyperbolic arcs at each corner of the sort

described by Reinhardt and Mahler.

One of the most intriguing aspects of the Reinhardt problem is the behavior
of trajectories near the singular locus. The only way for a Pontryagin extremal
to approach the singular locus is through chattering, which is the term used
to denote the phenomenon when the control function performs discontinuous
and increasingly rapid transitions between extreme points of the control set
in order to approach the singularity [50]. They were first studied in a problem
of A. T. Fuller in 1963 [11] and were considered pathological for a time, but
were eventually proven to be ubiquitous in a very precise sense by Ivan A.
Kupka in the 1990s [24]. One of the main results of this book is the recovery
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of the Fuller optimal control system in a neighborhood of the singular locus.
To explain this precisely, we first discuss circular control sets.

An important strategy for us is to change the shape of the control set
from the two-simplex to a circular disk. Part IV of this book is devoted to
the study of the control problem for a circular control set. By changing the
control set, the control problem changes, and we are no longer studying the
Reinhardt problem in discrete geometry. However, there are good reasons to
investigate the optimal control problem with a circular control set.

There are a few different ways to imagine the relationship between the
original Reinhardt problem and the modified control problem with circular
control. First, if we take the circular control set to be the circumscribing
circle of the triangular control, then the modified optimal control problem is
a relaxation of the original Reinhardt optimal control problem. This means
that a lower bound on the cost in the modified problem should be a lower
bound on the cost of the original problem [

Second, the triangular control is a discretization of the circular control.
We know that the optimal control function for trajectories that avoid the
singular locus takes values in the set of extreme points of the control set.
For circular control, each point on the circle is an extreme point, and the
control function is continuous. For triangular control, the control function
is discontinuous, taking values at the vertices of the two-simplex. Hence,
the Reinhardt problem can be viewed as a three-point discretization of the
continuous control.

Third, we can view the triangle as a continuous deformation of the circle.
We can study the properties of the dynamical system for the circular control
set. We can ask to what extent these properties are preserved as the circular
control is deformed back into a triangular control set.

Finally, the triangular control is a symmetry breaking of the circular
control problem. All data used to specify the Reinhardt control problem have
a rotational symmetry except for the control set. The modification of the
control set to make it circular allows us to construct a conserved quantity.
This we do by appealing to a control-theoretic version of the classical Noether
theorem, proved by Hector Sussmann [43].

2We do not claim this relaxation result as a theorem because of technicalities related to
the fact that we have not extended the compactification result of Chapter [f] to the relaxed
problem. The issue is that the relaxed problem is defined on a smaller domain than the
original problem, and a global minimizer of a relaxed problem on the smaller domain is
not a priori a lower bound to the unrelaxed problem on the full domain.
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Theorem (9.1.6). In the control problem with the circular disk control set,
each Pontryagin extremal satisfies a conservation law (which we call the
angular momentum,).

The symmetry is broken by the triangular control set, where the angular
momentum is approximately but not exactly preserved. The circular control
problem with its extra symmetry is a toy model for the original Reinhardt
problem. We study the modified problem in the hope that it will lead to
useful insights into the Reinhardt conjecture.

With this background about circular control sets, we return to examine
the trajectories near the singular locus in greater detail. The conservation of
angular momentum gives us valuable information about the optimal control.

Using this conservation law, we perform a truncation of the Pontryagin
control system by estimating the magnitude of terms in the system of equations
and then discarding all higher-order terms. We make the remarkable discovery
that the truncation of our optimal control problem is precisely the Fuller
optimal control problem for a chain of odd length. We find inward and
outward logarithmic spiral solutions to the Fuller system, centered at the
singular locus. (In a similar fashion, we construct triangular inward and
outward spirals, when the control set is the two-simplex.)

We make a complete analysis of the global dynamics of this Fuller system.
The dynamical system maps onto a simpler dynamical system in the plane.
In the planar system, there are only two critical points. One is asymptotically
stable and the other is unstable. Every point in the plane, except for the
unstable equilibrium point, is in the basin of attraction of the stable critical
point. Going from the planar system back to the full Fuller system, we find
that the only trajectory that converges to the singular locus is an inward
logarithmic spiral centered at the singular locus. The only trajectory that
escapes from the singular locus is an outward spiral, which is unique up
to rotational symmetry. The inward spiral is unstable, and the outward
spiral is stable, so that a trajectory that is not exactly an inward spiral must
necessarily swerve away from the singular locus, then reapproach an outward
spiral.

We plot some solutions numerically and observe that the solutions appear
to behave chaotically. We conjecture that for certain parameter values, the
trajectories are indeed chaotic. For this and other research problems, we refer
the reader to Appendix

In Part [V] we return to the Reinhardt problem with triangular control set.
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Several further ideas are introduced to give a proof of Mahler’s conjecture.
Blowing up at the singular locus (in the sense of algebraic geometry) creates
an exceptional divisor, which becomes the focus of attention. We make
a detailed study of the Fuller system with a triangular control set on the
exceptional divisor. By restricting the dynamical system to switching times,
the Fuller system becomes a discrete dynamical system whose dynamics are
given by a Poincaré first recurrence map.

We find that the discrete dynamical system has several features that are
remarkably similar to features that were found in the toy system with circular
control. There are exactly two fixed points. One is stable and the other is
unstable. The two fixed points are related by a time-reversing symmetry. The
stable fixed point has a global basin of attraction. The fixed points can be
interpreted as self-similar spirals in a larger dynamical system that does not
factor out by symmetries.

To prove that the stable fixed point has a global basin of attraction
we introduce an explicit geometric partition of the exceptional divisor into
finitely many compact pieces. On each piece, the discrete dynamical system
is continuous. The dynamical system acquires a block upper triangular form
with respect to the geometric partition. The strictly upper triangular blocks
represent transient behavior of the dynamical system, and the diagonal terms
are localized around the stable and unstable fixed points. In this way, the
claim of global stability can be reduced to a statement about local stability.
From a slightly different perspective, the upper triangular structure can be
interpreted as a discrete Lyapunov function with respect to the geometric
partition.

The stable and unstable fixed points for the discrete Fuller dynamical
system are hyperbolic fixed points for the discrete Reinhardt dynamical
system. On the blowup, the discrete Reinhardt dynamical system extends
by analytic continuation to a neighborhood of the hyperbolic fixed points.
We study the local stable and unstable manifolds near the fixed points. The
global stability result (for the discrete Fuller system) is used to show that a
chattering solution to the Reinhardt dynamical system must approach and
depart the blown up singular locus through the stable and unstable manifolds
of the hyperbolic fixed points. Explicit calculations show that trajectories
on these stable and unstable manifolds cannot be periodic. However, the
solution to the Reinhardt problem is necessarily periodic. We conclude that
the solution to the Reinhardt problem is not a chattering solution and does
not meet the singular locus. From this conclusion, it follows that the solution
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to the Reinhardt problem is a smoothed polygon, affirming Mahler’s First.

In many ways, the Reinhardt problem is a textbook control problem,
because of the way it employs significant parts of the general theory in
a single problem. Among other structures, we encounter Lax equations,
control problems on Lie groups, the symplectic structure on coadjoint orbits,
Poisson brackets, Lie-Poisson dynamics, Euler-Arnold equations, Lyapunov
functions, a conserved quantity via the Noether-Sussmann theorem, singular
arcs, chattering, the Fuller system, bang-bang solutions, and even an ODE
without a Lipschitz condition.

Although this book does not succeed in resolving the Reinhardt conjecture,
it is our firm belief that optimal control theory is the proper framework
for understanding this problem. In particular, the Reinhardt conjecture is
formulated as an entirely explicit control problem. This book brings us one
step closer to a complete solution.
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Chapter 2

Historical Results

2.1 A Statement of the Reinhardt Conjecture

In this section, we state the Reinhardt conjecture and introduce terminol-
ogy used throughout this book.

We will call a compact, convex set in R™ with nonempty interior a convez
body, and a convex body in R? will be called a conver disk. By a centrally
symmetric convex disk in the Euclidean plane, we mean a convex disk K in
R? such that if v e K then —v € K. Here, and throughout this chapter, we
assume the center of symmetry is the origin 0 := (0,0). We denote by R.s
the set of all centrally symmetric convex disks in the plane R?, which have
the origin as the center of symmetry.

A family of convex disks in R? is called a packing if any two distinct convex
disks in the family do not overlap; that is, they have disjoint interiors. We
can now define the packing density and greatest packing density of a packing
in R2. Intuitively the packing density corresponds to the proportion of the
plane taken up by the packing.

Definition 2.1.1 (Greatest packing density). Let B, be a ball of radius r in
R? centered at the origin, and let area be the Lebesque measure on R%. The
upper and lower density of a packing P are defined to be

1
Z area(K'nB,) and liminf ———— Z area(K'nB,)

lim sup
r~% area(B,) £,

ron area(B,) £4

respectively. If they both exist and coincide, the common number is called
the density of the packing P and is denoted §(K,P). Given a convex body

27
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K we define the greatest packing density as the packing density formed with
congruent copies of K :

d(K) :=sup{6(K,P) | §(K,P) exists, and P is a packing with congruent copies of K} .

It can be proved that for a convex disk K, one can always find a packing
P such that (K, P) exists and is equal to §(K) [38, Exercise 3.2].

A lattice is a discrete additive subgroup of R? of full rank. An important
class of packings are lattice packings, which consist of lattice translates of of
a convex disk K: If L is a lattice in R? and K is a fixed convex disk, then we
consider the packings of translates of K under L, provided the translates of
K do not overlap (called the lattice packing of K). We write K + L for the
packing and write K + [, for the lattice translate of the convex disk K, for
[ € L. We can now similarly define the lattice packing density and greatest
lattice packing density.

Definition 2.1.2 (Greatest lattice packing density). We define the upper
and lower densities of a lattice packing K + L of congruent copies of a convex
disk K to be respectively

lim sup 2er, area(B, 0 (K +1)) and lim inf Qe area(By n (K +1))
Tt a’rea’<Br> r—+00 area(Br)

It can be proved that given a convex disk K and a lattice L, the upper
and lower lattice packing densities of the packing K + L (provided that the
L-translates of K have disjoint interiors) coincide and are both equal to

area(K)
O, L) = det(L)

where det(L) is the determinant of the lattice L (see Definition[2.3.9) [13,
Corollary 30.1].

The common value 6(K,L) of the upper and lower densities is called the
density of the lattice packing. The greatest lattice packing density is defined
as

0r(K) := sup{d(K,L) | L a lattice in R? such that K + L is a packing }.

If K is a convex disk, let Ky, := {(v—w)/2 | v,w € K} be its sym-
metrization. Then Ky, is a centrally symmetric convex disk. For a centrally
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symmetric convex disk K, we have K = K,,,. Minkowski made the simple
observation that K + L is a packing if and only if Ky, + L is a packing.
In this way, questions about lattice packings for K can usually be reduced
to corresponding questions for Kj,,,. This led early researchers to focus on
centrally symmetric convex disks.

A key point is the following theorem of L. Fejes Téth, which states that
the greatest packing density and greatest lattice packing densities are actually
equal for the class R, [45],[46],[47].

Theorem 2.1.3 (Fejes T6th). If K = R? is a centrally symmetric convez
disk, then
0(K) =6L(K). (2.1.1)

Many of the early research articles on the Reinhardt conjecture were
restricted in scope to lattice packings. However, in view of Fejes T6th’s
theorem, results about greatest lattice packing density actually imply results
about greatest packing density (for the set £..). In lattice form, packings of
convex bodies were studied by multiple authors, beginning with Minkowski.

Now consider the infimum of densities:

Omin = _inf &(K).
Kefees
SO Omin is defined as a minimaz: the least (or worst) greatest packing density
among all centrally symmetric convex disks in R2.

In 1904, Minkowski established a lower bound on this infimum [33]. In
1923, Blaschke called Courant’s conjecture the statement that the ellipse
minimizes the greatest packing density [4]. Later, Reinhardt proved that a
minimizer exists, and proved several properties about it, including the fact
that the ellipse is not the minimizer, refuting Courant’s conjecture [40].

Reinhardt’s problem now is to explicitly describe a K, € Rees for which
0(Kmin) = Omin, and also determine this worst greatest packing density. It is
the problem of finding the most unpackable shape in K..;. As mentioned in
the previous chapter, Reinhardt suggested a specific candidate, the smoothed
octagon, to be the most unpackable; that is, to be the minimax optimizer.
The smoothed octagon is a regular octagon whose vertices have been clipped
by hyperbolic arcs (shown in Figure [1.1.1)).

If L gives a lattice packing of K, and if g is an affine transformation,
then gL gives a lattice packing of gK of the same density. Because of this
affine invariance, the set of worst disks is stable under the group of affine
transformations.
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Conjecture (Reinhardt [40], Mahler [29]). The smoothed octagon achieves
the least greatest packing density among all centrally symmetric convex disks
in the plane. Its density is given by

8 —/32—1In2
V8 —1

The smoothed octagon is uniquely the worst, up to affine transformation.

~ 0.902414.

This book investigates the Reinhardt conjecture by restating it as a
problem in control theory. To do this, we rely on numerous geometric
properties of the worst convex disk K,,;,, which we collect in the following
sections. These sections review the results contained in Reinhardt’s article of
1934 and Mahler’s articles written in the 1940s.

2.2 Reinhardt’s Approach

In this section, we briefly review Reinhardt’s article of 1934. The proofs
that we give will be sketches, because the full details are available in Rein-
hardt’s article. Let K be a centrally symmetric convex disk. Let K + L be a
lattice packing of K.

Lemma 2.2.1. The packing K + L is realized by placing K inside an appro-
priate parallelogram or centrally symmetric conver hexagon Hy, tiling the
plane with translates of Hy, then placing a copy of K inside each translate
Of H K-

Proof. Homothetically expand K (to rK) and its translates by L until two
translates rK and rK + [ come in contact. Draw a separating line between
these two translates (by the separating hyperplane theorem). Similarly sepa-
rate other translates of r K using translates of the separating line. Continue
to homothetically expand rK, but now cropping 7K to (rK)" so as to lie
between its bounding separating lines, so that cropped translated regions
(rK)" + 1 do not overlap. Continue to expand until a new point of contact is
formed. Repeat the process, adding new separating lines, cropping, and then
continuing with cropped homothetic expansion. Eventually, after repeating
the process a finite number of times, the plane is tiled by the translates of
the cropped homothetic expansion Hg of K.
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By construction Hg is a convex polygon, because it is bounded by the
finitely many separating lines that were introduced. It is centrally symmetric
by central symmetry of K and the symmetric placement of the separating
lines. By considerations of Euler characteristic of a polygon tiling, the number
of edges is at most six. Thus Hy is a parallelogram or centrally symmetric
hexagon. ]

Every centrally symmetric hexagon tiles the plane. A parallelogram Hg
never gives smaller area than that of the smallest centrally symmetric hexagon
containing K, because its corners can be clipped to give a smaller hexagon
containing K, except when K itself is a parallelogram. In this exceptional
case, K itself tiles and has greatest packing density 1. We exclude this
exception from our further discussions.

Theorem 2.2.2 (Reinhardt-Fejes-Téth). If K — R? 4s a centrally symmetric
convex disk that is not a parallelogram, then its packing density is

_area(K)
~ area(Hg)’

=9
—

(2.2.1)

where Hy is a centrally symmetric hexagon of least area circumscribing K.

We remark that the hexagon of smallest area circumscribing a centrally
symmetric disk K can be realized as a centrally symmetric hexagon [38,
Theorem 2.5].

Proof. By Fejes-Té6th (Equation [2.1.1]), we have 6, (K) = 6(K). Let L be a
lattice that realizes this equality. By the previous lemma, the lattice packing
K + L is obtained by tiling a centrally symmetric hexagon Hy. The density of
this packing is given by (2.2.1). This hexagon has least area among centrally
symmetric ones, because every centrally symmetric hexagon tiles, and one of
smaller area circumscribing K would lead to a packing of greater density. [J

From now on, Hg will denote a centrally symmetric hexagon of smallest
area circumscribing K. We call such a Hy a critical hezagon. This terminology
is further explained in Definition and Theorem [2.3.9

The midpoints of the edges of Hg lie on the boundary of K. For otherwise,
an edge of Hx can be rotated about some point on that edge to create a
hexagon of smaller area. If we slide one edge of a convex polygon, where
the movement is constrained to keep the area of the polygon fixed, then the
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-

Figure 2.2.1: The hyperbola is the envelope of a pencil of lines the product of
whose x and y-intercepts is constant.

xT

envelope of the moving edge is a hyperbola whose asymptotes are the lines
through the two adjacent edges. This observation follows from the fact that
the hyperbola is the envelope of a pencil of lines the product of whose x and
y-intercepts is constant. Additionally, every point on the hyperbolic envelope
is the midpoint of a unique line segment formed by a line in the pencil and
the x and y axes. See Figure

Definition 2.2.3 (Support line). For a convex disk K, a support line is a
line containing at least one point of K but does not separate any points of K.

From this observation about the hyperbola, it follows that the six edge
midpoints of Hx on the boundary of K are not corners of K: the unique
support line at each midpoint is the tangent to the hyperbolic envelope at
that point. Otherwise the area of Hy is not minimal.

Remark 2.2.4. We also observe that locally around each midpoint, K contains
an arc of the hyperbola. It is here that we first see the significance of the
hyperbola for the Reinhardt conjecture.

The ratio area(K)/area(Hg) in Theorem is scale invariant and so
there is no loss of generality in fixing the denominator area(Hg). We choose
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the normalization area(Hy) = /12, which is the area of a regular hexagon
with inradius 1. This choice has the advantage of making the unit circular
disk K satisfy the normalization condition.

Let det(vy,v2) denote the determinant of the 2 x 2 matrix with with
columns vi,vy € R2. If Hy is any critical hexagon of K € .., then the
edge midpoints sg, s1, ..., S5 give six points, ordered counterclockwise, around
the boundary of K. The six points, by virtue of being the edge midpoints
of a centrally symmetric convex hexagon, satisfy the following multi-point
conditions

So+s2+84=0, sj;3=—s;, det(sj,s;i1) = constant, (2.2.2)

for all j € Z/6Z, the constant being independent of j. Moreover, det(s;,s;+1)
is independent of the critical hexagon Hy, because it is a fixed fraction of
the area of Hi. By fixing the area of Hi at /12, we have

det(s;,s;11) = V3/2. (2.2.3)

Replacing K by its image under an affine transformation, we may assume
that so, sy, ..., ss are the sixth roots of unity s} in the plane, with complex
coordinates s} = exp(2mij/6), where i = /—1. The convex hull of the six
points s} is a regular hexagon hg contained in K. It follows from the convexity
of K that the boundary of K is contained in the union of six equilateral
triangles T}, where triangle T} has vertices s, s}, s +sj,4, for j =0,...,5.
See Figure 2.2.2.

Lemma 2.2.5. A disk K, with the worst greatest density lattice packing
erists. Knin has no corners. That is, there is a unique support line to K,
at each boundary point. Moreover, the support line of each boundary point of
Kin contains an edge of some critical hexagon.

Proof. Reinhardt uses the Blaschke selection theorem to prove the existence
of a centrally symmetric K with a worst greatest density lattice packing.
We fix one such K = K,,;;. The set of critical hexagons of K is closed: a
convergent limit of critical hexagons is again critical. Moreover, every point on
the boundary of K = K,,;, lies on some edge of a critical hexagon. Otherwise,
if the point u is not on the edge of any critical hexagon, then by closedness,
the same holds for all nearby boundary points, and a small area can be shaved
in a centrally symmetric manner from K at +u to decrease the area of K
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* *
So + 81

Figure 2.2.2: Hexagon formed by the sixth roots of unity along with triangles

3 * * * *
T}; formed by the vertices s}, s}, 87 + s}, ;.

without changing the minimal area of the critical hexagons. This contradicts
the density minimax property of K;,. If a boundary point u is a midpoint
of a critical hexagon Hy, then as seen above with the hyperbolic envelope, u
is not a corner.

If a boundary point u lies on some edge of a critical hexagon without
being its midpoint, then an entire segment containing u of the edge lies along
the boundary of K. The segment determines the unique support line for
points in the relative interior of the segment. Each endpoint of the segment
is the midpoint of an edge of a critical hexagons and hence not a corner, for
otherwise it can be shaved as above. O

Lemma 2.2.6. Assume that the boundary of Ky, has critical hexagon with
edge midpoints s;. Consider a second critical hexagon of Ky, with edge
midpoints sy, . . . ,Ss, indezed so that so € Ty\{ss,sT}. Then for all j, we have
that s; lies in the interior of Tj.

Reinhardt calls this property monotonicity. As the midpoint sq advances
counterclockwise beyond sf, the other midpoints s; advance counterclockwise
beyond s} into the interior of Tj. See Figure 2.2.3. Note that if {s; | j} #
{s7 | j}, we can always assume without generality that the subscripts are
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Figure 2.2.3: This figure shows monotonicity. The points s; of the rotated
hexagons lie in triangles Tj.

indexed such that
so € To\{s; | 7} = To\{sg,s1},

to satisfy the assumption of the lemma.

Proof. Assume s, € Tj. For some j and k, we have s; € T; and s € Tj,. As
above, we have s; = sg + S2, which gives a system of constraints

81 € TJ N (To +Tk),
expressed using the Minkowski sum
To+ Ty :={ug + ug | up € Ty, wuy € Ty}.

Also, for fixed sg, the inequality det(sg,s1) > 0 places a half-plane constraint
on s;. These constraints imply that s; € 77 and s, € T,. Using s;.3 = —s;
and rotational symmetry, we have a weak form of monotonicity: if for some
J, we have s; € Tj\{s},s} ,}, then for all k, we have s, € Tj.

Now suppose for a contradiction that sy lies on the relative interior of the
edge (sg,s}) of Tp. By the convexity of K, the entire edge [sj, s}] lies on the
boundary of K. Let u; € 0K be any midpoint of a critical hexagon in the
interior of 77 such that its support line is different from the support lines at
s; and s;. The point u; exists because there are no corners, by Lemma [2.2.5
Let u; be the other midpoints. By the weak form of monotonicity in the
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previous paragraph, the point ug lies in 7j, hence along the edge of Ty. The
multi-point conditions (2.2.2)) now imply that for some tg,¢; € R, we have

ug = sy + oS5, U; =85 +tiuy uz =s; + (¢ — 1)uy.

The condition that u; is an interior point of 7 gives 0 < ¢t; < 1. Thus,
u;, S5, Uy are distinct collinear points on 0K so that the entire segment from
u; to ug lies on the boundary of K. This shows that sj and u; have the same
support line, which is contrary to the construction of u;. Thus uy does not
lie on the relative interior of the edge. Repeating this argument for each j,
we find that no s; lies on the relative interior of the edge (s},s},,) of Tj.

Now assume that sg € Tp\[sg, sj]. We claim that s; # s]. Otherwise, the
multi-point condition s5 = sy — s} forces s5 to lie along the relative interior of
the edge (si,s), which we have shown to be impossible. Similarly, we claim
that s; # s;. Otherwise, the multi-point condition gives sy = s; — s3, which
forces sy to lie on the forbidden edge [sg, s}].

Thus, s; satisfies the hypotheses of the previous paragraph (shifting indices
by one): s; € T1\[s], s3]. Iterating the argument of the previous paragraph for
consecutive j, we find that for all j, we have s; € T};\[s}, s}, ]|. Furthermore,
no s; is on the boundary of T;. Otherwise, the convexity of K forces s;; or
s;—1 to lie on the forbidden edge. This completes the proof. O]

Lemma 2.2.7. Let K = K, have worst greatest packing density. Then
every point of the boundary of K is the midpoint of an edge of a unique critical
hexagon. As sy advances around the boundary of K in a counterclockwise
direction, the five other midpoints si,...,s5 advance strictly monotonically
and continuously in a counterclockwise direction.

Proof. Strict monotonicity is established in the previous lemma. In particular,
each point on the boundary is the edge midpoint of at most one critical
hexagon. Continuity follows from monotonicity if we show that there are no
jumps. We show that every open interval along the boundary of K contains
the edge midpoint of a critical hexagon.

Suppose for a contradiction that an open interval exists without a such
a midpoint. Then picking the interval to be as large as possible, there exist
critical hexagons and edge midpoints sy, up marking the endpoints. Let
So,---,85 and Uy, ...,us be the corresponding midpoints of the six edges
of these two critical hexagons. For each j, we claim that no point on 0K
between s; and u; is an edge midpoint of a critical hexagon. For otherwise,
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by monotonicity the same critical hexagon has an edge midpoint between
so and 1. By Lemma [2.2.5], the boundary segments of 0K between s; and
u; are straight lines, included in edges of critical hexagons. This forces the
critical hexagon for s; and u; to be equal (both hexagons having their edges
along these straight lines), and since these are the edge midpoints s; = u; for
all 7. Thus, no such open interval exists. ]

Thus, in summary, excluding the degenerate case when K is a parallel-
ogram, Reinhardt constructed the hexagon Hy as the centrally symmetric
hexagon of least area containing K. He showed that the midpoints of the
edges of Hk lie on the boundary of K. He constructed hx as the centrally
symmetric polygon joining these midpoints and showed that to achieve the
densest lattice packing of K, the plane is tiled by copies of Hx. Reinhardt
also proved the existence of a disk K,,;, which has the worst greatest lattice
packing density, and proved properties about its boundary.

2.3 Mahler’s Approach

In the previous chapter, we have mentioned Minkowski’s discovery of
the connection between centrally symmetric convex disks and lattices, which
resulted in the famous Minkowski theorem on lattice points [34]. These results
initiated the geometry of numbers. Kurt Mahler rediscovered the Reinhardt
conjecture while attempting to extend Minkowski’s results. These results
were published in a series of papers in the 1940s. We review his approach in
this section.

Definition 2.3.1 (Admissible lattice). For a K € K. centered at the origin,
a lattice L is called K-admissible if no point of L other than 0 = (0,0) lies in
the interior of K.

The lattice L of a centrally symmetric convex disk K is K-admissible if
and only if K /2+ L is a lattice packing of K /2. Thus, results about admissible
lattices translate readily into results about lattice packings.

Definition 2.3.2 (Determinant of a Lattice). For any lattice L with basis
up, u; € R?, the determinant det(L) is equal to the absolute value | det(ug,u;)].
This is also sometimes called the covolume of the lattice L.
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Definition 2.3.3 (Minimal determinant). For K € R, the minimizer

A<K> = K—aclirrilfi‘ssible det(L)’
where the infimum runs over all K-admissible lattices, is called the minimal
determinant of the conver disk K.

Definition 2.3.4 (Critical lattice). A lattice is called critical for a convex
disk K if its determinant is equal to the minimal determinant of K.

Definition 2.3.5 (Irreducible disk). A convex disk K € R is called irre-
ducible if every boundary point of K lies on a critical lattice of K.

We remark that this is not the original definition of irreducibility of a
convex disk. We choose our definition based on of [29, Lemma 3], which
shows that this definition is equivalent to the original definition. We reiterate
that the most significant results of this section were known to Reinhardt in
1934, without using the language of critical lattices, minimal determinants,
and irreducibility.

Minkowski proved the following theorem which gives conditions under
which points on K give rise to critical lattices.

Theorem 2.3.6 (Minkowski [33], Mahler [27]). Let L be a critical lattice of a
conver disk K € R..s. Then L contains three points sy, s1,82 on the boundary
of K such that (i) so,s1 s a basis of the lattice L, and (i) OsgsiSy is a
parallelogram of area det(L) = | det(sg,s1)| = A(K), the minimal determinant
of K. Conversely, if sg,s1,S2 are three points on the boundary of K such
that 0sgs;1S2 s a parallelogram, then the area of this parallelogram is not less
than A(K) and is equal to A(K) if and only if the lattice with basis sg,s1 is
critical.

The parallelogram of the theorem above is shown in Figure [I.3.1]

Since centrally symmetric hexagons can be decomposed into three par-
allelograms, the above result shows that a critical lattice of a convex disk
K € R gives rise to an inscribed centrally symmetric hexagon hyx within
our convex disk K so that A(K) = area(hg)/3 which is minimal in the sense
that

area(hg) = i%f area(h),

where the infimum is taken over all hexagons h with vertices s, s1,s2 (and
their reflections about 0) on the boundary of K and with sy —s; +s; = 0. In
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Figure 2.3.1: Critical hexagons for an ellipse.

1947, Mahler [29] proved an analogous result for circumscribed hexagons of
K:

Theorem 2.3.7 (Mahler [29]). Let K € R.s be a convez disk which is not a
parallelogram. Let L be a critical lattice of K with lattice point sq,...,S5 on
the boundary of K satisfying sy —si + sy = 0 and s;,3 = —s;. Then there are
unique symmetric support lines £; of K at these points, such that

1. no two of these lines coincide;

2. the area of the centrally symmetric hexagon Hy bounded by the support
lines is given by area(Hg) = 4A(K);

3. each side of Hk is bisected at the lattice point s; where it touches the
boundary of K;

4. the hexagon Hg is minimal in the sense that
area(Hy) = irl}f area(H),
where the infimum is taken over the set of all hexagons H bounded by
symmetric support lines of the convex disk K.

By construction, hg, Hx € R.s. The hexagons Hx and hg for an ellipse
are shown in Figure 2.3.1] The critical lattice of any K € K. gives rise to
hexagons hx and Hx whose areas are related as

A(K) - %area(hK) _ }larea,(HK). (2.3.1)
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Definition 2.3.8 (Critical Hexagon). For a convez disk K € R, a hexagon
Hy given by the construction of Theorem [2.3.7 is called a critical hexagon.

In the section on Reinhardt’s approach, we defined critical hexagons
differently. The following theorem shows that the definitions are compatible.

Theorem 2.3.9. Let K € R..s. Let Hyg be a centrally symmetric hexagon of
least area circumscribing K. Then Hy is a critical hexagon in the sense of
Definition [2.3.8

Proof. Let s; be the edge midpoints of Hx. These points lie on the boundary
of K. Since H is centrally symmetric, the points s; satisfy the multi-point
conditions (2.2.2).

Tile the plane with translates of Hx. Let L be the lattice generated by sq
and s;. The centers of the tiles form the sublattice 2L generated by 2s, and
2s;. A lattice point with one or two odd coordinates is the midpoint of an
edge of a translate of Hy centered at an adjacent even lattice point. Thus,
none of the nonzero lattice points of L lie in the interior of K. That is, L
is K-admissible. Note that Hy is a fundamental domain for the lattice 2L.
Thus, 4A(K) = det(2L) = area(Hk).

We claim that L is critical. Let L be a critical lattice with critical hexagon
Hy. Since Hg and the critical hexagon Hp both have smallest area among
centrally symmetric circumscribing hexagons, their areas must be equal. They
are both fundamental domains for the corresponding even sublattices 2L and
2L. Hence the determinants of the lattices are equal. This implies that L is a
critical lattice.

It is now easy to see that the properties of Theorem all hold for Hy,
if we take ¢; to be the line through the jth edge of Hg. m

Corollary 2.3.10. Let K = Ky, have worst greatest packing density. Then
K is irreducible.

Proof. By Reinhardt, every boundary point of K is a midpoint of an edge
of an area-minimizing centrally symmetric circumscribing hexagon Hy. By
Theorem [2.3.9) and its proof, the boundary point is a lattice point of a critical
lattice L. O

2.4 Boundary Parameterization of Minimizer

We return to Reinhardt’s setup from Section Let K = K, be a
centrally symmetric convex disk that gives the worst greatest density.
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We have seen that each point sy on the boundary of K is associated with
other points sy, ...,ss that satisfy the multi-point conditions , with
area normalization (2.2.3)).

Since the boundary of K does not contain any corners, we can parameterize
the boundary by a regular C! curve t — o¢(t), traversing the boundary in the
counter-clockwise direction. We will call this the positive orientation. Then by
the above discussion, the point o (t) gives rise to other points oy (%), ..., 05(t)
which are subject to the multi-point conditions at each time t:

0j(t) + 0542(8) + 0j4a(t) = 0, 0jya(t) = —o5(t),  det(05(t), 05,1 (1)) = ?
(2.4.1)

Definition 2.4.1 (Multi-point and multi-curve). A function s : Z/67Z — R?
such that is called a multi-point if it satisfies the multi-point conditions (2.2.2))
with normalization (2.2.3). An indezed set of C* curveso : Z/6Zx[0,ts] — R?
is a C* multi-curve if for all t € [0,t;], j — o;(t) is a multi-point.

If the differentiability class C* is not specified, then C'! is assumed. The
regularity of the curves will be established in the next section.

Example.

* The collection of sixth roots of unity s} = exp (m) e C, viewed as
points in R?, is an example of a multi-point.

o If0:[0,tf] > Ris a C' curve, then the rotation

i cos(f(t)) —sin(0(t)) o
%(t) (sin(&(t)) cos(é?(t))) J

of a multi-point is an example of a multi-curve.

o Section in the Appendix gives an example of a hypotrochoid curve
in R? which satisfies the multi-curve properties in Equation (2.4.1)).

2.4.1 Regularity Properties of Multi-Curves

Lemma 2.4.2 (Hales [15]). Let K = Ky € Rees be a centrally symmetric
convez disk that has the worst greatest packing density. Consider a C° multi-
curve o parameterization of its boundary. Ift — oy(t) is a positively oriented
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C*' regular curve parameterizing the boundary of K, then so is o;(t) for
j=1,...,5.

Positively-oriented regular C* parameterizations oy exist for the boundary
of K. For example, the arclength parameterization has this property. By
Lemma, the curves o;(t) are continuous.

Proof. Given that o((t) is continuous, we show that o}(t) exists and is con-
tinuous [15, Lemma 11]. Since K has no corners, the unit tangent u(¢) to
o9(t), with the orientation given by oy, is a continuous function of ¢. It is
enough to check that the speed sy of g5 is continuous in t. We know that
det(oo(t), o2(t)) does not depend on .

We claim that det(oo(t),u(t)) # 0. Let hx(t) be the hexagon given by
the convex hull of {o;(t)}. If det(oo(t),u(t)) = 0, then the tangent line to
09 at t contains the edge of hg(t) through o,(t) and o1(t). This is contrary
to Lemma In fact, det(oo(t),u(t)) < 0. Similarly, we claim that
det(og(t), 0a(t)) # 0. Otherwise the tangent line to oy at ¢ lies along another
edge of hx(t), which is contrary to Lemma In fact, det(a}(t), 02(t)) < 0.

Define a positive continuous function ss : R — (0, 00) by the equation

det(ay(t), 02(t)) + det(oo(t), u(t))s2(t) = 0. (2.4.2)

The curve .
Galt) 1= L w(t)sa(t)dt + o (ko)

0

has the same initial value at ¢t = ¢y as o2, the same tangent direction for all %,
and satisfies the same area relation

det(0o(t), 3a(t)) = det(og(t), 02(t)) = V/3/2

by (2.4.2). We conclude that o2 = &2 and that o4(t) = u(t)ss(t). The
regularity condition is s5(¢) # 0. (Compare the proof of Lemma [2.4.5])
Similar statements for other curves o; follow by iteration over j. m

Lemma 2.4.3. Let o(t) denote a C* multi-curve parameterization of the
boundary of K = Kpin € Rees, giving worst greatest packing density. Assume
that the curve oo is parameterized according to arclength. Then, the tangents
o} are Lipschitz continuous for all j.
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Proof. This is Hales [15, Lemmas 17,18]. We recall the proof. We start by
establishing the Lipschitz continuity of 0. We parameterize the curve oy
according to arclength s. Then o( is a unit tangent vector. The vector o,
is continuous, because the convex region K has no corners, and the support
lines are unique.

For each value s of arclength, let y; be the hyperbola through oy (s) tangent
to the curve o at s, whose asymptotes are the lines in direction ¢7(s) through
o;(s), for j = £1. By Remark locally near oy(s), the arc 7, lies inside
K. As s varies, by continuity over the compact boundary, the curvatures
of the hyperbolas s at oo(s) are bounded above by some k € R. (The
curvature of the hyperbola depends analytically on the parameters defining
the asymptotes and tangent lines. These parameters vary continuously along
the boundary of K. Thus, the curvature of the hyperbola varies continuously
along the boundary of K, even when the second derivative of oy and the
curvature of oy do not exist.) This means that an osculating circle of fixed
curvature k can be placed locally in K at each point oy(s) so that oy(s) is
tangent to the circle. By convexity, the curve g near s is constrained to pass
between the tangent line at o¢(s) and the osculating circle of curvature x. If
we parameterize the curve by arclength, then oy (s) has unit length. Lipschitz
continuity now follows from this bound « on the curvature.

Now consider the Lipschitz continuity for j # 0. By evident symmetries,
it is enough to consider 7 = 2. Let t be the arclength parameter for the curve
0o and let s be the arclength parameter for the curve oo. Write s = s(t) and
t = t(s) for the reparameterizations. By Lemma the functions s(t), t(s)
are C1. Set 75(s) = o2(t(s)). The derivative of det(og(t), oa(t)) = 1/3/2 gives

dn(s(t) ds _,
ds d
The Lipschitz continuity of ds/dt (and of dt/ds) follows from the Lipschitz

continuity of the other functions o}, 02, 09, and dds/ds in that equation.
Then we also have the Lipschitz continuity of

, dG, ds
oy(t) = d—;a

det(ay(t), 02(t)) + det(oo(t),

0
Corollary 2.4.4. The functions o’(t) are differentiable almost-everywhere.

Proof. This follows by Rademacher’s theorem and Lemma [2.4.3 [
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Until further notice, we assume that the curve t — oy (t) is parameterized
according to arclength. See Proposition [3.1.9

2.4.2 Convexity of Multi-Curves

This subsection investigates the convexity conditions on the curves o.

Lemma 2.4.5 (Star conditions). Let K € R..s be a convex disk with boundary
parameterized by the C' regqular multi-curve o. At a given time t, let j —
s; = 0;(t) be a multi-point on the boundary of the convex disk K. Then for
each j and time t, the tangent a;(t) points into the open cone with apezx s;
and bounding rays through s; 1 and s; + S;;1.

Proof. This situation is depicted in Figure This is asserted in Hales [15),
16] and is called the star condition. By convexity of the disk K, at any time
t the hexagon hi(t) is a subset of K (as hg is the convex hull of the points
{s;}). Now, the vector 07(t) cannot point into the hexagon, because continuity
would then create a non-convex piece of the curve o;. Dually, it cannot point
beyond the ray from s; through s; +s;,1, as that would force 07}, ,(t) to point
into hx. Thus, the tangent vector points into the closed cone.

If the vector ag(t) points along the edge s;s;;1 of the triangle, then it
would have to remain pointing in that same direction until reaching s;. 1,
as it cannot point inward (by the above argument) or outward (as then it
would not be convex). This implies that o}(t), o7,,(t), 0j,5(t), and o7 4(t)
are all parallel. The relation o (t) + 05(t) + oy (t) = 0 implies that o}, ,(t) and
0}, 5(t) are parallel as well. However, the star domain of 07, ,(t) contains no
vectors in that direction, forcing o7}, 4(t) = 0. This contradicts the regularity
of the curve o;s.

Finally, if 07(¢) points along the edge s;(s; + s;41), then o7_,(¢) points
along s;_;s;, and the argument can be repeated with j — 1 in place of j. [

Apart from the star conditions, there is another condition on the curvature
of the boundary curve which needs to be imposed:

Lemma 2.4.6 (Curvature constraint). Consider a convex disk K € R..s with
boundary parameterized by a C' regular multi-curve o with Lipschitz continu-
ous derivative. Then we have the following condition almost everywhere:

det(0%(t),0}(t)) = 0 j e Z/6Z. (2.4.3)
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Figure 2.4.1: Global convexity condition for the ellipse.

Proof. The derivatives exist almost everywhere by the Lipschitz assumption.
A well-known theorem (see Proposition 3.8 of Shifrin [42]) states that a simple
closed regular plane curve is convex if and only if its orientation can be chosen
in such a way so that its signed planar curvature is everywhere nonnegative.
The left-hand side of is the planar curvature
det(c;(¢), o7 (¢))
|0’ (®)[?

up to a positive factor depending on the parameterization. The assertion
follows. O

2.4.3 A Characterization of Balanced Disks

Summarizing, we define a class Ry, < Rees (the class of balanced disks) of

centrally symmetric disks K as those satisfying the properties that we have
established.

Definition 2.4.7. A centrally symmetric convex disk K € K..s is balanced if
the following conditions hold.
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1. The boundary of K is parameterized counterclockwise by siz reqular C*
curves g; : R — R%

2. The derivatives o are Lipschitz.

3. For each t, j — 0;(t) is a multi-point with normalization convention
(2.2.3).

4. For almost all t, we have the curvature constraint det(o’(t), o7 (t)) = 0.

5. For each t, the vector o}(t) points into the open cone with apex o;(t)
and rays passing through o;.1(t) and o;(t) + 0;4+1(t).

6. The image of each curve o; : R/(6t;Z) — R? is the same simple closed
curve in R?, where 6t; is the common period of the functions o;.

Let Ryy denote the set of all balanced disks. A balanced pair (K, o) consists
of a balanced disk K and a boundary parameterization by a multi-curve o
satisfying the foregoing enumerated properties.

By convention, the area of the hexagon Hx has area normalized to /12.
By the results of this section, every minimizer K,,;, following this convention
belongs to Kpa-

By affine invariance, there is no loss of generality in assuming that the
sixth roots of unity {s} | j} lie on the boundary of the convex disk K. We
make this multi-point the initial position of the multi-curve . Following

Hales [15], we call this representation the circle representation of the convex
disk K.

Problem 2.4.8 (Balanced Reinhardt Problem in Circle Representation).
Describe those Ky, € Rear in circle representation for which

area(Kpin) = inf area(K),

{K€Rpai|K in circle representation}

where Ryq 15 the class of balanced disks.
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Optimal Control
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Chapter 3
A Control Problem

Now that we have a description of the set R, of balanced disks, we can
use this to restate the Reinhardt conjecture as an optimal control problem.
Optimal control problems solve for a policy that drives an agent in an
environment over a period of time such that a cost function is optimized. We
pin down our reformulation in three steps:

1. Recast the system as a dynamical system on a state space (which, in
our case, will be a manifold).

2. Introduce a well-defined cost functional.
3. Determine a well-defined control parameter.

This will be our focus in this section.

3.1 State Dynamics in the Lie Group

Let SLy(R) be the Lie group consisting of all 2 x 2 matrices with real
entries and determinant 1. The multi-curve conditions give rise to a curve in
SLy(R) in the following sense.

Theorem 3.1.1 (Mabhler [28], Hales [15]). Let o be a C* multi-curve, and let
s be any multi-point. Then o determines a C* curve g : [0,t;] — SL2(R), by
the conditions

o;(t) = g(t)s; (3.1.1)
for all j and all t € [0,tf].

49
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Proof. Given a multi-curve o and ¢ € [0, tf], the value o(¢) is a multi-point.
It is enough to construct a 2 x 2 real matrix g(¢) so that

U](t) = g(t)sja .] = 07 2)

because the multi-point conditions then imply by linearity that o;(¢) = g(t)s;
for all j € Z/6Z. A unique such matrix g(t) can always be found by linear
independence:

det(So,Sl) = det(So,Sz) # 0.

The identity
det(og(t), o2(t)) = det(g(t)so, g(t)s2) = det(g(t)) det(so, S2)

gives det(g(t)) = 1, and g(t) € SLy(R). Thus, if we have a C* curve of multi-
points o(t), we obtain a unique induced C* curve g : [0,¢;] — SLy(R). O

Remark 3.1.2.

o If ty,t1,t, are three time instants, and ox(t;) = g(t;,t;)ok(t;), then
g(t27t0> = g(t27t1)g(tl)t0>-

o Later in the book, the multi-point is s}, and the multi-curves o; are
given by o;(t) = g(t)s}, where g(t) € SL2(R).

Let sl3(R) be the Lie algebra of 2 x 2 matrices with real entries and trace
0. Let Ady(X) = gXg ! be the adjoint representation of SLy(R) on its Lie
algebra.

Similarly, the tangents {0’(t)} give rise to a corresponding curve in the
Lie algebra sl5(R) as follows.

Definition 3.1.3. For a C' curve g : [0,t;] — SL2(R) as above, define
X :[0,t7] — gh(R) by ¢'(t) = g(¢) X ().

Theorem 3.1.4. Assume that we have a conver disk K boundary parame-
terized by a reqular C* multi-curve o. Let g be the induced curve in SLy(R)
for some multi-point s given by Equation (3.1.1)), and define X by ¢’ = gX.
Then

1. X(t) € slp(R).
2. 0j(t) = Adg) (X (t))o;(t) = g(t) X (t)g(t) " o;(t) for all j € Z/6Z.
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3. X :[0,tf] — sla(R) 4s Lipschitz continuous.

Proof. First of all, the matrix X (¢) belongs to sly(R) because if g : [0,t¢] —
SLy(R) is any differentiable curve, then X = g !¢’ € slh(R). Let o;(t) =
g(t)s;, for some multi-point s;. We then have

o;(t) = g'(t)s; = g() X (t)s; = g() X (t)g(t) " g(t)s; = Adgqr) (X (t));(t).

To see that X (¢) is Lipschitz, it is enough to show that X (t)s; = g(t) 'o%(t)
is Lipschitz for each j, which follows because o7 is Lipschitz by Lemma 2.4.3L
and g is a C* curve on a compact interval. ]

Definition 3.1.5. Let
0 -1
J = < 1 0 ) € sly(R).

J is the infinitesimal generator of the rotation group SOy(R). This infinitesi-
mal generator gives rotations exp(Jt) € SO2(R). In particular,

R :=exp(J7/3) (3.1.2)

is counterclockwise rotation by angle w/3. The matrices J and R are global
notations throughout.

Corollary 3.1.6. For a balanced disk K € Ry, with C' boundary parameter-
ization o;(t) = g(t)s}, we have the following properties for X = X (t) defined

in Definition for all times t.
o We have p;(X) > 0, fori=0,1,2, where

po(X) =& i/%/g“, (3.1.3)
pr(X) = C_V?“, (3.1.4)
po(X) i= _i’b—\/gc) (3.1.5)

and

xz(g_ba).

In particular, \/3la| < ¢, 3b+¢ <0, 0 < ¢, and trace(JX) =b—c < 0.
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o det(X(t)) > 0 for all t.
We call the inequalities p;(X) > 0 the star inequalities for X € sly(R).

Proof. At time t, the multi-point is given by g(¢)s}. The star conditions in
Lemma imply that the tangent vector o7(t) = g(t)X(t)s} lies in the
open cone with apex at the origin bounded by the rays through the points
g(t)sj,, and g(t)s},,. After cancelling a factor of g(¢) from both sides, and
writing X for X(t), these open cone conditions become

Xsj = pij(X)sj 1 + pj+1(X)s] o, (3.1.6)

for some unknowns p;(X), p;(X) > 0, for j € Z/6Z and X € sly(R). By
central symmetry, p;13 = p; and p;;3 = p;. Solving this systems of linear
equations for p;, p; in terms of the matrix entries a, b, c of X, we obtain for
all j that p; is given by the statement of the lemma. Also, p; = p;. It follows
that

V3lal <¢ 3b+c<0.

In particular, ¢ > 0. Using these values, we have by direct calculation that

det(X) = pop1 + p1p2 + p2po > 0. (3.1.7)
O

Remark 3.1.7 (Reconstructing the hexagon). Given X € sly(R) satisfying
the star inequalities in the conclusion of the corollary, we can reconstruct a
centrally symmetric hezagon whose edge midpoints are the points s; and such
that the hezagon satisfies the star conditions. The edge direction at s} is Xsj.
Two elements in the Lie algebra give the same hexagon if one element is a
positive multiple of the other.

The vertices of the hexagon are constructed as the solutions to linear
equations; each vertex is the point of intersection between the line through s}
in direction Xs; and the line through s}, in the direction Xs ;. Explicitly,
by solving the equations, the verter is

* pj+2(X)X * #* pj<X) * (3 1 8)

Sj + M Sj = Sj+1 — MXSJA_T

Each s} is manifestly an edge midpoint, given as the midpoint of vertices
si £ pjra(X)Xs]/det(X).
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The following fact is an easy corollary of Reinhardt’s observations about
the significance of hyperbolic arcs.

Lemma 3.1.8. Suppose that K € R..;. Assume the boundary is parameterized
by a C* multi-curve o. If two curves 0;_; and o;,1 move along straight lines
during some time interval, then the third curve o; moves along a hyperbolic
arc, whose asymptotes are the lines determined by o;_1 and ;1.

Proof. For simplicity and without loss of generality, take ¢ = 0. The curves
+071 and +o_; trace out lines that form four of the edges (forming a fixed
parallelogram P ) of the time dependent critical hexagon Hg (t). The tangent
lines to +oy(t) form the final two edges of the critical hexagon, and +oy(t)
are the midpoints of those edges. As t varies, the area cut off by these two
tangent lines from the parallelogram Py is constant, because the areas of
Py and Hk(t) are both constant. As Reinhardt observed, the pencil of lines
cutting a constant area from (two adjacent edges of) a parallelogram has an
envelope that is a hyperbola whose asymptotes are the lines extending the
edges of the parallelogram. The midpoints o((¢t) must lie on that envelope, a
hyperbola with the required properties. [

If K € Ry has boundary parameterization o;(t) = g(t)s}, then the
midpoint hexagon Hx of K at the multi-point g(o)s? is the left translate
by g(to) of the hexagon constructed in the Remark using X = X (tg) =
9719 (to).

We have one equation for our state space dynamics viz., equation ¢’ = gX.
Before deriving dynamics in the Lie algebra, we shift to a more convenient
choice of parameterization.

Proposition 3.1.9. Let s denote the arclength parameter of oo, and let

X (t) denote the reparameterization of the matriz-valued curve X, using the

reparameterizion of g to a time variable t such that det(X(t)) = 1. Then we
have that t — X (t) is a Lipschitz continuous function.

Proof. Reparameterize §(t) := g(s(t)). In this new parameterization, we
define X by the differential relation dg(t)/dt = §(t)X (). We have by the
chain rule:

dj(t) d d ds
TR (s(t)) = s (S(t))a
— g(s)X(5)Z.

dt
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So that X (t) = X (s(t))%. Now we require det(X(t)) = 1, which forces

ds 1
dt  det(X(s))V2’

which gives us the reparameterization equation. By Corollary we have
det(X (s)) > 0 so that the right-hand side is real and finite. Recall that we
have that X (s) is Lipschitz by Theorem and det(X (s)) is bounded away
from zero since it a continuous function on a compact interval. Then ds/dt is
Lipschitz. This proves that X is Lipschitz as well. O]

By abuse of notation, we let ¢ denote the new parameter, so that det(X (t)) =
1.

Corollary 3.1.10. With respect to the parameterization making det(X (t)) =
1, the curve X is differentiable almost everywhere.

Proof. This follows from Rademacher’s theorem and Proposition ]

Corollary 3.1.11. A parameterization which makes det(X(t)) a constant
also makes X + X 1X' € s5l3(R) almost everywhere, and conversely.

Proof. This is immediate from the Jacobi’s formula for the derivative of a

determinant (Lemma [3.1.12):

det(X)’
det(X)

= trace (X 'X'), (3.1.9)

and from trace(X) = 0. O

Lemma 3.1.12 (Jacobi’s formula). Let A be a differentiable function taking
values in GL,(C). Then
det(A)’ = det(A)trace (A7'4’).

(The same formula holds without the assumption that A is invertible, if
det(A)A™! is replaced with the adjugate of A.)
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Proof. Both sides of the Jacobi formula are polynomials in the matrix coeffi-
cients of A and A’. It is therefore sufficient to verify the polynomial identity
on the dense subset where the eigenvalues of A are distinct and nonzero.

If A factors differentiably as A = A; A, then

tr(A 1A = tr(A[TA)) + tr(A51A)).
In particular, if L is invertible, then I = L~'L and
0=tr(I'I') = tr(L(L7Y) + tr(L7'L)).

Since A has distinct eigenvalues, there exists a differentiable complex invertible
matrix L such that A = L7'DL and D is diagonal. Then

tr(AtA) = tr(L(L™Y) + tr(D7'D") + tr(L'L) = tr(D*D’).

Let A\;, 2 =1,...,n be the eigenvalues of A. Then

det(A)/ _ " ’ o -1/ —1 A/
doi(A) —;)\i/)\l—tr(D D) = tr(A A,

which is the Jacobi formula for matrices A with distinct nonzero eigenvalues.
O

3.2 The Cost Functional

We now compute the cost functional in terms of the matrix-valued curve
X parameterized as above. From the balanced Reinhardt problem [2.4.8| in
circle representation, we see that the quantity to be minimized is the area
of a convex disk in Rp,. Our strategy is to compute this area using Green’s
theorem, by using the pullback of the one-form zdy — ydz on R2. We let -
denote the transpose of a matrix.

Lemma 3.2.1. Let g : [0,tf] — SLa(R) be a path so that ¢ = gX as above
and let u € R%  Define v : [0,t;] — R? by y(t) := g(t)u. Consider the
one-form 0 = xdy — ydz on R?. Then we have the following formula for the
pullback of 6 to [0,t¢]:

70 = —u" JXudt.
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Proof. If we write (t) = (71(t),72(t)), then

= (n()7%2(t) — 12(t)n () dt
det(v,7")) dt

det(gu, gXu))dt

= (det(u, Xu))dt

= —u"JXudt,
since det(g) = 1 and

det(u, Xv) = —u"JXv, (3.2.1)
for all X € sl5(R) and u, v € R2. O

The lemma above enables us to compute pullbacks of # by the multi-
curves o;. Indeed, the boundary 0K of an arbitrary balanced convex disk
K € R, is a simple closed curve parameterized by the curves o, given by

0;(t) = g(t)s} = g(t)(R's5).

Lemma 3.2.2. Let Y € sly(R). Then we have

JY + (R*)"JYR® + (R JYR* = —3“%;(”)12,
where Iy is the 2 x 2 identity matriz.
Proof. This is a simple computation. m

We now derive a formula for the area of K € K. By Green’s theorem
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and the lemmas from above, we have

0K

L (Y “0d

tf
= J 040 + 050 + 0;6dt (by Lemma (3.2.1))
0

tf
= J —u"JXu — (R*u)" JX(R*u) — (R*n)" JX(R*u)dt
0
tf
_ —f u” (JX + (R} JXR? + (R4 JXRY) udt
0
B J tr . 3trace(JX)
2

[uf?

dt (by Lemma [3.2.2).

0

The parameterization of convex disk K is of the form oy (t) = g(t)sj, which
means that u = s§ = (1,0). So |u| =1 and

ty
area(K) = —;J trace(JX)dt, (3.2.2)
0

which is the quantity to be minimized.

Example. We show that the area of a unit disk K is 7, as expected, by using

(3.2.2). In this case,

g(t) =exp(Jt), X(t)=J, tf=mn/3 (one-sizth the circumference),
where exp(—) is the matriz exponential. Note that X is a constant curve in
this case. Then

/3 3

ty
area(K) = —%J trace(JX)dt = —gtrace(ﬂ)f dt = ——(-2)

T
- =T.

3.3 Control Sets

We now investigate the control parameters which affect this cost. It is
intuitively obvious that the curvature of the curves making up the boundary
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of the convex disk K € K, affect its area. So, it makes sense to allow the
curvatures to play the role of the controls. Problems in which curvature plays
the role of a control are well-studied in the literature, the Dubins-Delauney
problem being one a prominent such example [20]. Other examples, such as
Kirchoff’s problem and the elastic problem are discussed in [21].

To begin, recall that Lemma says that det(’(t), 07 (t)) = 0 almost
everywhere in t. Now since our convex disk is in circle representation, we
have o;(t) = g(t)s;. Then we have, for j =0, 1,2,

5(2) = det(a (2), o (1)) = det(g(t)s3,, 6" (1)s3,)
= det(gXs3;, (9X° + gX')s3;)
= det(Xs},, (X? + X')s})
= det(s3;, (X + X 'X")s3;) >0, (3.3.1)
almost everywhere in t. Here we used Proposition and Corollaries
3.1.6/and [3.1.10 We call «;(t) the state-dependent curvature as it depends

on where we are in the state space. Note the indexing conventions j < 2j
relating k; and oy;.

Lemma 3.3.1. Let g : [0,tf] — SLy(R) be C' with Lipschitz derivative
satisfying the star and curvature conditions (3.3.1)). Then almost everywhere,
there exists an index j so that x;(t) > 0.

Proof. Take X = g 'g’. Assuming kg, k; = 0, a short calculation shows
almost everywhere that

V3 det(X)

po(X)
This is strictly positive by the star inequalities in Corollary (This
gives a second interpretation of the functions p; in terms of state-dependent
curvatures.)

A second proof can be obtained from Lemma [3.1.8} if two of the state-
dependent curvatures are zero, then the third curvature is such that associated
curve is an arc of a hyperbola. Hence the third curvature is positive.

A third proof appears at the end of the proof of Theorem which
gives a formula for kg + K1 + K2 as a ratio of negative numbers. O

Ko(t) = det(s], (X + X 'X')s}) =

Since the state-dependent curvatures «,;(t) depend on X and X’ in general,
they are not suitable as control variables for our control problem. To this end,
we introduce normalizations of the state-dependent curvatures as follows.
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Definition 3.3.2 (control variables). For each j = 0,1,2, define control
variables given by the normalized state-dependent curvatures as
K.
U; 1= _ .
Ko + K1 + Ko

Note that the denominator is positive by Lemma The control
variables u; evidently satisfy 0 < u; < 1 and ug + u; + uy = 1. Note also that
the control variables are functions of time.

Definition 3.3.3 (Triangular control set). The triangular or simplex control
set is the set

UT = {(UO,ul,Ug) | 0< U < 1, Ug + U + Uy = 1},
which is just the two-simplex in R3.

We map the control set Uz into the Lie algebra sly(R) using the following
transformation:

u1—u2  ug—2u1—2us
Zu = f —“25“1 €sh(R), w= (u,u1,u2) € Ur. (3.3.2)
0 V3

This control matrixz Z, € slo(R) is uniquely determined by the equations
u; = det(s;, ZuS5;) j=0,1,2. (3.3.3)

In summary, the optimal control function of the control problem takes
values in the two-simplex Ur. The values in Ur specify the values of curvature
functions, which determine the boundary curves of a convex disk K € Kpy.
The optimal control function minimizes the area of K.

Henceforth, we adopt the notation (X,Y) := trace(XY), for any two
matrices X,Y € sl(R). This form is a nondegenerate invariant bilinear form
on sly(R).

We can now prove an equivalent star condition.

Lemma 3.3.4. The star inequalities on X hold if and only if {(Z,, X) <0
for all controls u € Ur.

Proof. An easy calculation gives the following identity.

(Zu X = —%woouo o1 )u + pol(X ).

The right-hand side is everywhere negative on Uy if and only if p;(X) > 0,
for j = 0,1,2. These are the star inequalities on X. ]



60 CHAPTER 3. A CONTROL PROBLEM

3.4 Lie Algebra Dynamics

Let us first collect a number of results about matrices in sly(R) which we
will need. All of these are elementary and so we admit them without proofs.
Let [X,Y] = XY — Y X be the Lie algebra commutator of two matrices
X,Y esly(R).

Lemma 3.4.1. We have the following results about matrices in sly(R).
1. If X € sly(R), (X, X) = —2det(X).
2. If X, Y are any two matrices in sla(R), and s is a multi-point
det(s;, X's;) = det(s;,Ys;), j=0,1,2,
then X =Y.
3. If X,Y € sly(R) then XY + YX = (X,Y) .
4. For any matrices X,Y, Z € sla(R) we have (X,[|Y,Z]) = {(X,Y], Z).

We return to X as the trajectory defined by ¢’ = ¢X. Let us now derive
the control-dependent dynamics for X.

Theorem 3.4.2 (Dynamics for X). The dynamics for X (which is control-
dependent) is given by
, 120 X]
(Zu, X)
It is shown in Lemma that the star conditions imply (Z,, X) < 0,

for all controls u € Ur. The denominator (Z,, X) appearing in the theorem
is therefore nonzero.

Proof. By Corollary [3.1.11], we find X + X 'X’ € sl3(R). From Equations
(3-3.1) and (3.3.3) we find

k; = det(s3;, (X + XX 85;)5

for each j. Let kK = K1 + kg + k3. Since, by Definition we have Ku; = kj,
by Lemma (2) we obtain that

X+ XX = kZy,
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from which we obtain
X' =X(kZ, — X). (3.4.1)

Taking traces and using trace(X’) = 0, we obtain k = (X, X) /(X, Z,) =
—2/(X, Z,), where the last equality uses Lemma (1). Let P = Z,/{X, Z,,).
We have (P, X) =1 and

[P,X] = PX - XP=—2XP + (PX + XP)
= —2XP +(P,X)I, from Lemma [3.4.1] (3)

=-2XP+ 1,
= KkXZ,—X? from Lemma [3.4.1] (1,3)
which proves the claimed differential equation. ]

Remark 3.4.3.

1. The equation X’ = [P, X| where P, X are time-dependent matrices is
called the Laz equation and X, P so related are called a Laz equation.
Lax equations are well-studied in the theory of integrable systems (see
Perelomov [39], Jurdjevic [21], Babelon et al. [3]). Lax representations
of integrable systems are quite desirable since the evolution of a Lax
equation is isospectral, meaning that the spectrum of the matrix X is
an invariant of motion.

2. The dynamics for X is Hamiltonian for a particular Hamiltonian defined
on sly(R), with respect to a Poisson structure on sly(R) called the Lie-
Poisson structure. See Appendix for more details.

3. As explained in Perelomov [39, p. 52], the spectral invariants guaranteed
by the dynamics for X are trivial integrals, and so it is more accurate to
consider the dynamics for X as giving a control-dependent infinitesimal
generator for the (co)adjoint action of SLy(R) on sly(R), rather than to
regard it as describing the dynamics of an integrable system.

4. The equation (3.4.1)) appears in [16], where its Lax equation reformula-
tion was not explicitly recognized.
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3.5 Initial and Terminal Conditions

We now have dynamics for g and X in the Lie group and Lie algebra
respectively. We also have an associated cost objective. The only thing
remaining is to specify initial and terminal conditions. Since our convex disk
is in circle representation, this means that ¢;(0) = s} so that we start out
at the sixth roots of unity, and so we set g(0) = I,. The initial condition
X (0) = Xo may be an arbitrary matrix in sl3(R) of determinant 1, provided
it satisfies the star conditions in Corollary

The terminal conditions g(¢s) should be such that the curves o; close up
seamlessly to form a simple closed curve:

g(ts)s; = g(0)sj,, < g(tf) = R, (3.5.1)

where R is the usual rotation matrix. For terminal conditions on X, note
that we have the following conditions on g which we obtain by the remark
following Theorem (and setting ¢ty = 0 there):

g(t +t5)s; = g(s(t))sj = g(s(t))Rsj;  g(t +1t5) = g(s(t))R,
for some orientation-preserving reparameterization s(t) such that s(0) = 0.
Differentiating, we obtain
ds
dt’
which gives us X (t;) = R"'X,Rds/dt. Using det(X) = 1 and ds/dt > 0, we
get ds/dt = 1, s(t) = t, and

X(t+t;)=R'X(s(t)R

X(t;) = R"'XoR.

3.6 Reinhardt Optimal Control Problem

Summarizing the discussion so far, we are finally ready to state the
Reinhardt conjecture as an optimal control problem. Let us begin with a
well-known proposition on the trivialization of the tangent and cotangent
bundles of a Lie group.

Proposition 3.6.1. Let G be any real Lie group and let g be its Lie algebra.
Then we have T*G =~ G x g* and TG =~ G x g, where g* is the linear dual of

g.
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Proof. The Lie algebra g is the tangent space of G at the neutral element
e€ G. Let Ly : G — G be left-multiplication by g, given by Ly(h) := gh, The
tangent map

TL,: TG — TyG,

at h = e is an isomorphism from T,.G to T,G, the tangent spaces at e and g.
This isomorphism gives the trivialization of the tangent bundle TG =~ G x g.
Dually, each fiber TG of the cotangent bundle is canonically isomorphic to
the dual TG = g*. This trivializes the cotangent bundle. ]

The above proposition and remark apply to SLy(R). Using this, we group
together the state equations, controls and cost functional to give a well-defined
control problem.

Problem 3.6.2 (Reinhardt Control Problem). The convez disks in Ry in
circle representation arise via the following optimal control problem. On the
manifold SLa(R) X slp(R) = T'SLy(R), consider the following optimal control
problem with free-terminal time.

g =gX, g9:0,¢s] — SLa(R); (3.6.1)
X' = 5: f<]> X : [0,t] — sla(R): (3.6.2)
_g L "(J. Xdt — min, J= ((1) _01> , (3.6.3)

where the set of controls for this problem is the image of the two-simplex Ur
in R3 inside the Lie algebra sly(R) via the affine map Z,.

Z:Up = {(uo,ul,ug) | D> u =1, u > o} — 5ly(R) (3.6.4)
U1 —Uu2 up—2u1 —2u2
Ug T

The initial conditions are g(0) = Iy € SLy(R) and X(0) = X, € sly(R)
satisfying the star conditions. Also, the terminal conditions are g(ty) = R
and X (t;) = RXoR ' where R is the usual rotation matriz (3.1.2).
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Chapter 4
The Upper Half-Plane

Now that we have the optimal control problem fully stated, a natural
next step would be to write down the necessary conditions for optimality of
trajectories. But before we do that, we will first cut down the state space of
the problem.

4.1 The Adjoint Orbit

Recall that the star conditions (Corollary [3.1.6) on the matrix X imply
that (J, X) is negative. We have also imposed the condition det(X) = 1. We
begin with a characterization of such matrices.

Lemma 4.1.1. The set of matrices X € sly(R) with det(X) =1 and (J, X) <
0 is the adjoint orbit Oy := {Ad,J | g € SL2(R)} in sly(R) of the infinitesimal
generator J.

Proof. The adjoint orbit O; of J in sly(R) consists of elements gJg ! for
g € SLy(R). The Iwasawa decomposition of SLy(R) implies that g belongs to
a left coset h SO2(R) where

(D0 oo

Since SO2(R) centralizes J, the orbit consists of elements

1/y —z/y

65

gJg ' =hJh ! = ( 2y —(@*+4*)/y ) =:®(z), z=uz+iyeh. (4.1.1)
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This is precisely the form of a general element X satisfying the conditions of
the lemma. Hence, the result follows. n

Remark 4.1.2. Since sl3(R) admits a nondegenerate invariant symmetric
bilinear form (-, -), the Lie algebra can be identified with its linear dual, by
identifying X € sly(R) with the linear functional

Y - (Y, X)

on sly(R). Under this identification, the coadjoint orbits and adjoint orbits
become identified. See Appendix and also Chapter 5 of Jurdjevic [19].

4.2 Transfer of Dynamics to the Upper Half-
Plane

The group SLy(R) acts on the upper-half plane
h={z+iy|y>0}
by linear fractional transformations (or Mobius transformations).

b az+b
SL2(R) < b — b, (CCL d>.zzcz+d'

(4.2.1)

We denote the action by ().

By the orbit-stabilizer theorem, we have O; =~ SLs(R)/SO2(RR), since the
stabilizer of J in SLy(R) under the conjugation action (the centralizer) is
SOy (R). Viewing this in a different way, the group SLs(R) acts on the upper
half-plane § by linear fractional transformations, with stabilizer of ¢ € h being
given by SO5(R). Thus, the quotient is isomorphic to the Poincaré upper
half-plane h. Putting all of this together, we have

Lemma 4.2.1. The following map ® is a isomorphism.
®:h—- 0Oy

z=x+1iy — ®(z) := ( Tg —(xi—;/g;)/y ) .

Remark 4.2.2.
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« Note that Oy = Og(,) as ®(z) € O,.

o We write X in place of ®(z) for simplicity, bearing in mind that & is
surjective onto Oj.

o Note that ®(z) is a regular semisimple element of the Lie algebra sly(R)
because the element J is.

o The map ® is SLy(R)-equivariant for the action by linear fractional
transformations on h. That is, for every g € SLy(R),

9®(2)g ' =®(g-2).

This map ® allows us to move back and forth between the upper half-
planes and the adjoint orbit in the Lie algebra sly(R). Also, the map ®
is more than just a bijection — we show later that this map is actually
an anti-symplectomorphism and use this to transfer the state and costate
dynamics from the Lie algebra to the upper half-plane. But first, we compute
the tangent map T® at a z € b.

Lemma 4.2.3. For any X € sl3(R), we have
TXOX = {D/, X] ‘ Y e 5[2(R)} = 5[2(R>/RX,

where RX s the span of the element X and TxOx denotes the tangent space
to Ox at X.

Explicitly, the first equality views the tangent space at X of the manifold
Ox as a subspace of s[3(R) = Txsly(R), the tangent space at X of the ambient
space sly(R). The isomorphism on the right is given by [Y, X| — Y + RX.

Proof. Note that Ox = {Ad,X | g € SL2(R)}. We have to describe tangent
vectors to Ox. For any Y € sl(R), Adexpy)X is a curve in Ox. Thus, the
tangent vector to this curve is computed as

d
aAdexp(tY)X o = adyX = Df, X] € TXOX.

This calculation is actually finding infinitesimal generators of the adjoint
action. There is an isomorphism

slh(R)/sla(R)x = {[Y,X] | Y esb(R)}, Y — [Y,X],
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where sly(R) x is the isotropy algebra (the centralizer) of the element X. The
element X is regular in the rank one algebra sl3(R), so that its centralizer
slo(R)x is the span RX of X. O

We write [Y] for the coset Y + RX in slh(R)/RX.

Lemma 4.2.4. We have the following expression for the tangent map T'®.

T®:T.h — TxOx = slh(R)/RX (4.2.2)
2.9 r2/2y (yry —7rox)/y
(g + 1o, ( 0 —r3/2y mod RX. (42:3)

Proof. We have, at z = = + iy and X = ®(2):

d
T, ®(r,re) = %é(x +tri,y + tm)‘t:O (4.2.4)
® ®
= Tla— + 7‘28— € TxOx. (4.2.5)
or oy

We know by the previous lemma that there exists a matrix Y, such that

0P 0P
Tz(I)(’I"l,TQ) = 7‘1% + 79 (,)y = [Y;(Tl,rg),X].

Using this equation to solve for this matrix Y, gives us the following.

Y, = < ’"2623/ (y’"l_;z’/"g‘;)/ y > mod RX. (4.2.6)

So, for any arbitrary vector (r1,72) € T,h we obtain its image inside the
quotient space sly(R)/RX. O

4.3 The Cost Functional in Half-Plane Coor-
dinates

We can also compute the cost functional that we derived in Section |3.2|in
half-plane coordinates. From equation (3.2.2)), we have

tf .2 2 1
5 J IV ¥ min. (4.3.1)

3ftf<JX>d
- : = —
2 Jo 2 Jo Yy
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The cost functional is SOy(R)-invariant, because if A is any rotation
matrix, then
(J,AdpX) = (Ady—J, X) = (J, X).
The circular symmetry is also apparent in this reinterpretation. The level
sets of (2 + y? + 1)/y are concentric circles (with respect to the hyperbolic
metric) centered at the point ¢ in the upper half-plane. Thus, the cost is
SOz (R)-invariant.

Lemma 4.3.1. The global minimizer of the Reinhardt control problem has
terminal time t; < 7/3.

Proof. The global minimizer has area less than the area 7 of the unit circle
K. We have (22 + y2 +1)/y = (y + 1/y) = 2, so that

tf 2 2 1 tf
7w > area(Kpp) = §J Mdt > §J 2dt = 3ty.
2 J)o Yy 2 Jo

]

Remark 4.3.2. The Poincaré upper half-plane is conformally equivalent
to other models of hyperbolic geometry such as the Poincaré disk and the
hyperboloid model. The cost functional derived above can also be derived
in these models. In the disk model, D = {w € C | |w| < 1}, for example, the
cost of a path w : [0,¢;] — D becomes

tf 1 2
3J + [w] dt — min.
o 1—|wf?

In the hyperboloid model of hyperbolic geometry, the model is the upper sheet
of the two-sheeted hyperboloid. In that model, the cost functional becomes
the integral of the height function on the hyperboloid sheet. See [16].

4.4 The Star Domain in the Upper Half-Plane

We can now prove our first state space reduction result.

Theorem 4.4.1. The dynamics of the Reinhardt control problem is con-
strained to an ideal triangle in the upper half-plane.
1

L . 1 1 2 2
h.—{x+zyeh| \/§<x<\/§, 3 <% +y}. (4.4.1)

Thus, the new state-space of the control problem is SLy(R) x b*.
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Proof. The star conditions on X in Corollary applied to X = ®(2) =
®(x + iy) give us the conditions on z and y which an admissible trajectory
should satisfy.

This region, called the star domain, is the interior of an ideal triangle in

the upper half-plane. The vertices of this triangle are the points z = J_r\/%

and z = 0. A picture of the star domain is shown in Figure 4.4.1 O
r=—" z =

Figure 4.4.1: The star domain in the upper half-plane.

Summarizing the results so far, we have parameterized the boundary of
convex disks in Ry, as Ur-controlled paths (g(t),2(t)) € SLy(R) x h* subject
to the terminal conditions. Our task is to find a control function u(t) € Ur
which minimizes the area enclosed by the resulting curve, given in hyperbolic
coordinates by equation (4.3.1)).

4.5 Control Problem in the Half-Plane

Evolution of X (t) = h(t)Jh(t)™! by adjoint action in O; corresponds to
evolution by linear fractional transformations of the corresponding element
2o in the upper half-plane picture. If ®(z9) = Xy and ®(2(t)) = X(¢), then
by the SLy(R)-equivariance of ®, the initial and terminal conditions derived
in Section [3.5] are transformed as

X(0) = Xo —— 2(0) — 2,
X(t;) = R XoR <= z(t;) = R - 2,



4.5. CONTROL PROBLEM IN THE HALF-PLANE 71

where R is the usual rotation matrix (3.1.2).
Thus, we obtain the following reformulation of the Reinhardt conjecture
from the coadjoint orbit of the Lie algebra to the Poincaré upper half-plane.

Problem 4.5.1 (Half-Plane Control Problem). On the set SLy(R) x h* <
TSLs(R), consider the following free-terminal time optimal control problem.

g=9X, X-= < f?gj _(x:r/f)/y ) = &z +iy),

y (2ax + b — cz® + cy?)
20z + b — cx? — cy?

' = fi(z,y;u) ==

Y

2y2%(a — cx)
2ax + b — cx? — cy?’

Y = folw,y;u) :=

3 (U a?+2+1
—f LY T 4t — min,

2 Jo Yy
g: [Oatf] - SL2(R)7 z,Y: [Oatf] - b*a

where the coefficients a, b, c are the following affine functions of the control
(3.6.5).

U — 2’U,1 — 2’11,2
3 )

a=a(u) = , b=0b(u) = ¢ = c(u) = uo,

with u = (ug,u1,uz) € Ur, which is the two-simplex in R3. This problem
has intial conditions g(0) = Iy € SLy(R) and z(0) = 2y € h* and terminal
conditions g(t;) = R and z(t;) = R - 2y where R is the usual rotation.

Lemma 4.5.2. The ODE (3.6.2) for X implies the system of ODEs for x',y
in the half-plane optimal control problem [{.5.1|.

Proof. We compute

(yz' —2y)/y* =\ _ ;12w ()] ((yfi—xfo)/y® =
< —y fy *)“I’(z“” (2, ®(2)) ( i )
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Comparing the left and right-hand sides of this equation, find that ' = f;
and y' = f,. This also shows that

e TxOx. (4.5.1)

TO(f1, f2) = [<ZuZ—uX>]

]

Thus, we have transferred the Lie algebra dynamics to the upper half-
plane. In Appendix we also prove that the map ® is actually an anti-
symplectomorphism onto the upper half-plane. Thus, it is entirely equivalent
to study the control problem in the Lie algebra picture or the half-plane
picture. We may also transfer the dynamics to other models of hyperbolic
geometry: for example, the Poincaré disk model or the hyperboloid model.
Each picture has its advantages, with some simplifying equations while others
are better since the symmetries are more apparent.

We have finally reached the end of the reduction chain and have trans-
formed a problem in discrete geometry to an optimal control problem on
TSLs(R). Already, we see that this problem is remarkably rich, with connec-
tions to Hamiltonian mechanics and hyperbolic geometry.

4.6 Dihedral Symmetry

The dihedral group Dihg of order 12 of the hexagon acts on the sixth
roots of unity through orthogonal transformations. This action of the dihedral
group extends to many of the constructions throughout this book.

Let ¢ be a multi-curve parameterizing the boundary of K € R;,. We
assume that K is in the circle representation, and that o;(0) = s}. Let A be
an element of the dihedral group of the hexagon, considered as an element of
the orthogonal group O2(R). Let €4 = det(A) € {£1} be the determinant. Let
0;(t) = g(t)s} as usual, with g(0) = I,. Then §(t) = Ag(eat)A™" determines
a multi-curve

(1) = Agleat) A,

parameterizing the boundary of a convex disk AK € R, with the same
area as K. The sign €4 is chosen to make the multi-curve parameterize the
boundary of AK in a counterclockwise direction. Then the action extends to
the Lie algebra

(37'9)(t) = X(t) = eaAX (eat) A"
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Generators of the dihedral group are the rotation R and the reflection across

the vertical axis:
g -1 0
~\0 1)

with eg = det(S) = —1. Writing X = ®(z), the reflection acts by z — —Z,
where Z is complex conjugation:

€sSP(2)S L = B(—2).

This preserves the upper-half plane, but is not orientation preserving. The
rotation R (with eg = 1) acts by linear fractional transformation

R®(2)R™' = ®(R - 2).

The actions of the dihedral group Dihg on the multi-point s;, on multi-curves,
on the control set, on the star conditions, on the ideal triangle, and on the
upper half plane through Moébius transformation are all compatible. That is,
many of our maps are equivariant with respect to the dihedral group. Recall
that the linear fractional action of exp(Jf) on h acts on the tangent space
T;h at i = v/—1 by a clockwise rotation by angle 20. R? = —I, acts trivially,
so that the action of the dihedral group of the hexagon factors through the
dihedral group of an equilateral triangle — the symmetric group on three
letters.

The action of the dihedral group permutes the star inequalities. In terms
of the linear functions p; : slx(R) — R defined in Corollary we have

pi(€sSXS™) = p1_;(X),
p;(RXR™) = p;1(X), jeZ/6L.

It follows that the dihedral group acts on the star domain h*. The group
permutes the ideal vertices of h*. The action on the ideal vertices +1/1/3 and
+0 is by linear fractional transformations on RP'. Here we are viewing the
boundary of the upper-half plane, consisting of the real axis and the point at
infinity, as a real projective line. We have

R-(+x)=1/3, R-(1/¥3)=-1//3, R-(-1/V/3) =+,
S (£1/v/3) = F1/v3.
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We describe a fundamental domain for the action of the dihedral group
(the symmetric group on three letters) on h*. The positive imaginary axis
is a geodesic in the upper-half plane. Under the action, the orbit of this
geodesic is a set of three geodesics. The other two geodesics are the circles
of radius 2/+/3 centered at the two cusps (0, +1/4/3) on the real axis. These
three geodesics meet at z = 0 + ¢ € h* and partition h* into six sectors. Each
of these sectors is a fundamental domain for the action. See Figure 4.6.1
Specifically, one such fundamental domain is given by

(z=z+iyebh* |z=0, (z—1/v/3)%+y?<4/3}.

(%0 (0)

Figure 4.6.1: A fundamental domain for the dihedral action on h* is shaded in
gray. The generators of the dihedral group R and S take the shaded domain
to the other unshaded ones.

The dihedral group acts on everything in sight, such as the control set Ur,
and so forth. The dihedral group acts on the control by the rule

€aAZ A = Z4,, AeDihg, weUr.
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Explicitly,

R-(0,0,1) = (0,1,0) R-(0,1,0) = (1,0,0), R-(1,0,0) = (0,0,1) € Up.
RZoony R =Z010), RZo10R " =Zu100y RZaooR ' = Zooy).
_SZ(O,I,O)Sil = Z(0,0,1) _SZ(l,O,O)Sil = Z(1,0,0)-

The action on Ur is such that if X is a solution to the Lie algebra state
equation with constant control u, then the transform X by A is a solution to
the state equation with constant control % = A - u, as can be checked directly
from the ODE X' = [Z,, X|/{Z,, X).

For example, the trajectory with control (0,0,1) has state-dependent
curvatures k9 = 0 and k; = 0, so that g(t)s; and g(t)si are straight lines,
while g(t)s; moves in a hyperbolic arc. Taking A = R, we see that &2(t) =
Rg(t)R's3 = —Rg(t)s} also moves in a hyperbolic arc, and its control is
@ =(0,1,0) = R-(0,0,1).
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Chapter 5

Compactification of the Star
Domain

While the star domain is a reduction of the state space, it is an ideal
triangle with one vertex at infinity. Thus, it is open and unbounded in
the upper half-plane. Our task in this section will be to explore a further
reduction of this admissible region.

Empirical observations show that if z € h* is close to the boundary curves
of the star domain, then the corresponding critical hexagon (constructed in
Lemma is close to a parallelogram. Classical results of Mahler and
Reinhardt state that the only convex disks in K..s with a parallelogram for a
(degenerate) critical hexagon are parallelograms themselves. This suggests
that there is a neighborhood of the boundary of the star domain which gives
rise to convex disks in K..; whose packing density is close to one and so these
convex disks can be excluded from consideration, since they are never optimal
for our control problem. We make this intuition precise presently.

Our hope is that if can cut down the state space to a compact region,
eventually computer numerical solutions of the dynamics will become feasible.
We have obtained the following compactification. In this chapter, by com-
pactification, we mean an explicit compact subset of the star domain h*, such
that all trajectories of interest must lie inside that compact set. We have not
optimized parameters to obtain the smallest possible compact region. We
leave that for future work.

We define a horocycle in the upper-half plane to be a horizontal line, or a
Euclidean circle in the upper half-plane that is tangent to the real axis. We
define a horoball to be the region in the upper-half plane that is bounded by

7
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the horocycle: either the region above the horizontal line or the interior of
the circle. In general the image of the horocycle y = yo € h* under a linear
fractional transformation
4 (a b)
c d

is a Euclidean circle tangent to the real axis, with center (A-0)+ir = a/c+ir
and radius r = detA/(2yoc?).

Definition 5.0.1 (compactification). Let h** < h* be the compact set defined
by the following inequalities. The inequality y > 4.5 defines an open horoball
B(i0) around the cusp of h* at z = +ic0. By linear fractional transformations
R, R? € SLy(R) acting on b, we obtain open horoballs B(1//3) and B(—1//3)
at the other cusps (that is, at the ideal vertices) z = +1/v/3 of b. If the linear
fractional transformation is A = R*' and yo = 4.5, the radius r is 4/27, and
the center is (A- o) = (R* - ) = +1/4/3.

The open half-plane II] defined by y > 15(1//3 —x) includes the boundary
curve x = 1/4/3, y > 0 of b*. By linear fractional transformations R, R?, we
obtain transformed regions 1] and 115 around the other boundary curves. Set

b = h*\(B(ic0) U B(1/v/3) U B(—1/V3) II§ UIIf UIILY).

The set h** < h* is compact. See Figure The shape of the compact-
ification h** has been chosen to be invariant under the action of the dihedral
group. The entire chapter is devoted to the proof of the following theorem.

Theorem 5.0.2. Let K be a convex disk in Rpq, with corresponding boundary
trajectory (g, X). Define a trajectory z in h* by ® o z = X. If any point of
the trajectory z is not in h**, then the cost of the trajectory is strictly greater
than the area of the smoothed octagon. Hence K is not a global minimizer.

Given a convex disk K in R, in the circle representation, we parameterize
the boundary multi-curve o;(t) = g(t)s}, with g(0) = I>. At ¢t = 0, we obtain
an element z € h* such that ®(z) = X(0) = g~*(0)g’(0). Also associated with
K is a critical hexagon Hy with midpoints at the points {s}}. Conversely,
an element z € h* can be used to reconstruct a centrally symmetric hexagon
Hy with midpoints {s}} as follows.

Lemma 5.0.3. Every z € h* gives rise to a centrally symmetric hexagon
Hg(2) whose midpoints are at {s}} and whose oriented directions along the
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b**

a

A\ 4

Figure 5.0.1: The central region away from the boundary of the star domain
is the compactification h** of the star domain.

edges point into the star domain. If z is constructed from the boundary
parameterization of a conver disk K € Ryq in the circle representation as
described above at multi-point {s}}, then Hx/(z) is the critical hezagon at the
multi-point {s5} of K.

Proof. The element z in the upper half-plane determines a matrix ®(z) in the
adjoint orbit of J in the Lie algebra sl;. The centrally symmetric hexagon
Hx(z) is then reconstructed from ®(z) according to Remark O

Lower case bold letters will denote points p;, q;, r;,s;. Upper case will
denote triangles T;, T#** in the plane and convex regions H, K. We often use
the same upper case letter for a triangle and its area with respect to Lebesgue
measure. The correct interpretation can be inferred by context.

We consider subscripts modulo 6, as we do elsewhere in the book, with the
understanding that when it comes to area computations, the area is preserved
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Figure 5.0.2: Critical Hexagon. (The figure has been rotated to make pop;
horizontal, so that the sixth roots of unity s; are also in a rotated position.)
The triangles shown in pink are a result of the construction in Lemma
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under central reflection, so that area calculations have a smaller period of 3.

The situation is depicted in Figure Recall that our convex disk is
in circle representation, having the sixth roots of unity on its boundary. Let
Po, P1, P2, P3, P4, Ps be the vertices of the critical hexagon with midpoints
at s; = sj. We define (interior) triangles Ty = Asopesi, 71 = As;pisy,
T5 = Asypass. Let q; denote the point of intersection of the lines psp» and
pop: through nonadjacent edges of the hexagon. Similarly for qg and q,. This
now determines the exterior triangles T¢** = Ap;qips, 75" = Ap2qap3, and
Ts* = Apoqopi- (The latter two triangles are not depicted in the figure.)
For our compactification result, we will need the areas of these triangles in
terms of z = x + 1y.

The functions pg, p1, p2 of Equation (3.1.3)) are linear functions of X €
sl3(R). Considering them as a function of z € b through the map X = ®(z), we
abuse notation slightly by writing p;(2) for p;(®(z)), where now p; : h — R.
The star domain h* is defined in b by the star inequalities p;(z) > 0 for
7j=0,1,2.

Lemma 5.0.4. We have
V3 V3 V3

area(Tp) = 1 PoP2; area(Ty) = 1 PoPL area(T3) = 1 P2
and
area(T5™) = V3l area(T{™) = VBgh  area(T5™) = v34b

where area is the Lebesque measure on R?. Furthermore, we have

area(Ty) + area(Ty) + area(T3) = \/Tg

Proof. Lemma leads to an explicit construction of the coordinates of
the points p; and q; for ¢ = 0,1,2. Once we have coordinates of all these
points, finding the areas of the associated triangles is straightforward from

Equations (3.1.3), (3.1.6) and (3.1.8), with det(X) = 1. For example,
Po = So + p2X 80 = S0 + pa2(pos1 + p182)
gives

1 1 1 V3
area(Tp) = §det((p0 —8p),82) = 2P det(Xso, ) = P2P0 det(s1,s2) = 1 PoP2:



82 CHAPTER 5. COMPACTIFICATION OF THE STAR DOMAIN

Po

rp

4 \
S0 = 81

Figure 5.0.3: Area of cutoff triangles.

We have q; = p1 + 2p1Xs1 = p2 — 2p1 Xs3, and

1
area(T;"™) = 3 det((p2 — 1), (P1 — 1))
= —2p7 det(Xs3, X's1) = —2p7 det(s3, s1) = V3p;.

The other cases are similar, by shift of indices.
The sum of the areas T; is obtained by Equation (3.1.7)).

V3 V3 V3
——(pop2 + p1p2 + pop1) = ——det(X) = ——.
4 4 4

To give a second proof that the sum of the areas of T} is v/3/4, an equilateral
triangle of edge length 1 can be dissected into three triangles congruent to
Tl) T27 T3' O

Lemma 5.0.5. As shown in Figure[5.0.8, in triangle Asgs1po, let To and ry
be points on s1pg and sopPo respectively such that roto is parallel to sos;. If r
is any point on Tory, then

Asoslr = ASoposl — \/Aropof'g AS()poSl.

Proof. By an affine transformation, we may assume the angle at s; is a right
angle, sgs; = 1, s1pg = 1, 819 = r where r € (0,1). Then the identity to be
proved is

r 1—+/(1-1)?

2 2 ’

which is immediate. O




83

We now prove a lower bound on area. Let us denote by
b= {ze b | Ti(z) > T (2)}, i=0,1,2

Here and below, we consider the indices modulo 6, but h; has period three:
b; = bsr3. We derive a lower bound for all convex disks K having Hk(z) as a
minimal midpoint hexagon, where z belongs to the regions hg, h; or hs. For
¢ =0,1,2 define

area;(z) := T;(2) — A/ T (2) Ti(2).
Let I, : h — {0,1} be the indicator function of the set b;.

Theorem 5.0.6. If K € Ry, is in circle representation and has Hk(z) as a
critical hexagon, where z € b*, then we have that

area(K) > — + 2 Z I,(z)area;(z

Proof. As in the Figure above, let pop1P2P3P4P5 be the critical hexagon
of an undepicted convex disk K. The convex disk K is inscribed in this
hexagon and passes through the points s} = s; which are midpoints of its
sides.

We may assume that z € h* lies in the set

houbiuby = {z € b* | To(2) = T¢*(2) or Ty (2) = TE™(2) or Tu(2) = T5*(2)}.

Otherwise, the inequality to be shown reduces to area(K) > area(hg) =
31/3/2, where hg is the convex hull of the points s;. This area inequality
holds because K o hk. (This area inequality appears in Reinhardt’s 1934
article and was used in his proof of the existence of a minimizer.)

We show that the set hy N h; N by is empty. By the Cauchy-Schwarz
inequality and the area formulas of Lemma [5.0.4 we have

: V3 V3
Z T; = T(Pom + pop1 + p1p2) < 4 —=(p + i + p3) Z T < Z .
=1

This shows we cannot have T;(z) = Tf*(z) for all ¢ = 0,1,2. So the inequali-
ties defining h; must hold individually or pairwise. The regions h; and the
other data have a three-fold symmetry given by shifting indices ¢ modulo 3.
This gives us two cases.
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Case 1: Without loss of generality, by symmetry, assume that z € hy and
z ¢ by U hy. That means Tp(z) = T¢*(2). In Figure above, this gives an
inequality between areas Asgpos; = Ap1qip2. Construct a triangle Arypofo
such that area(Argpofy) = area(Ap1qip2) and such that the line segment
roT( is parallel to sgs;. The triangles with equal area are shown in pink.

We claim that there is at least one point r on the line segment ryoty which
also lies on the boundary of the undepicted convex disk K. Otherwise, if
there were no such point, then the convex disk K would be contained in
the centrally symmetric hexagon with vertices rg, Ty, q;, and their reflections.
This hexagon has the same area as the hexagon of pop1p2pP3p4Ps, Which has
minimal area. We reach a contradiction by constructing a centrally symmetric
hexagon containing K of even smaller area: make an inward parallel shift of
the line through the edge roFy (and its reflection) until it meets K.

The above argument exhibits the point r on rof, and its reflection —r
on the reflected edge respectively, which are also on the boundary of the
convex disk K. Since K is convex, it contains the convex hull H of the points
So, 81, S2, r and their reflections. Thus, we have

area(K) >area(H)
=area(SpS1S28384S5) + 2Asors;
3v3

SSALEIDYN
9 + SoIr'sy

:3\_f +9 (To — \/flﬁ) (using Lemma [5.0.5)).

Case 2: Assume without loss of generality that z € ho n h;. We have
To(z) = T§*(z) and T1(z2) = T7*(z). The above argument can also be
adapted here again to exhibit four points (two new points inside the triangles
Asopos; and As;p;s, respectively, along with their reflections) also on the
boundary of the convex disk K, so that we have

awea(K) > Y2 12 (T, - VIFTL) + 2 (Tu - TS,
Accounting for all cases, we have

area(K) > + 2 Z I,(z)area;(z

zeb;
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The regions g, b1, b are shown in Figure The boundaries of hy and
h2 meet along the imaginary axis at (z,y) = (0,/3).

I I I I I I
-1.5 -1.0 -0.5 0.5 1.0 15

Figure 5.0.4: Covered boundary of the star domain. The shaded region along
the right edge is hy. The shaded region along the left edge is hs, and the
shaded region along the lower bounding circle is b;.

Recall that area(Hg(z)) = v/12. Let us write

1 343 3 areaz
6(z):=m< + 2 ZI z)area;(z >_4_1 Zb

zeh;

for the lower bound of the packing density for convex disks K € K, having
Hyk(z) as a critical hexagon. Also, let d,.; denote the packing density of the
smoothed octagon. If z € h* is such that d(z) > d.e, then by the above
theorem, the density of every convex disk K having Hk(z) as a critical
hexagon is greater than d,.; and is not a global minimizer. Such K can be
dropped from consideration. The next result shows that all but a compact
subset of h* can be excluded in this way. In the next lemma, we write I, area;,
and ¢ as functions of (z,y) instead of z = x + iy.

Lemma 5.0.7.

1. For ally > 1, the function areag(x,y) is monotonically increasing in x
on0<z<1/V3.
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2. For all y > /3, the function areag(x,y) + areas(z,y) is monotonically
increasing in x on 0 < z < 1/4/3.

3. For all fivedy > /3, the function Iy(z,y)areag(z, y) +Iz(x, y)areas(z, y)
is minimized at x = 0 on the domain x € (—1/+/3,1/4/3).

4. For all z € (—1/4/3,1/V/3) and all y > 4.5, we have
0(z,y) > doct-

Proof. The functions p; are positive on h*. Write (-), for the partial derivative
with respect to . Then, pp, > 0 and p; , < 0 on h*. The sign of ps , = \/§x/y
is the same as the sign of z.

(1) We compute the partial derivative with respect to x of

V3
areao(z,y) = = | pop2 — 21/ popips | -

The partial derivative is positive on the given domainy > 1and 0 < z < 1/4/3
because po zp2 > 0, pop2 > 0, and —(popips), > 0, the final inequality being
a polynomial inequality in x and y, which is easily checked.

(2) We consider the domain h* n {z > 0, y > v/3}. We compute the
partial derivative with respect to x of

V3
arean(z,y) + areas(a,y) = 1= ((po -+ pr)p2 — 2y poser — 20/ iy

and show that this partial derivative is positive. The first term (po + p1)p2 in
the numerator has positive partial derivative 2z/y* > 0 on the given domain.
It remains to show that

0>(mﬁmk+(%mm%
VpL V/Po

The two polynomial numerators on the right are separately negative when
z > 1/4. When 0 < z < 1/4, the two terms on the right are separately
decreasing functions in z, and their sum is 0 at z = 0. (This too is a
polynomial verification.) These routine checks prove the result.

(3) Along the boundary of b;, where I, jumps, we have area;(z,y) = 0.
Thus,

Z I(z,y)area;(x,y) (5.0.1)
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is continuous on h*. Since it is monotonic increasing in z € (0, 1/+/3) on each of
ho\b2 and hg N b, it is also monotonic increasing in z on hon {z > 0, y > /3}.
Note that areas(z,y) = areag(—z,y), because po(—2z,y) = p1(z,y). Since
the function is even, it must be monotonic decreasing in z on hy N {z <
0, ¥ > +/3}. Thus, the critical point at z = 0 is a minimum.
(4) Along the imaginary axis, for y > /3, we have

areaq(0,y) = areas(0,y) = “f (v/Popz (v/Popz — 2p1) )

Both pops = (y? — 1/3)/(2y?) and /pop2 — 2p1 are increasing functions of y.
Hence areay(0,y) is increasing. If z € (—1/4/3,1/4/3) and y > 4.5,

8(z,y) = 6(0,y) > 6(0,4.5) = 0.9059 ... > 6,cs.
O

Proof of Theorem [5.0.2. Everything in this subsection up until this point has
been equivariant with respect to the action of the dihedral group on h*. The
region h** described in the statement of the theorem is likewise stable under
the action of the dihedral group. Thus, it is enough to prove the theorem for
all points z in a fundamental domain for the action of the dihedral group on
h*. One such fundamental domain is given in subsection [4.6| as

{(z=z+iyebh* |z=0, (x—1/V3)?+1y =4/3}.

We work on the slightly larger subset of h* defined by the inequalities > 0
and y > 1. The only horoball (among the three) meeting this set is B(ix),
and the only half-plane meeting this set is II] .

If any point of the trajectory (g, X) passes through a point X = ®(z) with
z = = + iy, where y > 4.5, then the previous lemma shows that d(z,y) > doct-
This shows that we may exclude all trajectories that enter the horoball B(ic0).

Next we show that we can exclude all trajectories that meet the half-plane
I1; defined by y > 15(1/4/3 — x). We show that

3 areagp(z)
0(z) =46 = -+ Oocts
(Z) O(Z) 4 \/g > t
for all z € h* NII§ N {1 < y < 4.5} < ho. Proving this inequality will complete
the proof of the theorem, because the regions II{ and II; do not meet the
fundamental domain.
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By the first part of the lemma, we have monotonicity of areag in x along
each horizontal slice y = yy such that y > 1. Thus, it is enough to prove the
inequality along the graph of the affine map y(z) = 15(1/v/3—x). Furthermore,
we may assume that y < 4.5. The preimage of [1,4.5] under the map y is
contained in [0.277,0.511]. On this domain, we have 6o(z,y(z)) > ooz [



Chapter 6

Hamiltonian and Maximum
Principle

6.1 Existence of Optimal Control

The existence of optimal solutions to problems such as the Reinhardt
control problem (Problem is based on Filippov’s theorem which gives
conditions under which the corresponding attainable set of the control system
in question is compact. In informal terms, the attainable set corresponds
to all the points in the manifold which are reachable provided one is only
allowed to move according to the control. The compactness of attainable sets
implies the existence of optimal control. The optimal control function is a
measurable function.

Theorem 6.1.1 (Filippov). On a smooth manifold M, let ¢ = f(q,u) be an
optimal control system with an associated cost objective Sé ¢(q,u)dt — min.
Here uw € U < R™ which is a compact set (the control set). Assume that the
velocity set f(q,U) = {f(q,u) | ue U} is convex for each g € M and that the
support of f is a compact subset of M x U. Then, the attainable sets are
compact and an optimal control exists.

For the Reinhardt control problem, all assumptions of the Filippov theorem
are shown to hold as follows.

e The control set is the simplex Ur defined in Definition [3.3.3] which is
obviously compact.

89



90

CHAPTER 6. HAMILTONIAN AND MAXIMUM PRINCIPLE

o The velocity sets are convex; in fact, each velocity set is the convex

hull of the velocities at the three vertices the control set, as shown in
Lemma for the simplex Ur.

Recall that Reinhardt has proved the existence of a optimal solution to
the Reinhardt problem. We claim that the velocity sets can be assumed
to be compactly supported. By Definition and Lemma the
relevant vectors fields are

[Zu, ®(2)]/(Zu,®(2)) and  g®(2), zebh” (6.1.1)

By Theorem [5.0.2, we may assume that z lies in the compact set h**.
Then ®(z) is also confined to a compact set, as well as the first vector
field in (6.1.1). The second vector field g®(z) lies in a compact set if
g € SLy(R) can be shown to be bounded. We have an upper bound
t; < m/3 on the terminal time by Lemma Gronwall’s inequality
applied to the ODE ¢’ = gX gives a bound on g (Appendix [A.1]). This
shows that the vector fields are confined to a compact subset.

To make the vector field smooth, we can multiply the vector fields in
the star domain in the Reinhardt control problem by a smooth
cutoff function of compact support ¥ : h* — R with 9|4« = 1, to obtain
smooth vector fields of compact support.

We can apply Filippov’s theorem to these smoothed vector fields of compact

support. Thus, the optimal control exists for the optimal control system. The
proof used the following lemma.

Lemma 6.1.2. Let f(x,y;u) = (fi(z,y;u), fo(z,y;u)) be the control-dependent
vector field on b* defined by the half-plane control problem [{.5.1. For each
z =1z +1y € b*, the image f(z,y;Ur) of Ur in R? is a convex set. Moreover,
the affine hull of the image f(z,y;Ur) is all of R2.

Proof. Let p; be the positive functions of z € h* from Lemma Fix
z = x + iy € b* and let e;, ey, e3 be the standard basis of R3, giving the

of

vertices of Ur. We prove that the image f(z,y;Ur) is in fact the convex hull

{f(z,y;€;) | =1,2,3}.

By explicit calculation, the basis vectors map to distinct points in the velocity
set. For example,

2

f(x7y7 63) - f(:c,y,eg) = (Oa m

)~ 00,
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which is finite and nonzero by the star inequalities. Let L : R2 — R be
the nonzero affine function that vanishes at f(z,y;e;) and f(z,y;e;) € R?
and takes value 1 at f(x,y;ey), where (4,7, k) is any chosen permutation
of (1,2,3). Computing, we find that L(f(z,y;u)) is the ratio of two affine
functions of Ur (depending on the parameters z,y), where the denominator
is positive on Ur. For example, if u = (ug, u1,us) and (4, j, k) = (1,2, 3), we
compute that

) _ YNED
Lo gw) Uopa(2) + u1p1(2) + uzpo(2)’
We observe that the numerator of L vanishes along the segment [e1, €3] < Ur
and that the numerator is nonnegative on Ur (in fact strictly positive, except
on the edge segment). Similarly, for each permutation (%, j, k) of the vertices
of Ur, the corresponding line L = 0 defines a boundary segment of f(z,y; Ur).
We conclude that the image f(z,y; Ur) is the convex hull of three points as
claimed. Since the image is a triangle, its affine hull is all of R2. [

6.2 The Pontryagin Maximum Principle

The Pontryagin Maximum Principle (PMP) is a powerful first-order nec-
essary condition for optimality of solutions to an optimal control problem on
a smooth manifold M with closed control set U < R™ and free-terminal time.
We summarize the basic ideas below. For full details and a proof of the PMP,
we refer to [49)].

Given a control system

qd = flg,u) e TyM (6.2.1)
q(0) =g M (6.2.2)

on a manifold M with an associated cost objective

ty
minf o(q,u)dt,
0

uel
we assume that the control-dependent vector field f(q,u) satisfies
1. ¢ — f(q,u) is a smooth vector field on M for any fixed u € U.

2. (¢,u) — f(q,u) is a continuous mapping for g € M,u € U,
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This optimal control system is denoted by the tuple (M, U, f, #). We some-
times denote the vector field f(u,q) for u € U by f,(q). The PMP relies on
the following control-dependent Hamiltonian which is cost-extended on T M:

H<q7p7 u) = <p7 f(qa ’LL>>* + )‘cost¢(q7 u) pe Tq*M )‘cost € R<07

where (-, -), is the natural pairing between a vector space and its dual and
Aeost; Pontryagin multiplier is a constant nonpositive scalar. Note that H is
linear in p.

Let u* = u*(p,q) denote a function defined implicitly as a function of
(a,p) € T*M by

H'(q,p) := H(g,p,u") = maxH(q,p, ). (6.2.3)

H is called the mazimized Hamiltonian. Note that it is quite possible that
u* might not be uniquely determined by the maximization condition. This is
related to singular subarcs, discussed later. See Definition Regardless,
the value of the maximized Hamiltonian H* is independent of the choice of
u*.

The PMP says that the extremals of the optimal control problem are
projections (from T%M to M) of the flow-trajectory of #H*, which is the
Hamiltonian vector field corresponding to H* with respect to the canonical
symplectic structure on the cotangent bundle 7% M. Integral curves of the
vector field H+ satisfy

o OH* . . OH*
q = = f(z,u*), p'=- 20 (6.2.4)

This trajectory (u*(t),q(t),p(t)) in T*M is called the lifted controlled trajec-
tory.

The PMP (for free terminal time periodic problems) also guarantees the
following of lifted trajectories.

1. Transversality conditions (endpoint conditions for the co-state trajecto-
ries) hold.

2. The Hamiltonian H(q, p,u*) vanishes identically along the lifted con-
trolled trajectory.

3. The cotangent vector (Acost;p(t)) € R<o x T,y M is nonzero for all
te [0, t f].



6.2. THE PONTRYAGIN MAXIMUM PRINCIPLE 93

4. The scalar A\ is constant, and when it is non-zero, may be taken to
be Aeost = —1 by rescaling the covector, using the linearity of the ODE
for p.

The lifted curves which satisfy the conditions of the PMP are called
Pontryagin extremals or simply extremals.

Definition 6.2.1 (Normal, Abnormal and Singular extremals).
1. An extremal for which A..s: = 0 is called an abnormal extremal.

2. An extremal for which Aeost # 0 is called a normal extremal. Recall that
in the normal case a renormalization allows us to take Aeost = —1.

3. If there is an open time interval on which equation (6.2.3) fails to
uniquely determine the function u*(t), the trajectory during that interval
is called a singular subarc.

Our strategy is to apply the maximum principle to our problem with the
hope that these necessary conditions will provide us more information about
the structure of the extremals. Recall the framework of the Reinhardt control
problem where we have dynamics occurring in the Lie group SLy(R)
and the Lie algebra sl3(R). If we apply the PMP to this problem, the lifted
trajectories live in

T*(SLQ(R> X E[Q(R)) = (SLQ(R) X 5[2(R)) X (E[Q(R) X 5[2(R)),

where we have used the cotangent bundle trivialization of Proposition |3.6.1
making T*SLy(R) =~ SLy(R) x sl3(R)* and the identification sly(R)* =~ sly(R)
via the nondegenerate trace form as in Appendix So, for the state
variables ¢ = (g, X) € SL2(R) x sl3(R) the PMP gives corresponding costate
variables p = (A1, As) € slo(R) x sly(R).

Note that the PMP system is a Hamiltonian system on T*T'SLy(R) and
is an instance of a higher-order variational system on a Lie group. Similar
problems and the background theory is described in Gay-Balmaz et. al. [12]
and Colombo and de Deigo [7].

We now derive expressions for the Hamiltonian and the costate equations
in both the Lie algebra coordinates and and the upper half-plane coordinates
via the isomorphism described in Lemma 4.2.1
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6.3 Left-invariance

Definition 6.3.1 (Jurdjevic [19]). An arbitrary optimal problem with control
system dg/dt = f(g,u) defined on a real Lie group G with control functions
u(t) e U < R™ is said to be left-invariant if TL,f(g,u) = f(hg,u) for each
g,h € G. Here Ly(g) = hg is the left-multiplication map, and TLy, : T,G —
TyeG is its tangent map.

Also, we require the associated cost function ¢(g,u) to be left-invariant:
d(g,u) = d(e,u) for all g and u, where e € G 1is the neutral element.

The dynamical system breaks into the ordinary differential equation (ODE)
for the group and the ODE for the Lie algebra (3.6.2). We refer to
these two subsystems as the dynamics at the Lie group level and the dynamics
at the Lie algebra level. The dynamics are coupled through X, which appears
in both levels.

The dynamics of the Reinhardt optimal problem at the Lie group level is
clearly left-invariant in the sense that the cost function depends on X but not
g and in the sense that the ODE for g can be left-multiplied by a constant
h € SLy(R). Left-invariance of a dynamical system on a Lie group implies
that we can reduce its dynamics to co-adjoint orbits of the associated Lie
algebra.

Since the cost and dynamics for X are independent of g, we note that
the only purpose served by the Lie group dynamics for g is to describe an
endpoint (transversality) condition g(¢;) = R. Because of the minor purpose
served by the Lie group dynamics, we can often focus on the control problem
exclusively at the Lie algebra level, and postpone the endpoint condition on
g until the very last step. In later sections, we will drop the group dynamics
and exclusively focus on state/costate dynamics in the Lie algebra.

6.4 Hamiltonian in the Lie Algebra

Following the Reinhardt optimal control problem the Hamiltonian
is the sum of the Hamiltonians for the Lie group part and the Lie algebra
part.

The costate variable corresponding to the Lie group element g € SLy(R)
is denoted A; € sl3(R). Ignoring the Lie algebra dynamics for a moment, we
derive the Hamiltonian corresponding to the group element g. As pointed
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out earlier, the control problem is left-invariant (see Definition [6.3.1)) and
Hamiltonians of left-invariant systems are functions of sly(R)* only.

Proposition 6.4.1 (Jurdjevic [19]). Consider an arbitrary left-invariant
control system dg/dt = f(g,u) on a real Lie group G, with controlu € U < R™.
Let us also assume that the Lie algebra g of G is equipped with a nondegenerate
invariant symmetric bilinear form {-,-). Then the Hamiltonian function
corresponding to this system is

H(g7p) = <paf(ea ’LL)>, pPeg,

where e € G is the group identity.

Proof. Let {-,-), be the canonical pairing between a vector space and its dual.
Let p € T,G. Using the trivialization 7*G = G x g* of Proposition we
write p = T*L,-1(p) for some p € g*. Then we have by the definition of the
Hamiltonian for a control system,

H(g,p) = B, f(g,u)).
=P, TLy1 (f(9,w))), = P, TLy-1 (TLyf(e,u))),
= <pa f(ev ’U,)>* y

since the control system is left-invariant. Since g is equipped with a nonde-
generate invariant form (-, -), we have that g =~ g*. Using this identification,
we have H(g,p) = {(p, f(e,u)), where p is now identified with an element of
g. O]

We need a slight extension of this result, where the control system has
the form
dg/dt = f(9,TL,X,u), uweU Xegy.

Left-invariance is expressed as T'Ly, f(g,TLyX,u) = f(hg, TLnsX,u), and the
corresponding Hamiltonian in the proposition becomes (p, f(e, X, u)).

In our case, taking p = A; and f(e, X,u) = X, this means that the term
the Hamiltonian corresponding to the group is (A;, X). The cost extended
term of the Hamiltonian is

3
Hi(A, X) =N, X) — iAcost (J,X).
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The Lie algebra part of the Hamiltonian, corresponding to the costate
variable Ao, is

<A2a[Zu’X]> <[A2,X],Zu>

Ho(Ao, X5 20) 1= (X, Zy (X, Zy

The form of the Hamiltonian suggests introducing a new variable Ap :=
[A2, X|. The full Hamiltonian of the problem is now

H<A17ARaX; Zu) = H1<A17 ) + HQ(AZaX.Z )

o < A2a u>

- <A1 costJ X <X Zu>

_ 3 <AR7 u>

= <A1 QAcostJa X m (641)

The maximum principle states that the extremals of the control problem
are integral curves of the maximized Hamiltonian, which is the pointwise
maximum of the control-dependent Hamiltonian over the control set. For
our immediate application, we take the control set to be the simplex Ur (see
Definition .

H+(A1,A2, ) —maX’H(Al,AR,X Z
_ < AR7 u>
- < costJ X> + g:}%zf <X Zu> (642)

6.5 Costate Variables in Lie Algebra

Proposition 6.5.1 (Lie algebra costate variables). The costate variables
evolve as

Aj = [A, X] (6.5.1)

Ny = (IP,AR] = Ar, PP XD + | -As + D X[, (652

where P = Z,,/{X, Z,) and Ag := [Ay, X].
Proof. Let H* denote the maximized Hamiltonian in equation (6.4.2). Let

(g,X, Al,A2> € SL2(R) X 5[2(R) X 5[2(R) X S[Q(R) = T*(SL2<R) X 5[2(R))
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denote the state and costate variables in the trivialized bundles. Since the
Hamiltonian is independent of SLy(R), it is left-invariant.

By the maximum principle, we have that the state and costate equations
are Hamilton’s equations in the cotangent bundle with respect to an appro-
priate symplectic form. For the (g, A;) pair, the dynamics is Hamiltonian
with respect to the pullback of the canonical symplectic form on 7 (SLy(R))
to SLy(R) x sl5(R). These equations are called the Euler-Arnold equations
for a left-invariant Hamiltonian (see [8, pp. 285]) and are given by

, ot
g _96A1
A/l = a'd;k’}-[Jr/éAlAl = —a.dXAl = [AlaXL

:gX

where we identify sly(R)* with sly(R) as usual, sending the ad*-operator to
ad-operator, as described in Appendix The expression 0H ' /§A; denotes
the functional derivative of H* with respect to A; and is defined in Appendix
in equation (A.2.1)). For the pair (X, A;) € sl5(R) x sl5(R)*, the dynamics
is Hamiltonian with respect to the canonical symplectic structure on the
trivial cotangent bundle T*(sl3(R)) which gives us Hamilton’s equations in
the usual form.

,  OHT
X - 5A2 - [P’X]
+
Ny = O A B rd [0 P (A, PLXO P

Using this, we can derive

Ap = [A2, X]" = [Ag, X] + [Ag, X

=|-A+ §>\costJ, x|+ ([A2, P], X) [P, X] = [[A2, P, X] + [Ag, [P, X]]

2
= | A4t Ao X | + ([, PLL X [P, X] + [P, [, X]]
= [—-Ar+ gAcost*]’X - <AR7 P> [P7X] + [P7AR]
<AR) Z'u,>
X, Z.)

ZORAﬂ [RXD+{—M+§&MLX}



98 CHAPTER 6. HAMILTONIAN AND MAXIMUM PRINCIPLE

Remark 6.5.2.

e Note that the variable Ap is constrained to lie in the two-dimensional
subspace {A € sl3(R) | (A, X) = 0}. Thus, we can consider Ag to be
the reduced costate variable. (The subscript R stands for reduced.)

e In Appendix we show that there is a Poisson bracket with re-
spect to which the Reinhardt control system admits a Poisson bracket
representation.

Corollary 6.5.3 (Jurdjevic [19,21]). The costate variable A1, whose dynamics
is given by a Laz equation, evolves in an adjoint orbit of sla(R) through the
initial value A1(0) and its general solution is given by

A(t) = Adgn-1(Ar(0)) = g(t) A1 (0)g(t).
Moreover, the determinant det(A1(t)) is a constant of motion.

Proof. This can be verified by differentiating. We immediately find the
determinant is constant. If the identification of the Lie algebra with its dual

is not made, the evolution is in a coadjoint orbit through the representation
Ad*. O

Corollary 6.5.4. In the ODE for Ag in equation (6.5.2), the control depen-
dent term has the following expression.

N <AR7 Zu> ) <AR7 Zu> o @
([P » Ar| (X, Z2> 07, (X, Zy) adz. 57

where % denotes the functional derivative (defined in Section .
Proof. The proof is by computation.

ngy (70) |2z (32|
_ lZ“’ Ar(X, Zz;? —Z<A2R, Z@X]
_ [Zu,AR] </<\R:Z:>>
(X,Zu) (X,Z.)
<AR7 Zu>
(X, Zu)

P, X]) — ady, (6.5.3)

[Zu, X]

= [P, Ag] — [P, X].
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6.6 Transversality Conditions

For free terminal time optimal control problems, the Pontryagin Maximum
Principle specifies transversality conditions which are endpoint conditions
which the extremals need to satisfy.

On a manifold M, if (q(t),u(t)) is the projection of the lifted extremal
trajectory p(t) € T, yM in the cotangent bundle, then transversality requires
that

(p(ts),v), =0 veTyy,My,

where Tg;,) My is the tangent space at q(t;) of the final submanifold M;
(which is the submanifold in which the terminal point g(ty) is allowed to
vary).

More generally, if the initial point ¢(0) is also allowed to vary in an
initial submanifold My, then transversality requires that the lifted extremal
trajectory p(t) in the cotangent bundle annihilates the vectors in the tangent
spaces of the initial and terminal manifolds at the initial and terminal times.

P(0),v), =0, Ve TyoMy;
(p(ty),v), =0, veTyu,M;.

Letting R be the usual rotation matrix, we have that our system is periodic
up to a rotation by R. In this case, the initial and terminal submanifolds
coincide after rotation by R and so, transversality simply means that the lifted
extremal trajectories are periodic functions modulo rotation by R. Rotations
act through the adjoint action Y — AdrY = RY R™! on the Lie algebra
] [2 (R)

For our system, we have p(t) = (g(t), X (¢), A1(t), Ar(t)). We have already
seen endpoint conditions for g and X in Section Collecting everything
we obtain

g(ty) = R

X(ts) = R'X(0)R
Ai(ty) = RTA(O)R (6.6.1)
Agr(t;) = R'AR(O)R

Remark 6.6.1.
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e The transversality conditions in the Reinhardt problem require the
terminal time to satisfy

X(t;) = R"'XoR,

where R is the usual rotation matrix. Thus, if we extend time, every
optimal solution can be made into a periodic one.

X (3t5) = Xo.

The same requirement also holds of g,A; and Ag, except that the
period for g is larger: g(6t;) = I,. Thus, every transversal trajectory
determines a periodic solution (with discrete rotational symmetry) of
the lifted trajectories in the cotangent bundle.

e The transversality condition for A; is a consequence of the transversality
condition for g. In fact, we know the general solution for A; in terms of

g. See Corollary

6.7 Summary of State and Costate Equations

At this point, we have the state and costate equations fully stated in both
the coadjoint orbit picture and the upper half-plane picture. We also have
the transversality conditions stated. We collect them as

Problem 6.7.1 (State-Costate Equations). The Reinhardt control problem
is an optimal control problem on the manifold M = SLy(R) x sly(R).
This problem has the Hamiltonian

. o 3 <ARa Zu>
H(AlaARaXazu) - <A1 - 2)\costJ7X <X, Zu> .

We lift the state trajectories described by (g, X) in the Reinhardt control
problem [3.6.9 to the following Hamiltonian system on the cotangent bundle
of M :

g =9X
X' =[P X]
A} = [Ay, X]

A;% = ([P7 AR] - <ARaP> [P7X]) + l_Al + g)\costjaX] )
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where P = Z,,/{Z,, X). The transversality conditions described in Section [6.6
hold and the pair (X, Ag) have equivalent dynamics in the upper half-plane
described in Lemma and Theorem [6.8.3. The control dependent part
of the Hamiltonian also has an expression in the upper half-plane picture as

Theorem [6.8.3.

6.8 Hamiltonian and Costate Equations in the
Upper-half plane

An earlier preprint expressed the Hamiltonian and the maximum principle
in terms of the cotangent variables v = vydz + vody € T [16]. It turns out
that it is significantly simpler to express the costate differential equations
in terms of the coordinate Agr € sly(R) instead of (v4,15). In this book we
use Ag, rather than v. However, for reasons of compatibility with the earlier
preprint, this section briefly reviews the correspondence between the two
coordinate system. This section will not be used elsewhere in the book.

With this aim in mind, we now proceed to transport the Hamiltonian
from Lie algebra coordinates to upper half-plane coordinates. Recall that we
have an isomorphism ® : h — Ox < sly(R) defined in Lemma This
induces the tangent map T® : T,h — TxOx as described in Lemma |4.2.4
This also induces the dual (cotangent) map: T*® : TxOx — T:h.

Lemma 6.8.1.
TxOx = X+ = {[W,X] | W € slh(R)},
where X+ = {Y € s5l,(R) | (Y, X) = 0}.

Explicitly, the isomorphism identifies the cotangent space with the dual
of the tangent space, under the identification of the tangent space with the
quotient sly(R)/RX of Lemma [4.2.3]

Proof. By a general fact in elementary linear algebra we have
TiOx = (sly(R)/RX)* = RX° = X*,

where
RX° ={Y eslp(R) | Y, W) =0 for all W € RX}
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is the annihilator of the span of X. Here the annihilator, which is defined as
a subspace of the dual vector space, is identified with a subspace of the Lie
algebra itself via the nondegenerate trace form.

It is clear that any Lie algebra element of the form [W, X] is orthogonal
to X since {(W, X], X) = (W, [X, X]) = 0. Dimension counting again gives
us that TxOx = {[W, X] | W eslh(R)}. O

We define

V= T*(I)(—AR> = I/1dl‘ + I/Qdy € T;b (681)
The covector v € T:*h is well-defined since Az € X* by Lemma[6.8.1]

Theorem 6.8.2 (Hamiltonian in Upper Half-Plane). Let ® be as in Lemma
4.2. 1 and let AR be as above. Then we have that the Hamiltonian H(A1, Ar, X; Z,)

in equation (6.4.1) in upper half-plane coordinates becomes
3
H(Ahxa Y, V1, V9, ’LL) = <A1 - 5)\cost*]a X> + Vlfl + V2f2-

Proof. The only part of the Hamiltonian in equation (6.4.1)) which will change
is Ha(Ao, X5 Z,,).

H2(AR,X;Zu) = M - <_AR7 <ZuZ—u)(>>

(Zu, X)
= <—AR, <ZUZ+X> + RX>

= (AR, T®(f1,f2)) by
= (T"®(—ARr), (f1, f2))«
= (U, (f1, f2))+

= v1f1+ 12fa,
where we have used the definition of the cotangent map and the fact that
Ag € X+, the annihilator subspace of X in sl5(R). O
Theorem 6.8.3. The ODE for Ag is transformed to the ODE
Vi =—dH = —ade — a—de,
or oy

where ‘H is the Hamiltonian derived in equation (6.4.1)).

Proof. We note that this equation is Hamilton’s equation for the costate. We
omit the long direct calculation that this equation is equivalent to the ODE
for Ag. Details can be found in [4§]. O
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Chapter 7

Bang Bang Solutions

We have a well-defined control problem on the cotangent bundle, and we
now turn to describing special solutions of this system. We start with the
easiest case, where the control is constant.

7.1 Solutions for Constant Control
Lemma 7.1.1. The quantity (X, Z,) for a fized control matriz Z, is a
constant of motion along X.

Proof. The quantity in question is constant since

(2,X1,2.) _
X, 2.

where we have used the fact that ([ X,Y],Z) = (X, [Y, Z]).

(X, 2 = (X', Z,) = 0, (7.1.1)

O

Lemma 7.1.2. Assume that the control u € Ur is constant. Then the speed
(X' ,X’>1/ 2 of X is constant. Moreover, the trajectory z in b, defined by
X = ® oz, has constant speed with respect to the invariant Riemannian
metric on b.

Proof. Let P = Z,/{X, Z,) with constant control u € Ur. By the previous
lemma, P is constant. To show that the speed is constant, we differentiate

<X,’X,>/ = 2<X”aX,> = 2<[P7X],’X,> = 2<[PaX/]aX/>
_ 2(P,[X',X']) = 0.

105
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The trajectory z also has constant speed because of the compatibility of
the invariant metric on the upper half plane with the trace form on sly(R),

by Lemma m

In this section, we keep the control matrix Z, constant and derive general
solutions to the state and costate equations. This means that (Z,, X) is a
constant of motion (by equation (7.1.1)), and hence P = Z,/(Z,, X ) is also
constant. So, for g(0) = I, and X (0) = X, (or, equivalently z(0) = z,), write
Py := Z,/{Zy, Xo). The general solutions for (g, X) are

g(t) = exp(t(Xo + By)) exp(—th), (7.1.2)
z(t) = exp (tPy) - 2o, (7.1.3)
X(t) = exp(tPO)XO exp(—tPo) = Adexp(tPO)XO- (714)

As previously noted in Corollary the general solution for A, is
Ay (t) = Adgiy-1A1(0) = g(t) ' A1(0)g(t).

We also have a rather complicated (but ultimately elementary) expression
for the general solution for Ag.

AR (t) = Adexp(tPo) ]\R (t) )

where

Ar(t) := Ar(0) — [¥(t) +%(t)Po, Xo],

() = f (Po, AR(0) — [¥(s), Xo]) ds,

3

‘I,(t) = J; Adexp(f(X0+Pg)s)A1(0) - éAcostAdexp(ngs)st-

The two quadratures can be carried out explicitly for any given matrices X
and Xy + F,. The exponentials of these matrices are expressed in terms of the
exponentials exp(As) of the eigenvalues A of these matrices. The integrands
are exponentials (possibly multiplied by polynomials), and the integrals are
easily computed. In computing the solution Ag, we first compute ¥, then 1,
then Ag, and finally Ag.

By inspection of the formula for i, we note that if A ro(t) is the special-
ization of Ag(t) to the initial condition Ax(0) = 0, then the general solution
adds an affine term

Agr(t) = Aro(t) + Ag(0) — t (Py, Ar(0)) [Po, Xo]-
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Lemma 7.1.3. The matrices Py and Xy + Py have the same characteristic
polynomial (and hence the same eigenvalues). If det(Z,) < 0, the eigenvalues

are real: ++/—det(Z,)/{Xo, Zy)-

The most important case occurs when u is a vertex of the control set Ur,
where det(Z,) = —1/3 < 0.

Proof. The characteristic polynomial of matrices Py, X + Py € sl is deter-
mined by the determinant. We have det(X,) = 1, and (X, Py) = 1. Then by
Lemma (3.4.1, we have

—2 det(XO + Po) = <X0 + Po,XO + P0>
= (Xo, Xo) + 2{Xo, Ry) + (P, Po)
= —2det(P0).

Recall that trace(Z,) = 0 and that Z, and P, are scalar multiples of each
other. When det(Z,) < 0, the control matrix P, has two real eigenvalues. [J

We analyze the solution z(t) = exp(tP,) - 2o in greater detail. Let Zy be
the value of Z, at ¢t = 0. If det(Zy) < 0, let =) be the real eigenvalues of Py,
chosen so that A > 0. The matrix P, can be diagonalized over R:

exp(tPy) = Adiag(exp(t)), exp(—tA))A™,

for some A € SLy(R). The columns of A = (v,,v_) are the column
eigenvectors v of Z, associated to the positive and negative eigenvectors,
respectively. The matrix Py has the same eigenvectors. The solution is then

2(t) = A (exp(2tN)3y), Zo:= A - 2.

The image of the trajectory ¢ — exp(2t\)Z, is a Euclidean line through 0 + 0¢
and Zy € h. By adopting the convention that A > 0, this linear trajectory
tends to 0 as time ¢ tends to —oo, reaches Z, at t = 0, and tends to infinity as
t tends to infinity. Linear fractional transformations send generalized circles
(that is Euclidean circles or lines) to generalized circles. Thus, the image of z
is the unique generalized circle through A -0, 2o = A - 2y, and A - 0.

The boundary of h can be identified with the real projective line R u {o0}.
From the description of A as the column of eigenvectors, we have A-0 = [v_]
and A - o0 = [v,], where [v_] and [v,]| are the lines through the origin
spanned by the eigenvectors, viewed as points in the real projective line.
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Thus, the trajectories are arcs of generalized circles, from [v_] to [v.] on the
boundary of b.

If det(Zy) > 0, then the eigenvalues are pure imaginary. The solutions
z(t) in bh are then periodic. In fact, the solutions are circles whose center
(with respect to the hyperbolic metric) is the point zq € b, defined by the fixed
point condition Zy - zg = 2. (Equivalently, (2o, 1) is a complex eigenvector
of Zy, chosen so that 2z € h.) Each trajectory moves at constant speed with
respect to the hyperbolic metric on h. When u = (1/3,1/3,1/3) (the center
of Ur), Zy = J/3, and the fixed point is i € b.

If det(Zy) = 0, then the eigenvalues are 0 (but Z has rank 1). (For
example, take control u = (2/3,1/6,1/6).) The solutions z(¢) in h move along
horocycles centered at an ideal point in the real projective line (viewed as
the boundary of ). That ideal point is the line formed by the kernel of Zj.

7.2 Constant Control at the Vertices

As we will see in Lemma the constant controls at the vertices of
the control triangle have particular significance, because they often maximize
the Hamiltonian. Assume that the control remains at a vertex u of the
control triangle Ur during some time interval ¢ € [¢1,t2]. By the construction
of the control from state-dependent curvatures, two of the state-dependent
curvatures k;, K;,1 are zero. Thus the corresponding trajectories

oi(t) = g(t)s;, i=25,2j+2,

move along straight lines. According to Lemma the third curve oq;41(%)
moves along an arc of a hyperbola. The solution gives explicit param-
eterizations of these straight lines and hyperbolic arcs.

If u is a vertex of the control triangle Ur, then det(Z,) = —1/3 < 0, and
the eigenvalues of —Z, are +1/4/3. Let v be eigenvectors for 1/4/3 and
—1/+/3 respectively. The remarks of the earlier paragraph apply, to show that
the trajectories in h are generalized circles moving from [v_]| toward [v.] on
the boundary of h. The explicit parameterization is in terms of exponentials,
as described above.

If w = (0,0,1), the eigenvectors of —Z, are computed to be

v_ = (=1/4/3,1), v, =(1,0).
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Trajectories z are straight lines moving from the ideal vertex [v_] = —1/4/3
toward the ideal vertex [v,] = +00. Explicitly, we have

z(t) = [v_] + Coexp(rt), y(t) = Corexp(rt),
where the constants of integration r, Cy > 0 are uniquely determined at ¢ = 0.
2o =x(0) = [v_] +Cy, yo=y(0) = Cpyr.
If u = (0,1,0), the eigenvectors of —Z, are computed to be
v_=(1,0), v, =(1//3,1).

The trajectories z are straight lines moving from the ideal vertex [v_]| = +o0
toward the ideal vertex [v,] = +1/4/3. The trajectory is

2(t) = [vi] + Coexp(rt), y(t) = Corexp(rt),

where now Cy,r < 0. Note that when u = (0, =, =), the matrix Z, is upper
triangular, so that the eigenvectors and exp(Pt) are trivial to compute.
If u = (1,0,0), the eigenvectors of —Z, are computed to be

Vo = (1/\/37 1), vi= <_1/\/§7 1).

The trajectories z are Euclidean circles moving from the ideal vertex [v_] =
1/4/3 toward the ideal vertex [v,] = —1/4/3.

Note that the solutions at the different vertices are related by linear
fractional transformations R, which rotates the star domain h*, and permutes
the ideal vertices.

We record the preceding discussion in the form of a lemma.

Lemma 7.2.1. If the control function is a constant at one of the vertices of
Ur, then the trajectories in the star domain are arcs generalized circles. If the
control is (0,0,1) or (0,1,0), then each trajectory moves along a Fuclidean
straight line.

Proof. ]
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u = (1,0,0) u=(0,1,0) u = (0,0,1)

Figure 7.2.1: The trajectories with constant control u are generalized circles,
shown here in the star domain of the upper half-plane.

7.3 Partition of the Cotangent Space

Let K be a compact convex set in R”. A nonempty convex subset F' of K
is called a face if and only if for all z,y € K and all ¢ € (0, 1), the membership
tz + (1 — t)y € F implies endpoint membership: z,y € F'.

Lemma 7.3.1. Assume that the control set is U a compact convez set in
the affine plane {(ug,u1,uz) | D u; = 1}. For each point in the cotangent
space (g, X, A1, AR), the set of controls u € U mazximizing the Hamiltonian
H(A1,Ar, X, Z,) in equation is equal to a face of the control set.

Proof. Fix (g, X, A1, Agr). We consider the dependence of the control-dependent
part (denoted Hs) of the Hamiltonian in equation (6.4.2)). As a function of

u € U, the Hamiltonian is a ratio of two affine functions. Fixing u,v € U, the

dependence on t along the segment tu + (1 —t)v € U, for 0 < t < 1, of the

control-dependent part of the Hamiltonian takes the general form

at+b

Ha(t) = ct+d

with nonzero denominator. The derivative (ad—bc)/(ct+d)? of this expression
has fixed sign. Thus, Hamiltonian is monotonic along the segment. If an
internal point of the segment is a maximizer, then both endpoints are also
maximizers. According to the definition of face, the set of maximizers must
be a face. [

Thus, if we consider the control set Ur, the set of maximizers are either
the entire control set Ur, or one of its edges or vertices.
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The control-dependent part of the Hamiltonian depends on state and
costate variables through (X, Ag). Such pairs can be identified with the
cotangent space of O;:

T*OJ = {(X,AR) S OJ X S[Q(R) ‘ AR S XL}

For each nonempty subset J # I < {1,2,3}, we have a face (Ur); < Ur
defined by the convex hull of {e; | i € I}, where e; = (1,0,0), e; = (0,1,0),
e3 = (0,0,1) is the standard basis of R3. These subsets classify faces of Ur.
For each I, there is a corresponding region of 7*Q.

(T*O;)1 := {(X,ARr) e T*Oy | argmax, .y, Ha(, Ar, X, Z,) = (Ur)r}-

As I runs over nonempty subsets of {1, 2, 3}, the sets (T*O;); partition T*O;
into locally closed subsets.

The union of the three sets (T*Oj)y, for |I| = 1 is a dense open subset
of (T*Oy). On this dense open subset, the Hamiltonian is maximized at a
uniquely determined vertex. In general, the control function u : [0,¢s] — Ur
is allowed to be any measurable function. The solutions of the control system
ODEs do not change by modifying the control v on a set of zero measure
in [0,¢s]. If the control u remains in the dense open subset for all ¢ € [0, %],
(that is, if the image of the control function w is contained in the set of
vertices of Ur), we will call the solution a bang-bang solution. Note that the
control function is necessarily discontinuous where it jumps from one vertex
to another. This chapter is concerned with bang-bang solutions, but later
chapters will extend the investigation to solutions that are not bang-bang.

Definition 7.3.2 (Bang-bang control). A control function is said to be bang-
bang if its range is contained in the set of extreme points of the control set,
with discontinuous switching.

We call the three sets (T*Oy)g, for |I| = 2 the walls in T*O;. The
walls have codimension 1 in 7*@;. The wall {i, j} is contained in boundary
between the open regions with indices I = {i} and {j}. Finally, there is a set
(T*Oys)1,2,3;, where the three walls meet.

7.4 Constant Control Splines

By a spline we mean a trajectory that has been pieced together from
constant control trajectories, by matching the endpoints of one trajectory on
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one subinterval with the initial conditions on the next subinterval. In this
section, we give explicit constructions of splines. In this section, we do not
assume that the curves satisfy the Pontryagin Maximum Principle conditions
in the cotangent space. However, the trajectories are assumed to satisfy the
state space ODEs (for (g, X)) and controls at the vertices of Ur.

Fix a vertex ug = e; € Ur in the control simplex. For ¢ > 0 and initial
position z = zg € b, let go(2,t) € SLa(R) be the trajectory with solving the
state ODE for g with constant control uy and initial conditions

gO(zv 0) = Iy, g()(z,()) = q)(z)

(As always, prime denotes the derivative with respect to ¢.) Let g;(2,t) €
SLs(R), for t > 0, i € Z, and z € h be the trajectory

gi(2,t) :== Rigo(2,t)R™".

We have ’
91(270) = I27 g':(z’ O) = (I)(RZ ’ Z)a

with constant control u; = R - ug, using the action of the cyclic subgroup
(R) of the dihedral group Dihg on the control simplex Ur.

We define a continuous (shifted) extension of g; that is non-constant only
for t € [t1,1,]:

I27 ].ft < 15
gi(z, 11, 80,t) = < gi(z,t — 1), if & <t <y
gi(z,ta — 1)), iffy <t

The derivative g, has jump discontinuities at #; and #,. Let 2(z,t) be the
solution to the ODE (4.5.1) with constant control uy and initial condition zp.
For any tuple

T = ((k1,t1), (ka2 t2), .. o, (Knytn)),

with k; € Z and t; > 0, and for any z € h*, let

7.4.1
zi = RF 7R (20, t); ( )

9(Z, z0,t) = g, (20,0, 1, ) gky (21, 81, B2y 1) - Gk (201, T, Ty ).
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Note that on the right-hand side of the last equation, only one factor at
a time is non-constant. Then ¢(Z,z,t) is continuous in ¢ and has unit
speed parametrization. Set X (Z, 2,t) := g(Z, 2,t) '¢'(Z, 2,t). Note that for
t € [£;_1,%;], when the ith factor is active, we have

X(Z, 20, t) = Gk; (Zifla 2?':ifl) Zia t)ilg;gz (Zifla tNifla tia t)
= g, (2im1,t — Ei-1) ' gp (2im1,t — i)
= RFX (2 1,t — & 1)R™H,

where X (2,t) = go(2,t) g,
at the boundary value t =

L~

z,t). Comparing left and right limits of X (Z, 2, t)
i, we find that X (Z, zg) is continuous in ¢.

(ad

X(Ia anE;)
X(Ia anfz_)

(I)(Rk’Z(Zl_htZ)) = @(Rki+1 . Z,');
®(RF+1 . 2).

From this, it is easy to see that g(Z, z¢) is the general bang-bang trajectory
with finitely many switches (at times %, ...,%,), as we vary Z and 2,. The
control on the interval [£;_1,%;] is u = R* -ug e U.

The total cost(zg, [0,%]) of the trajectory with initial condition 2y
up to time ¢ is an easy (freshman calculus) integral to compute from Equation
(4.3.1), which we do not display here. The total cost of g(Z, zy, t) from time
0 to £, is the sum of the costs on each constant control segment.

n—1

2 cost(z;, [0, t;41])- (7.4.2)
i=0

7.5 Smoothed Polygons

In this section, we construct a family of Pontryagin extremals of the
control problem, all given by a bang-bang control. Reinhardt conjectured
that the smoothed octagon is the solution to his problem. The smoothed
octagon belongs to a family of smoothed (6k + 2)-gons, which are all given
by bang-bang controls. The X-component of the trajectory of the smoothed
8-gon and the 14-gon are shown in Figure These are periodic solutions
in b, repeatedly retracing the edges of equilateral triangles in b (with edges
formed by generalized circular arcs). The triangle has full dihedral group
symmetry about the center ¢ € h with respect to the hyperbolic metric. The
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Figure 7.5.1: Periodic trajectories of the smoothed 8-gon and 14-gon in h*.
The larger triangle is the orbit of the 8-gon, and the smaller is that of 14-gon.

triangles shrink toward the central point ¢ € h* as k — 0. In Ry, the
smoothed polygons are converging to the circle as k grows.

The smoothed octagon comes from a periodic bang-bang control to the
state equations with three modes, corresponding to the three vertices of the
control simplex Uz and the three edges of the triangle in . The trajectory
moves in a counterclockwise direction around the triangle in b, at constant
speed in the hyperbolic metric, completing the four-step mode sequence one
vertex counterclockwise from the starting vertex. The smoothed octagon
itself can be visualized in 24 segments: 8 smoothed corners and 16 straight
half-edges. These 24 segments are arranged into four groups, each consisting
of a multi-curve of 6 arcs. The four groups are congruent to one another,
under the rotational symmetry R. These six arcs are shown in Figure [1.3.1]

Now we turn to the rigorous specification of these smoothed polygons,
generalizing the smoothed octagon as follows. Let k£ be a positive integer. We
consider a trajectory t — g(Z, z9,t) with a control mode sequence Z of 3k + 1
parts of the same switching time ¢, taking the form

1= ((Oatsw)a (_1’ tsw)’ (_Z,tsw)> R (_3katsw))7 (751)

where t,, > 0 and 2y € h are to be determined as functions of £k > 1 in
Lemma We use the initial control ug = e3 = (0,0,1) € Ur.
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We impose the strong boundary condition
2(20,tsw) = R -2, where 2o =0 +iyo, o€ (1/V3,1). (7.5.2)

This boundary condition imposes the congruence of the sides of the triangle in
h. The endpoints 1/4/3 and 1 for g, are natural; one endpoint is the boundary
of the star domain, and the other endpoint center 7 of the triangles. Solving
for t,, (the switching time), we obtain

(/B + 1)
sw \/gyo

We view t,, as a function of a real variable yo € (1/4/3,1). It is useful to
delay imposing the transversality condition g(¢;) = R for as long as possible,
which discretizes the problem using the parameter k£, and to leave y, as a
continuous variable for now.

The proof that the smoothed 6k +2-gon are extremals has been broken into
steps. Theorem [7.5.1] constructs one edge of the triangle in h. Lemma [7.5.3
shows the Hamiltonian maximizing property. Lemma [7.5.5/ shows how the
terminal condition g(¢;) = R places a discreteness condition on the size of the
triangle in b to give 6k + 2-gons. Finally Theorem proves extremality of
the 6k + 2-gons.

We define the switching functions yx;; by

Xij(t) := (Ar(t), Py ;(t) — Fiy)
P,;(t) := Ze,/{Ze;,X(t)), (X,Ag with constant control u = e;)

e (0,In2). (7.5.3)

(7.5.4)

where X and Ag are both computed with respect to the constant control
u = e;. By (7.1.1), the matrix P;; is a constant Ze,/{Ze,, Xo).

Theorem 7.5.1. Let yo € (1/v/3,1), 29 = 0+iyo, and let ty, > 0 be given by
(7.5.3). Let z(z0,t) and g(t) = go(20,t) be the solutions to the state equations
with constant control u = e3 = (0,0,1) on [0,ts,|. Then these solutions lift
uniquely (up to scalar factor) to a costate trajectory (A1, Ar, Acost) Satisfying

Ar(0) € X(0)*, x23(0) =0, (7.5.5)

and
Hu:eg = 0, X31 (tsw) = 0, (756)
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and strong transversality conditions
Agr(tsw) = R'AR(O)R, Ai(tsw) = R7'A1(0)R.
The trajectory is normal: Acost # 0.

Proof. We start with the endpoint condition for A;. Using (6.5.3), we have
the condition

G(tsw) *A1(0)g(tsw) = A1(tew) = RAL(0)R. (7.5.7)

In other words, A;(0) € sly(R) centralizes the element h := g(t,,)R ' €
SLy(R). A calculation using the explicit solution for g(ts,) shows that the
trace of h is 7 := 4/(1 + 3y?2) € (1,2). This implies that h is a regular elliptic
element. Its centralizer in sly(R) is RA;o, where

1 0 4+/3yd .
2201+ 350) (—ﬁ<1+ya><3y3—1> 0 ) sL(®)

Thus A;(0) = A\;Aqg, for some A; € R to be determined.
Next, we turn to the choice of Ag(0) € sl3(R). The two initial conditions

(7.5.5) force Ag(0) to have the form
(0 v
AR(()) _ )‘R <1 O> )

for some A\r € R. At this point, the initial state (A1(0), Ag(0), Aeost) is
determined by three scalars: Ai, Agr, Acost, Where 1 is held fixed. Equations
place two independent homogenous linear relations on these three
variables, determining them up to a single scalar multiple. To avoid the zero
solution, we set A5t = —1. A calculation, using the explicit solutions for Ag
gives

A= —((1+3y3)(—3 — 6y + (1 + 3y3)€(y0)))/(12/3yp),
Ar = —(3— 12y5 — 9yg + 18yg + (—1 + 3yg + 2Ly + 9y5)€(wo))/ (2495,

where £(yo) = In(4/(3y2 + 1)).

Finally, we have the transversality conditions at t5,. Remarkably, a
calculation shows that the transversality conditions hold for the calculated
values of parameters Aq, Ag.

Lemma supplements the proof, which shows that the maximum
property is met for the Hamiltonian. n

AlO = h— T‘IQ/2 =
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Remark 7.5.2. We have a constant of motion

d= d(y()) = det(Al(t)) = )\% det(A10>
= (—1+ 295 + 3yp) (3 + 6yg — (1 + 3yg)L(1o))?/(144y3).

The function d is monotonic increasing in yo € (1/v/3,1) with range (0,9/4).
Thus, the determinant uniquely determines the parameter yo of the triangle.

Lemma 7.5.3. Fiz yo € (1/v/3,1) and corresponding time ts,. Let Xi;
be the switching functions, defined for the costate trajectory constructed in
Theorem with constant control e3 = (0,0,1). Then the PMP conditions
hold:

X31(t) =0, x32(t) =0, forte|0,ts]

The functions are zero only when x32(0) = X31(tsw) = 0.

Proof. An easy substitution gives

X31 (tsw - t) = X32(t)7 te [Oatsw]'

Thus, it is enough to show that ys2(t) = 0 with equality only at ¢ = 0.
We define new variables (y,r):

y=1+ 3y§, r= yexp(\/gyot).

The region defined by o € (1/1/3,1) and ¢ € [0, t,,] transforms to the triangle

T = {(y,r)€[2,4] |y <r}.

Note that ¢ = 0 is transformed to the diagonal y = 7 of T'. Discarding obviously
positive multiplicative factors, the inequality to be proved is f(y,r) > 0 on
T, where

fly,r):=2r(—1+y)yln(r)
—(r—y)(r(—=1+y) + y(—5+2y) + ¥’ In(4/y))
—2r(-1+y)yn(y).

We show that f is nonnegative on the triangle T' as follows. (These
calculations appear in the accompanying Mathematica code. There are
several thousand lines of Mathematica code that are used to support the
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claims in this book.) First, an easy substitution gives f(y,y) = 0. (This was
already verified above in a different manner, when we showed that t = 0 is a
switching time.) Second, the derivative is negative on the diagonal.

of

a—y|r:y =y((y—4) +yIn(4/y)) <0. (7.5.8)
Finally, the second derivative is positive on T
62
é_yé =—-10—-57+ (2r)/y + Ty + 4rn(r) — 2(r — 3y) In(4/y) — 4rn(y) = 0.

(We leave this last inequality as a tedious but elementary exercise for the
reader.) Nonnegativity follows. O

Remark 7.5.4. Looking more closely at the cases of equality, we see that the
only zero of the switching function on [0,ts,] occurs att = 0, and that the
derivative is strictly positive at t = 0. (The derivative is zero in (7.5.8) at the
corner r =y = 4 of the disk, but this corresponds to the unrealizable limiting
case yo = 1.)

The following lemma uses transversality conditions to place an integrality
condition k£ on the size of the triangles in b.

Lemma 7.5.5. Consider a trajectory g : [0,tf] — SL2(R), with g(0) = I,
following the dynamical system (7.5.1). The trajectory reaches g(tf) = R
after a sequence of 3k +1 control mode parts ty = (3k +1)ts, of equal duration

tow, provided

4 7k
————— = 2cosf here 05, = .
2+ 1 cosB,, where 0, %+ 1

(7.5.9)

Proof. Let gsyy = g(20,tsw) € SLa(R) be the position at the switching time.
By the spline equations, the condition g(tf) = R for (7.5.1)) is

R = gsw(R'g.wR) (R 2gsuR?) - - - (R g,, R%),

or equivalently,
(R_lgsw)3k+1 = R_3k = (_IQ)k- (7510)

Let A\, \~! be the eigenvalues of R~!g,, € SLy(R). Comparing eigenvalues
on the two sides of (7.5.10), we obtain A\3**! = (—1)* and

A = exp(mik/(3k + 1) + 2mil/(3k + 1)), LeZ.
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We pick the eigenvalues A*! that place g, in the smallest neighborhood of
1; that is, we take £ = 0, —k. (Other pairs of eigenvalues will produce the
right boundary conditions, but the corresponding multi-curves ¢; will have
the wrong winding number around the origin.) Then

trace(R 'gow) = A+ A7 = 2cos b;.

The trace 7 = 4/(1 + 3y3) of R™'gs, = R 'hR is computed in the proof of
Theorem [7.5.1] O

Example (Smoothed Octagon). For example, k = 1 for the smoothed octagon
Koo, and 0, = 7/4. The trace is \/2, and

Yo =1/(vV8—1)/3~0.781, ty —In2/ (2 V8 — 1) ~ 0.256.

If we initialize Xo = ®(0 + dyy) according to this value, then we can compute
the density of a packing of smoothed octagons in the plane using the cost
(3.2.2)), terminal time ty = 4ts,, and explicit ODE solution with constant

control (7.1.4).
§ = area(Koe)/V/12,

tSw
area(K,et) = —6] (J,X)dt
0

— 2—1n2
:\/ﬁ8 \/37 n
V8—1
~ 3.126 < 7.

This value appears as (1.1.1)).

Theorem 7.5.6. For each positive integer k, the smoothed 6k + 2-gon is a
Pontryagin extremal given by a bang-bang control.

Proof. From ([7.5.2)), it follows that transversality for z from the half-plane
control problem (4.5.1)) holds with t; = (3k + 1)t,,:

2(20,t5) = R-OF . 20 = R71 . .

The strong transversality conditions for A;, Az imply the transversality con-
ditions at time t; = (3k + 1)t5. O]
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7.6 Supplementary Remarks on Smoothed
Polygons

Remark 7.6.1. A discreteness condition on yo comes from the transversality
condition g(ty) = R, described in Lemma[7.5.5. We have solved the nonlinear
equations and explicitly for ts, and yo in the accompanying
code, but we do not display the solution here. For each positive integer k, the
trajectory for the smoothed 6k + 2-gon is now completely determined by these
values of ts, and yg, given as solutions to nonlinear equations.

We can use Equation (7.5.9) and the lemma to define k as a continuous
function of yo. The cost function can then be interpolated to a function of a
real variable yo (or k). Fz'gure graphs the area of the smoothed 6k + 2-gon
as o function of k. It appears that the area function is increasing in k and
tends to the area 7 of the circular disk.

Remark 7.6.2. A related construction gives a trajectory with 3k — 1 parts in
the control mode sequence — the smoothed 6k — 2-gon, for k = 2. The changes
are minor. We replace equation (7.5.1) with

Z=((1tsw), (2,tsw), (Bytsw)y .-, (Bk — 1, tsy)). (7.6.1)
The parameters are

In(4/(3y2 + 1
Z0:0+iy07 tsw:_n< /( y0+ ))7 y0>1-

\/§y0

The initial control mode is u = es.

Remark 7.6.3. It seems that the smoothed 6k — 2-gon is not a Pontryagin
extremal trajectory. Specifically, all of the conditions seem to hold, except that
the Pontryagin multiplier Aeose > 0 has the wrong sign. This suggests that
these smoothed polygons are Pontryagin extremal trajectories for the problem
of mazximizing the area.

Remark 7.6.4. When k = 1, the smoothed 6k — 2-gon degenerates to a
rectangle with corners (Figure and area +/12. Allowing k to be non-
integral, for small values of k > 1, we obtained smoothed rectangles (that do
not quite satisfy the boundary conditions).
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an
L

Figure 7.6.1: By taking a smoothed 6k — 2-gon and interpolating formulas to
a fractional number of sides (here k = 1.03), we see that the shape appears
to be tending to a rectangle of area /12 as k — 1.

The trajectory X in b for the 6k + 2-gon follows a triangle (with edges
following the arcs of Figure [7.2.1) centered at z = 7 € h. It moves counter-
clockwise around i, traversing one edge for each control mode (Figure [7.6.2)).
The trajectory X in b for the 6k — 2-gon also follows an inverted triangle
centered at z = i € h. It moves clockwise.

VA

Figure 7.6.2: The trajectory in the upper-half plane of a smoothed 6k + 2-gon
follows 3k + 1 edges moving counterclockwise on a triangular path centered
at i € h (left). The trajectory for the smoothed 6k — 2-gon follows 3k — 1
edges moving clockwise on an inverted triangle centered at i € h (right).

The cost increases with k£ for the 6k + 2-gon and decreases with &k for
6k — 2-gon. In both cases, the limit of the cost is 7 as k — o0. We show
a graph of the costs of the smoothed polygons as a function of the number

n = 6k + 2 of sides (Figure [7.6.3)).

7.7 Smoothed Octagon is an Isolated Extremal

The previous section showed that the smoothed octagon is an extremal
trajectory. In this section we show that it is an isolated extremal.
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Figure 7.6.3: The graph interpolates the cost ¢ of known critical points
as a function of the number n = 6k + 2 of straight edge segments in the
corresponding smoothed polygon. The cost tends to 7 as n increases. The
data is consistent with Reinhardt’s conjecture.

Theorem 7.7.1. The lifted trajectory of the smoothed octagon is an isolated
extremal. That is, in some neighborhood of the set of initial conditions in
the cotangent space, the only extremal trajectory satisfying the transversality
conditions at the endpoints is that of the smoothed octagon.

Proof sketch. Fix d > 0 close to the value d,; = det(A;) obtained for a
smoothed octagon. In the proof, we ignore the transversality on the group
element g € G, and the discreteness parameter k it produces, until the final
lines of the proof. Instead, we let d run over a small interval containing do;.

We consider the five dimensional manifold M = M; given by q =
(X, A1, AR) € sl3(R)? in a neighborhood of the smoothed octagon param-
eters subject to four constraints:

det(X) =1, (X,Agr)=0, det(A;)=d, H=0.

Fix two vertices 4,7 of the control simplex Ur. We consider the four-
dimensional Poincaré section N, obtained by requiring the vanishing of
a switching function x,; = (Ag, P, — P;) = 0. For each go € Ny, let q(t, go) be
the extremal trajectory in M, starting at initial condition go.

Fixing d, we let yo(d) be the real number constructed in Section
Associated with yo and d, we have constructed an extremal lifted periodic
trajectory q(t, ¢riz(d)) = (X (t), Ar(t), A1(t)) in My starting at the appropriate
initial condition gy, (d) € Ny.
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Let ts,(gfiz(d)) > 0 be the first positive switching time of the trajectory
q(t,qfiz(d)). By transversality of switching times (justified in the remark
following Lemma [7.5.3)), there is a unique first switching time ¢,,(go) near
tsw(qfiz(d)) for the extremal trajectory ¢(t,qo), when go is near gz, (d).

Define a Poincaré map f; : Ny — Ny by

fa(qo) = Ad(R)q(tsw(0); %),

where Ad acts componentwise on Ny < sl5(R)3. By the strong transversality
conditions for the trajectories in Section fa has a fixed point at gy, (d). If
Qo is a nearby initial condition that gives an extremal satisfying transversality,
then setting ¢;+1 = fi(¢;), we have

Ad(R’4)q4 = Ad(R’l)qo, or figo = qo. (7.7.1)

The four is half the number of edges of the smoothed octagon; that is, the
terminal time is t; = 4¢5,(goct)-

Let Aq:=Tfq: T,Ng — T,N, be the tangent map of f; at the fixed point
q = ¢fiz(d). Direct calculation shows that the fixed point goe := gfiz(doct) is
hyperbolic; that is, A4, has no eigenvalues of absolute value 1. Then the
fixed point gy, (d) is also hyperbolic for the map f; for sufficiently nearby
parameters d. By the implicit function theorem, for each d near d,., the
function f; — I can be inverted in an open neighborhood of the fixed point
qfiz(d), forcing the fixed point to be isolated (where I is the identity map).
Thus, the only fixed points near g,.; are the fixed points ¢y, (d). For d near
doct, the only fixed point gyi,;(d) satisfying the final transversality conditions

" is Goct- O

Remark 7.7.2. A different proof that the smoothed octagon is isolated appears
in the preprint [16].
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Chapter 8

Singular Locus

8.1 Edges of the Control Simplex

At the end of this section, Remark shows that abnormal extremals
can be constructed to the Reinhardt control problem with an arbitrary
measurable control function, taking values in a fixed edge of the control set
Ur. These anomalous abnormal extremals seem to be an artifact of way we
have chosen to encode the convexity conditions of the convex disk K into
the control problem. These abnormal solutions indicate that the Reinhardt
control problem has unnecessarily many extremals.

In this section, we consider a modified control problem , which
we call the edge control problem. As we will see, in this modified control
problem, these particular abnormal extremals disappear. We will then consider
trajectories that are extremal in two respects: with respect to the Reinhardt
optimal control problem, but also with respect to the edge control problem.

Definition 8.1.1 (Edge Control Problem). The edge control system on an
interval [tg,t;] with free terminal time t, is the control problem with state
equations (8.1.3), control set [—1/2,1/2], endpoint conditions (8.1.4)), cost
functional , and Hamiltonian (8.1.6). The state variables x,y,s :
[to,t1] — R have range restrictions y > 0 and —1/4/3 <z < 1/4/3.

Let (g, X) : [to,t1] — SL2(R) x b* be a trajectory of the Reinhardt state
equations whose control is restricted to the edge u = (0, u1,uz) of the control
set Ur. We show how to define state variables s, z,y and an edge control

125
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problem. We write the control in this edge as

1 1
U(t) € {(07 5 T Uedge, 5 - uedge) e Ur | _1/2 < Uedge S 1/2} .

Thus the control function on an interval [¢y, ¢1] is determined by a measurable
function uegqe : [to,t1] — [—1/2,1/2].

The variables z, y are the same as in the Reinhardt problem: z = z+iy € h*.
The vector field on h* controlling the Reinhardt state equations (Lemma

1S
2
(x/’y/) = (fl)fZ) = (y’ fQ(-'L',y, uedge)) - (y, —12—\&-/§2y\/g;ﬁ:dge) .

In particular, 2’ = y > 0, so that x is monotonically increasing. In this
setting, we can solve the state ODE ¢’ = gX with initial condition g(¢y) = go
explicitly.

g(t) = goh(te) *h(t), where (8.1.1)
1 —z(t) ) ft dt
h(t) = , and s(t):=| —. 8.1.2
= sty 1-stmt) = v (812
The state equations for the edge control problem take the form
s = 1/y7 T = v, y/ = f2(x7ya uedge) (813)

subject to boundary conditions

(S(to), S(tl), .’Ii(to), Ji(tl), y(to), y(tl)) = (80, 81, %0, L1, Yo, yl) (814)

that are chosen to agree with the boundary conditions of the Reinhardt
trajectory (g, X ). We can take so = 0. (If a constant of integration is added
to s, the path g(t) € SLy(R) is unchanged.)

Up to a positive constant, the cost is given by Equation (4.3.1]).

Jt11+y2+x2
¢

0 St L (s/(8) + 2 (b))t + L 01 Pedge (T, y)dt

= (81 + 1) — (S0 + xo) + Jqﬁedge(x,y)dt.

where @eqge(z,y) = 2%/y. Subtracting a constant determined by the boundary
conditions, we can take the cost to be

féedge(x, y)dt. (8.1.5)
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This data specifies a control problem with fixed initial time ¢y and free
terminal time ¢;. The state variables are z,y, s, satisfying the ODE (8.1.3).
The control is measurable control weqge : [to,t1] — [—1/2,1/2].

The state variables (z,y,s) take values in an open subset of R3. The
cotangent space is therefore T*R3 = RS with variables , v, s, A, A2, A\3. The
Hamiltonian is

H = 2 >\zf1, + Acost¢edge = >\1y + >\2f2<xa v, uedge) + )\3/@/ + )\costQSedge(x, y)

(8.1.6)
The term A5 is constant and is nonpositive. This completes our description
of the edge control system and its relation to the Reinhardt control problem
with edge-constrained control. By rotational symmetry, we obtain edge control
systems likewise for the other edges of Ur.

Definition 8.1.2. We say that a trajectory (g, X) is edge extremal, if on
every subinterval of the domain on which one of the components of the control
function u = (ug,u1,u2)) is zero a.e. (say u; = 0 a.e.), the trajectory is
extremal with respect to the corresponding edge control problem.

Proposition 8.1.3. The global solution of the Reinhardt problem is an
extremal for the Reinhardt control problem, and it is also edge extremal.

Proof. We have seen that the global minimizer must be extremal for the
Reinhardt optimal control problem for some optimal control function u taking
values in Ur. On any subinterval of the domain where the optimal control
function takes values in an edge of Ur, then the globally minimizing trajectory
must minimize cost among all trajectories with the same endpoint conditions
on the subinterval and that have their control function similarly restricted to
the edge. Thus, the global minimizer is also edge extremal. [

The purpose of this section is to prove the following bang-bang behavior
on edges with finite switching.

Theorem 8.1.4. Consider an extremal lifted trajectory in the edge control
system on a closed interval [to,t1]. Then the optimal control function ueqge is
bang-bang with finitely many switches. That s, the control function is equal
a.e. to a piecewise constant function

Uedge(t) = £1/2,  for all t € [to, 1],

with finitely many switches on [to,t1].
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Proof. The costate equations of the Hamiltonian (8.1.6) are

N\ = _a_H _ )‘212y2u2dge B 2)\costx
0z (1-2V30uege)? Y
)\,2 _ _a_H _ )\_2 A )\24\/§yuedge n )\cos;.’lJQ, (817)
ay Y -1+ 2\/§zuedge Y
oH
N =—2C =0
8 0s

We note that \; is constant.

The only term of the Hamiltonian depending on the control is A; fo. The
function f; is monotonic decreasing in ueqqe. Maximizing the Hamiltonian,
when Ay # 0, the control is teqge = F1/2 depending on the sign of A;. Thus,
A2 is a switching function for the control.

The functions z,y, s, A1, A2, A3 are continuous by construction. The func-
tion A, is also continuous by the form of the ODE it satisfies. (Although
the ODE depends a measurable control function ue4e, when A has fixed
nonzero sign, the control function is constant and hence continuous. Also,
A2 f2(Z,Y, Uedge) tends to zero with Ay. Thus, A, is continuous.)

We claim that at any point ¢, € [tg,t;] where As(t2) = A5(t2) = 0, the
costate is given by

)\3 = —x(t2)2)\cost, )\1(152) = 0, )\z(tg) = 0, )\cost #* O (818)

(In particular, —A3/Acost = 0 and z(t3) = +4/—A3/Aeost-) In fact, under these
vanishing conditions on A, and A}, we obtain a nonsingular linear system of
two equations and two unknowns

b H

—— =0
dy

for A3 and A;(f2). The unique solution to this linear system is as given. If
Aeost = 0, then all of the costate variables are zero at ts, which is contrary to
the Pontryagin extremality conditions. Thus, A..s; # 0 and the solution is
normal.

In (8.1.8), since z is monotonic increasing, along any extremal lifted tra-
jectory, there are at most two times ¢ € [tg, t;] such that z(t) = £+/—A3/Acost-
At any other switching time ¢ with A2(t) = 0, the trajectory passes transver-
sally through the wall Ay = 0 (that is, A;(¢) # 0). In such a case the zero of
the switching function A, is isolated.
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The next lemma shows that even at times when the conditions of
are met, the zeros of the switching function A\ are isolated. By translation in
time, we may assume without loss of generality that ¢t = 0 in the lemma.

In conclusion, all the zeros of the switching function ), are isolated and
there are at most finitely many switches on any finite time interval. Adjusting
the control u.qe on a set of measure zero, we may assume that uqg is
piecewise constant, taking values +1/2. ]

In the next lemma, we write f; = O(f2) to mean that there exist ¢; > 0
and C; > 0 such that fi, f> are defined on (—t1,¢;) and

|fi(t)| < Ci|fe(t)], forallte (—ti,t1).

Lemma 8.1.5. Fiz constants Aest = —1, A3 = —AeostT2, where |zo| <
1/\/3, and yo > 0. Let t; > 0 and choose any measurable function Uedqe :
(—t1,t1) — [—1/2,1/2]. Let x,y, A1, A2 be solutions to the state (8.1.3) and
costate equations on (—t1,t1) with initial conditions (z(0),y(0)) =
(Z0,%0), (A1(0),A2(0)) = (0,0), and control function ueqze. Then there exist
an integer n = 2 and a real nonzero constant C # 0 (both n and C depending
on the initial data xo,yo but not on the choice of control function uegge) such
that
Ao(t) = Ct" + O(t").

In particular, having this form, the switching function Ao has an isolated zero
at t = 0 with multiplicity n.

Proof. If g # 0, set n = 2. Otherwise, set n = 3. If xg # 0, set C =
—0o(1 + o) /5. Otherwise set C = —2/3. We approximate the functions
A1, A2 by the functions \q, Ao, where

A (t) i Jt 22(7) e Rolt) = — ft (M ; xl(f)) dr.

o Y(7) 0 y(7)?
Then it is enough to show that \(t) = Ct" + O(t"*!) and Ay (t) =~5\2(t) +
O(t"*™1). Consider the error term v = (vy,vs), where v; := \; — ;. The

costate equations for A; and Az, when expressed in terms of v, become
v/ = —Av — \;b, where

_ 0 fo _(n _ fox
A_(l f2y), V_(W), b_<f2y>.
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Here fo, and f5, are the partial derivatives of f; evaluated at (x(t), y(t), Uedge(t))-
If zy # 0, we compute

y =yo + O(t),
T = X9 + Yol + O(tQ),
222 2zoyot
z 2% _ 4ZoYo LO@),
Y yo
~ 2
S = 22 o),
Yo
x £ 2x0(1
S = —f 2001 5W)  o(2)dr - o 4 O ).
0 Yo
If zy = 0, we compute
y =yo + O(t),

T = yot + O(t?),

A =2+ O0(t%),

3 2t° 4 n n+1
Ao = —?+O(t ) =Ct"+O(t").

We use the Euclidean norm on R? and the natural matrix norm on
the vector space of 2 x 2 matrices. By the Cauchy-Schwarz inequality,
we have |v||' < |v/|. Pick 0 < ¢, < t; such that the denominator of
fo(z(2),y(t), Uedge(t)) is bounded away from zero on (—tg,t3). Then there
exists Cp > 0 such that |A(z(t), y(t), Uedge(t))| < Co for all t € (—tq,t2). We
have for some C; > 0,

[vI" < [V = [Azb + Av] < |Xel|b] + Collv]| < Cult]" + Colv].

In integral form,
Cl |t|n+1

vl < +o [ viat
By the Gronwall inequality (Corollary [A.1.3), we have |v| = O(¢t"*!). Then
Ao — Ct"| = |vg + Ay — Ct*| < ||V]| + [Nz — Ct*| = O(t™HY).

This completes the lemma. n
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We adjust the control function w4 along a set of measure zero in [to, t1]
and assume without loss of generality that ueqg. € {—1/2,1/2}.

If the conditions hold, for each constant control ueg,e = +1/2,
we can solve the state and costate ODEs explicitly for %,y A\, A5, A\
as a function of t € [ty,t;]. The solutions for z,y agree with the solutions
obtained in Section The costate ODEs can be solved without difficulty
in Mathematica, but we do not record the (rather unruly) formulas here.

Remark 8.1.6. We have an anomalous situation. In the proof of Theo-
rem we showed that Aeost # 0 (that is, the trajectory is normal) when a
point exists on the trajectory such that both Aa(t2) = Ay(t2) = 0. At such a
point, the trajectory lies on the wall Ay = 0 and is tangent to the wall.

However, if we return to the full system of state and costate equations,
still restricting the control function to ueqqe(t) € [—1/2,1/2], we show that an
abnormal solution in fact exists! (This is similar to [I7, Sec. 10], where the
ezistence of an abnormal solution can depend on how state constraints are
encoded.) Explicitly, there is an abnormal solution A.ost = O such that the
state equations are given by (g, X), where g is given by (8.1.1), X = ®(2),
and z = (z,y) given by ODE (8.1.3). The costate solutions are

z y? — 2? —z 2
U e T G}
It can be checked that Ag and A, satisfy the costate ODEs given in Section[6.5.
It can be checked that the Hamiltonian is identically zero for these choices.
In particular, the Hamiltonian is independent of the control. Thus any
measurable control function Uedqe(t) € [—1/2,1/2] mazimizes the Hamiltonian,
and we obtain a large family of abnormal trajectories. However, under the

alternative encoding that was used in this section, these abnormal trajectories
do not appear.

Remark 8.1.7. A result about edges similar to this section is claimed in the
preprint [16], but the proof there is shaky.

8.2 Singular Locus and Singular Subarcs

We have stated earlier that the optimal control matrix Z; is implicitly
determined by the Hamiltonian maximization condition in equation (/6.4.2]).
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Singular subarcs arise when this maximization condition fails to produce
a unique candidate for the control matrix Z} over an entire time interval.
Throughout this section, we let J denote the infinitesimal generator of the
rotation group, as usual.

Recall that we have partitioned the cotangent space T*O; according
to subsets I of {1,2,3}, according to the set of maximizers in Ur of the
Hamiltonian. The set I = {1,2,3} corresponds to the part of the cotangent
space on which the Hamiltonian is independent of the control u € Ur.

Lemma 8.2.1. For all X € sl3(R) and all A € X, if the control dependent
term of the Hamiltonian Ha(A, X, Z,) is independent of the control u € Ur,
then A = 0. If A # 0, then the set of controls mazimizing the Hamiltonian is
a vertex or edge of the control set Ur.

Proof. The part of the Hamiltonian that is dependent on the control can be
written

(N, Z,){X, Zy)).
We fix X € sl5(R) and f be the vector field on TxOx defined by (4.5.1). The

affine hull of the image of the vector field under Ur is the entire tangent space,
by Lemma The value of H, must then be zero, and A must lie in the
orthogonal complement {0} of the entire tangent space. Thus, A = 0.

In contrapositive form, if A # 0, then the Hamiltonian is not constant as
a function of the control. By Lemma the set of maximizers is a vertex
or edge. n

Lemma 8.2.2. The costate trajectory function A, is continuous at every
time t = to such that Ag(to) = 0. If Ar(to) = Az(to) = 0, for some t = 1,

then
3

)\cost > 07 Al (tO) = EAcostJ-
Proof. By inspection of the ODE, the right-hand side of the costate ODE for
A’z (to) has a point of continuity when Ag(to) = 0. The maximum principle
states that the Hamiltonian vanishes identically along the lifted extremal (See
Section . Thus, we have

<AR, Zu>

<X—Z = <A1,costaX> =0 att=rt,

3
H(Ah ARa X; Zu) = <A1_§)\costt]7 X>_
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where we set
Al,cost - Al - 3)\cost<]/2- (821)

Thus, Aj cost(to) € X (to)*. The ODE for Ag gives
0= A;{(tO) = _[Al,cost)X(tO)]-

Together, these imply that A; . € RX n Xt = {0} at t = t;. Thus,
Al,cost(tO) =0 and Al (tO) = %)\cost!]-

We must have A5 # 0 for otherwise we will have A5t = 0, Ag(ty) =0
and A;(tg) = 0, contradicting the non-vanishing of the costate variables in
the maximum principle (see Section [6.2). O

The following theorem describes the behavior when A vanishes on an
interval.

Theorem 8.2.3. If a lifted extremal has Ag vanishing identically on an
interval (t1,t2), then the control function is constant u = (1/3,1/3,1/3) (the
center of the control set Ur) fort € (t1,t2). Also, the optimal control matriz is

Z:(t) = 3J on this interval, and this determines an arc g(t)s; of the circle as
a singular subarc. Moreover, the trajectory is normal, and X, A are constant:
3
)\cost #* Oa X = Ja Al = EAcostJa g(t) = 9o eXP<Jt)

Proof. Assume that along an extremal curve, for all ¢t € [t1,t3] we have
Ag(t) = 0. On this interval we have Ag(t) = ARz(t) = 0. By the lemma,
Aeost # 0 and Aq(t) = 3)XostJ /2. The costate equation for A; gives

, 3
0= &) = [Ay, X] = S Xt [, X].

Thus, we have [J; X| =0and X e RIn Oy = {J}. So X = J on t € (t1,t2).

Note that A = 0 means that the Hamiltonian does not involve
the control matrix Z; and so the maximization fails to uniquely determine
the control matrix in this interval. Thus, the lifted extremal in this interval
is singular (according to Definition [6.2.1). The unique control function
u(t) which gives 0 = X' = [P, X] = [P, J] is u(t) = (1/3,1/3,1/3) (almost
everywhere) which is the centroid of the control set Ur.

Now, the curve g(t) = exp(Jt) satisfies ¢ = gX = g¢J and this is a
rotation matrix in SLs(IR) which gives rise to the circle in the packing plane
as a centrally symmetric convex disk, assuming ¢(0) = I. [
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Thus, in the singular locus of the cotangent space, we must necessarily
have

9(t) = goexp(Jt), X(t) =, z(t) =1,
Al(t) = gAcosttL AR<t> = 07

where g(0) = go.
Definition 8.2.4 (Singular Locus). The region of the extended state space
T*(SLa(R) x sl3(R)) given by

3
Ssing = {(gaAlaXa AR) = (903 _)‘costja J7 0) ‘ go € SLQ(R>a )‘cost #* O}

2
is called the singular locus. In the star domain of the upper half-plane, the
singular locus lies over the point z =i € h*. (That is, (i) = J.)

Remark 8.2.5. Note that S, gives the initial conditions corresponding
to the circle in R..s (which has gy = I € SLy(R) up to a transformation in

SLz(R)).

We have seen in Theorem that every Pontryagin extremal of the edge
optimal control problem has a bang-bang control function with finitely many
switches. The other possibility is a singular arc along which the Hamiltonian
is independent of the control function. That is, the Hamiltonian-maximizing
face of Ur is the entire two-simplex Ur. This is the situation considered in
the following theorem.

Theorem 8.2.6. Consider a Pontryagin extremal to the Reinhardt problem
that contains a singular subarc along which the Hamiltonian is independent
of the control. Then during that time interval, the extremal remains in the
singular locus. Moreover, the unique solution to the system of state and
costate equations on that interval is a multi-curve of circular arcs, up to affine
transformation. Conversely, the lifted trajectory attached to a multi-curve of
circular arcs is a Pontryagin extremal singular subarc.

Proof. The proof is a summary of results already obtained.
If the maximum principle fails to determine a unique control over an open
time interval, then the trajectory remains in the set

| (@0 (8.2.2)

1>2
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By the assumptions of the theorem, the Hamiltonian is independent of the
control. Thus, a singular subarc must have the form of Lemma That
is, Ag = 0 over some time interval. By Theorem the singular subarc is
contained in the singular locus and gives an arc of a circle in K.
Conversely, the multi-curve of circular arcs is represented by g = exp(tJ),
and by the ODE ¢’ = Xg, where X = J, and X' = 0, and g = goexp(Jt).
As remarked in the proof of Lemma, 0 = X’ = [P, X] implies that the
control function is constant almost everywhere, taking value (1/3,1/3,1/3)
at the center of the control set Ur. Along the trajectory, the Hamiltonian
is then independent of the control. By Lemma, [8.2.1) we have Ag = 0. By
Lemma we have A; = %)\costJ and A.s: # 0. These costate values lie in
the singular locus. ]

Although the multi-curve of circular arcs is a Pontryagin extremal, we
can invoke second-order conditions to show that it is not a global minimizer.
By considering a second variation, Mahler proved that the circle is not a local
minimizer of the Reinhardt problem [28].

Theorem 8.2.7. The global minimizer of the Reinhardt problem does not
contain any singular subarcs.

Proof. We assume for a contradiction that the global minimizer contains a
singular subarc. The previous theorem shows that the singular subarc comes
from a multi-curve of circular arcs.

We use second order conditions to show that the circular arc is not a local
minimizer on any time interval (¢1,%;) so that the solution to the Reinhardt
problem contains no circular arcs. We consider a deformation of a circular
arc of the form

:(t) = exp ( (ﬁgg ‘/;/,(2))) exp(Jt) = W, (t) exp(Jt),

for sufficiently small s > 0 and compactly supported C'° functions 1)1, ¥ to
be determined on the interval [t1,ts].

We point out that ¢ is not a unit speed parameter so that det(X) need
not equal 1. The cost is

3

t

to to
Xyt =3 [ (197 dg),
1 t1



136 CHAPTER 8. SINGULAR LOCUS

where g~ 'dg is the Cartan-Maurer one-form on SLy(R). This shows that the
cost is independent of parameterization. If g(t) = ¥(¢) exp(Jt), where ¥ is
an invertible C matrix of ¢, then the product rule gives

(J,g7'dg) = (J, Jydt + (J, U 'd¥).

Computing the cost of g5 on [t1, %3] by this formula, we find that
to
cost(gs) = cost(go) — 35 f ($r(£)2(t) — ¢a(t)95(t)) dt + O(s°).
t1
This is a second order variation that is not detected by Pontryagin first
order conditions. Choose nonnegative C* compactly supported functions
¥1(t), %2 = 0 on (t1,ts) such that ¢ () > 0 and 95(t) < 0 on their common
support to make the s2-contribution negative. Then for all sufficiently small

s > 0, we have
cost(gs) < cost(go) = .

The curvatures of the curves t — o;(t) = gs(t)e; are C* functions of s and t.
The curvature functions converge uniformly to the constant positive curvature
of the circle as s tends to 0. We may pick s > 0 sufficiently small so that the
curvatures of the curves are positive. The corresponding centrally symmetric
convex disk in £..; shows that the circle is not a local minimizer of cost. [

Remark 8.2.8. To obtain rough intuition about the perturbation of the circle
considered in the theorem, we consider piecewise linear continuous functions
1 and 1, that are periodic modulo w/3, where

0, t, ift e [0,m/9];
Pi(t) =< t—7/9, Pa(t) = < —t + 2m/9, if t € [7/9,2m/9];
—t + 37/9, 0, if t € [2m/9,37/9].

Then s — 190y = /9 > 0 on (7/9,27/9) and is zero on (0,7/9) and
(27/9,7/3). We plot the multi-curve o;(t) = exp(Jso)V,(t) exp(Jt)s] fort e
[0,7/3], s = 0.12, and sy = —1/8 (to rotate the entire figure) in Figure[8.2.1,
The figure is approximately a smoothed octagon. The functions v; are not C*
and s is so large that the simple closed curve is not convexr. Nevertheless, this
crude numerical example suggests that the deformation in the theorem can
be used to smoothly interpolate between the circle and the smoothed octagon

along an interpolation path that is strictly decreasing in area.
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-0.5

-1.0

Figure 8.2.1: The deformation of Theorem leads to a simple closed (multi)
curve exp(Jso)¥(t) exp(Jt)s} that approximates the smoothed octagon.

8.3 Non-chattering away from the Singular
Locus

Theorem 8.3.1. Consider an extremal lifted trajectory on [t1,t2] and ty €
[t1,t2] such that the lifted trajectory does not meet the singular locus at time
to. Assume that the trajectory is also edge-extremal (8.1.1). Then there exists
an edge {i,j} and a neighborhood of ty in [t1,ts] on which

(X(t),Ar(t)) € U (T*0J)r1.

I={ij}

That is, near %y, the set of maximizers of the Hamiltonian is confined to a
single edge of Ur.

Proof. We prove the theorem in contrapositive form. Assume that in every
neighborhood of %, the set of maximizers of the Hamiltonian is not confined
to any edge of Ur. Reparameterizing by a time translation, we may assume
that tgo = 0. We will prove that the trajectory meets the singular locus at
t =0. We let (X, A1, Ag) be the controlled trajectory with optimal control
function u(t). By the continuity of the Hamiltonian, our assumption gives

(X(O), AR(O)) S (T*OJ){LQ’:}}.
By Lemma we have Ag(0) = 0.
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We let P(t) = Zyw)/{Zu), X (t)) be the normalized control matrix. Set
A1 cost = A1 — 3XeostJ /2. Tt satisfies (by the costate equations [6.7.1)

/ 3
[Al,costy X] + 5)\0037: [J, X] .

1,cost =

By the form of the right-hand-side, A c,s: is continuously differentiable. Define
Y(t):=— Sg[Al,cost,X]dt, and set A := Ag — Y. Let

A(At) = [P(t), A] = <A, P(2)) [P(2), X ()],

viewed as a time-dependent linear function A on sl3(R), along the state
trajectory given by P = P(t) and X = X (t). The costate ODE for Ag takes
the form

A = A(AE) + A(Y, t).

We consider the initial value problem for A with initial conditions A(0) =
Ar(0) = Y(0) = 0. Identifying sl,(R) with R3, we use the Euclidean norm on
the Lie algebra and use the natural matrix norm for A. By Cauchy-Schwarz,
|A|” < |A’|. Then

|Al" < [A'] = [A[A] + A[Y]] < Col Al + ColYT,

where Cy > 0 is any time-independent bound on the matrix norms || A[-, ¢]|
in a small neighborhood of ¢ = 0. In integral form

t t
IA] < Co f ¥|dt + Co f A dt. (83.1)
0 0

We claim A .,s:(0) = 0. Note that A; .s:(0) € X(0)* by the vanishing of
the Hamiltonian (A cost, X )—(Ag, P) at t = 0. Thus, A ¢s:(0) = 0if and only
if [A1,c0st(0), X (0)] = 0. Suppose for a contradiction that [A1 cos:(0), X (0)] #
0. Then |Y| = Cat + O(¢?), for some Cy # 0, and the Gronwall inequality

(Corollary [A.1.3)) applied to (8.3.1]) gives
|Ar =Y = A] = O®*)

and
Ar =Y + O(t*) = —[A1c0s(0), X (0)]¢ + O(2?).
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The control dependent term of the Hamiltonian is

— (AR, P) =1t <[A1,cost(0)7X(O)]7 <X(OZ;—(2@)>> +0(t?).

By Lemma for sufficiently small ¢ > 0 (or for sufficiently small ¢ < 0),
there exists a vertex or edge of Ur, that maximizes this Hamiltonian. If
the set of maximizers is an edge when ¢ has one sign, then the maximizer
is the complementary vertex of Uy when ¢ has the other sign. If the set of
maximizers is an edge (for a given sign of t), by the results of Theorem
the control function has finite bang-bang switching near ¢t = 0. This is
contrary to the assumption that the set of maximizers is not confined to any
edge of Ur.

We claim that A .,.;(0) = 0. The proof is similar, and we give a brief
sketch. By the form of the ODE for A; s, we have A/ .., (0) € X(0)*. It
is enough to show [A] ,.;(0), X(0)] = 0. Suppose for a contradiction that
[A1,c05t(0), X (0)] = 0, but [A] .,(0), X(0)] # 0. We again use estimates on
the size of |Y| and the Gronwall inequality (Corollary to show that
Ar has an isolated zero at ¢t = 0. Then a switching function has an isolated
zero at t = 0, which again contradicts the hypothesis of the lemma.

A1 c0st(0) = 0 implies A1(0) = 3Aostd /2. Also A] .,,.(0) = 0 implies

0 = A1(0) = [A1(0), X(0)] = (3/2)Acost[J, X (0)].

The non-vanishing of the costate vector at ¢ = 0 implies that .5 # 0.
X(0) e RIn Oy = {J}, so X(0) = J. By definition, this is a point in the
singular locus. [

Theorem 8.3.2. Consider a controlled extremal lifted trajectory that does
not meet the singular locus Ssing. Assume that the trajectory (g, X) is also
edge-extremal. Then the control function is bang-bang with finitely many
switches.

Proof. According to the theorem, for every ty € [t1, 5], there exists a neigh-
borhood of £, on which the control takes values in a single edge of Ur almost
everywhere. By Theorem the control is bang-bang with finite switching
along the edge of the control simplex in a neighborhood of each t,. By the
compactness of the interval [tq,t3] the finite switching holds for the entire
interval. O
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Remark 8.3.3. In terms of Reinhardt’s problem, the theorem implies that a
trajectory (g, X) that is extremal and edge-extremal that does not meet the
singular locus Ssing defines a balanced disk K (g, X) € Roq whose boundary is
a smoothed polygon, consisting of finitely many straight edges and hyperbolic
arcs.

Lemma 8.3.4. An extremal trajectory with constant control at a vertex of
Ur does not meet the singular locus.

(This lemma does not rule out the possibility of a chattering arc converging
to the singular locus, as discussed in the next part of the book.)

Proof. We assume for a contradiction that the trajectory meets the singular
locus at time ¢t = 0 with constant control u = e3 € Ur (say). Consider the
solutions to the state and costate ODEs with constant control at enumerated
the vertex e3 of Ur and initial conditions at the singular locus. The solutions
are analytic. At the singular locus, we have A; ¢s:(0) = Ar(0) = 0 given by
and X(0) = J.

Let P, = Ze,/ {J, Ze,) be the normalized control matrix, evaluated at ¢ = 0,
X (0), with the controls at the three vertices e; € Ur. By using the costate
ODEs, we also compute A/ ,;(0) = 0. The following derivatives exist and
have the following values.

A;%(O) = A}{Z(()) = 07 A%(O) = *6)\cost[‘]a P3]

The Lie bracket [J, Ps] is orthogonal to J and P;. Also P, + P, + P3 € RJ.
We have ([J, P5|, P,) = —{[J, P5], P,) # 0. The leading term of the control
term of the Hamiltonian evaluated at control u = e; is
t3 4
—(An(t), Py = —5; (AK(0), P + O(t)
t3 <[J7 P3]7 P’L> + O(t4)

The leading term is zero when ¢ = 3, but it is nonzero with opposite signs
when ¢ = 1, 2. Hence, the maximizer of the Hamiltonian is never ez, when ¢
is small. This is contrary to first-order conditions of extremality. m
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Chapter 9

Circular Control Set

We are interested in a modification of the triangular control set to a
circular disk. This will lead to a modified control problem that we view as a
toy control problem. Insights from the toy problem will be applied in Part
to give a proof of Mahler’s First conjecture. This part of the book is logically
independent from the other parts, and it can be skipped without interrupting
the flow of the text.

Definition 9.0.1 (Circular control sets).

e The circumscribed or disk control set is the set Uz which is the circum-
scribing disk of the two-simplex in R3:

U := {(uo,ul,w) | 0<u < 1, Zuz = 17 Zuzz < 1} :

o The inscribed control set is the set Uy which is the inscribed disk of the
two-simplex in R3:

1
Ur = {(UO,U1,U2) |0 <wu; <1, ;Uz =1, Zzluf S 5}

o Later (in Section[9.9), we will also be interested in control sets which
interpolate between Ur and Ug. For 1/3 < r? we define

Uy := {(uo,ur,ug) | uo + uy + up = 1, uf + uf + uj <r?}.
We denote the boundary (relative to the affine hull) of these sets by dUc,
oU; and 0U, respectively.

143
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Remark 9.0.2. Controls (ug,u;,u2) from Us\Ur give rise to boundary
curves o; of regions which fail to be convex. This is a consequence of the
interpretation of the state-dependent curvatures u; > 0 as a nonnegative
curvature condition.

One motivation in considering these control sets is the following: we
can observe that the triangular control set is invariant under Z/3Z-rotations
while the disk control set is invariant under rotations by the circle group S*.
The latter is important for our investigations, as it will allow us to employ
Noether’s theorem to derive a first integral or a conserved quantity of the
dynamics. A conserved quantity is useful because it facilitates a reduction
in dimension of the original problem — if the group of symmetries is large
enough, reduction by that group may even lead to a direct solution. Other
motivations are enumerated in the introduction to the book.

Until now, we have been exclusively working with the simplex control set
Ur. Now, we change our control set to be Ug, the circumscribing disk of Ur
as described in Definition This change is motivated by the following
theorem.

Theorem 9.0.3. Let ‘H be the Hamiltonian of the Reinhardt optimal control
problem. Assuming that the control set is closed under rotations (i.e., if
A € SOy(R) is a rotation and Z, is in the control set, then so is AdasZ,),
the Hamiltonian H is invariant under the action of the subgroup SO2(R) of

SLa(R).

Proof. The Hamiltonian depends on the quantities X, A;, Ag and the control
matrix Z,. Ignoring Z, for the time being, if A € SO3(R) is an arbitrary
rotation, then let us see how these quantities transform. A acts on trajectories
in b by linear fractional transformations and so, equivalently, we have X —
AdsX = AXA' =: X in the adjoint orbit picture. Now, A; transforms
as A; — AAN A1 =: A since these transformed quantities satisfy the same
ODE:

AN} = AdyA) = Ada[A1, X] = [AdgA;, AdsX] = [Ag, X].

Similarly, we can also see that Ag transforms as Az — AArA~!. Now,
the control set transforms as Z, — AZ,A~!, which may, in general, fall
outside the control set given by Ur. So, if we modify the control set so
that it does not, a simple computation now using the expression for the
control-dependent Hamiltonian in equation (6.4.1]) shows that it is unchanged
under these transformations by A. m
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Remark 9.0.4. Following the discussion at the end of Section the control
set Ur is only symmetric by discrete Z/3Z-rotations and not under general
SO (R) rotations.

9.1 Conserved Quantity for the Circular Con-
trol Set

Recalling the discussion at the end of Section [3.3, we note that we enlarge
the control set Ur to Uc to have continuous SOz (RR)-symmetry in order to
manufacture a conserved quantity for the dynamics. This is achieved by
Noether’s theorem.

The version of Noether’s theorem which we use for optimal control is the
one described by Sussmann [43]. Before recalling the statement, we begin
with a few definitions. We let Q = (M, U, f,$) denote a general optimal
control system satisfying the regularity conditions of Section [6.2. Also, we
assume that the cost functional ¢ is independent of the control as in our case.
In what follows, we will denote the vector field f(u,q) € T,M for u € U by
fu(q). The definitions below are all from Sussmann [43].

Definition 9.1.1 (Symmetry of a control system). Let G be a Lie group
with Lie algebra g and let Q@ = (M, U, f,¢) be an optimal control system. A
symmetry of this optimal control system is a diffeomorphism 1 : Vi — V5
where V1, Vo € M are open such that for every u € U there exist uy,us € U for

which dip(q)(fu(q)) = fu,(¥(q)) and dp(q)(fu:(q)) = fu((q)) for all g € V.

Definition 9.1.2 (Infinitesimal Group of Symmetries). An infinitesimal group
of symmetries of a control system Q is a smooth action T : g — I'°(TM),
which assigns to every Lie algebra element X € g a smooth vector field on M,
such that every diffeomorphism exp(tT(X)) is a symmetry of Q.

Definition 9.1.3 (Momentum Map). To an infinitesimal group of symmetries
T7:9— I'°(TM) of an optimal control system Q, we associate the momentum
map J7 : T*M — g* given by

J7(g,p)(X) = {p, 7(X) ().,
where X € g, e M, pe T/ M and 7(X)(q) € TyM.
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See Abraham and Marsden [1] for the general theory of momentum maps
in symplectic geometry.

Theorem 9.1.4 (Noether-Sussmann Theorem). Assume that Q = (M, U, f, ®)
is an optimal control system as above, let g be the Lie algebra of the Lie group
G andletT:g — I'(TM) be an infinitesimal group of symmetries of Q. Let
p be a lifted controlled trajectory in T* M satisfying the Pontryagin Mazimum
Principle. Then the function J™ : T*M — g* is constant along the trajectory

D.

Problem 9.1.5 (Circular Control Problem). We start with problem [6.7.1]
and enlarge the control set Ur to its circumscribing disk Us. This control
problem is called the circular control problem.

Let us now apply the Noether-Sussmann theorem to the circular control
problem. Define the angular momentum to be A := (Jy, A1 + Ag).

Theorem 9.1.6 (Angular Momentum). We have that the angular momentum
A = (J,A1 + AR) is conserved along the optimal trajectory of the circular
control problem.

Proof. The proof analyzes the SO5(R) symmetry. Our optimal control system
consists of data (g, X, A1, As) € T*(T'SLy(R)). Note that our Lie group here
is SO2(R) and hence its Lie algebra is one-dimensional so3(R) = JR, where J
is the infinitesimal generator of rotations. This infinitesimal symmetry gives
rise to rotations exp(Jf) € SO2(R), which in turn give rise to the following
action on our manifold:

SO (R) x T*(TSLy(R)) — T*(TSLy(R))
(eXp(J9)7 (97 Xa A17 AZ)) — (exp(JG)g eXp(_Je)a Adexp(]@)Xa Adexp(JG)Ala Adexp(JG)AZ)a

where the action on g is by inner automorphisms and the rest are given by
the adjoint action on each copy of sly(R). (Note that throughout, we make
the identification sls(R)* =~ sl(IR) via the nondegenerate trace form.) These
are symmetries by the proof of Theorem [9.0.3 and also since the rotation
action on the control matrix Z, is

Zy Adexp(JO)Zu e Uc.

The momentum map is computed by the canonical pairing between the costate
variables (A1, Az) € T(; x)(TSL2(RR)) and tangent vectors in Ty, x)(TSL2(R))
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giving the infinitesimal rotation action. The first component of this tangent
vector is given by

d
@exp(JO)geXp(—JO) o= Jg—gJ

€T,SLa(R)
= g (g'Jg—1J).
€SL2(R) esly(R)

Thus, we can identify the first component with g~'Jg — J in the Lie algebra
sl3(R). The second component is given by

d

de
which is already in the Lie algebra sl3(R). So, putting all this together, we
obtain the momentum map.

J7((9,A1, X, Ag)) = (A1, A), (Ady—J — J, [, X]))
= (A1, Adg1J — J) + (Ag, [J, X])
= <A1,Adg71J> - <A17 J> - <[A2,X]a J>
= (Ay,Ady 1 J) — (J, Ay + Ag),

Adexp(Jg)X = adJX = [J, X],

where, as usual, -, -), denotes the natural pairing between a vector space and
its dual. Note however, from Corollary that A;(t) = g 1A1(0)g(t) and
so (A1, Ad,-1J) is a constant.

Thus, by the Noether-Sussmann theorem (J,A; + Ag) is a constant of
motion along the optimal trajectory of the circular control problem. ]

Remark 9.1.7.

 Since it is the conserved quantitiy arising from a rotational symmetry,
{(J,A; + Agr) will be called the angular momentum.

e The spurious constant in the expression for the momentum map is a
consequence of the action of SO5(R) on SLy(R) by inner automorphisms.
This means that we could also modify the action to be g — gexp(—J0)
to obtain a valid conserved quantity.

o We also obtain the same conserved quantity for a control set U, which
is a disk of any radius 7 whenever r? > 1/3. (See Definition [0.0.1])
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Conserved quantities are very useful since they introduce constraints and
cut down the dimension of the problem. But an immediate application is
that they give us a constraint on the optimal control matrix in terms of the
state-costate variables, which is what we aim to derive. But before we do,
we make a quick detour to understand the structure of the control sets when
viewed in the Lie algebra su(1,1) of a unitary group.

9.2 Control Sets in the Special Unitary Group

The special unitary group SU(1,1) and its Lie algebra su(1, 1) are intro-
duced in Appendix From that appendix, we know that the Lie algebras
su(1,1) and sl3(R) are isomorphic. This isomorphism is given by the Cayley
transform.

Cayley(sla(R)) = su(1,1).

Under the Cayley transform to su(1,1), the image of the control matrix Z,,

given in equation (3.3.2)), is
1 —1 2(uo + Cuy + CPug)
3 ( 2up + Cuy + Cuiz) ; : (9:2.1)

where ¢ = exp(27i/3) is a primitive cube root of unity.
Now, let 0U, denote the boundary of the disk control set U, of radius r in
R3.
U, := {(uo,u1,u2) |uo+us+us =1, uf+uj+uj<r’}.
The following lemma gives a simplification of the control matrix.

Lemma 9.2.1. The set U, and the circle

e ()

are in bijection by the map (ug,u1,us) — ug + Cuy + Cuy.

Proof. Consider the affine plane IT = {(ug,u1,us) | ug + u3 + ug = 1} and
consider the map L : II — C, defined by L(ug,u1,us) := (ug + Cuy + Cuy).
This map is the restriction of the linear map
1 1 1 Ug
(vo,ur,uz) — |1 ¢ ¢? Uy | =

1C2C U2

N N =
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which has non-zero determinant and so L is an isomorphism of affine planes.
This isomorphism restricts to a bijection between the circles U, and

Gecilar - (21

since

3 Up + Uy + ug)?
0+ Cur + Cug)? = S0 03 2 — ottt v)

3r2 -1
5

[

The above lemma shows that if the control set is U,., then we can take Z,
in general to be

[ —ta Bz
Zu< 5z ia)65u<1’1)’ where

|zl =1, and B >0,

(9.2.2)

where z € C and «, 8 € R. Also, 8z gives the polar coordinate decomposition
of upper-right matrix entry of Z,. With this notation, a = % and 8 =
2|ug + Cu1 + C2uz|. We obtain

’I"27
1-4(¥2) g0
9 3

det(Z,) = (o — %) = (9.2.3)

Later chapters will use the parameter p instead of radius r, where
p:=Bla, p*=6r*—2.
Table shows the square of the radii 7? of the circumscribing disk,

inscribed disk and center of the control simplex Uy and their corresponding
radii when viewed as disks in the complex plane (following Lemma [9.2.1)).
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det(Z,) Relation to Ur r? | Radius (3r*—1)/2inC | (o,8) |p=p/c
—1/3 | Circumscribing disk Ug | 1 1 (1/3,2/3) 2
0 Inscribed disk U; 1/2 1/4 (1/3,1/3) 1
1/9 | Center (1/3,1/3,1/3) | 1/3 0 (1/3,0) 0

Table 9.1: Various control sets and their radii.

9.3 Quadratic Equation for Optimal Control

Henceforth, we let Z* denote the optimal control matrix for the costate
equations m (with the control set U,). It depends on a complex control
variable z. We derive a constraint on Z* from angular momentum conserva-
tion.

We begin with a few lemmas.

Lemma 9.3.1. The set of maximizers of the Hamiltonian (considered as a
function of the control) when the control set is the disk U, is either the entire
disk or just a point on OU,.

Proof. This is a direct corollary of Lemma [7.3.1 O

Theorem 9.3.2. Let Z* be the optimal control matriz for the costate equations
(6.7.1) (with the control set U,). We then have

6 (Ar,Z*)
(otlzs s 7

=0,
where (szL* is the functional derivative with respect to Z *

Proof. We give two proofs of this fact. For the first proof, we differentiate
the angular momentum (in Theorem [9.1.6)) with respect to time, to obtain

Note that the Js, in this theorem is an element of su(1,1) and is given by by Cayley

transform of J.
0 -1 -7 0
J5u=Cayley(1 0 )=(0 z)
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the following.

0= <J5u7A, +A > < SUy Ala P* AR] [_Al + gAcostJ5u7X:| - <P*7AR>[P*7X]>
= (Jo, [P* AR] (P*,Ap)|P*, X]) (9.3.1)
= Jyadge AR T (by Corollary [6.5.4)
87+ (X,Z*) ’

where P* = Z*/{(Z*, X).

For the second proof, note that from Lemma [9.3.1) the Hamiltonian is
maximized at a point on 0U,. By the form of the control matrix Z*, on the
boundary of U, we obtain two constraints.

{(Jou, Z*) = constant, (Z*,Z*) = constant.

The Hamiltonian maximization of the maximum principle can be considered
as a constrained maximization problem subject to the above two constraints.
The functional derivatives of the above two constraints are J,, and 2Z*
respectively. By Lagrange multipliers, we find the derivative 1 /6Z* should
lie in the span of the derivatives Jy,, Z* of the constraints. That is, adzx(
is in the span of adz«J,,. Thus,

oH
<adZ* 57+ ) J5u> - O,

which gives us the required. ]

57+)

We also have the following result, which shows that the angular momentum
and the Hamiltonian are in involution with respect to the Poisson bracket
{, }ez on the extended state space T*TSU(1,1).

Proposition 9.3.3. The angular momentum A Poisson commutes with
the Hamiltonian on T*(TSU(1,1)), provided the control set is rotationally
tnvariant.

Proof. We use the Poisson bracket on the manifold 7*(7'SU(1,1)) derived
in Section which we recall here. If F,G are two left-invariant smooth
functions on T*T'SU(1,1)), their extended space Poisson bracket is

0F G OF G 0F o0G
{F,G}ex = <A1, [5_A1’ 5—A1]> + <57, 5_A2> - <5_A2’ 5X
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We compute using Theorem that

{Aa H}em = {<J5ua Al + AR> ) H}em = <J5U7 {Al + AR) H}ez>
= <J5ua A/l + A/R> =0,

where A7 and A’; are shorthand for the expressions on the right-hand side of
the ODEs for A; and Ag. O

Simplifying equation (9.3.1]) above, we obtain a more symmetric expression
for the optimal control matrix, which is homogeneous in Z*.

(o, |27, X|IXZ*, AR) = {Ja, | 27, AR| XZ", X ). (9.3.2)
This is the same as saying
Jou, 27|, X Jsu, 2], AR
d <Z*,;(> b <Z*,A]R> ) =0. (9.3.3)

Proposition 9.3.4. The conservation of angular momentum gives the fol-
lowing constraint on the optimal control matrix.

R

Proof. From (9.3.2) and Proposition specialized to [Ja, Z*], Z*, X,

and Ag, we obtain

(Jou, [AR, X])- (9.3.4)

<[[<]sua Z*]a Z*]a [AR7 X]>
2 (9.3.5)

0= <[J5u,Z*]’AR><Z*7X>_<Z*aAR><[J5uaZ*]3X> ==

For any Z*, J, € sly(C), we have that
(Z*,1Z%, Ja]]| = (adz*)sz =2{Z*, 7" ) Jo — 2{Z%, Jsu) Z*.
If we substitute this equation back into (9.3.5]), we obtain the result. O

Definition 9.3.5 (Weighted Determinant). For
A= ( e o ) € sl,(C)

oy —ln
and o, B € R, define the weighted determinant
det(A, a,ﬂ) = —(Oé2l%1 + lelglgl).
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If A e su(1,1) and o?,3? € R, then det(A,a,8) € R. The ordinary
determinant has weights a = 8 = 1.

det(A,1,1) = det(A).

Proposition 9.3.6. The optimal control (9.2.2) in the circular control case
U, is given by the root z of the quadratic equation (9.3.8).

Proof. We know by Lemma that the optimal control matrix Z* takes
values in the boundary of the disk. By equation (9.2.2)), we can take

« [l Bz
(5o %), 059
where |z| = 1. With this notation, (9.3.4)) becomes
o? — B2
(Z*,[Ar, X]) = %Uw, [Ar, X1), (9.3.7)

where o, 5 € R and a > 0.
Simplifying this, we obtain the following quadratic equation in z

a[AR,X]21z2 — QiB[AR,X]HZ + Ot[AR,X]lz = 0, (938)

where the subscripts index matrix entries. We then solve for z to obtain two

roots
oo [ BlAR X + v/~ det([Ag, XT, 0, §)
* a[AR,X]21 .

(9.3.9)

]

This determines the optimal control explicitly as a function of the state-
costate variables. We see how modifying the control set to be more symmet-
rical has resulted in a conserved quantity which has in turn given us valuable
information about the optimal control.
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Chapter 10

Hyperboloid Coordinates

10.1 Coordinates

We begin with the following lemma.

Lemma 10.1.1. The Cayley transform of

<(Z 2 > e sly(R) s ("f - ) e su(l,1), (10.1.1)

z

where z = (b+¢)/2+ia€C andt = (b—c)/2 € R.
Proof. This is an easy calculation. ]

The matrices in su(1,1) with a given determinant d = det(X) are in
bijective correspondence with the points on a hyperboloid

<if , )Esu(l,l)“’{(t,z)GRXC’tz_VF:d}'

z —it

This observation justifies our nomenclature of hyperboloid coordinates, for
the Cayley transform of the sly coordinate system. A matrix in su(1,1) is
determined by its determinant and the complex number z, up to the ambiguity
in the sign of ¢.

Notation.

o For a complex number z, and € € {—1,0, 1}, we set [z] := 1/€ + |z|?,

and [z] := [2]1 = /1 + |2|%
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o We write
R(z1,22) := R(Z122) (real part)

to denote the R-bilinear form on C, derived from the real part of a
complex number.

We transform the ODE for X, Aj, Agsla(R) into ODEs given by hyper-
boloid coordinates. We now work consistently with the Cayley transformed
version of X, Ag, and A; in su(1,1). The ODEs from the costate equa-
tions [6.7.1 retain exactly the same form, except that J and Z* must be
replaced with their Cayley transforms J,, = diag(—4,%) and Z,,1) € su(1,1).
Using these, our assumptions, and Lemma we can write

o (79 i ) e (R ) A‘<_ﬁ

(10.1.2)
for variable complex numbers w,b,c € C, with [b|> > —e. The form of
the expressions ensure that the constraints det(X) = 1 and (X,Ag) = 0
are satisfied. The parameters ¢ € {—1,0,1} and d; € R are constants of
motion, and det(A;) = ed?. The sign of the upper-left matrix entry —i[w]
of X is determined by the sign convention on the orbit O;, described in
Lemma Note that (w, [w]) lies on the upper sheet of the hyperboloid
{(w,t) € C x R | t? — |w|* = 1}, which justifies our nomenclature.

Remark 10.1.2. The form of element Ay is general enough to represent
a general element of su(1,1). We take d; € R*, except when Ay = 0. If
det(A;) = 0, then Ay belongs to the nilpotent cone, which consists of three
congjugacy classes: the vertex of the cone (the zero element) and the positive and
negative cones (the two regular nilpotent classes). We can take dy =€ =b =10
(for the zero element) or (dy,€) = (+1,0) (for the regular nilpotent elements).
In the case of the zero element, we omit the ODE for b. When A, is reqular
semisimple (det(A;) # 0), the scalar di parameterizes nonzero elements within
a given Cartan subalgebra. The hyperboloid has one or two sheets, depending
on whether Ay is split (det(A1) < 0), or elliptic det(Ay) > 0. In the split case,
the coordinate system breaks down around the neck |b| = 1 of the hyperboloid,
and a better coordinate system is introduced in Remark[10.2.5

In the case of circular control, there are two real parameters «, 8 such
that det(Z*) = a? — 2. See Table (9.1) and Equation (9.2.3). We assume

- R(c,w)
[w]

)
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in this chapter that «, 8 are both positive, and we set p = §/a > 0. In the
case of circular control, we assume the star condition in the form (X, Z*) < 0.
For a control matrix given by equation (9.3.6) (which is already in su(1,1)
by the results of Section and using Lemma, the star condition in
these coordinates can be expressed as

pw, 2) = [w] = pR(w, 2) = ——

We consider the system on a region slightly larger than the star domain
defined by the condition p(w, z*) > 0 (and ¢ # 0), where z* is the maximizing
root of the quadratic equation for the control.

10.2 Hyperboloid ODE

The ODEs in Lie algebra coordinates for X, A; and Ag were derived in
Sections [6.5] and We now write them out in the hyperboloid coordinates
we have defined above. This will enable us to better understand the dynamics
near the singular locus.

Theorem 10.2.1 (ODE in Hyperboloid Coordinates). In hyperboloid coordi-
nates, the dynamics for X, A1 and Ag take the form

w — plw]z*

w =i OwD (10.2.1)
b = 2 ([b]ew + b[w]), (10.2.2)
c = i(l — p2)§R(c§0(w, C)’ Z*)z*

2[w]p(w, z*)
— i ((2da[B]e + Bheost)w + 2bdy[w])) - (10.2.3)

where z* is the Hamiltonian maximizing root of the quadratic equation for
the optimal control, and & = & (w,c) := 2 + |w|? — (wc/|c|)?. Here w,b,c are
complex valued functions, satisfying the restrictions of Section [10.1.

Proof. This is an elementary computation using the hyperboloid form of the
state and costate equations as in equation (|10.1.2)) and substituting them
into the state and costate ODE derived in Sections [3.4 and [6.5 ]
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Similarly, we have expressions for the Hamiltonian and the angular mo-
mentum.

A = 2d,[b]. — 2% (10.2.4)
H = (2dy R(w, b) + (2dy[bl. + Sho)w]) — L= PLOIE) 05

p(w, z*)[w]

Corollary 10.2.2. The following additional ordinary differential equations
hold.

,_ R, w) _ R(iw,z")
w| = =p , 10.2.6
O Tl T w2 1029
[]. = R, 5) = 2R (iw, b), (10.2.7)
[b].
R(w,c)\" _ :
( ] > = 2d;R(iw, b). (10.2.8)
Moreover, the overall form of the ODFEs is pseudo-linear.
/ w
v b
(b) —id| (10.2.9)
c *
z
where A is a 3 x 4 matriz with real (rotationally invariant) entries.
1/p* 0 0 —plw]/p*
2[b]. olw] 0 0

A- (1= PAR(cto(w,0),2") |

- cos -2 € —2

(10.2.10)
where p* := p(w, z*).

Proof. These equations are direct consequences of Theorem [10.2.1 O]

Remark 10.2.3. The equations have a time-reversal symmetry. If (w, b, ¢, z*)
is a solution, then so is (W,b, ¢, 2*), where

@(t) = D(—t), b(t) =b(—t), &t)=2c(—t), Z*(t)=z"(-1).
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Remark 10.2.4. To double-check answers, we rederive the fact that the
angular momentum and Hamiltonian are constant along trajectories. To show
the constancy of A, we show its derivative is zero. This is a direct consequence

of (10.2.7) and (10.2.8). The direct verification of the constancy of H is a

tedious but direct calculation.

Remark 10.2.5. As mentioned in Remark in the split case e = —1,
the coordinate system for A, breaks down around the neck of the hyperboloid.
It is helpful to replace b with better coordinates (r,6). In the split case, we

write

ir exp(if)vr?2 + 1

Ay =dy (exp(—i&)\/m —ir ) , TER, >0

and we replace the ODE for b with the system

r' = 2v1+ r2R(iw, exp(if)),

0 = 2[w] +
[] vrZ+1

10.3 Optimal Control

Assume ¢ # 0, and set
W :=cw/lc|, Z:=c¢cz/|c|,

Note [w] = [@] and p(w, 2*) = p(w, 2*).

2r R(w, exp(if))

(10.3.1)

Lemma 10.3.1. If ¢ # 0, the optimal control is z* = cZ*/|c|, where Z* is a

root of the quadratic polynomial

Q(2) := & + &Lz + &7,

where
€0 = &o(@) =2+ [0 — @* = 2 + [w]* — (w&/|c|)
&1 = &(0) := 26(717 - U:f)[wf]],

(10.3.2)
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Proof. The lemma follows from the explicit description of the quadratic
equation for the control in Proposition [9.3.6]

We can give a second proof as follows. The dependence of the Hamiltonian
on Z (that is, on the circular control set U,), comes through the term

R(w — plw]z,¢) _ [c|R(@ — p[@]2,1)

— = ~ = = =: H Z .
u(w, 2)[u] (@, 5)[a] o
We compute
PoFexp(io))  —iQ(E)ole
df =0T Taz2[w]
where () is the given quadratic polynomial. Thus, the derivative vanishes and
the Hamiltonian is extremal when Q(2*) = 0. O

Thus, the root Z* is one of the two roots

(& + \/Z)
260

Let us now turn to selecting the Hamiltonian maximizing root.

A= 67 1 46

Lemma 10.3.2. On a punctured neighborhood of the singular locus, the root
zZ* = ¢z*/|c| of the quadratic equation (10.3.2) giving the optimal control

satisfies Z* = 1 + O(|w|) and z* = ¢/|c| + O(|w)).

Proof. Near the singular locus, the coefficients are 0 # & = 2 + O(Jw|?) and
& = O(|w|). Using this, we find the discriminant of the quadratic polynomial

(10.3.2) is a positive real number and equals
A= 4|€0|2 + 512 =16 + O("U)|2)

Up to a positive scalar, the Hamiltonian ((10.2.5) depends on the roots Z of
the quadratic through the term
plw]R(z,c) — R(w,c) _ p[@]R(Z) —R(@) _ +pVA

| p(w, z)[w] - (W, 2)[@] -7 + O(|lw|). (10.3.3)

The Hamiltonian is not constant in Z, and A # 0. The star domain defines a
simply connected set given by the inequality

0 < (@], 1) = [@] — plw].
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If follows that a coherent Hamiltonian-maximizing choice of the sign of ++v/A
can be made throughout the star domain. The big-oh estimate ((10.3.3)) shows
that the sign of the square root should be positive. So, the maximizing root
z* of the quadratic in (9.3.8)) is

o G CEOAVA) e (10.3.4)
c| e 2& c]

which gives the required. ]

10.4 Application to Abnormal Solutions

In this section, we assume that p = 1 (inscribed circular control set),
Aeost = 0 (abnormal solution), and give a proof of the following theorem.

Theorem 10.4.1. If p = 1 and Aeost = 0, then there does not exist a periodic
solution to the control system of ODFEs such that Ag is nowhere zero.

The first lemma gives a simple formula for the Hamiltonian and system of
equations.

Lemma 10.4.2. Assume p =1, Aeost = 0. Assume Ag(t) # 0, for allt. Then

X = _ [AR’X]
2(AR, AR’

Ay = [Ag — K, X],

H = (X,K)+ M

where

_ (iA2 K
= (% hn)

s a constant.
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Proof. Ag # 0 implies ¢ # 0. Let Z* be the Hamiltonian maximizing root of
the quadratic equation ((10.3.2). We claim

w— plw]z*  &c

plw, %) Jeln’

(10.4.1)

Rw— pulee) e
w(w, 2wl 2wl (10.42)

where & = 2 + |w|? — (wé&/|c|)? is given by its usual formula, and where
n = n(&,&) = V& + & > 0 (noting that & + & is a positive real number).
We prove both identities at the same time. Let lhs and rhs be the left and
right-hand sides of the first claimed identity (10.4.1). Combined as a single
fraction, the numerator of lhs* — rhs® can be written as a polynomial in z*
with coefficients that are functions of W, c,c. By a symbolic calculation in
Mathematica, this polynomial is zero modulo the quadratic relation (10.3.2).
Thus, lhs = +rhs. We then substitute +rhs for lhs into the second claimed
identity and choose the sign that makes the entire expression positive
(because this term is to be maximized in the Hamiltonian). With this choice
of sign, both identities hold.
We have by direct calculation that

(Ap,Ar) _ |c[*n? _
- > 07 - )
2 4w]? 2 2[w]
and the rightmost term is equal to the control-dependent term of the Hamil-
tonian ((10.4.2). We compute
X' =r[Ag,X], where w' = ircty/[w]>.
Comparing with the ODE (|10.2.1]) for w, the ODE for X follows.
The ODEs for w, b, ¢ take the following form
w' = —i&oc/(|c|n), (10.4.3)
dit = —c = 2id; ([b]ew + b]w]) . (10.4.4)

Hence, Ki5 := bd; + c € R is a constant. Then using conservation of angular
momentum, K = A; + Ag equals the constant as stated in the lemma. The

Hamiltonian (10.2.5) is
<AR7AR>

M= 200 (R(w,b) + [BLJw]) + 51T = XA+ [P

{(Ar,Ar)  lcn
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Expressing these formulas back in terms of X, A, K, we obtain the result.
The ODE for Ap is obtained by the ODE for ¢ in ((10.2.3)), by setting p = 1
and A5t = 0. O

Remark 10.4.3. If we assume the weaker condition p =1 and Agr # 0 then
a similar argument shows that the equations take a related form

J = 9X, Ay = [A, X],
X/ — _M, AIR - _Al + §)\costjsu,)( *
2(Ar, Ary 2

Lemma 10.4.4. If K, X, Ar is a solution to the equations of Lemma [10.4.2
then so is Ad,K, Ad, X, AdjAr (where g € SU(1,1)) and they also satisfy the
relations listed at the beginning of the section.

Proof. This is simple to verify once we use the fact that the trace form is a
non-degenerate invariant symmetric bilinear form and using properties of Lie
brackets and bilinear forms. ]

Lemma 10.4.5. Assume Ag(t) # 0, for all t. Assume p =1, and Aeost = 0.
Then

(Ar,Ag)" = 0.

Proof. Let dg := (Ag,Ag). The ODE for Ag gives dy = 2r, where

ri= {[Ag, X], K> = (e — cw)iA + ——(Kis€oc — K12&8).

[w]
Using the conserved quantities K5 and A, the ODE ((10.4.4)) can be written
d = E%E ~i(wA + 2K [w]). (10.4.5)

We compute 7’ by using (10.4.5) and (10.4.3) in a tedious Mathematica
calculation to obtain

Since ‘H = 0 identically, we find that 7’ is constant, and d = 0 as claimed.
(Adding the multiple of H before taking the final derivative significantly
simplifies the calculation.) O
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Proof of Theorem. Set
dR = <AR, AR>

By the preceding lemma, dr is a polynomial in ¢. If also periodic, dg is
constant. By the formulas derived in the previous proof, we have orthogonality:

r = X[Ar, X], K) = 0.
We write K as a linear combination of a basis of su(1,1):
K =rmX+mrAgr+ 7’3[AR,X].

Since K and [Ag, X] are orthogonal, we have r3 = 0. The vanishing Hamilto-
nian implies 7, = 4/dg/8. In particular, r; is constant. Then

(K,K) = dp(~1/4 +13),

and this implies that ry is constant. Then using the ODE for X and Ag, we
obtain
0= K/ = ’l"lX/ + ’I'QA/ = (—1/4 + 7‘2(1 - Tg))[AR,X].

This implies that 7, = 1/2 and (K, K) = 0. But K # 0. Thus, K is regular
nilpotent. We also have that (X, K) is constant. This is the locus of a
horocycle in hyperbolic space. Also X', which is proportional to [Ag, X],
is never zero. Hence X is not periodic, moving along the horocycle for all
time. [

Remark 10.4.6. We find that nonperiodic abnormal solutions exist. Follow-
ing the proof of the lemma, we impose the condition (Ar,Ag) = 8 and set
K = X + Ag/2. Then K is a nilpotent constant, and the ODE for X becomes
X' = —|K, X]/2, which is Laz’s equation with constant —K /2, which is easily
solved.



Chapter 11
The Fuller System

In this chapter, we restrict to normal solutions, and take A, = —1. The
singular locus, as defined in Section 8.2 is the region of the cotangent space
T*(TSL2(R)) given by

Sung = { (0-3,5,0) | g0 & SLa®) | = SLa(R) x sa(R) x aB) x s1(R).

Recall that Pontryagin extremals which avoid the singular locus that
are also edge-extremal are given by bang-bang controls with finitely many
switches. (See Theorem[8.3.2]) The global optimal trajectory of the Reinhardt
control problem with the control set Ur cannot stay within the singular locus
for any positive interval of time. (See Theorem [8.2.7])

By Lemma [8.3.4] if we are considering the control set Ur, for a Pontryagin
extremal to approach the singular locus, the control must switch infinitely
many times around the boundary of Uy in a finite interval of time. This is
the chattering phenomenon (see Fuller [11] and Zelikin and Borisov [50]).

If we use a control set U, which has a smooth boundary, we would expect
the optimal control to perform infinitely many rotations along the boundary
0U, to approach the singular locus in finite time. A system with exactly this
behaviour is described in Manita and Ronzhina and the associated trajectory
is spiral-like [30]. The results of this section are motivated by that paper.

These results warrant a study of the behavior of the system near the
singular locus. To this end, we introduce convenient coordinates and re-
express the state, costate and optimal control equations in these coordinates.
Throughout this section, unless otherwise specified, we work with the circular

165
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control sets U, and we assume that the control matrix parameter « is positive.
(See Section [9.2).

We will find that the system of equations we obtain is a special case of
the Fuller system, which we define in the following way.

Definition 11.0.1 (Length-n Fuller system). Let F = R or F = C. Let
zi : (0,€) — F™ be functions, where z, is nonzero on (0,¢€), and let A be a
nonsingular m x m matriz with coefficients in F. Let | - || be the Fuclidean
norm on F™. The Fuller system of length n, (real or complezx) dimension m,
and multiplier A is the system of ODEs given by

, Az,

/ / /
Zn - Z:n_]_, Zn_l - zn_Q, . o Z2 - Zl, Zl

(11.0.1)

l

Remark 11.0.2. By identifying C with R?, a Fuller system of complex
dimension m can be written as a Fuller system of real dimension 2m. We are
particularly interested in the Fuller system of complex dimension 1. In that
case A =y € C*, a nonzero complex scalar. By scaling each z; — z;/7, the
constant +y in equation scales by v — 7/|7y|. Thus, there is no loss of
generality in assuming that |y| = 1.

11.1 Trajectories near the Singular Locus

An advantage of switching to hyperboloid coordinates is that at the
singular locus, we have w = b =c = 0.

Assumptions. In general, the determinant d of A; may be positive, negative
or zero. The determinant is constant along trajectories. Different coordinate
systems (other than the one presented below) need to be used when d =0 or
d < 0. Here, we make the assumption d > 0, because this is the case for the
singular locus, and set d; = v/d > 0. We also assume that the sign of (J, A,) is
positive, because that is the sign at the singular locus: {J,3JAcost/2) = 3 > 0.
The sign d; > 0 in Ay is chosen (according to our assumptions) to make
{(Jou, A1) > 0. We also have € = 1 and [b]. = [b], based on the value of € at
the singular locus.

Assumptions. At the singular locus

H=0, A=3, d=3/2, €=1, o= —1 (11.1.1)
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These values are constant along extremal trajectories. We assume these
values of the constants throughout this section. We consider an extremal
trajectory with the property that c(to) # 0 but as we follow the trajectory back
in time there is a most recent time t; < to when c(t;) = 0. We assume at
time t1, the trajectory meets the singular locus: w(t,) = b(t1) = c(t1) = 0.
Reparameterizing by a time shift, we assume t; = 0 and find ty > 0 such that

w(0) = b(0) = ¢(0) =0, and c(t) # 0, forte (0,t). (11.1.2)

Definition 11.1.1. We write

fi=Ff+0(f3) (11.1.3)

to mean that for some ¢; > 0, and some C > 0, we have |fi(t) — f2(t)| <
C|f5(t)| for all t € (0,t1). By a punctured neighborhood of the singular locus,
we mean an interval (0,¢;) on which c is defined and nonzero. (The definition
of Landau’s O here departs slightly from the definition before Lemma [8.1.5
because the definition here is one-sided and uses absolute values.)

The aim of this section is to analyze the asymptotic behavior of solutions
as t tends to zero. With minor modifications, the same analysis will apply to
trajectories approaching the singular locus from the left on (—t#;,0).

Theorem 11.1.2. In the context of the assumptions of this section, let w,b,c
be a solution to the ODE of Theorem [10.2.1 on (0,t1), with c(t) # 0 for allt €
(0,t1). Assume the solution extends continuously to w(0) = b(0) = c(0) =0
at time t = 0. The ODEs and solutions w, b, c satisfy the following estimates.

/ . C
W= e O(|wl),
b = 2w + O(|b)),

d = —3ib+ O(|c| + [bw?| + |b]*|w]).
lwl=0(t), [b]=0(t), lc|=0(@), I+ [bw?|+[blw] = O*).

Remark 11.1.3. The proof uses the assumptions dy = 3/2 and Aot = —1,
but not the assumptions H = 0 and A = 3. If we do not assume the circular
control condition of Lemma but only that |2*| < 1, then the ODE for
w takes the form

w' = —ipz* + O(|w)).
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Proof. We start with some easy approximations of the sizes of terms in the
ODEs. The terms [w] and p(w,z*) in the system of ODEs tend to 1 as
t — 0. The right-hand side of the ODEs are bounded near ¢ = 0 and the
initial conditions are w(0) = b(0) = ¢(0) = 0. Thus, |w|' < |w'| < C, so that
|lw| = O(t). Similarly,

o] = O(t), |c| = O(2).

Feeding these bounds back into the ODE ({10.2.2)) for b, we obtain |b|' < |b| =
O(t). Thus, |b| = O(t?). Now

[w] =1+O0(wf), [b] =1+0(bP), w(w,z*)=1+O0(w)).
We return to the ODE for w and use Lemma to write it
w' = —ip[w]e"/p + iw/p = —ipc/|c| + O(|w]).
We return to the ODE for b and write it
b = 2i[bJw + 2ib[w] = 2iw + O(|b]).
The ODE for ¢ takes the form ¢ = A(c) + f, where

o - R0 g

is a bounded operator, which is linear in the real and imaginary parts of ¢
through the subterm c&y(w,c) = 2c + |w|?c — cw?. The inhomogeneous term

fis

—i(2bdy [w] + (2d1 [b] + BAcost)w)
= —3ib[w] — 3i([b]e — Dw
= —3ib + O(|b]|w|? + |b|*|w)|).

So the ODE for ¢ takes the form
d = —3ib+ O(|bw?| + [b]*|w| + |¢]).

We then have || < |¢/| < Colc| + O(t?), for some Cy > 0. So || = O(t3).
This completes the proof. n
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11.2 Hamiltonian Dynamics of the Truncated

System
Following Theorem [11.1.2 we create a truncated system of ODEs given by
¢ = —3ibp (11.2.1)
by = 2iwp (11.2.2)
Wh = —ip—t-, (11.2.3)
lcr|

where the big-oh terms are discarded. This new system governs the dynamics
of the Reinhardt system very close to the singular locus. We introduce new
coordinates

2= cr/(6), 2 = Cp/(6p) = —ibr/(2p), 21 1= cp/(6p) = wi/p
(11.2.4)

so that the truncated system in equations (11.2.1)), (11.2.2)), (11.2.3) becomes

25 =29, 2o=21, 2j=—1—. (11.2.5)

This is the Fuller system of length 3, complex dimension 1, and multiplier —:.
We also write zp = —i23/|23|, so that 2] = 2. In this section, we study this
Fuller system.
The truncated Hamiltonian and angular momentum are defined as
i

HF = é (z221 — 2221) + 2323

.AF = 2222 — (2123 + 2123) .

(11.2.6)

Remark 11.2.1. These definitions come from the leading term of the Hamilto-
nian and angular momentum for the Reinhardt system. Writing the Reinhardt
quantities H and A as functions of w,b,c and z* = c/|c| + O(t) and their

conjugates, we formally expand using (11.2.4)).
H(twp, twp, t2bp, t2bp, t3cp, t3ep, - - - ) = 6p*t*Hp + O(tY)
Atwg, tip, t2br, - - - ) = 3 + 6p°t*Ar + O(t%),

Also, if a Hamiltonian for the Fuller system depends on a control through
a term R(z3,u), where the control u satisfies |u| < 1, then the mazimized
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Hamiltonian is achieved when u = z3/|z3|, and the term in the Hamiltonian
becomes R(z3,u) = /2323, as we find in the formula for Hr. Thus, Hp is to
be viewed as the mazimized Hamiltonian.

Theorem 11.2.2 (Fuller Hamiltonian System). The Fuller system (11.2.5))
is Hamiltonian with respect to a non-standard Poisson bracket (11.2.7). The
angular momentum is in involution with the Hamiltonian with respect to this

bracket (11.2.9). The Poisson bracket satisfies the Jacobi identity.

Proof. We regard zi, 2, and z3 as coordinate functions C* — C and let Z;
denote the conjugates of these coordinate functions. For smooth functions
F,G : C3 — C, expressed as functions of z; and Z;, we define their non-
standard Poisson bracket as

{F,G}p:= ) (~1)2i

j=1

L2(ZEIG_CPIGY 2(LIFC, IPIGY 2(FPIG TP i)

8zj (324_]' 524_]' 82]'

3
<8F oG oF 8G> (11.2.7)

- — — Ao bl — + == 57— == — ==
1 \ 021 0Z3 07Z30% 1 029 0Zy 0%y 029 1 \ 0230z 0% 0z3

(11.2.8)

We can now verify directly that the Fuller equations ((11.2.5) become

zi = {zla HF}F)
2y = {22, HF}F,
zy = {23, Hr}F,
which are Hamilton’s equations for this Poisson bracket. We can also verify

that
(Hp, Ap}p =0 (11.2.9)

and that the Jacobi identity is satisfied. m

Definition 11.2.3 (virial action). Define the virial group to be the two-
dimensional scaling group G = SO3(R) x R.g. The virial group acts on the

Fuller system (11.2.5)) by the rule

(exp(i0),7)-(21(), 22(t), 23(t)) := (exp(i@)rz1(t/r), exp(i6)r° 22 (t/r), exp(if)r’z3(t/r)).
(11.2.10)
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The name virial group comes from a similar group that goes by this name,
which acts on the Kepler dynamical system [g].

If z = (21, 22, 23) is a solution, then (exp(if),r) - z is also a solution. We
also have an involution given by time reversal

T (21(t), 22(t), 23(t)) := (Z1(=1), —Z2(—1), Z3(—1))

that carries solutions to solutions.

It is noteworthy that the rotation group SO3(R) is a symmetry of the
system and as a result of the classical Noether theorem, we recover Ar as a
conserved quantity. The truncated angular momentum and the Hamiltonian
are ezactly conserved for the truncated system. Both are identically zero
along trajectories that approach the singular locus. The next proposition
shows that the Poisson bracket in arises via a symplectic structure
on C3.

Proposition 11.2.4. Let F,G be smooth, real-valued functions on C3. Con-
sider the following symplectic form on C3:

3
wp =)
=1

Let F and G denote the Hamiltonian vector fields of smooth functions F,G
with respect to this symplectic form. Then we have

(=1)
2i

de AN d24_j, (11211)

{FaG}F :wF(ﬁaé)'

Proof. We claim that

F = Z(—l)j2i< oF 0 F ¢ ) (11.2.12)

A A=
(924_3' 6zj UZ4—j é’zj

To see this, we check that if F’;hs is the right-hand side of ((11.2.12)), then the
defining conditions of F' all hold

wr(Fops, 0/02y) = (dF,0/0z, = OF |0z,
wp(Fps, 0/0%) = (dF,0/0%), = 0F /0%, k=1,2,3.
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We leave this as a routine exercise for the reader. Similarly,
= . oG 0 oG 0
G = —1)Y2 | ——=— — — .
Z]:( ) ((’/5243' 6zj 8274,j 8zj>

From these explicit formulas for F and é, we find that the Poisson bracket
of two functions F' and G is

(F,G)r = (dF,G) = wr(F,G) = Y (172 (aF ¢ _oF G ) |

623 624 —j 8_2]'624_j

and thus, we obtain the required. n

We can also generalize to the length n Fuller system of complex dimension
1 and multiplier v = ™.

/

2= Zn-1, A1 =Zn-1,""" s 21 =7%/|%| =20, v=1i". (11.2.13)

Definition 11.2.5 (Fuller symplectic form). On C", we have the following
symplectic form.

Wy 1= 72(—1)7'_1 dz; A dZp_ji1.
j=1

Theorem 11.2.6. The length n Fuller system (11.2.13)) is the Hamiltonian
vector field (with respect to the Fuller symplectic form) of the Hamiltonian.

:Z R(2;,1"2n—j).

Jj=0

The angular momentum

n

+1
Z J‘SR " ZJ,Zn j+1)

is conserved along this system.
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Proof. If G is a smooth function, the above proof generalizes in a straightfor-
ward way to give the following expression for the Hamiltonian vector field of

G:
1 ¢ ; oG 0 oG 0
! _11—1(_ o Ge )
7;( ) OZn—j+10%j 02 0Zn—_ji1

Using this expression, we can compute the Hamiltonian vector field of H,,
and we recover exactly the system (11.0.1]), showing that

G -

2,’3;1 = {Zj,%n}, jI 1,...,1’L.
Differentiating H,, and A,, along the length-n Fuller system shows that they
are conserved. O

11.3 Log-Spiral Solutions

The system (11.2.5) admits the following outward-moving logarithmic
spiral solution, for ¢ > 0.

* _ 1 3—1

5 () = 15t (11.3.1)
* (3 B Z) 2—1i

z5(t) = Tt
* (2 - Z)<3 - Z) 1—3

Zi(t) = —it™"

u*(t) = pt™*

Here i = v/—1 in the formulas[]] Other log-spiral solutions are obtained by
the action of the viral group G. Note that the log-spiral is self-similar by a
one-dimensional subgroup of G:

We can also verify that Hp(25,25,27) = Ar(23, 25,27) = 0.

1The well-known Euler-Manchin identity (3 —4)(2 —i)(1 — %) = —10i is used to verify
the solution. In a different context, Manchin-like formulas are used to compute digits of .
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Time-reversal 7 transforms the outward log-spiral into an inward log-spiral.
The inward spiral is defined for ¢ < ;.

1

z3(t) = Z3(t1—1t) = E(tl — )3t
50 =70 - = - D g
)= F(t—t) - %ff”)(tl )

25(t) = —Zi(ty —t) = —i(t; — t)"

Here t; is arrival time at the singular locus. The trajectory can be verified by
differentiating. During approach to the singular locus, the optimal control
for the inward log-spiral performs an infinite number of rotations along the
circle 0U, in finite time.

11.4 Literature on Fuller Systems

Fuller systems (over R) were first described in Fuller [11] and arises as the
Pontryagin system of what is now called the classical Fuller optimal control
problem. This problem can be described as

Q0
=y, vy =u, f z2dt — min,
0
with initial conditions z(0) = zo, y¥(0) = yo and u € [—1,1] is a control
variable taking values in an interval. The optimal trajectory for this problem
consists of an arc whose control switches infinitely many times at the extremes
of the control set in a finite amount of time.

Generalizations of the Fuller phenomenon are studied in the book of
Zelikin and Borisov [50]. Problem 5.1 is Chapter 5 of this book is exactly the
length n Fuller system in equation specialized to R. This system is
called the multi-dimensional Fuller problem with 1-dimensional control.

Our system in equation ((11.0.1)) is a mild generalization of that system.
Problem 7.2 of Zelikin and Borisov studies a Fuller problem with multidi-
mensional control. In particular, equation (7.11) on page 230 of thier book is
exactly our system for n = 4. Just as we did, Zelikin and Borisov
construct log-spiral solutions to the Fuller problem for 2-dimensional control
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but leave the exploration of other solutions as a research problem in Chapter
7.

The Fuller systems considered in the literature have even length. Our
system, because of left-invariance, has odd chain length. The same remark
also applies in our derivation of the extended state space Poisson bracket (see
Section [A.9). Also, in our case, the extra dimension for the control and the
circular symmetry of the control set gives us an additional symmetry and
thus another conservation law.

At first, Fuller’s problem was viewed as an oddity [11], but was later
shown to be ubiquitous in a very precise sense in a paper of Kupka [24]: so
long as the extended state space of our optimal problem is of sufficiently high
dimension, one can find a Fuller trajectory as an extremal.

Recently, Zelikin, Lokutsievskii and Hildebrand [51] show that for a linear-
quadratic optimal problem with control variables in a two-dimensional simplex,
the extremals perform infinite switchings in finite time, and their switches
are chaotic in nature. Further, they prove that this behavior is generic
for piecewise smooth Hamiltonian systems near the junction where three
hyper-surfaces meet in a codimension 2 manifold. The main innovation in
Zelikin, Lokutsievskii and Hildebrand [51] is the so-called descending system
of Poisson brackets, which is a clever change of coordinates of the generic
system near the singularity made so that the results of the model problem
are applicable. This method is illustrated in the very recent paper of Manita,
Ronzhina and Lokutsievskii [41].

A Fuller system with chattering, which is similar to ours in some respects,
has been analyzed by Zelikin, Lokutsievskii, and Hildebrand [51] They have
found that on a set of full Lebesgue measure, the dynamics of their system
is particularly simple (page 24, sec 2.8). However, on a set of measure zero,
their dynamical system exhibits complex behavior: chaotic trajectories and
a “Cantor-like structure as in Smale’s Horseshoe.” However, in our Fuller
system, we prove that no such complexities appear. It remains to be seen
whether Zelikin-type results can be derived for the Reinhardt problem.
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Chapter 12

Global Dynamics of Fuller
System

In this chapter, we make a thorough analysis of the global dynamics of
the Fuller system (with circular control). Define

M :={z = (21,22,23) € (C*)® | Hp(2) = Ap(2) = 0},

where ‘Hr and Ap are the truncated Hamiltonian and angular momentum,
defined in ((11.2.6). Since Ar and Hamiltonian H are constant along trajec-
tories, the Fuller system (11.2.5)) can be restricted to M.

Lemma 12.0.1. M is a real analytic manifold of real dimension four in C3.

Proof. At every point of M, the gradients of Ar and Hp are linearly inde-
pendent. ]

12.1 A Fiber Bundle

Define
r2 < z3} < [0,2] x [0,2].

N —

Q= {(CL‘Q,QT?,) € R2 | To > 0, T3 > 0, T3 < X9,

Let Q° be the interior of €2, obtained by making the inequalities strict. Define
m: M — R? by

Z9 z3
7(2) = (21, 29, 23) 1= (%, %) = (@2, x3).

177
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Lemma 12.1.1. The image n(M) lies in €.

Proof. The equality Ar = 0, after applying the Cauchy-Schwarz inequality to
the term (21, 23) appearing in Ap, gives that 7(z) satisfies 2/2 < z3. The
equality Hr = 0, after applying the Cauchy-Schwarz inequality to the term
R(z1, 291) appearing in Hp, gives that 7(z) satisfies 3 < 2. By definition,
on M we have z; # 0. Thus, the image of 7 is contained in (2. m

Recall that the virial group acts as symmetries of the Fuller system. The
virial group G restricts to an action on M because of the homogeneities.

'HF(tzl, tzzg, t3Z3) = t3HF(Zl, 22, 23)
AF(tZl, t2252, t323) = t4HF<21, 22, Zg),

for t > 0. The morphism 7 : M — € is equivariant with respect to the trivial
action of the virial group on €2, and each fiber of 7 is a union of orbits of the
group action.

Lemma 12.1.2. The fiber of m over (x2,x3) € Q is given by

z1 € CX,
2y = xzzl\zl\(q COSg +1 SiIlQ),

73 = X321 |21|?(coss +ies sing),

where
sing := x3/T3, cosg 1= 4/1 —sin2 = /1 — (z3/72)2,
coss := x3/(2x3), sing := \/1 — cos? = \/1 — x5/ (422), (12.1.1)

and €, €3 € {+1}.

Remark 12.1.3. The fiber satisfies identities:

Z z
’Z—; ’Zh (€9 cOSy +1i siny),
z3 21

@ |Z1| —(cos3 +i€3 sing).
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Proof. We analyze the fibers of 7 : M — (). Note that zs,23 > 0, and
sing, coss € [0, 1], so that the formulas are well-defined. Let (z2,z3) € €.
Using the virial action on fibers, if the fiber over (x5, x3) is nonempty, then
it contains a point with z; = 1, which we now assume without loss of
generality. Then |z3] = z3 > 0 and |23] = z3 > 0. Thus, there exist
Cc0Sg, sing, cosg, sing € R, and signs €5, €3 such that

29 = To(€g COSy +1 Siny), z3 = x3(coss +iezsing), where

1 = coss +siny = cos; +sin,  cosy = 0,sing > 0. €, €3 € {£1}.

The condition Ar = 0 gives an additional constraint coss = z2/(2z3) > 0,
and the condition Hr = 0 gives the constraint siny = z3/xs > 0. Thus, every
point in the preimage of (x2, z3) has the form asserted in the lemma.
Conversely, every (z1, 22, 23) of the given form belongs to M and maps to
(x2,z3) in Q. In particular, the image of 7 is Q. O

We let Q, , := Q2 x {e2} x {€3}, where €3, €3 € {1}, be four copies of 2.
Let 0Q, ., (or 07, ., for short) be the upper boundary curve of {, ., defined
by z3 < . Let 0Q, . (or 0, ,, for short) be the lower boundary curve of
Qey.e; defined by 73/2 < 3.

We glue these four copies of 2 together along boundaries to form a
topological plane R as follows. Along the boundary edge z, = 3, we
identify Q.. with Q_;., (for e = +1), and along the boundary edge
T3 = 12/2, we identify Q, ,; with Q, _; (for e = +1). All four copies of
the corner (2,2) € Q4 , are identified by this process. The corner (0,0) is
excluded from (2 and from €2, ; by definition.

R?) = <U Q62,€3> /{51__,_ = 81—&-’ or_ = ai—’ - = a:‘*" 8;_ - a‘:‘*‘}

€2,€3

Visually, it helps to imagine R, as follows. We take a conformal transfor-
mation of 982’63 onto the open (€, €3) quadrant, which sends the point (0, 0)
to oo, the point (2,2) to (0,0), and the boundary 0, .. with equation z; = 3
to the vertical axis, and the boundary ¢_ .. with equation z3 = 72/2 to the
horizontal axis. See Figure

Lemma [12.1.2] shows that there is a multiplicity of signs €, €3 along each

fiber. This suggests that we should extend 7 : M — Q to a map 7 : M — R

€2,€3
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0. 22 o . 22 o . 22 o 22

ot G of_ 0 _ or_ 0__ oty 0_,
(0,0) (0,0) (0,0) (0,0)
Q_y Qy
0%, | 0%y
0o (2,2)05,
0- 0
or_|of_
Q__ Q.

Figure 12.1.1: The four regions {1, + map conformally to the four quadrants
in the plane. Identifying boundary edges, they form a topological plane R2.

(overloading the notation 7) as follows. Set

€2 = sign(RN(2221)) € {+1}

e = sign(S(zs21)) € {1}, (12.1.2)

and extend the definition of 7 so that

22 <3
(21, 20, 23) = (%, %,62,63> € Qeyoes- (12.1.3)
Along the boundary edges of €2, ., that have been identified, there are
ambiguities, but the definition of 7 has been crafted in such a way that
7 : M — R is well-defined. For example, the sign €; cannot be determined
from the given formula when coss = 0, but this occurs precisely along the
edge x3 = z3, where {2, ., is glued to Q_ ,.

Theorem 12.1.4. 7 : M — R2, is a trivial principal topological bundle of the
virial group.
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Proof. By the preceding constructions, each fiber 771(z5, 73, €2, €3) is a single
orbit of the virial group, given by the formula of Lemma Note that the
virial group acts simply transitively on z; € C*, which serves as a coordinate
along each fiber.

We give a global trivialization of the bundle M ~ R2 x G, by constructing
a global section:

Y(x2, T3, €2,€3) = (21, 22, 23), Where

z1 =1, 29 =x9(€ac08y +ising), 23 = z3(cos3 +iezsing)

and siny, coss, sing, cosg are given as above.

This section is continuous. In fact, the jumps in signs €, €3 occur exactly
where cos; = 0 or sing = 0, and this occurs along the identifications of the
boundary curves of R%. The section gives the global trivialization of the
bundle. O

12.2 A Vector Field on the Base Space

We define a vector field (v, v3) on €, , taking value

Vg = €9 COS2 —2.’5263 Sil’l3
o , (12.2.1)
V3 = T2 (62 COS9 COS3 +€3 SINg 51n3) — 3.’L'3€3 Slng

at (z2,xs3, €2, €3), where cosy, sing, coss, sing are the functions given earlier
(12.1.1)). We remark that this gives a well-defined vector field on R, because
the definitions agree, wherever there might be an ambiguity along boundary
curves that are identified to form R2,.

Lemma 12.2.1. Consider the vector field f on M given by the Fuller system.
Then (v2,vs) is the scaled image of f in the tangent space of R. That is,
|21|T7(f) = (vo,v3) € TRZ, which is independent of the point on the fiber
over (o, T3, €2,€3).

The rescaling factor |z;| only affects the integral curves of the vector field
by a time reparameterization.

Proof. Let z = (21, 29, 23) follow a trajectory of the Fuller system in M let
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m(z) = (2, x3, €2, €3) be the image trajectory. We compute for j = 2, 3:

d . 2 . . 21
2= (|zil/|21P) = |21|R(zj_1, =) |21 7 — |21l 2] |21 7 R (20, —
1l 5 (2l 121 l) = |22 R(z5-1, |zj|)| I EAVIEAIEA (20, |z1|)

= T;j_1T; — jT;r1, Where

Zi_1 %
T'j = éR ( e ,—J> .
251l 2]
The functions r; are invariant under the virial group and descend to R3,. It is

enough to show that (ve,vs) = (172 — 22271, ToT3 — 3x371). This is a routine
calculation. O

12.3 Equilibrium Points

In this section, we investigate the qualitative behavior of the vector field
(v2,v3). The vector field (ve,vs) is odd: the values of the vector field at
(x2, T3, €2, €3) and at (xs, z3, —€2, —€3) have opposite signs. This means that
trajectories are the same, except reversed in time at points with opposite
signs. Earlier, we introduced a time-reversal operation 7 on trajectories on
M. The image under 7 of a time reversed trajectory in M is the sign reversed
€; — —¢; trajectory in R3.

Next we analyze the zeros of the vector field.

Lemma 12.3.1. The vector field (vq,v3) is zero if and only if (z2, x3, €2, €3)
is one of the following three points:

(x2,23) = (2,2) (all choices of signs give the same point),
(z3,2%) := (2/v/10,+/2/5) where €, = €3 € {1} (one point for each sign choice).

Moreover, the image under 7 of the outward log-spiral z* = (27,25,23)
constructed in (11.3.1) is the single point ¢ = (z3,x5,+,+) € Q. 1, while
the image of the inward log-spiral is the single point ¢* := (z5,x5,—, —) € Q__.

Proof. 1t is clear that these three points give zeros of the vector field, by
direct substitution into the formulas for (vg,vs). By the observation that
the vector field is odd, we can assume that e = +1. Then we consider the
different regions 931,53 and its boundary, solving the equations ve = v3 = 0
for o and zs.
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We illustrate the case QI , leaving the other cases as exercises. From the
formulas for vy, v, we find that a zero in Q0 | satisfies the equations

COSy = 2x9 Sin COSy COS3 = 28insy sin
39 3 3

which has (z3,z%) = (2/4/10,+/2/5) as the unique solution.

Each spiral trajectory is contained in a single orbit of the virial group
and must map to a single point in R%. Explicit formulas have been given for
the log spirals and for the map =, and it is an easy calculation to determine
which spiral is mapped to which zero of the vector field. O]

Next we analyze stability at the equilibrium points. Because of a square
root, the vector field (vy,v3) is not differentiable at (x5, x3) = (2,2) and we
cannot compute a Jacobian. However, we can compute eigenvalues of the
Jacobian for the other two equilibrium points.

Lemma 12.3.2. Let Jac be the 2 x 2 Jacobian matriz with entries dv;/0xy,
where j, k € {2,3}. The eigenvalues of Jac are —/2+1i+/3 at q; . In particular,
the eigenvalues have negative real part, and g’ is a stable equilibrium point.

By symmetry, the equilibrium point ¢* is unstable.

Proof. This is an elementary calculation. ]

12.4 Global Behavior

Remark 12.4.1. We warn the reader that the square roots appearing in the
definition of cos;,sin; cause the vector field (ve,v3) to be non-Lipschitz along
the boundary curves of €, c,. Thus, trajectories are not uniquely determined
by the vector field (ve,vs). This is not an idle warning. The trajectories
truly fail to be unique. Along these boundary curves where uniqueness breaks
down, we make reference to the trajectory upstairs in M (where trajectories
are uniquely determined) to determine which path the trajectory downstairs
should follow. Nevertheless, on each interior part 922763, the trajectories are
uniquely determined by the vector field.
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0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 20

Figure 12.4.1: The dynamical system on R%. The unstable ¢* € Q__ and
stable fixed points ¢} € €2, are shown. In the four frames, the two edges
marked A are to be identified, as are the two edges marked B, the two marked
C, and the two marked D. In this way, the four frames belong to a single
dynamical system in the topological plane RZ. The four red points have
coordinates (1/2,1/2). The direction of the flow across the upper boundary is

reversed at (1/2,/2).
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Figure depicts the dynamical system in the plane R2 and two fixed
points. A third fixed point (2,2) € R lies at the upper corner of the figures.
The main result of this chapter is the following theorem. From Figure [12.4.1]
we observe that the theorem is geometrically plausible.

Theorem 12.4.2. Let z(t) be any Fuller trajectory in M. Assume that
7(2()) ¢ {at}. Then

o The trajectory z(t) is defined for all t € R.
o The trajectory m(z(t)) remains bounded away from (0,0) € R.

o IfU < R is any neighborhood of ¢*, the trajectory m(z(t)) eventually
enters and remains in U.

o IfU < RY is any neighborhood of q*, the trajectory w(z(t)) was in U
for all sufficiently negative times.

The proof appears at the end of the chapter in Section after a series
of lemmas. The first of these lemmas describes the movement of trajectories
in R across the boundaries of the regions Q...

Lemma 12.4.3. Along each boundary curve between regions e, ., the vector
field points along the tangent to the curve. At the boundary curve T3 = x3/2
(excluding endpoints (0,0) and (2,2)), the images w(z(t)) of Fuller trajectories
pass from Q,_ into Q,., for e = £1. At the boundary curve 3 = x5
(excluding endpoints (0,0) and (2,2)), the images of Fuller trajectories pass
from Q_, into Q,, if T3 = x3 < /2; and they pass in the other direction
from Q. into Q_., if xo = T3 > \/2, for €3 = +1.

Proof. Along the boundary xy = z3 the vector field has the form vy = vs3, so
that the vector field is tangent to the boundary. Similarly, the vector field
along the boundary x3 = x3/2 is also tangent to the boundary. However,
because of non-uniqueness of trajectories, the flow does not move along the
boundaries!

We obtain a better approximation to the flow near a boundary of €}, .,
by taking the section p = (s, x3,€2,€3) € M, then expanding the Fuller
trajectory z(t) with initial condition p at t = 0 in a Taylor approximation f,
then taking m(z(t)).
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Following this procedure at the boundary point (s, T3, €2, €3) = (s, $%/2, €2, €3),
for s € (0,2), with normal u = (s,—1), we find that the trajectory moves
from Q.,_ to €, .

4+7s?
u-7(2(t)) = —%tQ +O0{) € =€, e3=-sign(t).

Following this procedure at the boundary point (zs, x3, €2, €3) = (8, s, €2, €3),
for s € (0,2), with normal u = (—1,1), we find that the trajectory moves
from Q_, to Q,, if s < 1/2, and the direction between regions reverses when

s> 4/2.
(s* —2)

u-m(z(t) = _—ut2 +O0(t), € =sign(t(2—5%)), e =es.

The next lemma analyzes behavior near (z2,z3) = (0,0).

Lemma 12.4.4. Let z be a Fuller trajectory in M, defined on some open
time interval. The trajectory z extends to a trajectory in M for all t € R.
Moreover, the image t — 7(2(t)) is bounded away from (zo,x3) = (0,0).

Proof. The vector field (vs,vs) is bounded. The base space R% fails to be
compact because of the omission of the corner point (0,0) from Q. The
image m(2(t)) of a Fuller trajectory on an open time interval can be extended
in R to all time, then lifted to M to extend z(t), provided the trajectory
downstairs remains bounded away from (0,0). Thus, the lemma will follow
if we prove that trajectories downstairs are bounded away from (0,0), the
common endpoint of all boundary curves.

We use polar coordinates (x2,z3) = (rcos(),rsin(f)). We may assume
that (x2,x3) is not on a boundary edge of ), .,, because earlier analysis
shows that Fuller trajectories cross the boundary edges at isolated times. We
analyze several subcases according to small neighborhoods of (0,0) in the
following separate pieces. We use a hodgepodge of arguments.

On Q,_,

v3 = 2x3 + O(r?),

so that x3(t) is increasing, moving away from (0, 0).
On Q8 , we consider two subcases. In the first subcase, if 3 < z2/2 in a
small neighborhood of (0,0), then 6 is decreasing and

r’ = cosfv/1—tan?0 + O(r),
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so that r’ is positive and bounded away from 0, so that the trajectory moves
away from (0,0). In the other subcase, if z3 > z5/2 in a sufficiently small
neighborhood of (0,0), then the sign of the planar curvature of (z5(t), z3(t))
is positive and the tangent to the curve separates the trajectory from (0,0).

Next, consider 2° . In the subcase near (0,0) where 3 > z,/10, the
curvature argument from 2, , also applies here. In the subcase near (0,0)
where x3 < z5/10, then vy < 0 and v3 > 0. Along a trajectory, x3 is a function

of x5, and we have

d$3 ’U3
— = 2 12.4.1
dil?g ’U2 3 ( )

Integrating this differential inequality, we obtain
2z3(t) = xo(t) + ¢,

where ¢ = 4/2x5(0) — 22(0) is positive on the interior of __. This inequality
bounds the trajectory away from (0,0).

Finally, consider Q° .. We have vy, v3 < 0. In this case, inequality m
holds, and we proceed as in the previous case.

12.5 A Special Trajectory

Modulo the action of the virial group, there is a unique Fuller trajectory
whose image in R2 passes through equilibrium point g 2 := (72, %3, €2, €3) =
(2,2,—1,1). Using the section ¢ of the bundle, the Fuller trajectory is
determined by the initial condition (21(0), 22(0), 23(0)) = (1,2¢,2) = ¥(ga2)
at t = 0. We call this particular trajectory zsy.. the special Fuller trajectory.
Figure shows the image (in red) of the special Fuller trajectory in
Q_, and its subsequent trajectory in Q, . The signs (e, €3) are discarded,
so that the figure shows 2_, superimposed on €2, . At the point where
7(z(t)) meets the edge zo = x3, with o < 2, the curve crosses from Q_
to Q... Figure [12.5.2 shows that the crossing occurs at the positive zero
of w(z(t)) - (1,—1) near t = 0.9. When t is large, the special trajectory
approaches the stable equilibrium point ¢% € Q.

At (z2(0),23(0)) = (2,2), the image trajectory (z2(t), z3(t)) moves from
Q,_ to Q_, (so that (2,2) is not a true fixed point, when higher order
information from the Fuller trajectory in M is retained).

17 9

Zo(t) = Q—Zt2+0(t3), x3(t) = 2—§t2+0(t3), €o = —sign(t), €3 = sign(t).
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The special trajectory invariant under time reversal 7. Its trajectory for
negative times is obtained by symmetry.

Figure 12.5.1: This figure shows the image (in red) in Q of the special Fuller
trajectory through z = (1,2¢,2). (All four regions .. are superimposed in
this figure.) The red curve meets the boundary z5 = z3 of Q. , at two points:
at (2,2) at time zero and at a second point at about time ¢ = 0.9. For large
values of ¢, the curve approaches the stable equilibrium point ¢% in Q.

0.2 04 06

Figure 12.5.2: This figure shows u - 7(2(t)), where u = (1, —1). The graph
gives the deviation of 7(z(t)) from the boundary curve zy = x3. Here 2(t) is
the special Fuller trajectory with initial condition z = (1,24,2) at t = 0. The
signs (€z, €3) are ignored, but 7(z(t)) € Q_, for ¢ less than the positive zero
near t = 0.9, then 7(z(t)) passes into .

Let t. ~ 0.9 be the time at which q. := T(2spec(tc)) € {x2 = z3}. Let
Qspec+ be the narrow region in Q_, bounded by 7(zspec(t)), for t € [0, ¢.], and
by the linear segment [q., (2,2)] from g. to (2,2) along the edge z2 = z3. By
our analysis of boundary behavior, trajectories in (2,pe.+, must enter through
Q. ., along the segment [(v/2,1/2), (2,2)] and exit back into 0, , along the
segment [q., (v/2,1/2)]. The component v3 of the vector field is negative on
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Qgpect, S0 that the trajectories always progress southward monotonically from
entrance to exit.

12.6 Proof

Proof. We sketch a proof of Theorem [12.4.2 relying on a few numerical
calculations as needed. The first two claims of the theorem follow from
Lemma, [12.4.4

Consider trajectories in Q_ \Qgpec+. The component vs of the vector
field is negative on 2_,. Trajectories must enter from 2__ along the lower
boundary z3 = z2/2 and have a soutward drift until exiting along the edge
Zo = x3 into 2, , along the open segment between (0,0) and g.

Let Qgpec— < 24— be the region obtained from ... by reversing signs
€2 — —€g and €3 — —es. Then the flow on Q. _\Qy,. is obtained by reversing
the flow on Q_,\Qgpec+: the trajectories move northward, entering from __
and exiting into 2, , along the lower boundary z3 = z3/2.

Similarly, the behavior on Q.. U Q__ will be the time reversal of
Qgpect U 44, which we describe next.

Finally, we describe the flow on Qgpeci U Q4. The flow on Qgpect is
described in the previous section. Consider €2, ,. The point ¢} is a stable
equilibrium point. By a constructive procedure using the Lyapunov equation,
there exists an explicit Lyapunov function on a small disk

Dr = {"L‘ = (IEQ,.’L’3) ‘ Hx - q—T—” = ’I'}.

around ¢* [37]. Let ¢; be the time at which 7(2spe.(t)) enters the disk D,. We
consider the curve y from g¢. to ¢} to given by the arc m(zpec(t)) for t € [tc, 1]
followed by the linear segment from 7(2spec(t1)) to ¢7.

We compute det(((x2,23) — ¢} ), (v2,v3)) = 0 on Q,; with equality if and
only if (z3,z3) is one of the three points (0,0), (2,2), or ¢. This means
that the trajectories always wind monotonically around the fixed point ¢ .
In particular, as it winds, every trajectory must meet the curve 7. By
the uniqueness of trajectories, a trajectory meeting the special trajectory
T(2spec(t)) must equal the special trajectory. Every other trajectory must
meet «y inside D,. Thus, every trajectory (excluding the fixed point at ¢*)
must enter the Lyapunov disk D,, and from there be attracted ¢ .

The point ¢* is related to g, by time reversal, so the final claim of
Theorem follows from what we have already proved about ¢ . O
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Part V

A Proof of Mahler’s First
Conjecture
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Chapter 13

Fuller System for Triangular
Control

13.1 Introduction

The Reinhardt conjecture of 1934 asserts that among centrally symmetric
convex disks, the smoothed octagon has the least greatest packing density.
The smoothed octagon is a modification of the regular octagon obtained by
rounding its corners with hyperbolic arcs. In 1947, Kurt Mahler conjectured
a weak form of the Reinhardt conjecture, when he wrote

It seems highly probable from the convexity condition, that the
boundary of an extreme conver domain consists of line segments
and arcs of hyperbolae. So far, however, I have not succeeded in
proving this assertion. —Mahler 1947.

We refer to this assertion as Mahler’s First conjecture. The next year, Mahler
rediscovered Reinhardt’s conjecture from 1934, which we call Mahler’s Second
conjecture.

In this part of the book, we give a proof of Mahler’s First conjecture.
The basic outline of the proof is as follows. We make a detailed study of the
Fuller system. By restriction of the dynamical system to switching times,
the Fuller system becomes a discrete dynamical system with dynamics given
by a Poincaré first recurrence map. We blow up the space at the singular
locus. Doing so introduces an exceptional divisor, which becomes the focus of
attention. We find that the discrete Fuller-Poincaré map has exactly two fixed
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points on the exceptional divisor. One is stable and the other is unstable.
The fixed points are exchanged by a time-reversing symmetry. (These fixed
points can be interpreted as inward and outward self-similar spirals of the
Fuller system.) We analyze the global dynamics of the Fuller system on the
exceptional divisor and show that the basin of attraction of the stable fixed
point is the entire exceptional divisor (excluding the other fixed point).

Returning to the Reinhardt dynamical system, we consider its discrete
Poincaré map. We study the stable and unstable manifolds at the two fixed
points (which are also fixed points of the Reinhardt dynamics). We show that
any trajectory of the discrete Reinhardt dynamical system that has a cluster
point on the exceptional divisor, must approach the exceptional divisor along
the stable manifolds of the fixed points. However, we show that the stable and
unstable manifolds at the fixed points do not contain any periodic trajectories,
as required by the solution to the Reinhardt problem. We conclude that
the solution of the Reinhardt problem is given by a trajectory that does not
meet the singular locus. From this, it follows that the solution is bang-bang
with finitely many switches. It then follows that the solution the Reinhardt
problem is a smoothed polygon.

13.2 Fuller system for Triangular Control

We define the Fuller system for triangular control to be the following
controlled system of ordinary differential equations, taking values in C.

2=, Zy=2z, 2 =—iu, u(t)e{l,{,¢% =V, (13.2.1)
where ¢ = exp(27i/3) is a primitive cube root of unity. The control function
u is a measurable function of a real variable, taking values in V. We set
2o := —iu so that z; = zp. When u € C is constant, we can solve the Fuller
system ODEs, to obtain

20 —iu,
21 (t) = —itu + 29,
2(t) = —it?u/2! + 20 + 29,

z3(t) = —itPu/3! + 20t2/2! + 20t + 23,

(13.2.2)

with initial conditions (29, 23, 29) at t = 0.
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13.2.1 Hamiltonian
The Hamiltonian for the Fuller system is

Hr(z,u) = R(z1, 220) + R(u, 23), 2z = (21,29,23) (13.2.3)
13 . ,
= 5 2, (1 Rz, i)). (13.2.4)
7=0

We seek solutions on an interval [tq,ts] for which the control function
maximizes the Hamiltonian.

Hr(2(t),u(t) = Hr(2(t),¢F), ¢Fe{l,( ¢} (13.2.5)

and such that
Hr(z(t),u(t)) =0, Vte[ty,ta] (13.2.6)

We define the maximized Hamiltonian to be
+ .
Hi(z) := Lré%;cﬂp(z,u)

It is easy to check that Hp is constant along every segment with constant
control. Also, if u is chosen according to the maximum principle, then Hp is
constant along trajectories.

13.2.2 Switching Function

We say that u € V is the first control, if it is the optimal control starting
at switching time ¢ = 0 until the first positive switching time ¢, > 0, for
a given initial condition 2° € C*\0. (It will become clear from the proof of
Lemma that ¢t = 0 is an isolated zero of the relevant switching function,
and that the notion of first control is well-defined.)

Let 20 = (29,29, 22) € C3. We write the initial conditions in polar coordi-
nates: z) = r;e"%. Let 23(t,u,2°) be the solution to the Fuller
system with first control v = ¢* and initial condition 2°. Set ry = 1,
0o = (2mk/3) — m/2, and 20 = —iu = ree’®. The switching function from
control ¢ to (7 is

u Uk ]‘
Xuf—uj (t) = XZ(t> = Xij (t) = 7§§R<ul — Uy, Z3(t, Ug, ZO))
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When £ = 4, we drop the superscript and write x;; for xﬁj. We assume ¢ # j
mod 3 so that |u; — u;| = v/3, and write

U — Uj = V3e®i i jeZ, (andi=+—1).
Then ¥ (t) = R(e®7, z3(t,u, 2°)). We have

em'_H = —7T/6 + 27T’L/3
0i+1,i = 57T/6 + 271'7,/3, 091-71-,1 = 7T/6 + 27TZ/3, 1 € 7.

The switching function simplifies to the form

3 m

ij(t) = Z i7m cos(03_r, — 6;;).

m=0

13.2.3 Symmetry

We consider the symmetries of the system. We start with positive scaling.

Lemma 13.2.1. If (2, 22, 23,u) is a solution to the Fuller system on [t1,ts]
satisfying and (13.2.6), then (%1, %2, 73, @) is a solution on [tir,tor]
satisfying the same constraints, where 2;(t) = riz;(t/r), @(t) = u(t/r), and
where T is real and positive.

Proof. This holds by direction substitution into the Fuller system and into
the Hamiltonian. O

There is a discrete rotational symmetry.

Lemma 13.2.2. If (21, 22, 23,u) 1S a solution to the Fuller system satisfying
(13.2.5) and (13.2.6) with initial value 2° = (29, 23, 239), then (C21, (29, (23, Cu)

is also a solution with initial value (2° satisfying the same constraints.
Proof. Again, this holds by direct substitution. O

We call the group G generated by discrete rotational symmetry and
rescalings the virial group. (This virial group is analogous to but not identical
to the virial group that was introduced earlier for circular control.) We say
that z and Z are equivalent and write z = Z if one can be carried to the other
by the virial group, that is, by a combination of scaling and discrete rotations,
as described by Lemmas [13.2.1] and [13.2.2]

There is also a time-reversal symmetry. Let - denote complex conjugation.
If (21,22, 23) € C3, set 7(21, 22, 23) = (21, — 22, 23)-
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Lemma 13.2.3. If (2, 22, 23,u) is a solution to the Fuller system on [t1,t]

satisfying (13.2.5) and (13.2.6), then (Zi(—t), —2Z2(—t),2z3(—t),u(—t)) is a
solution on [—tg, —t1] satisfying the same constraints and with terminal value
7(29).

Proof. Direct substitution. ]

The following simple lemma will allow us to draw powerful conclusions
about the discontinuities of Fuller system dynamics. It relates the multiplici-
ties of roots of one switching function to the multiplicities of roots of another
switching function at time ¢ = 0.

Lemma 13.2.4. Lettye R, 2°€ C3, and u € C. Let 2* = 2(to, 2% u) be the
value of the Fuller ODE at time ty, with initial condition 2° at time t = 0,
using constant control u for all t. For any v, — ve € C, the switching function
satisfies

Xoy—ug (to — £,2°) = X5, 5, (£, T(2")).

Proof. Direct substitution. ]

We also have invariance with respect to multiplication by (.

X?(Lvl—w)(t’ CZO) = X:1—v2 (t7 ZO)' (1327)

We say that u € V is the most recent control, if it is the optimal control
for small negative time ¢ < 0 until switching time ¢ = 0, for a given initial
condition 2° € C3\0.

For each 20 = (29,29,29) € C3, and u € V7, let 2(t, 2%, u) be the solution
to the Fuller ODE with initial condition (2?, 23, 29) and control wu.

Lemma 13.2.5. We have for each t € R,
T(Z(—t, ZO, u)) = Z(t, T(zo)a ﬂ)

Also, the most recent control of 2° is u, if 4 is the first control of 7(2°).
Moreover, the most recent switching time for initial condition 2° is —tg,,
where ty, is the first positive switching time for 7(2°).

Proof. The lemma follows from the time-reversal symmetry (Lemma (13.2.3)).
O]
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13.2.4 Walls

We consider the Hamiltonian maximization condition (13.2.5) in more
detail. The part of the Hamiltonian depending on the control u is R(z3, u). At
a switching time, up to equivalence by a discrete rotation, the maximization
principle takes the form

R(z3,¢) = R(23,¢?) = R(z3,1).

This defines the switching between controls ¢ and (2. The set of solutions in
z3 is R<g. We call this set a wall. Now allowing discrete rotations, we define
the set of walls

W :=ReouR( U R@Cz =: Wy u W; U Wh.

Switching of controls can only occur when z3 € W.

13.2.5 Switching Times

Define the following function

v: (C*0) x Vp — R3
V<20, u) = (%(zga ’LL), §R(Z(2], ’LL), §R(Z(1], u))

(Note the backwards indexing.) We call v(2°,u) the control vector of w.
We define the lexicographic order on vectors v = (vy,...) by

O0<v < O=V1=V2="'=Vk,0<vk+1

u<v <= 0<v—u

Lemma 13.2.6. Suppose 2° = (29,29,29) € C3\0. Let Vrpmax = Vr =
{1,¢,¢?%} be the set of controls that have the mazimum lezicographical value
among {v(2°,1),v(2% (), v(z° ¢?)}. (That is, let Vi max = arg maxyey, v(2°,u) <
Vr.) Then

o If Vimax = {u}, then u is the first control.
o If Vrmax = {C*, "™} has two elements, then the first control is (*.

o VT,max # Vr.
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Proof. If two vectors have the same lexicographical order then the two vectors
are equal. If Vrna.x = Vr, then all three control vectors are equal. This
implies that 2% = 0, which is contrary to hypothesis. Thus, V7 max is a proper
subset of Vr.

The first control is determined by the maximum principle for ¢ small
and nonnegative. By the maximum principle at ¢ = 0 and the form of
the Hamiltonian, the first control must be among the controls v € Vr that
maximize R(22,u). If there is more than one maximizer, then we break
the tie by passing to the first-order term in the control function z3(t) =
29 + 29t + - --. That means we consider terms R(22,u). If again, there is a
tie, we consider terms R(z?,u). In this way, the first control must maximizes
the lexicographical order.

Finally, if V1 max contains two controls, we break the tie by considering the
highest order term —iut3/3! of z3(t), where now u is itself the first control. By
rotational symmetry, assume without loss of generality that Vrm.x = {1,(}.
Assume for a contradiction that the first control is u = (. By the maximum
principle we obtain the following contradiction for ¢ small and positive,

t3
——— = R(—iCt3/31,(-1)=0
1 = RiCe/LC- D
This contradiction implies that u = 1. [

Corollary 13.2.7. Let (21, 22, 2z3) € C\0 satisfy |z;| <7, fori=1,2,3. Let
u be the first control. Then the switching function from u to u/¢ has a positive
root that is less than 10r. In particular, the first switching time ty, is less
than 10r.

Proof. Permuting by Vr, we may assume without loss of generality that the
first control mode is u = (.

We claim that v(z,() is greater than v(z,1) in the lexicographic order.
By the choice of first control mode, v(z,() is at least as great as v(z,1).
Assume for a contradiction, that the two vectors are equal. By the lemma
Vrmax = {¢,1}. Again, by the lemma, this implies that the first control is
u = 1, which is contrary to hypothesis.

The switching function from u = ¢ to u/¢ = 1 is

k
\/§X(t) = §R(C_]-az3( = = ‘|‘ Z§R 1 , 23— k %
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The highest order term has negative coefficient, and by our claim about
control vectors, the lowest order nonzero coefficient of the polynomial is
positive. Hence a positive root exists. If t > 10r, then the bound

£ ZQ] R(C—1, z5_) [t /k! < D V3|25 itF3/k! < V3D 10F%/kl < 1/(4v/3)
k=0

on the lower order terms of x(¢) implies that x(¢) < 0. This completes the
proof. m

The switching function has a simple but remarkable symmetry.

Lemma 13.2.8. Fiz 2° € C3\{0}, with 2 € Ry, the wall between control
modes ¢ and (2. Then the switching functions with initial conditions 2° at
t = 0 satisfy

X¢c2(t) + x¢zc(t) = 0,
for all t.

Proof. This is an easy computation. O

As a corollary, as we switch back and forth between control modes ¢ and
¢?, the consecutive switching times are given by the consecutive spacings
between roots of a single cubic polynomial. Upon reaching the largest root of
the cubic, the control mode is forced to switch to u = 1.

13.3 Singular Locus

We define the singular locus to be the origin in C3. The next lemma
shows that we cannot reach the singular locus, with a bang-bang solution
with finitely many switches.

Lemma 13.3.1. Let 2° € C3\0 with 23 € W and let z be the trajectory for
t > 0 with initial condition z(0) = 2° at t = 0 with constant control given by
the maximum principle. Then z(t) # 0, for all t.

Proof. Up to equivalence, we can assume that the constant control is u = 1.
Assume for a contradiction that z(t;) = 0. Solving the system of linear
equations ((13.2.2)) with control u = 1, we obtain

2 = (=17t /5, §=1,2,3.
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By assumption 2° # 0, so that to # 0. Then 2) = t3/6 ¢ W, which is
contrary to assumption. Thus, z(t) # 0, for all . O

Let Ur < C be the convex hull of V. The Fuller system has a singular
arc given by z1(t) = 22(t) = 23(¢t) = 0 and u(t) = 0 (the center of Ur) for all
t. This is an obvious solution to the Fuller ODE. We show the nonexistence
of singular arcs, other than this one. The nonexistence of singular arcs was
proved previously for the Reinhardt system. It comes as no surprise that it
holds for the Fuller system.

Lemma 13.3.2. Let (21, 22, 23,u), 2 : [t1,t2] — C? absolutely continuous,
u : [t1,ta] — Ur measurable, be a controlled Fuller trajectory satisfying the
mazimum principle for the Hamiltonian Hg. Suppose that the trajectory is
singular in the sense that for all t € [t1,t2], the set of controls mazimizing the
Hamiltonian is a face (and not a vertex). Then (21, 22, 23) is identically zero,
and the control function is zero almost everywhere.

Proof. We may assume t; = 0. Let u : [0,t2] — Ur be a measurable
control function. Let us be a solution to the initial value problem u3 = wu,
u(0) = u/(0) = u”(0) = 0. (More precisely, we assume that uj is absolutely
continuous and its derivative is u almost everywhere.) A solution to the initial
value problem is

us(t) — % L u(s)(t — s)ds. (13.3.1)

This representation of a solution leads to an estimate

1 t
lug| < —f s*ds = O(t%).
2Jo
Then

z3(t) = —iuz + 202 /2! + 20t + 23. (13.3.2)

We consider two cases. In the first case, suppose that over the interval
[0, 2], the Hamiltonian is independent of the control in Uz, so that the set of
maximizers is all of Ur. Since Ur spans C, by the form of the Hamiltonian,
this implies that z3(f) = 0 on [0,¢3]. By the form of the solution z3 and

the O(t3) estimate on uz, we have 2¥ = 29 = 22 = 0. Then 23 = —iuz = 0,

"

identically. Then also u(t) = uj(t) = 0, almost everywhere. This is the
singular arc described above.
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In the second case, assume for a contradiction that over the interval [0, ¢],
the Hamiltonian is independent of the control function u(t) taking values
in the edge [(,(?] = Ur (say). If u(t) € [(,(?], then R(u(t)) = —1/2 and
R(usz(t)) = —t3/12. The independence of the Hamiltonian and imply

V3t

0="R(2t), - = 53 + (quadratic in t)

for all £. This is absurd. O

13.4 Blowing up Fuller

We describe a (weighted) blowing up process at the singular locus. Set

3

1/6
P(2) = P(21, 22, 23) := (Z |Zj|6/j> , 2= (21,2,2)¢€C’

Then

B(rz1,r220,7°23) = r(21, 22, 23), 1 > 0.

Set = := {£ € C3 | #(€) = 1}. We have a diffeomorphism

C\0 « (R.g x B),
(21, 22, 23) — (1, (&1,&2,&3)) = (1, (217, 22/T2a23/7'3)): T = ¢(2),
(21,20, 23) = (T€1,7%&2,7°E3) « (1, (&1,&2,83)).

We will often move between the two sides of this diffeomorphism without
warning, considering the right-hand side as weighted spherical coordinates
for the left-hand side. Let m4q : Rog x 2 — Rog and g, : Rog x E — C3
be the first (radial) and second (angular) projections. We refer to m,44(q) as
the radial component of ¢ and 74,4(q) as the angular component, by analogy
with spherical coordinates. We refer to the left-hand side as the Cartesian
coordinates.

From a slightly different perspective, R~y x Z — C2 can be viewed as an
oriented weighted real blowup of C3 at the origin (the singular locus), where =
is a weighted space, {0} x = is the exceptional divisor over the origin 0 € C3,
and each R-o x {¢{} is a real positive ray through the origin.
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The diffeomorphism is equivariant with respect to the virial group, where
rescalings act by multiplication on the radial component and the cyclic group
Vr acts by scalar multiplication on the angular component of R.y x =.

Set

E‘W = {(519527€3) €= ’ 53 € W}

We view it as the Poincaré section for the Fuller system. Let Z),/Vr be the
quotient of =y, by the cyclic group action of V on =)y, acting diagonally.
Under the group action, the three walls of VW are identified with one another.

13.5 Dynamical System and Equilibrium Points

We define a discrete-time autonomous dynamical system F' : (R.oxZ)y —
(R-o x E)yy as follows. Let ¢ € (R.g x E)y,. The point g has Cartesian
coordinates 2° € C3\0 with 2{ lying in the ith wall. Let z(t) be the solution
to the Fuller differential equations with initial condition z(0) = 2° at time
t = 0 and control defined by the maximum principle. Let 5, > 0 be the first
positive switching time. Then let F'(q) € (R~ x =)y equal 2(ts,), rewritten
in spherical coordinates R.y x Z. By the equivariance of the construction
with respect to cyclic rotations Vr, we find that F' descends to a well-defined
map (denoted by the same symbol):

F. (R>0 X E)W/VT - (R>0 X E)W/VT

We can go further by considering scaling symmetries of the Fuller system.
By the scaling symmetries, it is clear that if the angular components 7,,,4(g1) =
Tang(g2) are equal, then the angular components mangF(q1) = TangF'(g2) of
the images are equal. Thus, F' gives a well defined discrete-time autonomous
dynamical system

Fong : Ew — Ew, and by equivariance Fppg @ Ew/Vr — S/ Vr.

By Poincaré map, we will always mean a map that discretizes a bang-bang
dynamical system, by passing from one switching time to the next. In this
sense, we think of =y as the Poincaré section and F,,, as the Poincaré
map of the Fuller dynamical system on the angular component (with the
understanding that the virial group symmetries have been built into Fi,).
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Remark 13.5.1. The notation F' will be used in this chapter for various
versions of the Poincaré map in a context-dependent way. The symbol F' can
denote either the Poincaré map for the Fuller system or the Poincaré map
for the Reinhardt system, depending on the context. For the Fuller system,
various domains are possible:

Cg\{o}y EW7 EVV,O) E"l/\//“/Ta EV\),O/‘/Ta
or various coordinate charts of these domains.
We analyze the equilibrium points of the dynamical system Fy,,,.

Lemma 13.5.2. The dynamical system F,,, has exactly two fized points in
Ew/Vr at which the Hamiltonian vanishes. They are the switching points
Qouts Qin Of outward and inward triangular spirals. They are related by time-
reversing symmetry: T(Qout) = Gin- After virial rescaling to make the real part
of the first coordinate equal to —1, the fixed point qu.: takes the form

=147 147 1—-3r—2r2 —3r3 + 14
qth(_1+Z y +1 3 4 )
V3(1+7) V3(1+73) 31+r+7r3+7rt)
—2(1+r—4r3—77‘4—9r5—7T6—4r7+r9+r10)) mod G
91 +7r)2(1—r+7r2)(1+ 73 +175) ’
(13.5.1)

where r = Tscqie & 6.27 is the unique real root greater than 1 of the palindromic
polynomial
1—5r —7r% —5r° —7r* — 5r° + 5.

The first switching time of the initial conditions on the right-hand side of

(13.5.1)) 4s

2
t‘m:2(1+r+7~)%7‘4
\/ﬁ(r +1)

Proof. Let q be a lift to =y of a fixed point in =y /Vr. Let u € V be the
control, starting at ¢ = 0 until the first positive switching time t,,. Let
2% € C3\0 be the Cartesian coordinates of (1,q) € R x Zy. The fixed-point

conditions are
2j(tsw) = (12,  (modulo G), (13.5.2)
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for some r > 0 and some (; € V, where z;(ts,) is given by (13.2.2). Solving
the linear equations (13.2.2)) for 29, we find

3 u(l + 2ry + 2r2¢ + r3¢3)
6(-1 + TC1>(—1 + 7"2C1)<—1 + T3Cl) '

0 __ .

It follows that 2§ # 0 (because r > 0, ty, > 0 and (; € V7). From the control
u, at times t = 0, t5,, we must have by the maximum principle

R(25,u) = R((223), Ve Vp
T3§R(ZP?C17 u) = §R('23(15811))7“) = §R(C2z3(tsw))a VC2 € VT
R(250) = R(23G:7) > R(23¢7),

zgagf € Reo.
This final condition implies that the scaling factor in the virial group is

(7", Cl) € {(L C)a (rscaleyg2)a (1/Tscale; C2>} = R>0 X VT,

where the scaling factor 7.4 ~ 6.27 and 1/7,.4. are the only two real roots
of the palindromic polynomial given in the lemma, and ¢ = exp(2mi/3). If
r =1, then Hp(2°,u) = 1/(41/3) # 0, and the solution is rejected. The two
other solutions are the outward triangular spiral with parameters (r,(;) =
(Tscate, ¢2) and the inward triangular spiral with parameters (1/7scqc,¢?). The
coordinates in the statement of the lemma have been rotated by Vr, choosing
the first control u = ¢?, to make the third coordinate real and negative. [

Remark 13.5.3. The fized point qou: of Fung is an outward triangular spiral
for F in a precise sense. By (13.5.2), the iterates of F' satisfy

Fk (QOut) = (’rscalea C2)k * Gout)

where - is the virial action. These are discrete points on a logarithmic spiral.
The points move outward because rseqe > 1. Similarly, F* (gin) are points on
an inward moving logarithmic spiral.

Remark 13.5.4. The fized point gt corresponding to (r,(;) = (1,{) € G in
the proof has the form

qfiz = (1,—4/2,—1/2) mod G.
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This fixed point has a nice interpretation. In Section|7.5, we constructed a one-
dimensional family of Pontryagin extremals of the Reinhardt control problem,
indexed by a parameter yo € (1/4/3,1). This family includes the smoothed
octagon and the smoothed 6k + 2-gons. Setting yo = 1 —r, we may express this
one-parameter family of extremals in coordinates (z1(r), z2(r), 23(r)), following
a procedure described below in Section[14.2. Letting r tend to zero, we have
asymptotics

(z1(7), 22(7), 23(r)) = @iz + higher order terms mod G.

Thus, in a precise sense, s, is the fized point in the Fuller system coming
from the family of extremals in Reinhardt system that includes the smoothed
octagon. It is particularly noteworthy that the Fuller-system Hamiltonian
is not zero at qrizy, although it is constructed as a limit of points in the
Reinhardt-system Hamiltonian zero set.

By the constancy of the Hamiltonian, the map F' restricts to the zero set
of the Hamiltonian.

Lemma 13.5.5. Restrict Fy,, to the subset Eyyo/Vr of Ey/Vr on which the
Hamiltonian vanishes. On that subset, the fixed point qou € S0/ Vr is an
asymptotically stable equilibrium, and the fized point q;, is unstable.

Proof. The second assertion follows from the first, because ¢;, is obtained
by time reversal from gq,,;. It suffices to show that ¢,,; is asymptotically
stable. This is a routine stability calculation. An open neighborhood of ¢, in
Ew,0/Vr is diffeomorphic to an open subset of R®. An explicit calculation of
the eigenvalues of the Jacobian matrix in terms of local coordinates centered
at g,y gives the result. Numerically, the three eigenvalues have absolute value
less than 0.1. The calculations were made in Mathematica. m



Chapter 14

Stable and Unstable Manifolds
at Fixed Points

In this chapter, we return to the Reinhardt dynamical system. More
specifically, we return to the blowup of the Reinhardt system and consider the
Fuller system as the restriction of the Reinhardt system to the exceptional
divisor of the blowup. We describe the stable and unstable manifolds at the
fixed points ¢;, and .., now viewed as fixed points in the blowup of the
Reinhardt system.

We use the parameter values di = 3/2, ¢ = 1, p = 2, Apost = —1.
Any trajectory that meets the singular locus must have these parameter
values. Figure [14.0.1| gives a schematic representation of the Poincaré map
for Reinhardt system trajectories meeting the singular locus. This chapter
and the next one will prove theorems about the qualitative features of this
picture. In particular, the trajectories approach the singular locus toward the
fixed point g;, along a stable curve W*(g;,). The flow along the exceptional
divisor is governed by the Fuller system, and every point except ¢;, lies in the
basin of attraction of g,,;. The unstable manifold W*(g;,) flows into the fixed
point ¢,,:. The trajectories exit the exceptional divisor along an unstable
curve W*(qout) at oyt that meets the boundary of the star domain.

14.1 Lie Algebra Coordinates

In much of this book, we have worked with hyperboloid coordinates in
both Cartesian z and spherical (7, ) coordinate form. We now return to Lie

207
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Figure 14.0.1: Schematic representation of the Poincaré map of the Reinhardt
system along trajectories that meet the singular locus. The picture is four-
dimensional and the exceptional divisor is three dimensional. The picture has
a time-reversing symmetry that reverses the direction of arrows.
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algebra sl5(R) coordinates. Moving forward, we will use the explicit solutions
to the ODEs with constant control, expressed in Lie algebra coordinates. For
computer calculations, sly coordinates have the slight advantage of avoiding
complex numbers.

In the interest of developing asymptotic formulas near the singular locus,
for any X, A1, Ag € sly subject to the usual conditions det(X) = 1, det(A;) =
d? = 9/4, we writd]]

X=J+rX, A =(-3/2)J+1r*A;, Ag=r°Ag, (14.1.1)

for some X, A1, and Ag € sly, where r > 0 is a real parameter. Let X, A;
and A have matrix entries Zij, Em and ¢ Rij, Tespectively.

j <%11 %12) A, = <€11 {12) Ap— <£R11 {Rlz) .
To1 T22 by Lo fro1 LRrao
We are particularly interested in points where r is small and positive, and
where Z;; > 0. We make the representation unique by scaling by
r > 0 so that Z;; = 1.

In Lie algebra coordinates, the rotational group action by the cyclic group
of order three is the action by powers of Adg. The walls are determined by
the vanishing of the switching functions. Up to rotational symmetry, we can
assume that the trajectory starts at the wall x23 = 0 between control matrices
Zo10 and Zoo; .

To introduce a coordinate system, we restrict the domain by the conditions

0<r, Zy=1 Inr?®<3/2. (14.1.2)

Suppose ®(z) = J+1rX, z = z+iy € h*, with z > 0. We have &5; < v/3—1/r
if and only if z > 1/4/3, which lies outside the star domain h* = h. Therefore
we assume Ty > &5 (r) := /3 — 1/r. Set

H* :={(r,3) e R* | &y > &3(r), lr® < 3/2}.

where we write Z := (&1, {11, 021) € R3.
If r > 0 and Z9; > T3, then

1+ rig =1+ 135 = /3r > 0.

IHere, AR is unrelated to an earlier term with the same name.



210CHAPTER 14. STABLE AND UNSTABLE MANIFOLDS AT FIXED POINTS

Hence, we may invert 1 + rZ5;. Then X is determined uniquely by r and Zs;.
Specifically,
5 —(1+r2)
X = r 1+rZa1 .
1+ T'.’flgl -T

The element A; is uniquely determined by r, l~11 and Zzl when 17217'2 < 3/2
via the relations det(A;) = 9/4, trace(A;) = 0. Furthermore, Ag € sl; is
uniquely determined as a function of (r,Z) € H* with r > 0 by the three
linear equations

<Xa AR> = 7'L(ZOIO))(a AI’AR) = X23(Xa AR) = Oa (1413)

(which is always a full rank system of linear equations for Ag). The diagonal
entries of A have order O(r*) and the off-diagonal entries have order O(r?).
The entries of Ag are polynomials in r, &;j, £;;, (1+7Z2 )", and (3/2—fx72) 1.
In summary, (r,Z) € H* with r > 0 is a local coordinate for (X, A, Ag).

14.2 Asymptotics

Let o
z= (521,£11,£21) € R3> Z11 = L.

We construct a uniquely determined element £(Z) € Zyy o as follows. For each
r > 0 sufficiently small, we have 1+rZs; # 0, 57211"2 < 3/2, and these conditions
allow us to form a triple (X (r, %), A1(r, &), Ag(r, %)), as just described. By the
Cayley transform to SU(1, 1), expressed in terms of hyperboloid coordinates,
the triple determines (w,, b, c,) € C3. We set

21(7”733) = wr/pv 22(7n7:i) = _ibr/(2p)7 23(Ta j) = Cr/(6p>7 pP= 27

according to the truncation rules of Equation ((11.2.4). We use Landau O to
describe asymptotic behavior as r tends to 0. A calculation gives

2(r, %) = 2(5321 +i%11) + O(r?),

2 ~ ~
2(r, %) = %(ﬂu —ily) + O(r%),
3 ~ ~
23(r, %) = %(fmz + Lga1) + O(r?).
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Then we define £(Z) € Eyy to be the angular component of

2(Z) := liné(ﬁl(r, Z)/r, 2(r, &) /12, 33(r, %) /7°).
(This limit exists and is nonzero.) By developing in a series, we have an
asymptotic relation between the Hamiltonians in the Reinhardt and Fuller
systems.

H(Zu, X (r, ), Ai(r, ), Ar(r, 8)) = 24r°Hp (@, 2(2)) + O(r?),

where controls u € {e;} for Reinhardt and @ € Vr for Fuller correspond by
e;j — (971, for j = 1,2,3. The equations (14.1.3) imply

Hr(2(2),¢) = Hr(2(%),(*) = 0.

We are particularly interested in the controls Zyio (and ¢ € Vr), because they
are the controls at the fixed point g,,;, when represented according to our
conventions.

Remark 14.2.1. For example, if we take

I 3$2 —3y2

TL9T2 T2 ) o (—2.39,-4.90, —1.12),
y ' 2y? 2y%> ( )

iw"out = (fz21outa£110uta£21out> = <

where Zoyt; = T; + 1Y;, then £(Tout) s equal to the outward fized point qou: of
the Fuller system modulo the virial group.

We can write the Reinhardt-Poincaré map F in local coordinates (r, Z) —
F(r,%). We expect asymptotic expansions in 7 of the Reinhardt system whose
leading term is given by the Fuller system. By Lemma when taking
asymptotics, we should work with a rescaled time

s:=t/r.

Remark 14.2.2. A general strategy is given by Manita and Ronzhina in
their inverted pendulum paper. We produce essentially equivalent results by
working with our explicit solutions to the constant control ODEs and computing
asymptotics using Mathematica. Their paper has also inspired our discussion
of blowup.
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The next lemma shows that the leading term in the constant control
solution for (X, A, Ag) is given by the Fuller system. By cyclic symmetry,
we may confine ourselves without loss of generality to the constant control
matrix Zg1o. For a given Z, the first control of (X (7, %), A1(r, %), Agr(r, Z) is
u = ey for all sufficiently small » > 0, provided we assume

Ell + 621521 < 0, and ZQ]_ < 0.

Lemma 14.2.3. Let (X, A1, AR) be solutions (expressed in local coordinates
as (r(s),Z(s)) in rescaled time s = t/ro) to the Reinhardt ODE with constant
control Zyo and initial condition (ry,Z°) (in local coordinates). Let z =
2(8) = (z1(8), 22(8), 23(8)) be solutions to the Fuller ODE with constant control
u = ¢ € Vr and initial condition z(Z°). Then for each s such that r(s) < 1,
we have

21(r( )) = z1(s)ro + O(rd)
2(r(s),#(s)) = z(s)r2 + O(rd)
)) = 2z3(s)rg + O(r).

»
N—

SH
—

»

[V
SN—

SN
~—~

"

Z3(r(

That is, the leading term of the solutions of the Reinhardt and Fuller systems
are in agreement.

Proof. We go from the SL, picture to SU(1,1) by means of the Cayley
transform, then switch to hyperboloid coordinates. Use the explicit solutions
on both sides and expand as a series in the parameter ry. O

Lemma 14.2.4. With the same setup and matching initial conditions as in
the previous lemma, we have switching function asymptotics

X21(X (s710), A1(sr0), Ar(sT0)) = 24r3R(¢ — 1, 23(8)) + O(r}) (14.2.1)

Note that the term on the right is the switching function of the Fuller
system for the control mode transition ( — 1. Similar formulas hold for the
other switching functions.

Proof. Expand both sides in an explicit series. n
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14.3 Analytic Extension of the Reinhardt sys-
tem

The following is the key lemma. It shows that we have succeeded in trans-
forming the behavior near the singular locus into something quite pleasant.

Lemma 14.3.1. Let ., € R be the parameter associated with the outward
fized point of the Fuller system. The Reinhardt-Poincaré map F (initially
defined for r > 0) extends to an analytic diffeomorphism in a neighborhood of
the fized point (0,Z o) € R* (including non-positive values of r), such that F
coincides with the Fuller-Poincaré map at r = 0.

Remark 14.3.2. Similar analytic extensions across r = 0 can be carried out
under more general conditions in a neighborhood of other points . However,
we must be cautious when the least positive root of the cubic of the Fuller
system (14.2.1)) is not simple, when s = 0 is a root of the cubic, or when the
resultant of two Fuller switching functions is zero.

Proof. We begin by establishing analyticity of F' on some neighborhood of
the fixed point, expressed in the coordinates (19, Z). (We add subscript 0
to suggest that these are initial conditions of the Reinhardt ODEs.) We
can take these coordinates with values in either R or C. Lie algebra co-
ordinates (Xo, A1g, Aro) are rational functions with nonzero denominators
(and hence analytic) in the variables (rg,Zo) and (1 + 79Z;)"*. (The de-
nominators are nonzero in a neighborhood of the fixed point.) The constant
control Zy;o solutions (X (t),A1(t), Ar(t)) to the Reinhardt ODEs are given
by matrix exponentials and are hence analytic in time ¢ and initial conditions
(Xo, A10, Aro). We make a substitution ¢ = srq to give reparameterized time.
By Lemma by division of power series, the function

X21(X (sr9), A1(sr0), AR(STO))/TS

extends to an analytic function Y21(s, 7o, Zo) in a neighborhood of 79 = 0.
Restricting at first to real coordinates and rq > 0, the switching time in
rescaled coordinates is defined by the least positive zero sg, = Ssu (70, Zo) Of
X21(8,70,Zo) = 0. At the fixed point (rg, Z9) = (0, Zowut), the least positive zero
Ssw,out ~ 8.84 > 0 is a simple zero, and s = 0 is not a zero. If we remove the
condition ry > 0, then by the analytic implicit function theorem, we have a
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unique analytic extension of the switching time s, (79, Zo) to a neighborhood
of the fixed point such that

9221 (ssw (T'(), -’iO)a To, iO) = 07 st<0> xout) = Ssw,out-

Evaluating the solutions to the ODEs at the unscaled switching time
tsw = ToSsw, and rotating by cyclic virial symmetries (adgr-1), we obtain
analytic functions of (ro, Zo):

Y;w(’l'(),io) = &del (Y(’I‘()st(To,.’Z'o),’ro,fo)), where Y = X, Al,AR.

We write X = X (¢,79, %), etc. to make the dependence on initial conditions
(ro, Zo) explicit. The rotation is chosen to make the fixed point property hold
exactly, and not just up to rotation. These functions give the value of the
Reinhardt-Poincaré map.

Finally, we show that we can analytically convert the Lie algebra coordi-
nates (X, A1, Ag) back to the coordinate system (7, Z). The matrix coefficients
of

X (roSsw,T0,To) — J, and A1(roSsw, ro, Zo) + (3/2)J

are divisible by 7o, and rZ, respectively (regardless of the precise form of
Ssw). The same is true of X, — J and A, + (3/2)J. Because of our
convention Z1; = 1, we must take the reciprocal of the (1, 1) matrix coefficient
of (Xsw — J)/ro. The value of this matrix coefficient at (0, Z,y:) is

Tscale = 0.27 # 0.

This is the scaling factor, obtained as a root of the palindromic polynomial
considered above. Since this (1,1) matrix coefficient is an analytic function
that is nonzero in a neighborhood of the fixed point, its reciprocal is an
analytic function. This completes the proof of analytic continuation to a
neighborhood of the fixed point.

The asymptotic formulas given above show that the restriction of (the
analytic continuation of) F' to r = 0 is precisely the Fuller system.

Next, we show that the Reinhardt-Poincaré map is a diffeomorphism. In
similar way to what we have done, we can show analyticity and analytic
continuation of the Reinhardt-Poincaré map F~! that moves backwards
in time. When the parameter ry is positive and in a sufficiently small
neighborhood of the fixed point, we have that F' and F~! are inverse functions.
By analytic continuation, they are inverse functions in a neighborhood of the
fixed point. Hence, F' is a diffeomorphism. n



14.4. A COMPUTATION OF THE UNSTABLE MANIFOLD 215

We refer to the hypersurface r = 0 as the exceptional divisor. We refer to
Irwin for background material about local unstable and stable manifolds near
a hyperbolic fixed point of a diffeomorphism [I8]. A brief summary appears
in Appendix We write F' for the analytic diffeomorphism that we have
constructed, which extends the Reinhardt-Poincaré map.

Theorem 14.3.3. The fized point (0,Zoy) of the diffeomorphism F' is hy-
perbolic. The local unstable manifold is a C* curve. In a neighborhood of
the fized point, the local stable manifold coincides with the three-dimensional
exceptional divisor r = 0.

Remark 14.3.4. By time reversal, the Reinhardt-Poincaré map F has a hy-
perbolic fized point at (0, z:,) € R?, its local stable manifold is one-dimensional,
and its local unstable manifold is the three-dimensional exceptional divisor.

Proof. Near the fixed point, the analytic continuation F' of the Reinhardt-
Poincaré map agrees with the Fuller-Poincaré map, when r = 0, when we
use coordinates Z € R3 for points on the exceptional divisor £(Z) € Eypy
as above. The exceptional divisor r = 0 is a three-dimensional invariant
subset of the diffeomorphism. We have seen that the linearization of the
Fuller-Poincaré map F' near the fixed point is a contraction on the three
dimensional exceptional divisor. Moving away from the exceptional divisor in
the radial direction, the Reinhardt-Poincaré map has scaling factor 7., > 1.
The Fuller-Poincaré map is therefore hyperbolic, with three eigenvalues |A| < 1
and one eigenvalue |A| > 1. By general theory, the unstable curve is C*,
because the diffeomorphism is C'. ]

14.4 A Computation of the Unstable Mani-
fold

We extend the local unstable manifold to the global unstable manifold.
The previous theorem shows the existence of a C* curve (the global unstable
manifold around the fixed point (0, Zyt)):

t— (r(t),2(t) e RY,  (r(0),2(0)) = (0,z0u), t=0,

for some local parameter ¢. In fact, we use ¢t = r (the first coordinate of the
system (14.1.1))) as the local parameter. Figure [14.4.1| shows a numerical
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Figure 14.4.1: The unstable curve r — (r,Z91(r)) (in blue) starts at the
outward fixed point Z910yt & —2.39 and continues to the boundary Z3, (r) =
v/3 — 1/r of the star domain (in red). The curve has been approximated in
Mathematica, using the ListLinePlot command to create a piecewise linear
curve joining 434 data points.

computation of the unstable curve. Although we have not done so because it
did not seem especially worthwhile, these calculations might be repeated using
more rigorous numerical methods such as interval arithmetic. The numerical
situation is favorable: because of contraction in the stable directions, any
numerical errors in computing the unstable curve will tend to be self-effacing
(in the same way that under mild assumptions, Von Mises iteration of matrix
powers converge to the dominant eigenvalue). Another numerical advantage
is that three contractive eigenvalues are small (less than 0.1 according to the
proof of Lemma [13.5.5).

As we move away from the fixed point, computations use the unscaled
switching time ¢, = t5, (7, Z(r)) rather than the scaled switching time. We
check that the other switching functions x;; remain positive, so that the
switching sequence is always cyclical 3 — 2 +— 1 — 3 — ---. The unstable
curve reaches the boundary of the star domain near (r, 9;) ~ (0.21, —3.03).
Once 7 is at least about 0.065, a Reinhardt trajectory starting on the unstable
curve reaches the boundary of the star domain before the next switching time,
and the forward step of the Reinhardt-Poincaré map is no longer defined.

Theorem 14.4.1. A trajectory of the Reinhardt system that emanates from
the fized point (r,Z) = (0,Z,y:) on the exceptional divisor does not return to
the exceptional divisor. A trajectory of the Reinhardt system that tends to the
fized point (r,Z) = (0,x;,) on the exceptional divisor did not emanate at an
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-0.5 0.0 0.5

Figure 14.4.2: Outward triangular spirals of the Reinhardt system that start
at the singular locus. The figure shows the image of trajectories z(t) € h* in
the upper half plane.

earlier time from the exceptional divisor.

Proof. All switches must be on the unstable curve, which meets that ex-
ceptional divisor at a single point (0, Z,,:). Any trajectory that returns to
the singular locus must chatter (that is, must use infinitely many switches
to arrive). This would require the unstable curve to contain a sequence of
forward iterates of points tending to the exceptional divisor. This does not
happen, because the unstable curve hits the boundary of the star domain.
The second statement follows from the first by time reversal. O

Figure shows the resulting outward spiral trajectories z(t) € h*
(where ®(z(t)) = X (t)). Trajectories chatter as they exit from the singular
locus, and move in a triangular spiral until they hit the boundary of the star
domain in finite time. The switching points are clearly visible as corners of
the triangular spirals. The unstable curves, which are related by rotations,
are obtained by joining these switching points by smooth curves.
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Chapter 15

Geometry of the Fuller-Poincaré
Map

Throughout this section, dropping the subscript on F,,, we let F' denote
the Poincaré map for the Fuller system on the Poincaré section Zyy o/Vr or
on the domain given by the cells covering =y o/Vr, as described below.

15.1 Three-Cells

Let 2 = (21,2,23) € C3. Write 2; = rje'% = z; + iy;, for j = 1,2,3.
Assume that z3 € W, a wall. By passing to a Vr-equivalent point, we may
assume that z3 = R(z3) = 3 < 0.

Assume that the Hamiltonian vanishes at z = (21, 22, 23) for some control
u € Vp. The vanishing Hamiltonian condition implies

I3 = 27"17‘2 Sin(91 — 92) = —27'17"2 sin '@b, (1511)

where ¢ := 0, — 0;. If x3 < 0, this implies 17 # 0 and 9 € (0,7) (modulo
integer multiples of 27).

Lemma 15.1.1. For each z = (z1, 22, 23) # 0 satisfying (15.1.1)), there is a
unique rescaling by a positive scalar in the virial group so that r1 +ry =1

(and ri,r9 = 0).

Proof. If r1 = ry = 0, then z = 0 by ([15.1.1)), which is contrary to assumption.
Hence, we may assume r; + 73 > 0. Solve the following quadratic equation

219
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for its unique positive root s > 0,
r1/s 4+ 19/8* = 1.
Then scale r; — r;/s". O

Thus, we may write 7, = 1 — ry, with ry € [0, 1].
The time reversal symmetry 7, when expressed in terms of coordinates
(r9,1,02) takes the form

7'(7"2,2#, 92) = (T277T - ¢, T — 92)

If 6, € [—m, |, then the sign 7 in the third coordinate +m — 65 is chosen to
give a value again in [—m, 7].

We now enumerate the cells partitioning the domain =)y o/Vr starting
with the two three-dimensional cells. We use notation Cg(u, ma, mp) for
cells. The subscript k£ denotes the dimension of the cell; u is the first control;
ma (resp. mp) is the multiplicity of ¢ = 0 in the switching polynomial
XA = X1 (resp. xB = X4 _4)- Let Xam, = xa/t™ and xpms 1= XB/t"".
Let Aam,, Apmy be the discriminants of x4, and xpm;. We sometimes
also affix a superscript Cs! or CP to indicate whether the active switching
function is xam, OF XBmp-

Definition 15.1.2. The cell C3(¢)° = Cz(u,ma, mp)°? = C3(¢,0,1)° is de-
fined by conditions 3 # 0 and y, > 0. The cell C3(¢?)° = Cz(u,m4, mp)° =
Cs3(¢%,0,1)° is defined by conditions T3 # 0 and y, < 0. We call C3(u)° the
big open cells.

(We will construct compactifications Cs(u,0,1) of the open cells below.)
C3(¢)? is a three-dimensional open rectangle in R?® with coordinates r, € (0, 1),
¥ € (0,7), and 63 € (0, 7). The first control is ¢. Also, C3(¢?)° is a three-
dimensional open rectangle in R3 with coordinates r, € (0,1), ¥ € (0,7), and
62 € (—m,0). The first control is 2. The complement of C3(¢)° U C3(¢?)? is a
union of strata of dimension at most two. Thus, these two three-dimensional
cells cover most of the domain. We also refer to C3(¢)® and C3(¢?)? as the first
and second big cells, respectively. The involution 7 is given by 7(rs, 1, 6;) =
(rg,m—1), ™ —65) on the first big cell and by 7(rs, 9, 0s) = (ro,m— 1, —m — 65)
on the second big cell.

Note that x40(0) # 0 and x5,1(0) # 0 on the big open cells, and the
roots are nonzero. As above, let Ay and Apg; be their discriminants, and
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let ressp be the resultant of x40 and xp 1. The first switching time ¢, is
a discontinuous function on the cell. The discontinuities can only appear
along the loci Ayo =0, Ap; = 0 and resyp = 0. However, the loci do not
always force a discontinuity in %,,. For example, resyp = 0 does not give a
discontinuity when it represents the equality of negative roots of x40 and
XB,1-

We study the boundaries of the first and second big cells, with the aim of
extending the dynamical system continuously to the boundaries (with noted
exceptions).

We identify points along the face ro = 0, if they have the same image under
the mapping f : [0, 7] x [0,7], f(v,02) = 65 — ¢ = 0, € [—7, 7] on the first
cell, and the mapping f : [—m,0] x [0, 7], f(¥,0) = 0 — ¢ = 6, € [0,27] on
the second cell. (When 75 = 0, the coordinate 2z, = r2€"%2 does not depend on
65.) On each cell separately, we identify points along the face ro = 1, if they
have the same image under the projection f(1,6s) = 65, for similar reasons:
the coordinates z; = r1€"! does not depend on #;. We do not identify points
02 = 0 on the bottom face of the first big cell with points 83 = 0 on the top
face of the second big cell, because they have different first controls v and
behave differently in the Fuller dynamical system. For the same reason, we
do not identify points 65 = 7 on the top face of the first big cell with points
02 = —m on the bottom face of the second big cell.

Figure shows shaded in red those points py on the boundary of the
two cells where the first switching time satisfies lim, ., ts,(p) = 0, where the
limit is taken over interior points of the cells. Although the switching time is
zero, the dynamical system is best treated as nontrivial (by refraining from
identifying Vr-equivalent points on the boundary of the cells).

By taking points in the big open cells near the boundary, we can determine
that the Fuller-Poincaré map acts in the following way on the (red-shaded
regions of the) boundary (by continuous extension of the map on the interior
of the cells). The bottom face f; = 0" of the first big cell maps to the top face
65 = 0~ of the second big cell (by the identity map (r3,%) — (r9,%). The
bottom face 3 = (—m)" of the second big cell maps to the top face s = 7~
of the first big cell by the map (r3,%,6s) — (r2,1, 2w + 63). The boundary
region ¢ € {0, 7}, 02 € [0,7/3] on the first big cell is shifted to Vr-equivalent
points (¢, 02) — (1,02 + 2w/3) on the same faces. Also, the boundary region
¥ € {0,7},0; € [—m/3,0] on the first big cell is shifted to Vr-equivalent points
(¢,605) — (¢,05 — 27/3) on the same faces. Finally, the right and left faces
ro = 0 and r; = 1 of the cells have been collapsed to edges along the front
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Figure 15.1.1: Shaded regions are points on the boundary of the first and
second big cells where the first switching time ¢, has limiting value 0. Smaller
cells yo = 0 will be attached to the top faces of both 3-cells to cap the top
faces, and further smaller cells z3 = 0 will be attached to the unshaded regions
of the front and back faces to fill the unshaded regions of the faces.

and back faces ¢ € {0, 7}, and their behavior is dictated by the behavior on
the other faces. (As stated above, all these boundary behaviors are obtained
by studying the behavior of the dynamical system on the interior of the cells
and taking limits to the boundary.)

15.2 Smaller cells

In this section, we partition the complement of the union C3(¢{*!)° into
cells of lower dimension. We find that the cells of lower dimension can be
attached to the faces of the first and second big cells in a way that preserves
continuity. We continue to use polar coordinates z; = r;e’ = z; + iy;. We
may assume ro = 1 —ry € [0,1] and x3 = —2r 7y siney, ¥ = 0y — 6, € [0, 7|



15.2. SMALLER CELLS 223

by (15.1.1).

We begin with the cases such that x3 # 0. To be in the complement of
the big open cells, we must have sinf; = 0 and y, = 0. The two-dimensional
cells of this form have parameters u € {¢*'}, (m4,mp) = (0,2). That is, x5
has a double root at ¢ = 0. We denote these cells Cs(u, ma, mp), according
to the their parameters.

The cell Cy(u,ma, mp) = C2((,0,2) is defined by z3 # 0 and 0 = 7.
Coordinates are 75 € (0,1), ¥ € (0, 7). The first control is ¢. The switching
function xp 2 never has a positive root. Thus, the switching function is always
X4,0. By Descartes’s rule of signs, x4, always has a unique positive root.
The first switching time is then a continuous function on the cell. If we
identify this cell with the top face 6 = 7 of the first three-cell C3(¢)?, then
the dynamical system extends continuously from the interior of the first big
cell to its top face.

The cell Cy(u, ma,mp) = C2(¢?,0,2) is defined by z3 # 0, and 6, = 0.
Coordinates are 75 € (0,1), ¥ € (0, 7). The first control is (2. If we identify
this 2-cell with the top face 6, = 0 of the second three-cell C3(¢?)°, then the
dynamical system extends continuously from the interior of the second big
cell to its top face (with exceptional discontinuities, where the dynamical
system is already discontinuous on C5(¢?,0,2), as noted below) .

Note that we cannot have parameter values (m4,mp) = (0,3). In fact,
if mp = 3, the y; = yo = 0. This implies that r, = 0, ro = 0 or 64,605 € 7Z.
Then z3 = —2riresiny = 0 by , and m4 > 0.

In the remaining region, z3 = 0 (and m4 > 0). By (15.1.1), we have
re € {0,1}, or siny = 0. Each angle 0, is Vr-equivalent to a unique angle
0 € (m/3,7]. We define a closed 2-cell Cy(¢) = C5((,1,1) with first control
u = ( as follows. The coordinates are 7; € [—1,1] and 6, € [7/3,7|. If we
define the first switching time %, over the entire closed 2-cell by continuous
extension of the first switching time on the interior of the closed 2-cell, then
Figure[15.1.1| shows the parts of the boundary where the continuous extension
gives t,, = 0. Setting r; = 7€, and r, = 1 — r;, with ¥ € {0,7} and
r1 € (0,1), we recover the coordinates (r3,1,60s). (Exceptionally, on the
segment 7 = 0, ro = 1, we disregard ¢ and only use 6,.) If we attach each
point (73,1, 62) of this cell to the point on the front and back boundary faces
¥ € {0,7} of the first 3-cell with the same coordinates (79,1, 6), then the
dynamical system on the interior of the 3-cell extends continuously to the
front and back faces, in agreement with the dynamics on the 2-cell Cy(().
Note that the segment 71 = 0 maps to the right face of the 3-cell, which has
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been collapse to a segment, and with this collapsed right face, the map from
the 2-cell to the front and back faces of the 3-cell is continuous.

In a similar way, by Vr-equivalence, the angle 6> can be brought into the
interval 6, € (—m, —m/3] by the Vpr-action. In this case, the first control is
u = (2 and a closed cell C5(¢?,1,1) can be attached in a similar way to the
front and back faces of the second 3-cell C3(¢?)? in a way that agrees with
the dynamics.

Remark 15.2.1. A symmetry of Vr carries the closed cell Cy((,1,1) to
Cy(¢%,1,1), but we refrain from identifying these two closed cells with each
other. Instead, we consider the two closed big cells as disjoint from each
other. We will see that F~1(Cy(¢)) and F~1(Cy(¢?)) are the two sides of a
hypersurface Ores in the first big cell, along which the Fuller-Poincaré map is
discontinuous. Because of this discontinuity, it is best to keep the two two-cells
separate.

We summarize our results in the following lemma.

Proposition 15.2.2. Every point in the domain of Eyo/Vr is equivalent
to a point in the union of the closures C3(¢*!) of the first and second big
cells (with identifications on the boundaries of each cell as given above). The
first control u is ¢ on the first big cell and ¢*> on the second big cell. The
dynamics on the faces of the cells is given as the continuous extension from
the dynamics on the interior of the cells. Every point on every face of the
cells that is not identified with a point in the domain Ey o/Vr is a point with
vanishing (limiting) first switching time tg, = 0.

Proof. See the discussion leading up to the statement of the proposition. [

15.3 Involution

Let F' be the Fuller-Poincaré map, and let 7 be the time reversing symmetry.
Both have domain given by the union of two closed 3-cells. Since F~! = roFor
and 7 = 77!, it follows that ¢,z := 7 o F is an involution: ¢,r = L;}. In this
section, we use properties of this involution to describe discontinuities of the
Fuller-Poincaré map.

We say that two subset D, D of the domain are in involution if 1, (D) = D

(and ¢,r(D) = D). Let Cy((,1,1) be the closed 2-cell defined above, viewed
as a subset of the front and back faces of the first big cell. Define the resultant
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locus as Ores = Lrr7(C2(C)). By Lemma the resultant of the switching
functions x40 and xp; is zero along 0,.s. By construction d,..; and Cs(¢,1,1)
are in involution. Define d4 = ¢,r(C2((,0,2)), where Cs((,0,2) is viewed as
the top face 02 = m of the first big cell. By Lemma the discriminant of
the switching function x 4 is zero along d4 and F is discontinuous along 04.
By construction d4 and Cs(¢) are in involution. The locus Ores U 04 lies in
the first big cell and geometrically partitions the first big cell into two parts.
(Here, by a geometric partition of a set, we mean a collection of regular closed
subsets covering the set whose interiors are disjoint. A closed set is regular, if
it is the closure of its interior.)

Let D be the part of the geometric partition containing the face Cz((, 0, 2)
(that is, the face 02 = 7). There are no further discontinuities in Dy; that is,
F' on the interior of D; extends continuously to a function F; with domain
D, with first control v = { and switching function x 49. The domain D is
in self involution. The two fixed points g;, ¢out € D1 are in involution. See
Figure

We geometrically partition the 2-cell C5(¢?,0,2). according to the active
switching function (Figure . On one part C4, we have Aso > 0. By
Descartes’s rule of signs, x40 has two positive roots (counted with algebraic
multiplicity). The first switching time is a root of x40 and is continuous on
CZ. On the interior of the part CZ, we have A 4,0 < 0. In this case, x4, has
no positive root, and the first switching time is the unique root of the linear
polynomial xp2. The map F' is discontinuous along the discriminant locus
Ay = 0. However, the first switching time and the Fuller-Poincaré map F
extend continuously to give F4 with domain C# and Fp with domain CZ.

Set 042 := t,p(C%). It is a subset of the second big cell, and it geometri-
cally partitions the big cell into two parts. The discriminant A 4 vanishes
along 04, by Lemma Let D, be the part that contains C4. The
active switching function on Dy is x4,0. The Fuller-Poincaré map F' extends
continuously from the interior of D5 to a continuous function F5 with domain
D,, and the restriction of F, to C4' is F4. The part D, is in self involution.

Let D3 be the other part of the partition of the second big cell. The active
switching function on D3 is xp1, and F' extends continuously to a function
F3 with domain Ds.

Let Dy := ¢,p(D3). It is a subset of the first big cell, that shares the
boundary J,.s (and part of the boundary d4 with D;. Finally, let Dy be the
closure of the complement in the first big cell of the union of D; and D4. The
boundary of Dq consists of dg := LTF(CQB ) and a subset of d4. Along dp, the
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Figure 15.3.1: Geometric partition of the first big cell into parts Dy, D1, Dy.
The two panels show two different views of the boundary separating D; from
Dy u Dy in the first big cell. On the red shaded part 0,.; of the boundary,
the resultant vanishes. On the yellow shaded part d4 of the boundary, the
discriminant A 4 vanishes. These red and yellow boundaries extend to the
blue perimeter, even if the displayed graphics stop short due to imperfect
rendering. The blue perimeter is in involution with the perimeter of the red
region in the first frame of Figure [15.1.1] The part D; lies above and to the
right of the boundary in the first panel and to the lower right of the boundary
in the second panel. The parts Dy and D, lie below the boundary in the first
panel and to the upper left in the second panel. The boundary dg between Dy
and D, is not shown. The part Dy is a very small bubble, which is attached
to the yellow part d4 of the boundary.
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Figure 15.3.2: Geometric partition of the second big cell into parts Dy (lower
left panel) and D3 (lower right panel). The top left panel C4 and top right
panel CZ are given by Asp > 0 and Aap < 0, respectively in the top face
02 = 0 of the second big cell. The lower left panel D, and lower right panel
D3 are separated by the discriminant locus Asp = 0. The part D, is in
involution with itself, and the involution exchanges its top face C4 with the
locus separating D, from Ds. The involution exchanges D3 and Dy, sending
the top face CZ of D3 to the boundary dp separating D, from Dy.
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discriminant vanishes: Ag; = 0.

Remark 15.3.1. The fized point g;, € D1 is given by coordinates
(T2ins Yin, O2in) ~ (0.267949, 0.1705935,2.91574).

The fixed point is remarkably close to the triple juncture of Dy, D1, and Dy.
In fact, the line segment

Tro — (7"2,1/1in,92m), T2 € [07 1]

meets the boundary Op (separating Dy from Dy) at ro ~ 0.2677, then meets
the boundary 04 (separating Do from D;) at mo ~ 0.267905, then reaches
the fized point at ro ~ 0.267949. The fixed point g, € D1 with coordinates
(ro, ™ — Vin, ™ — boi,) € Dy is far from the other parts Dg,Dy.

In summary, we have the following proposition.

Proposition 15.3.2. Let D;, 1 = 0,1,2,3,4 be the geometric partition of the
two big cells defined as above. The Fuller-Poincaré map extends continuously
from the interiors of D; to functions F; on the closures D;, fori=0,1,2,3,4.
The involution acts on the parts by D3 < Dy. Moreover, D1,Ds, Dy are each
in self involution.

Proof. The proof is contained in the discussion leading up to the proposition.
To briefly summarize the argument, any discontinuity in the interior of a
big cell must appear along one of the loci resgp = 0, Agg =0, or Ap; = 0.
By Lemma the involution maps the interior discontinuities to the
boundary faces of the big cells.

The Fuller-Poincaré map is continuous on the boundary cells Cy(¢{*!,0,2)
and Cs((,1,1), again with exceptions where a resultant or discriminant
vanishes. Analyzing cases on two-cells, the only discontinuity is given by
A g =0 on Cy(¢?,0,2). Using the involution to map these parts of the faces
back into big cells, we obtain a complete description of the discontinuities. [



Chapter 16

Global Basin of Attraction and
Mahler’s First

Throughout this chapter, dropping the subscript on Fy,,, we let F' denote
the Poincaré map for the Fuller system on the two big cells. Also, F; denotes
the continuous extension of F' to D;.

16.1 Main result on Basin of Attraction

Theorem 16.1.1 (Global Basin). Let q¢ # gin, be a point in Eyw o/Vr. Then
the iterates F*q under the Fuller-Poincaré map tend to the fized point gout.

Proof. The proof follows the strategy of containment functions from interval
arithmetic. However, the proof is simple enough that it is not necessary to
adopt the entire infrastructure of interval arithmetic.

We work with the representation of =)y o/Vr as the union of two closed
big cells C3(¢*?!). Let Dy, ...,D4 be the geometric partition of the cells, and
let F; be the continuous extension of F' from the interior of D; to D;.

We further partition D; into 9 rectangles. Set

Djj := {(r2,%,02) € C3(() | r2 € [0,1], ¢ € [as,ai11], 02 € [big1, bi},
Dl,ij = Dl N Dij7 1= 07 1a27 .] = Oa ].,2,

where (ag, a1, a2,a3) = (0,7/3,27/3,7) and (bo, b1, b2, b3) = (w, 7 —1.1,1.1,0).
We have Qin € Din = D1,22 and Gout € Dout = Dl,OO = DOO-

229
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Din Dout D4 D2 DO D3 Dl\Din

Din * % * * * * %

Dout *

D 4 . * *

D, : *

D() . *

D; . *
Dl\Din *

Table 16.1: Upper triangular structure of the Fuller-Poincaré map on the
two big cells. The dots - are placeholders along the diagonal. The nontrivial
diagonal entries appear in the first, second, and last rows.

We claim that we have the following domain and range restrictions. Let
D, D* run over the sets in Table [16.1]

D, D>l< € {Dm, Dout, D4, Dz, Do, D3, Dl\Dm}

Assume D < D;. We claim that F;(D) © U(p p*).« D*, where D* is included
in the union whenever the row-column entry (D, D*) of Table is marked
with an asterisk. (The dots - are placeholders along the diagonal of the table
and do not indicate inclusion in the union.)

We justify the claim and the associated table as follows. Whenever D < D;
is topologically a closed ball with boundary ¢D, then in order to show that
F,(D) c D, where D is a closed convex subset of R3, it is enough to show
F;(¢D) c D. In practice, D consists of a small number of analytic surfaces
(such as the six faces of a cube), and the proof of the containment F;(D) c D
reduces to the containment of the images of the faces, which we compute
numerically without difficulty in Mathematica. We call this the boundary
method. In fact, by using the involution ¢, r, we can mostly avoid direct use
of the Fuller-Poincaré map.

We start with the second row. We compute the interval containment
Fi(Dyyt) < Doy by the boundary method. The image Fj(D,,;) and the fixed
point g, are shown in Figure The forward iterates Flk (Dout) quickly
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1.0
0.5

0.0

fixed point

25

0.0

Figure 16.1.1: The bounding box is the set D,,; = D; and the shaded region
is the image Fi(D,y:), showing the contraction of D,,; toward the fixed point

Qout € Dout .

shrink toward g,,;. The Jacobian calculation at the fixed point (appearing
earlier) shows that g, is an asymptotically stable fixed point.

The first row asserts that the range of D;, can be anything, and there is
nothing to prove in this case. For the D, row, the image satisfies Fj(Dy) =
T(t-r(Dy4)) = 7(D3), which is contained in the second big cell, covered by
D, U Dj. For the next row, F5(Ds) = 7(t,p(D2)) = 7(Ds) < D3. (Note that
65 € [—m/3,0] holds on Dy, so that 63 € [—m, —27/3] holds on 7(D3), to see
the containment in Dj.)

Turning to the row for Dy, we note that Fy(Dg) = 7(¢t,r(Dy)) = 7(Dy).
The boundary of 7(Dg) consists of 7¢,7(CP) and a subset of 7(d4). Both of
these boundary components lie in D,,;, which is a subset of D;\D;,,. The
containment Fy(Dg) < D;\D;, follows by the boundary method.

Next consider the row Ds. We have F5(D3) = 7(t,r(D3)) = 7(D4), which
is a subset of the first cell. Recall that the first big cell is covered by the union
of Dy, Dy, and D4. The inequality 6; = 65 — % < 0 holds on Dy4, Dy, and D;,,
but 6; = 63 — ¢ > 0 holds on 7(D4). Hence by exclusion, 7(D4) < D;\Dj;,.
(In the boundary case 0 = 1, the edge given by equations 7, = 0, 6 = 1)
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3.0F
25F

2.0f

Figure 16.1.2: The shaded region is the convex hull of the projection to the
(1, 6,)-plane of the iterated image F2D3. The black lines show the boundary
of the projection of D,,:. The conclusion is that F2D3; < D,,;.

belongs to both D; and Dy, but we still have 7(D4) < D;\Dj,.)
We have that F?D3 < Dy, as shown by the calculation in Figure [16.1.2
Applying the function F' o 7 to both sides of this inclusion, we obtain

D4 c F(D22), (1611)

because
D4 = LTF(D3) = F’TF2D3 = FTDOO = F(DZQ)

The last row of the table is justified below by taking an interval refinement.
We claim that F;(D;\D;,) < C3(¢)\D;,). (Note that if ¢; € D;\D;, and
Fi(q1) € C3(¢)\Djp, then using facts C3(¢{) = Dy u D; U D4 and Dy = Dy,
and Dy € FDsy $ F(q1), we get Fi(q1) € D1\D;, to complete the justification
of the row.)

The cases (i,7) = (0,0),(2,2) are the cases D;;,, D,,;, which are treated
elsewhere. For (i,j) # (0,0),(2,2), we break the claim into a series of
subclaims. The domain D;\D;, is covered by the sets Dy ;;, for (¢,7) # (2,2).
The subclaims are the following domain and range restrictions for (3,j) #
(0,0), (2,2); subclaim;;: we have F1(D1,;j) © Uy Dy, where the union runs
over (k,£) < (i,7). Here we use the lexicographic total order (<) on ordered
pairs given by

(k,2) < (i,5) < (k<i)or (k=1iand/{<j).
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These subclaims are established by the boundary method through direct
computation, explained above. The convex hulls of planar projections of
the images are shown in Figure [16.1.3] The domain and range restrictions
follow by observing that the blue regions are subsets of the yellow regions.
The three-dimensional images Fi (D1 21) F1(D1,01) are shown in Figure
Their projections appears in panels (2,1) and (0, 1) of Figure

We are ready to prove that g, has a global basin. Let q # ¢;,. Assume
first that g € D;,,. By time reversal symmetry, for every q € D;,,, with q # ¢;»,
the iterates F*q must eventually exit D, (because the iterates F'~*(7q) exit
D, for all sufficiently large k). Note the upper triangular structure of the
first table, with diagonal entries only for D;, and D;\D;,. Hence, if ¢ # g,
the iterates F*q lie in D;\D;, for all sufficiently large .

Note that the total order (<) gives a strict triangular structure with
respect to domain and range interval containments. Hence, if ¢ € D;\D;,, the
foward iterates F*q must then eventually all lie in D g0 = Dou:- As already
noted, once in the small rectangle D,,; containing q,.;, the iterates rapidly
converge to the fixed point g,y;. O

16.2 Classification of Outward Fuller Trajec-
tories

In this section we return to the Fuller-Poincaré map F : (C*\0) — (C3\0)
(including the radial component) and restore the subscript Fi,, when referring
to the Fuller-Poincaré map on the angular component.

Theorem 16.2.1. Consider the Fuller-Poincaré dynamical system F on
(C3\0)/Vr. Every outward trajectory that emanates from the singular locus
has all its switching points in the set R-o X {qout} modulo Vr. Every inward
trajectory to the singular locus has all its switching points in the set R-q x {gin }
modulo Vr.

Proof. By time reversal symmetry, it is enough to prove the second statement
of the lemma. Let q € =,,/Vr be any switching point of any trajectory. If
q = Qin, then it is the inward spiral.

Otherwise, ¢ # ¢;,. In this case, by the Fuller basin theorem and by the
stability calculation near g;,, for large j, the iterates ang(q) approach the
outward spiral. For every r > 0, this implies that the angular component of
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Figure 16.1.3: Projections of images Fj(D1 ;) in panel (4, j). The coordinates
are (1, 02) and projection map is (19,1, 6) — (1, 63). The gray square labeled
{i,7} is the projection of D;;, containing the domain. The blue region is
the convex hull of the projection of F;(D;;;). The yellow squares are the
projections of Dy; such that (k,1) < (4,5). The subclaims follow from the
observation that the each blue region is contained in the corresponding yellow
region.
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Figure 16.1.4: The right panel shows the image Fj(D; 1) in the first big cell.
The projection of this region appears in panel (2,1) of Figure [16.1.3] The left
panel shows Fj(Dj 1), corresponding to panel (0, 1) of Figure [16.1.3

the Fuller trajectory z(t) with initial conditions (r, q) approaches the outward
spiral. The outward spiral moves away from the singular locus (because of
the scaling factor 7. > 1), and the Fuller trajectory must then also move
away from the singular locus. In particular, (r,q) is not the initial condition
of a forward trajectory that converges to the singular locus. ]

16.3 Mahler’s First: Bang-bang with Finitely
Many Switches

In this section, we return to the Reinhardt dynamical system, and F' now
denotes the Reinhardt-Poincaré map.

We prove Mahler’s First conjecture from 1947. Theorem [16.3.1] is our
main result.

Theorem 16.3.1 (Mahler’s First conjecture). The global minimizer of the
Reinhardt optimal control problem is a bang-bang solution with finitely many
switches. In particular, the minimizer K, of the Reinhardt problem is a
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finite-sided smoothed polygon with rounded hyperbolic arcs at each corner of
the sort described by Reinhardt and Mahler.

By the sort described by Reinhardt and Mahler, we mean more precisely
that the minimizer K,,;, has no corners and the boundary alternates between
straight edge segments and hyperbolic arcs, whose asymptotes are lines
extending the straight edge segments of the boundary, as in Figure [I.1.1]

Proof. A bang-bang trajectory with finitely many switches is a polygon with
rounded corners of the sort described by Reinhardt, so the second statement
of the theorem follows from the first.

By Proposition [8.1.3, any globally minimizing trajectory that avoids the
singular locus is is an extremal for the Reinhardt control problem and is also
edge-extremal. By Theorem [8.3.2 such a trajectory is a bang-bang trajectory
with finitely many switches. A trajectory cannot remain on the singular locus
for any positive interval of time by Theorem A trajectory cannot reach
the singular locus with finitely many switches by Lemma [8.3.4

The proof then reduces to the consideration of a trajectory such that the
infinite sequence of switching points has a subsequence tending to the singular
locus. Passing to the blow-up, which has a compact exceptional divisor, the
sequence of switching points has a subsequence tending to a limit on the
exceptional divisor in finite time. By Theorem [16.4.1| which appears below,
the limit is g;, and the sequence approaches g;,, along the stable curve W*(g;,, ).
By Theorem and its time reversal, the stable curve W*(g;,) did not
come from the exceptional divisor at an earlier time. Thus, the trajectory is
not periodic. This is contrary to the boundary conditions of the Reinhardt
conjecture. O

16.4 Cluster Point Theorem

The proof of Mahler’s First relies on the following theorem.

Theorem 16.4.1. If the sequence of switching points of a Pontryagin extremal
Reinhardt trajectory has a cluster point on the exceptional divisor of the blow-
up, reached in finite time, and if the switching points themselves are not on
the exceptional divisor, then that cluster point is the fixed point q;, and the
switching points lie on the stable curve W*(qi,).

The proof of Theorem [16.4.1| will be presented after some preparations.
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16.4.1 Coordinates

We return to the hyperboloid coordinate system (w,b,c) € C3 for the
Reinhardt dynamical system. We use parameters

p=2, di1=3/2, dost=-1, e=1,
We recall that we have rescaled variables

(zla 22, Z3) = (w/p, —ib/(Zp), C/6p>, (w’ b, C) = (pzl, 2piz,, 6pZ3), p=2

that were introduced in Equation (11.2.4). We assume that (21, 22, 23) # 0.
Formulas involving hyperboloid variables from previous chapters can be
rewritten in terms of z. We do so without further comment.

Returning to earlier notation, we let r be the radial variable in the angular
decomposition of C*\{0}. As usual, we call r and ¢ the radial and angular
components of z. We have coordinates

2k = rké-ka é- = (£1a§2a§3) € (C3a ¢(€) = ]-a r>0.

The set
{€eC[g€) =1}

is a compact manifold. This is the angular component in this context. For
now, we do not impose the vanishing of the Hamiltonian. That will be
reimposed later.

16.4.2 Reinhardt Switching functions as cubic polyno-
mials

In Section the asymptotic formulas in 7y for the Reinhardt switching
functions are functions of rescaled time s. These switching functions (and
their derivatives with respect to s) are approximated as ro — 0 by the Fuller
switching functions, as functions of s. The Fuller switching functions are
cubic polynomials, whose leading coefficients are nonzero constants. For r
sufficiently small, the third derivative of the Reinhardt switching functions
are also nonzero. This implies that the Reinhardt switching functions behave
qualitatively as cubic polynomials: the third derivative has fixed sign, the
second derivative is monotonic with at most one zero, the first derivative
is convex with at most two zeros, and the function itself has at most one
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inflection point, has at most two local minima, and has at most three zeros.
In summary, the Reinhardt switching function behaves qualitatively like a
monic cubic polynomial.

We can make this polynomial behavior precise using Weierstrass prepa-
ration. Let z(s) be the solution to the Reinhardt system in hyperboloid
coordinates with initial condition (r,£°), rescaled time ¢ = sr, and first con-
trol u = ¢*. We view the Reinhardt switching functions ij(s) /r® from (*
to ¢’ as analytic functions of the variables s, 7, R(£2), (£?). By the earlier
asymptotic formulas (adapted to this system of variables), the switching
functions extend analytically to a neighborhood of » = 0. When r = 0, the
Reinhardt switching function agrees with the Fuller switching function and is
a cubic polynomial in s.

For a given initial condition £° on the angular component, the restriction of
the switching function x(s,r,£°) = ij(s, r,£%) to r = 0 is a cubic polynomial
with roots s1,ss,... having algebraic multiplicities m;, where >, m; = 3.
Applying the Weierstrass preparation theorem centered at the point (s,r,&) =
(84,0,£%), we obtain a (monic) Weierstrass polynomial of degree m;.

m;

XVV,i('sa T, g) = Z (8 - Si)mbm(lra 6)7

m=0
where b,,, = 1. For m < m;, the coefficients b, are analytic functions of (r,¢)
near (0,£°) such that b,,(0,£°%) = 0. If m; = 1, then s; — by(r, £) is simply the
implicitly defined root of x near (s;,0,&°).) Set xw(s,7,&) = ixwi(s, 7, §),
which is defined for all s and for all (r,£) in some open neighborhood of
(0,£9). Since x is a real analytic function, the nonreal roots s; come in
complex conjugate pairs, and the corresponding Weierstrass polynomials
come in pairs. By the uniqueness of the Weierstrass polynomials, xw (s, r,&)
takes real values on real inputs. By Weierstrass division, and the continuous
dependence of roots on their coefficients, the polynomial xy, captures all real
roots of x for all (r,£) in some neighborhood of (0,£°%). Thus xy can be used
as the switching function.

Now we drop the subscript W, and take the switching function x to be
a cubic polynomial in s, whose coefficients are analytic in (r,£). A monic
polynomial switching function x(s) = s + bys? + by s + by, determines complex
analytic varieties for each ¢ < 3 by the equations b;(r, &) = 0 for ¢ < £. We
have truncations

3
Xe(s) = Z bys™ ¢
m=£{
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On this complex analytic variety, we have x,(s) = x(s)/s*.

We have defined cells Cy, for the Fuller system by conditions on the first
control, multiplicities m 4, mp of the zero at s = 0 of the switching functions
X4, XB- We have defined a further geometric partition according to inequalities
on the discriminants A4, , Apmy, and the resultant res(Aam,, A my ), and
according to the active switching function. All of these defining conditions can
be carried over to the Reinhardt dynamical system in terms of the switching
functions of the Reinhardt system. We use the superscript R to designate
an extension from the exceptional divisor to a neighborhood, according to
Reinhardt dynamics. In this way, we extend the definitions of cells Ci to
a neighborhood C¥ of the exceptional division using the Reinhardt system
dynamics. Upon restriction to r = 0, the cells agree with the cells defined for
the Fuller system. There is a shift in dimension of each cell by one, because
the Fuller system exceptional divisor has codimension one (if we restrict to
the vanishing set of the Hamiltonian in both cases).

The rule for the first control for the Fuller system extends to give first
control u on the two big cells CE(u). We obtain a geometric partition of the
two big cells into five regular closed sets D, i = 0,1,2,3,4 and a continuous
extension F; of the Reinhardt-Poincaré map F' from the interior of DF to
all of DE. The restriction of each D to the exceptional divisor r = 0 is the
previously defined Fuller-system part D;.

Similarly, where we have refined the partition into smaller parts (such as
D, ;;), we choose a corresponding refinement of the parts, such as D¥ into
Df’ij. The precise definitions of these subparts will not matter as long as they
agree with previously established subparts D; ;; on the exceptional divisor
r=0.

16.4.3 Proof

Proof. We now turn to the proof of Theorem Consider a sequence of
switching points of a Pontryagin extremal trajectory that has a cluster point
on the exceptional divisor. Assume that the switching points themselves are
not on the exceptional divisor.

Note that a periodic set of switching points does not approach the excep-
tional divisor. Hence the sequence of switching points is injective, and the
set of switching points is countably infinite.

We consider the various possibilities for the cluster points on the excep-
tional divisor. If g;, is a cluster point, then by the definition of the stable
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manifold, the switching points lie on the stable manifold W*#(q;,). This case
appears as a possibility in the statement of the theorem. In this case, g;, is
the only cluster point of the trajectory. (If the sequence of switching points
has g;, as a cluster point, then the finite time hypothesis implies that the
limit of the sequence exists and equals ¢;,, because of the time required to
travel from outside an e-ball with center g;, to a point inside an €/rg.q-ball
with center ¢;,; once entering an €/rs..-ball, a finite time sequence must
eventually remain inside the e-ball. Here time is measured with respect to
the unscaled time parameter ¢.)

We now assume that g;, is not a cluster point of the trajectory. We assume
for a contradiction that the trajectory has a cluster point other than g;,.

We claim that g, is not a cluster point. Otherwise, for a contradiction, we
find that the switching points lie on the stable manifold W*(q,y:). (Again, the
finite time hypothesis is used to convert a cluster point to a limit.) However,
this stable manifold is a subset of the exceptional divisor, which is contrary to
the assumption that the switching points are not on the exceptional divisor.

Consider the set of cluster points on the exceptional divisor, viewed as
a union of the two big cells C3(u). If a cluster point ¢ lies in two or more
parts D; (where boundaries meet), then we can assign ¢ to D, if a convergent
subsequence (qy,) of (g,) has limit ¢, with g, € DE. Each cluster point ¢
can be assigned to at least one part D; in this way.

We claim that with respect to the order on parts imposed by the upper
triangular structure of containment relations in Table if ¢ is a cluster
point in D, then there is also a cluster point in some D, which is smaller with
respect this order. (Here D, D are the parts D; or subparts D, ;;, etc. of the
geometric partitions that appear in the proof of Theorem [16.1.1]) In fact, if
Gn, — q, With g,, € DE, then Fj(gy,) lies in a finite union of lesser parts D
(extending D to f)R). Passing again to a subsequence, we may assume that
Fi(qn,) € DF converges to a limit in some lesser D. Repeating the argument
of Theorem eventually we obtain a cluster point ¢ € DE .

However, a cluster point in the local stable manifold D, contradicts the
local structure of the stable and unstable manifolds at gy (The dynamics
are analytic on DZ . and the set of cluster points being closed, we would find
that gy itself would be a cluster point, which has already been ruled out.)
Thus, the cluster point ¢ cannot exist. O]
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Appendix A

Background Material

A.1 Gronwall inequality

We give two versions of Gronwall’s inequality.
Lemma A.1.1 (Gronwall inequality). Let I — R be an interval, ty € I, and
let 1,19, x be continuous nonnegative functions on I. If

f VYa(s)z(s)ds|, foralltel,

z(t) < Yu(t) +

then for allte I,

| (o) | [ dalrlarids

z(t) < Yu(t) +

Proof. See [2, p.90]. O
Here is the second version.

Lemma A.1.2. Let x : [to,t1] — R™ be absolutely continuous and satisfy

|&' @) < ba(®)[z(@)] + 91(2), ¢ € [to, ta] ae.,

where 1,1y € LY (to,t1), with 1o nonnegative. Then, for all t € [ty,t1], we
have

J2(t) - z(to)] < j exp f Palt)dr) (a(5) |x(to)]| + ¥ (s))ds

243
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Proof. [5, Th.6.41]. O

Corollary A.1.3. Let z : [0,t1] — R be a nonnegative continuous function,
let n be positive integer, and let C,C nonnegative real numbers. Assume

t

z(t) < Ct" + le z(t)dt, for allte [0,t].

0

Then z(t) = O(t") for t nonnegative and sufficiently close to t = 0.

A.2 Functional derivative

Definition A.2.1 (functional derviative). Consider a real finite-dimensional
vector space V, and its linear dual V*. Let F': V — R be smooth. We define
the functional derivative §F/dv € V* in terms of the directional derivative
F' of FatveV by

F'(v;w) := %E%%(F(V +tw) — F(v)) =: <w, §—€>* (A.2.1)

for all directions w € V', where (-, -, is the natural pairing between a vector
space and its dual.

A.3 Stable and Unstable Manifolds

We review basic facts about stable and unstable manifolds at a hyperbolic
fixed point [18, Chapter 6]. Let M be a manifold and let f: M — M be a
diffeomorphism with fixed point p = f(p). The global stable set at p is the set
of all ¢ € M such that lim, ., f*(q) = p. If U < M is open, the local stable
set at p is the set of all ¢ € U such that lim,, ., f"(q) = p.

A fixed point p is hyperbolic if the tangent map T,,f : T,M — T,M has
no eigenvalues of absolute value 1. At a hyperbolic fixed point, the tangent
space T, M is a direct sum of two summands, according to the factorization
of the characteristic polynomial of T}, f into two factors: the stable factor with
eigenvalues |A| < 1 and the unstable factor with eigenvalues |A| > 1.

Theorem A.3.1 (Irwin [18]). Let p be a hyperbolic fixed point of a C"
diffeomorphism (r = 1) of M. Then, for some open neighborhood U of p,
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the local stable set W*(p) of flu at p is a C" embedded submanifold of M,
tangent at p to the stable summand of T,,f. The global stable set at p is a C”
immersed submanifold of M, tangent at p to the stable summand of T, f.

There are corresponding statements for local and global unstable manifolds
W(p). Unstable for f means stable for f~!.

A.4 Classical Lie Groups and Lie Algebras

Let GL,(C) be the general linear group, consisting of all invertible linear
transformations C* — C™. Let SL,(C) be the special linear subgroup, consist-
ing of all linear transformations of determinant 1. Let GL,(R) and SL,(R) be
the general linear and special linear groups of linear transformations R® — R”.
All of the groups GL,(C), SL,(C), GL,(R), and SL,(R) are Lie groups.

The Lie algebras of these groups are gl,,(C) (n x n matrices with complex
entries), sl,(C) (complex entries and trace zero), gl,,(R) (real entries), and
sl,(R) (real entries and trace zero).

The unitary group U(1,1) of signature (1,1) is

U(la 1) = {g € GL?(C> | gtrt]sug = Jﬁu}a

where J,,, = diag(—1,4). The special unitary group SU(1, 1) is the determinant
1 subgroup of U(1,1). The Lie algebra su(1,1) of SU(1,1) is given by

(X €sl(C) | Xy + JuX =0} = {(g —zz't) |teR,z€ (C}.

The special orthogonal group SO(m,n) is the subgroup of SL,.,(R)
preserving a symmetric matrix A of signature (m,n):

SO(m,n) = {g € SLm.n(R) | g Ag = A},

where —" is the transpose. Different choices of matrices A of the same (m,n)
or reversed (n,m) signature give isomorphic Lie groups. The Lie algebra is

s0(m,n) = {X € slnin(R) | XA+ AX = 0}.

For a general Lie group G, the Lie algebra g can be defined as the
tangent space T.G at the neutral element e € G. The group G acts as inner
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automorphisms (conjugation) on itself. Passing to the tangent spaces, the
differential of inner automorphism affords a representation Ad : G — GL(g)
on the Lie algebra g, called the adjoint representation. Again by taking
derivatives, this in turn affords a representation of the Lie algebra ad : g —
gl(g), called the adjoint representation of the Lie algebra.

Let g* be the linear dual of the Lie algebra g. The coadjoint representation
Ad* : G — GL(g*) of G is defined by

<AdZY, X>* =(Y,Ad;X),,

for all Y € g* and X € g. The coadjoint representation ad™ : g — gl(g*) of
the Lie algebra g is defined by

<a,dEY’, X>* = <K _a’dZX>>x< ’

forall Y € g* and X € g.
The Cayley transform of a 2 x 2 matrix X is defined as

B 1 (1 4
Cayley(X) := A' XA, where A= % ( i ; ) e SLy(C).

A.5 Exceptional Isomorphisms in Rank One

Lemma A.5.1. e There is an isomorphism of Lie groups:

SLy(R) = SU(1,1) (A5.1)

e There are isomorphisms of Lie algebras:
slp(R) =~ su(1,1) = s0(2,1) (A.5.2)

Proof. The isomorphism between the special linear and special unitary group
is provided by the Cayley transform. We have

Cayley(SLy(R)) = A™*SLy(R) A = SU(1, 1) (A.5.3)
Cayley(sly(R)) = A ' slh(R) A = su(1,1). (A.5.4)

To establish the isomorphism with the special orthogonal Lie algebra
consider the adjoint representation of g = sly(R).

ad : slo(R) — gl(g).
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We set (X,Y) = trace(XY), for X,Y € slp(R). This is a quadratic form
of signature (2,1) on sly(R). The linear transformation adx preserves the
quadratic form in the sense that

<adXY, Z> + <Y, adXZ> =0.

This implies that the image of the adjoint representation is contained in
a special orthogonal Lie subalgebra of gl(g) of signature (2,1). This is an
isomorphism. ]

A.6 Matrix Identities

We collect the following properties of matrices in sly(C).
Proposition A.6.1. For matrices X,Y € sl3(C) we have

ad% Y = [[V, X],X] = —2det(X)Y — 2XY X
= 2(X,X)Y —-2{X,Y) X.

Proposition A.6.2. For matrices X,Y,Z, W € sly(C), we have
1
<X) Z><K W> - <Y7 Z><Xa W> = _5 <[Xa Y]a [Za W]>

Proof. Compute. ]

Proposition A.6.3. For matrices X,Y,Z, W € sl3(C) such that {Y,Z) = 0,
we have

<[Xa Y], [Za W]> = _2<X7 Z><Ya W>
Proof. This is immediate from the previous proposition. ]

The matrix exponential is defined by the power series, which converges
for all n x n matrices X:
e}
Xk

k=0
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Lemma A.6.4. If X € sl5(R) and d = det(X), then exp(X) € SLy(R), and

exp(tX) = cosh (tv/—d)I, + W‘& (d < 0)
— cos (tVd) I, + W‘X’ (d > 0) (A.6.1)

=L+tX, (d=0).

Proof. By the Cayley-Hamilton theorem, for X € sl3(R), the matrix expo-
nential exp(tX) is a linear combination of I, and X. The lemma makes this
linear combination explicit. The lemma is a variant of the classical Rodrigues
formula, which holds for rotation matrices. The two sides of the identity are
equal, both being the unique solution of the initial value problem

F'(t) = XF(t), F(0)= L.
The determinant of exp(X) is given by the formula
det(exp(X)) = exp(trace(X)) =1

since trace(X) = 0. O

A.7 Symplectic Geometry

For any finite dimensional vector space V with dual V*, we have a
nondegenerate pairing between the exterior power A*(V*) and A*V that
sends

VEAVE- - AVEEANN(VH), wiAwy o Aw,e ARV

to det((v},w;) ). We can regard an element w of the exterior power A*(V*)
as an alternating multilinear map on V* by using this pairing.

wW(Wi,...,Wg) = (W, W1 A Wa-- A W), .

Recall that the cotangent bundle T*M of a smooth manifold carries
the tautological one-form 6. Each element v of T(T*M) defines both an
element v* € T*M (by projection) and an element v, € TM (by the tangent
map of T*M — M). The tautological one-form is defined by the relation
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0,v), = (v*,v,),. The exterior derivative w = df defines a canonical two-
form on T*M, giving the cotangent bundle the structure of a symplectic
manifold.
Each differentiable function F' on a symplectic manifold (M,w) defines a
vector field F by
we(F,v.) = (dF,v.),,

for v, € T,M. The Poisson bracket is defined by {F,G} = w(F,G). Hamil-
ton’s equation corresponding to a Hamiltonian H is the ODE

p = 1{p,H}.

A.8 Lie-Poisson Dynamics on the Lie Algebra

The dual vector space g* can be equipped with a Poisson bracket called
the + Lie-Poisson bracket: if F,G are two smooth functions on g*, then the
bracket is given by

SF 4G
¥ — + I % *
{F,G}(X™) _<X ’léX*’&X*]>* X*eg

Here we identify g >~ g**.

Hamilton’s equations with respect to this bracket are called Lie-Poisson
equations and take the following form (Marsden and Ratiu [31, Proposi-
tion 10.7.1]).

Proposition A.8.1 (Lie-Poisson equations). Let G be a Lie group. The
equations of motion for a smooth Hamiltonian H : g* — R with respect to the

+ Lie-Poisson brackets on g* are
dxX*

Assume further that our Lie algebra g is semisimple: it can be equipped
with a nondegenerate bilinear form, which we denote by (-,-). This bilinear
form satisfies the following relation:

(X, |V, Z]) ={X,Y],Z2), X,Y,Zeg (A.8.2)
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Using this bilinear form, we can identify g* with g as follows:
X*Y)=(X,Y) X,Yeg, X*eg* (A.8.3)

where X* maps to X, under this isomorphism.
This isomorphism maps the operator ad to ad® and so equation (A.8.1))

becomes
dX

dt

OH

5% X], Xeg.

= Fadsyisx X = F l

Armed with this background material, in this section we recast the dy-
namics for X in our system, as given in Lemma [4.5.2] as the Lie-Poisson
equation of a control-dependent Hamiltonian on the vector space sls(R)*. To

do this we shall need to exhibit a Hamiltonian function. Recall that we have
defined (X,Y) = trace(XY) for matrices X,Y € sly(R).

Proposition A.8.2. If H(X) = <XX>1 <<))§2(>> then
X, X)

X' = — X = )
adsp/sx %X, Zo)

[ZO7X]

Proof. The function H is well-defined since (X, X) = —2 and on the star-
domain, by Lemma we have that (X, Zy) < 0. Now we have that

[ 0H
d X=|—=,X
adsH/sx 5 X’ ]
[ (X XN
5X 2 (X, Zy)
oy & XX <<X, Z0) 2X (X, Zy) — (X, X) Zo) X]
(X,Zy) 2 (X, X) (X, Zo)* ’
(X,X) :
= ——" |2y, X]| =-X
2<X, Z0> [ 0 ]
Thus, we see that the dynamics for X is Lie-Poisson with respect to the
Hamiltonian H(X) = —<& X>l <<))(( 2 >> O

Remark A.8.3. Note that, with the parameterization of Section the
Hamiltonian becomes H(X) = In(— (X, Zy)).
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A.9 Poisson Reduction of the Extended State
Space

The Poisson manifold 7*T'SLsy(R) can be Poisson-reduced by left-translation
symmetries arising from the left-multiplication action of SLy(R). This re-
duction results in a Poisson bracket on the reduced Poisson manifold, which
we call the extended space Poisson bracket. For preliminaries on Poisson
reduction, we refer to Chapter 10 of Marsden and Ratiu [31].

This reduction procedure also reduces a Hamiltonian system on T*T'SLy(R)
to a system on the quotient

T*TSLQ(R)/SL2<R> = E[Q(R)* X 5[2(R) X 5[2(R)* = 5[2(R) X S[Q(R) X 5[2(R),

(A.9.1)
by means of the invariant bilinear form on sl(R). Thus, for example, the
Hamiltonian system arising from the Pontryagin Maximum Principle gets
reduced this way. We have already seen expressions for integral curves of the
reduced Hamiltonian vector field in Section [6.5.

These ODEs for X, A1, Ar on the quotient Poisson manifold can be written
in Poisson bracket form with respect to the extended space Poisson bracket.
We have the following expression for this bracket, which appears in multiple
sources. See Jurdjevic [21], Gay-Balmaz et al. [12], pp. 34] and Esen et al. [10),

pp. 13].

Theorem A.9.1. If F and G are left-invariant smooth functions on T*(TSLs(R)),
then we can identify them with functions on the quotient (A.9.1)), which is iso-
morphic to sly(R)3. By using coordinates (X, A1, A2) introduced in Section 6.3,
their extended space Poisson bracket on the quotient Poisson manifold is
given by

0F G 0F G 0F oG
F er +— A, r el T —, = ) = ==
i < ' [5A1 5A1]> - <5X 5A2> <5A2 5X
which is the sum of the Lie-Poisson bracket on sly(R)* and the canonical

Poisson bracket on T*(sl3(R)) (where sly(R) s identified with the dual slo(R)*
as needed). Here §/6X denotes the functional derivative with respect to X .

Using this bracket, we can deduce the following theorem.
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Theorem A.9.2. The Reinhardt system defined in problem [6.7.1] can be
written in Poisson bracket form as follows.

X' = {X’H}ez)
= {AlaH}e:m
A;{ = {ARaH}eaca

where H(A1,Ar, X; Z,) <A1 costJ X> % and Ag = [Ag, X] as
usual.

In the theorem, the bracket is applied to each matrix entry, and we identify
slp(R)* =~ sl3(R) via the nondegenerate trace form.

Proof. This is a routine calculation. We show the derivation for X and omit
the others. For an arbitrary constant Y € sl3(R), we have

(X Ml = (e KT, 300

A% <A2, Zu7X>
NNy (Zy, XD

(2., X]
- <Y’ (70, X)
(XYY,

which proves the first equation. n

A.10 Symplectic Structure of Coadjoint Or-
bits

On a Lie group G with Lie algebra g, Kirillov [22] has defined a symplectic
structure on the coadjoint orbit Oz« := {Ad; 1 Z* | g € G} through Z* € g*
(the linear dual of the Lie algebra g). This two—form w¥ on Oz« is given by

whi(adixW* ady W) .= (W* [X,Y]),, W*eOz, X, Yeg

PR

where ad3x W* ady W* € Ty« Oz«. We specialize this general construction to
our setting with G = SLy(R).
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Since the Lie algebra sly(R) carries with it the nondegenerate trace form:
(X,Y) = trace(XY), this sets up a linear isomorphism sly(R)* = sly(R),
which we use to transport the symplectic structure from coadjoint orbits to
adjoint orbits.

In this section, we prove that the Kirillov symplectic structures on the
adjoint orbit Ox c sly(R) and the symplectic structure on the Poincaré upper
half-plane h) are (anti)-equivalent. Recall that we have the following map.

(I):h—>OJ

z=x+1y— ( alc?z —(xil—/gz)/y ) =: ®(2),

from the upper half-plane to adjoint orbit Ox = Oy in sl (R).
Lemma A.10.1. The map ® (defined in Lemma is an anti-symplectomorphism.

Proof. Let w be the symplectic form of the upper half-plane.

dx A dy
w = "

and let w¥X be the Kirillov two-form on the coadjoint orbit Ox. We have
to show w® pulls back to the two-form —w on the upper half-plane by
®:h— Ox. So, at a point z = = + iy € h and tangent vectors v,w € T,h:

d*wk (v, w) = wg(z) (T, ®(v), T,®(w))

< ;)_2 V1Y—v2T ) % w1yYy—w2x )

e85 ) (8 )
0 3 0y
V1W2 — VW1

= ——————— = —w,(v,w)

2
This proves that ®*wX = —w. O

A.11 Riemannian Metric on Coadjoint Orbits

Let X € O;. Then X is regular semisimple, and RX is a rank one
Cartan subalgebra of sl3(R), where RX is the span of X. There is a Cartan
decomposition sly(R) = RX @ px decomposition adapted to sly(R), where
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px = X' is the two-dimensional orthogonal complement of RX with respect
to the trace form on sly(R).
Explicitly,
px ={[X,Y]|Y e sly(R)}.

From Lemma px is the tangent space TxO;, which is also identified
with T,h, where X = ®(z).

By transport of structure, the trace form on sly(R) restricts to px and
defines a symmetric bilinear form on 7,h. By general theory, this quadratic
form is positive definite on px.

Lemma A.11.1. The symmetric bilinear form on T,h determined by the
trace form on px is twice the usual invariant Riemannian metric on b:

2dx2 + dy?
y:

() - (P )

Under the map T® : T,h — TxO; of Lemma [4.2.4) the preimage of &
and &, is the basis e; = 0/0x, e; = 0/0y of R? = T,h. The isomorphism
sh(R)/RX — px = X+ is Y — [Y, X]. Thus, it is enough to check that

Proof. Set

(8, B(2)], &, B(2)]) = 2;;?',

where ;; is the Kronecker delta. This is easily computed. m
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Extensions of the Theory

B.1 Hypotrochoids

101

v
T

“10F

Figure B.1.1: A hypotrochoid resembling the smoothed octagon.

A hypotrochoid is a roulette curve which is traced by a point which is at a
distance 7y from the center of a circle of radius r; as it rolls without slipping
on the inside of a circle of a fixed circle of radius 7. The parametric equation
of a hypotrochoid in the complex plane C is given by

z(t) = (ro — 1) exp(it) + 19 exp (—(7‘27";71)2’15) .

255
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This section was motivated by the striking figure in Figure which
depicts a hypotrochoid with parameters ry = 2.498, (ro — ry)/r; = 1/7, and
ro = —10. As we can see, the Figure [1.1.1] resembles the smoothed octagon.

If ¢ is a primitive cube root of unity, and n, j are integers, define

09 (t) := rexp(it)(? + roexp(—it/n)¢ 7, (B.1.1)
which is a closed curve of period 2wn. We recover a hypotrochoid from o( by
setting 1/n = (ro —ry)/ry and r = (19 — 11).

The smoothed octagon is given by a bang-bang control and hence is not a

real analytic curve. But the following proposition shows that the hypotrochoid
is a multi-curve, realized by a curve in SLy(R).

Proposition B.1.1. If |rg| # |r| and if n = 1 mod 3, then there exists a
curve in SLs(R) which realizes the hypotrochoid oy.

Proof. We will prove the following identities of the curves o9;(%):
Uo(t) + O'Q(t) + 0'4(t) = 0,
R(ioo(t), 02(t)) = constant,
2mn

T> = 02;+2(t).

The first identity is a result of 1 + ¢ + (2 = 0. The second identity follows
from

O'Qj(t +

go(t)oa(t) = 3¢ + r*C + 2ror R(C exp(it + it/n))
The third follows from the definition of oy;. Identifying C with R? we get
that
R(ioo(t), o2(t)) = det(og(t), 02(t)) = constant.

This means that there is a constant s > 0 such that the rescaled curves s oy,
(and their negations —s gy;) form a multi-curve as in Definition We can
go through the same construction now as in Section to construct a curve
g:[0,t5] — SLy(R) so that so9;(t) = g(t)es;. O

Remark B.1.2. This hypotrochoid result might allow us a further speculation.
We can compute the curvatures k;(t) of the curves oq;(t) defined in that section
and compute their normalization and label them as controls. This then shows
that a hypotrochoid determines a control function in the control vector space
{(Uo,ul,’U,z) | Ug + UL + Uy = 1}

We might then ask for an optimal control problem which has a particular
hypotrochoid as a global optimizer and investigate how it might relate to the
smoothed octagon.
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B.2 Chaos in Numerical Experiments

This appendix describes some numerical experiments for the Reinhardt
control problem with circular control set for various choices of parameters.
Here we use the hyperboloid coordinates w, b, ¢ introduced in Section
with fixed angular momentum A,.

A numerical experiment suggests that for some values of the parameters,
the trajectories might be chaotic. See Figure However, for other
parameter values, the trajectories appear to be periodic. See Figure
The only difference in parameter values for these two figures is Ay = 3 in the
first figure and Ay = 2.5 in the second. We cannot guarantee the accuracy of
these numerical solutions.

Much further numerical exploration of the solutions would be desirable,
both for circular control sets and for triangular control sets.

-20 -10 10 20

Figure B.2.1: The graph of |w| as a function of time. For nearby initial
conditions, the trajectories of |w| drift apart in a way that suggests the onset
of chaos. The parameter values are p = 1.1, d; = 3/2, ¢ = 1, Ay = 3,
and € = 1. The two solutions (in orange and blue) have initial values
(wop, co) = (1.5,0.5) and (wy, cy) = (1.495,0.5), respectively. The figure was
produced using NDSolve, Mathematica’s numerical ODE solver.
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1.7+

-30 -20 -10 10 20 30
Figure B.2.2: The graph of |w| as a function of time. For other nearby
initial conditions, the trajectories of |w| remain close to each other. The
trajectories appear to be periodic. The parameter values are p = 1.1, d; = 3/2,
e=1, Ay = 2.5, and ¢, = 1. The two solutions (in orange and blue) have
initial values (wo, cg) = (1.5,0.5) and (wp, co) = (1.495,0.5), respectively. The
graphic was produced by the numerical solver NDSolve.

B.3 Kuperberg’s Area Formula

Greg Kuperberg has given an area formula for centrally symmetric disks
satisfying the minimality conditions of Reinhardt [23]. Write g € SLo(R) as

(1 2\ (y2 0 cosf —sinf =0
9=\o0 1 0 yY2)\sin® cosg )7 YO

Then g - ¢ = x + 1y.

Let K be a balanced disk in the Euclidean plane, given by a path g :
[0,27] — SL2(R). Let g : [0,tf] — b be the image §(t) = g(t) - ¢ of the path
in the upper-half plane. Note that with the usual boundary conditions on g,
we have g(t;) = g(0)R, and §(t;) = §(0), so that the curve in the upper-half
plane is closed.

Based on the formula (3.2.2)), there is a cost one-form, which expressed in
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the coordinates (z,y,0) gives

d
—gtrace(Jg_ldg) = 3df — 32—;, (B.3.1)
where g 'dg is the Cartan-Maurer one-form on SLy(R), and J is the infinites-
imal generator of the rotation group SO2(R). On any disk with hexagonal
symmetry, (t;) = w/3. Also,

dz A dy
Y2

d(dz/y) =

Y

which is the invariant two-form w on . Thus, the area is

area(K) = m — gjw (B.3.2)

where the integral is the signed hyperbolic area of the region in the upper-
half plane enclosed by the path §. The Reinhardt problem is asking for a
maximization of the signed area given by the integral.

Note that the upper-half plane occurs in two contexts now: as the codomain
of the path § : [0,¢;] — b and as the parameter space for the tangent
X = ®(z), z € h. Roughly speaking, the derivative of the first b is the second
b, according to the relation ¢’ = gX.

Example. If K is the circle, then g(t) = i is constant, and the signed area
fw = 0. The area formula reads area(K) = .

Example. We can imagine the proof of the local optimality of the smoothed
octagon in Figure by the way that the smoothed octagon is approrimately
an area mazximizing circle. Also shown are the smoothed 10-gon, 20-gon, and
62-gon. In general the smoothed 6k — 2-gon will have turning number —k
(and negative area), and the smoothed 6k + 2 will have turning number +k
(and positive area,).

B.4 Research Problems

We begin with a few questions related to circular control sets.
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1.20 1.08

-0.2 -0.1 0.1 0.2

-0.010 -0.005

0.995

-0.0010 -0.0005 0.0005 0.0010

Figure B.3.1: Kuperberg representation of the smoothed octagon, 10-gon,
20-gon, 62-gon

1. In the context of a circular control set, determine numerically, the
parameter regions that give chaos.

2. Give a comprehensive description of the global dynamics for circular
control, building on the description of global dynamics for the Fuller
system.

Here are some research questions related to triangular control Ur.

1. We do not give an upper bound on the number of edges in the smoothed
polygon. It seems to us that an extension of the methods presented here
might lead to an explicit upper bound on the number of edges. (In fact,
we expect that our analysis of the singular locus completes the most
difficult stage of the proof of the full Reinhardt conjecture.) To obtain a



B.4. RESEARCH PROBLEMS 261

bound on the number of edges, it would be useful to extend our analysis
from trajectories that meet the singular locus to include trajectories
that come within a small neighborhood of the singular locus. It might
then be possible to obtain an upper bound on the number of control
mode switches for trajectories that avoid a given small neighborhood of
the singular locus.

2. We have a family of dynamical systems parameterized by d = det(A;).
For each d, the Poincaré section is a four-dimensional space. Short of
giving the complete solution to the Reinhardt problem, the Reinhardt
problem might be solved for particular d (such as d = 0).

3. In the particular case d = det(A;) = d? = 9/4, we might ask whether
our analysis of the behavior of the dynamical system around the singular
locus (the stable and unstable manifolds at the fixed points) gives the
comprehensive picture. That is, do trajectories generally start at the
boundary of the star domain, start to move inward toward the fixed
point g;,, only to veer toward the other fixed point ¢,,:, and finally
move back out to the boundary of the star domain?

4. We have described the global behavior of trajectories that meet the
singular locus, including the global behavior of the Fuller system. To
what extent do the methods introduced there (such as the involution ¢, r,
the geometric partition of the domain, and a block triangular structure
of the Poincaré map) generalize to the Reinhardt system? Are these
ideas sufficient to give a full proof of the Reinhardt conjecture?
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a.e. almost everywhere, 127
abnormal extremal, 21, 93, 125,
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adjoint orbit, 65
adjoint representation

Lie algebra, 245

Lie group, 245
admissible, 37
analytic continuation, 215
angular component, 202
angular momentum, 146, 151
argmax, 111
attainable set, 89

balanced disk, 45, 140
balanced pair, 46
bang-bang, 20

control, 111

solution, 111
big cell, 220
Blaschke selection theorem, 33
Blaschke, Wilhelm, 16
blowing up, 202
blowup

oriented weighted real, 202
body, convex, 27
boundary method, 230

269

calculus of variations, 16
canonical two-form, 249
Cartan decomposition, 253
Cartan subalgebra, 156

Cartan-Maurer one-form, 135, 258

Cartesian coordinates, 202
Cayley transform, 148, 155, 246
Cayley-Hamilton theorem, 248
cell
first and second big, 220
centralizer, 68
chattering, 165
chattering arc, 140
circle representation, 46
circle, generalized, 107
coadjoint orbit, 19, 252
coadjoint representation, 246
compactification, 77
conformal equivalence, 69
conformal map, 179
conjecture
Courant, 16, 29
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Reinhardt, 15, 193
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containment function, 229
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first, 198
function, 70
mode, 114
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parameter, 49
variable, 59
vector, 198
convex body, 13
cost functional, 49
costate variables, 96
covolume, 37
critical lattice, 38

density
greatest lattice packing, 28
greatest packing, 27
packing, 13, 27
Descartes’s rule of signs, 223
determinant, minimal, 38
dihedral group, 72
directional derivative, 244
disk
circular, 23
convex, 13, 27
disk model of hyperbolic geometry,
72
divisor
exceptional, 193

edge

control problem, 21
edge extremal, 127
edge of control simplex, 125
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equilibrium point, 182
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Euler-Arnold equations, 97
Euler-Lagrange equation, 16
Euler-Manchin identity, 173
exceptional divisor, 215
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matrix, 247
extremal, 93

face, 21, 110
Fejes Téth, Laszlo, 29
Filippov’s theorem, 89
final submanifold, 99
fixed point
hyperbolic, 244
fixed points
Qouts Gin;s 193
Frenet-Serret formula, 19
Fuller dynamical system, 193
Fuller system, 165
multi-dimensional, 174
triangular control, 194
ubiquity, 175
Fuller-Poincaré section, 203, 210
functional derivative, 97, 98, 150,
244

general linear group, 245

generalized eigenspace, 244

geometric partition, 225

Green’s theorem, 55

Gronwall inequality, 90, 130, 138,
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Hamilton’s equation, 249
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Fuller system, 194
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fixed point, 215
geometry, 19
metric, 69
hyperbolic fixed point, 244
hyperboloid
coordinate, 155, 156
model of hyperbolic geometry,
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hypotrochoid, 41, 255
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infinitesimal group of symmetries,
145

initial submanifold, 99

inverse function theorem, 123

involution, 224
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irreducible disk, 38

isospectral, 61

isotropy algebra, 68

Iwasawa decomposition, 65, 258

Jacobi’s formula, 54

Kepler dynamical system, 171
Kuperberg, Greg, 258
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lattice, 28
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critical, 38
Lax equation, 61
level of ODE subsystem, 94
lexicographic order, 198
Lie algebra, 50, 63
Lie group, 49, 63
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Lie-Poisson structure, 61
line, support, 32
linear fractional transformation, 66
Lipschitz
continuity, 42
log spiral, 173
Lyapunov function, 189

Mobius transformation, 66
Mabhler’s First conjecture, 18, 236
Mahler, Kurt, 16, 193
manifold
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Noether’s theorem, 23, 144
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normal extremal, 93

octagon
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odd function, 182
orbit-stabilizer theorem, 66
overloading, 179
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lattice, 28
Pontryagin Maximum Principle,
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PMP, Pontryagin Maximum
Principle, 20, 91, 146
Poincaré map, 204
first recurrence map, 193
Fuller-Poincaré F', 204
Reinhardt-Poincaré, 204
Poincaré section, 122
Poisson
bracket, 151, 170, 249
commuting, 151
descending bracket, 175
extended bracket, 251
structure, direct sum, 252
Poisson bracket, 249
Pontryagin extremal, 21, 93
positive orientation, 41
punctured neighborhood of
singular locus, 167

Rademacher’s theorem, 43
radial component, 202
reduced costate, 98
regular

nilpotent class, 156
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semisimple element of sly, 156
semisimple element of Lie
algebra, 253
regular closed set, 225
Reinhardt
conjecture, 15
optimal control problem, 19
Reinhardt dynamical system, 193
Reinhardt problem
balanced, 55
Reinhardt, Karl, 14
Riemannian metric
invariant, 105
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Rodrigues formula for rotations,
248
roulette curve, 255

section of a bundle, 181
semisimple Lie algebra, 249
singular extremal, 21
singular locus, 125, 134, 165, 193,
200
singular subarc, 92, 93
smoothed octagon, 17
smoothed polygon, 113
special Fuller trajectory, 187
special linear group, 245
special orthogonal group, 245
special unitary group, 245
sphere packing problem, 13
split
semisimple element of sly, 156
semisimple element of Lie
algebra, 159
stability at equilibrium point, 183
stable
manifold, 215
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stable manifold, 244
star
condition, 44
domain, 69, 70
inequality, 52
state equations, 19, 63
state space, 49
support, 32
symmetric, centrally, 27
symmetrization, 28
symplectic vector field ﬁ, 249
symplectomorphism, 67

tautological one-form, 249
time reversal, 7, 171, 193
toy control problem, 143
trace, 51, 246
transversality, 99

trivial principal topological bundle,

180
trivialization of a bundle, 181

unitary group, 245
unpackable, 14, 29
upper-half plane, 19, 66

Viazovska, Maryna, 13
virial

action, 170

group, 196
Von Mises iteration, 216

wall, 111, 198
Weierstrass
polynomial, 238
preparation, 238
weighted determinant, 152
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Index of Notation

~, approximate equality, 15, 29
>~ isomorphism, 246
<, lexicographic order, 198, 232

(—, —), edge between endpoints, 35
(—, —), ordered pair, 27
(—, —) < R, open interval, 133
—', derivative, 42
directional, 244
~, complex conjugate, 73
— 7, transformed quantity, 53, 72,

144

— 7, vector field of function, 171,
248

—*, dual

isomorphism, 249
linear, 62, 145
—*, pullback of differential form,
55
—* special value
optimizer, 157
spiral solution, 173
or —g, initial value, 194
—9 interior, 177, 220
¢, annihilator, 101
—L, orthogonal complement, 101
*, star domain, 69
—**_ truncated star domain, 77

_0
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- crop, 30
—t transpose, 55, 245
—r, Fuller truncation, 169
—x, centralizer of X, 68
—z, partial derivative, 86
0.902414. . ., smoothed octagon
density, 30
[—, —], Lie bracket, 60
[—, —], linear segment between
endpoints, 188
, line through —, 107
[- ]]1, 155
e =VE , 155
, complex conjugatlon 196
< , —, bilinear form
nondegenerate, 249
trace form on Lie algebra, 59,
246, 250
(-, —),, canonical pairing, 92, 244
-, action
linear fractional on b, 66
of dihedral group on control,
74
virial, 170
o, function composition, 78
o0, boundary point of §, 107
0, boundary, 35, 148

-]
-] =
[ =
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0, boundary locus, 224
0a, O, discriminant locus, 224
Ores, Tesultant locus, 224

| — ||, norm, 130, 166

A, wedge product of differential

forms, 171, 253

{—, —}, Poisson bracket, 249
—r, Fuller, 170
—ez, €xtended, 151, 251
Lie-Poisson, 249

A, triangle, 81

A, matrix or linear map, 54, 129
3 x 4 system of ODEs, 158
A: E[Q(R) - 5[2(R), 137
as bounded operator, 168
Cayley transform matrix, 246
in dihedral group, 72
nonsingular, 166
of eigenvectors, 107
rotation, 69, 144
A, angular momentum, 146, 151
Ar, truncated, 169
A, of length n Fuller, 172
in hyperboloid coordinates, 158
a;, b;, real numbers, 229
a;, b; € C, complex coeflicients, 172
a, b, c,d, matrix entries, 155
of X, 51
of linear fractional
transformation, 66, 78
Ad, adjoint representation of Lie
group, 50, 245
Ad*, coadjoint representation of
the Lie group, 98, 246
ad, adjoint representation of the
Lie algebra, 67, 245

INDEX OF NOTATION

ad”, coadjoint representation of
the Lie algebra, 97, 246
area
area,;, area of a triangle, 83
Lebesgue measure on R2, 27

B, horoball at a cusp, 78

B"™, unit ball, 13

b € R?, vector, 129

b, c, hyperboloid coordinates, 157
br, cr, truncated, 169

C, Cy, C1, Cs, local real constant,
109, 129-131, 138, 167, 168

C*, differentiability class, 41

Ck(u,ma, mp) cell of dimension k,
220

Cayley, Cayley transform, 148, 246

cos; € R, cosine coordinate over €2,
178

cosh, hyperbolic cosine, 247

cost, cost function, 113, 136

D, matrix, 54
D, small disk, 189
D;, parts of a geometric partition,
225
D, ;;, geometric partition of D;,
229
Dihg, dihedral group of order 12,
72
D, disk model of hyperbolic
geometry, 69
diag, diagonal matrix, 156
d, determinant
d = det(A;), a constant of
motion, 117
deR, 122
dl, det(Al) =d= Ed%, 156, 207



INDEX OF NOTATION

dR = <AR,AR> € R, 163
doet = det(A;), for smoothed
octagon, 122
det(L), determinant of a lattice, 37
det(A, o, B), weighted determinant,
152
det(vy, va), 2 x 2 determinant,
columns v;, 33

e;, standard basis
€;, image of standard basis.,
254
of R?, 254
extreme point of the control
set, 90, 111, 112
e € G, neutral element, 63
exp, exponential and matrix
exponential, 57, 247
solution to ODE, 145

F', Poincaré map, 203
F; extension to D;, 229
F,,4, angular component, 203
first recurrence, 203
F, face of a convex set, 110
F, G, smooth functions, 151, 170,
171, 244, 248, 251
F = R or C, archimedean field, 166
f, function
f:R? >R, 117
i, 129
f, term of an ODE, 168
f, vector field, 89, 145
f2, component, 126
on M, 181
fi, function, 167

G, Lie group, 63, 145, 245
g, Lie algebra, 63, 145, 245
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g, virial group, 170, 196
g, group element
(g9, X), state variables, 93
9(Z, z,t) € SLy(R), trajectory
with bang-bang control,
112
g(t), curve in SLy, 49
9i, trajectory in SLy(R),
constant control, 112
Jsw € SLg, at switching time,
118
9s(t), deformed curve in SLo,
135
affine transformation, 29
in SLy(R), 65
in SU(1,1), 163
GL,, general linear group, 54, 245
gl,,, Lie algebra, 245

H, Euclidean region
H, K, convex regions in the
plane, 79
H* < R*, coordinate chart,
209
convex hull, 84
‘H, Hamiltonian, 92
‘H*, maximized, 195
H,, Lie group level term, 95
Ho, Lie algebra level term, 95
‘Hr, Fuller system, 169, 195
H,, length n Fuller system,
172
‘H", maximized, 92
in hyperboloid coordinates, 158
Lie-Poisson, 249, 250
b, upper-half plane, 66
h**, star domain
compactification, 77
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b;, subset of h*, 83
h*, star domain, 69
h € G, element of Lie group, 94
h(t) € SLy(R), 126
component of Iwasawa
decomposition, 65
in SLy(R), 116
Hy, critical hexagon, 30, 40
hk, inscribed hexagon, 33, 38
h, hexagon, 38

I, identity map, 123

I, identity matrix, 54
Ic{1,2,3}, 111,131

I, 2 x 2 identity matrix, 56
I;, indicator function, 83

Z, tuple of control data, 112
i=+/-1, 33,173, 194

1,7, integers, 33

J, infinitesimal generator of
rotations, 51

Jou = diag(—i,1), Cayley
transform of J, 156, 245

J7, momentum map, 145

Jac, Jacobian matrix, 183

K, conserved matrix, 161
K5 € C, matrix entry, 161
K, convex disk, 27
K(g,X), attached to data
(9,X), 140
K nin, minimax optimizer, 29,
236
K,.:, smoothed octagon, 119
Ky, symmetrization, 28
body, 13
compact convex set in R”, 110
k, integer, 49, 112

INDEX OF NOTATION

R, set of convex disks, 13
Rral, balanced, 45
Rees, centrally symmetric
convex, 13, 27

L, affine function, 90, 148
L, matrix, 54
L, left multiplication by g, 63
L, lattice, 28
l, lattice element, 30
¢;, support line, 39
l(yo) € R, 116
l;;, matrix coefficients of A, 152
lhs, left-hand side, 162
In, natural log, 250

M, manifold
M, for smoothed octagon, 122
for Fuller system dynamics,

177

for Noether-Sussmann, 145
optimal control on, 99

m, integer dimension, 89, 166
multiplicity of root, 220

N, Poincaré section, 122
n, length of Fuller system, 166

O, Landau big oh, 129, 167, 210

Og, orthogonal group, 72

O_, adjoint or coadjoint orbit, 65,
252

0, origin, 27, 37, 79

P, normalized control matrix, 96,
137
P*, optimal, 150, 152
P,, constant, 106
P, ;, at mixed controls e;, e;,
115



INDEX OF NOTATION

Lax equation, 61
Py, parallelogram, 53
P packing, 13
px = X+, component of Cartan
decomposition, 253
Pi, i, I';, points in the plane, 79
p, point in bundle
p € T;G, cotangent vector, 95
lifted controlled trajectory, 146
lifted extremal trajectory, 99
value of section 1), 185
vector in cotangent space, 92

@, quadratic polynomial, 159, 160
Q, optimal control system, 145
q, point on manifold, 89, 145
qQo, in submanifold, 122
q’, image of the log-spiral, 182
q., arrival point on boundary,
188
qi, 122
2,2, equilibrium point, 187
Gins Qout, qfiz, fixed points, 204

R, rotation by 7/3, 51
R(—, —), sesquilinear form, 155
RX, span of X, 67
R, topological plane, 179
r, point in the plane, 79
r, real number, 27, 82, 117
r = {[Agr, X|,K), 163
r;, hypotrochoid parameter,
255
r;, scalar, 68
7, subexpression in vector
field, 181
Tscale ~ 6.27, scaling factor,
204
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homothety, 30
polar coordinate, 186
radial component of ODE, 159
radius, 78, 148
scalar, 161, 164
slope of ODE solution, 109,
131
trace, 116
rhs, right-hand side, 162
RP!, real projective line, 73

S € sly(R), reflection matrix, 73
Ssing, singular locus, 134, 165
s;, multi-point, 33, 79
s}, sixth roots of unity, 33
s, real parameter
s(t), reparameterization, 126
s = t/r, rescaled time, 211
s € (0,2), local parameter, 185
s € R, deformation parameter,
135
arclength, 43
dummy integration variable,
106
speed, 42
sin; € R, sine coordinate over (2,
178
sinh, hyperbolic sine, 247
SL,, special linear group, 19, 49,
245
sl,, Lie algebra, 50, 245
SO, special orthogonal group
so, Lie algebra, 245
O,,, orthogonal group, 72
SO,,, compact orthogonal, 51
SU(1,1), special unitary group,
163, 245
U(1,1), full unitary group, 245
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su(1,1), Lie algebra, 148, 245

T, triangle, 33, 79, 117

Te*, exterior triangle, 79
T; M, cotangent space at g, 63
T,M, tangent space at g € M, 67

Tf:T,M — TN, tangent map

of f, 63
t, real number, 110, 155
to, t1, scalars, 35
matrix entry, 245
scalar, 178
t € R, time, 41
t;, time parameter, 112
to,t1, 167
t, 129
ta, 130
t., arrival time at boundary,
188
tsw, switching time, 114, 122,
197

U, control set, 145

(Ur)r, face, 111

Ug, circumscribed, 143

U;, inscribed, 143

Ur, triangular, 59

U,, intermediate, 143, 148
u, arbitrary multi-point, 35
u, vector

ug,u; € R?2, 37

in R?, 33, 55, 56

normal, 185

unit tangent, 42
u, control

Uedge, ON edge, 126

u,v € U, 110

u € [—1,1], classical Fuller

control, 174

INDEX OF NOTATION

ue Vp, 194

u*, optimal, 92

u; € U, 145

u;, jth component of control,
58

V', vector space, 244, 248
Vr = {1,¢,¢?}, vertices of control
set, 194
V; € M, open neighborhood of a
manifold, 145
v, vector
(v2,v3), vector field, 181
v(z,u), control vector, 198
v, w, vectors, 244
v,w € T,b, tangent, 253
v*eT*M, 248
v, € TM, 248
v, eigenvectors, 107
v; € R?2, 37
v;, w; € R, components of v, w,
253
components v;, 129
in T(T*M), 248
tangent vector, 99

W e slh(R), 101
W*, Z* € g*, 252
W#(q), W"(q), stable and unstable
manifolds, 207
W, Wi, Wall, 198
w, vector
in R?, 55
w path in the hyperbolic disk, 69
w, hyperboloid coordinate
W = cw/|c|, 159
w, b, ¢ coordinates, 156
wp, truncated, 169



INDEX OF NOTATION

in C, 157

X, Lie algebra element
X,Y,Z,W € sly, 60, 105, 152,
155, 247
X,Y,Z € g, 145, 249
X =g 1¢/, curve in Lie
algebra, 50
X € sly, 50
X* e g*, 249
X, initial condition for X (¢),
62
X(Z, z,t), Lie algebra trajectory
with bang-bang control,
112
#%,(r) = /3 — 1/r, star domain
boundary curve, 209
x, function of time, 244
x, real part of z, 65
x,y, coordinates of the classical
Fuller problem, 174
x;, coordinates (z3,x3) of Q, 177

Y € g, Lie algebra element, 249
in sly, 56, 68, 137, 214
Y, imaginary part of z, 65
y € R, local variable, 117
Yo, 0 + 7yo, smoothed polygon
initial condition, 114, 122
Z,, control matrix, 59, 209
Zy, constant, 250
Z,, constant, 106
Z}, optimal, 131
z, optimal control, 148, 153

Z = c¢z/|c|, 159
z*, 157
z € C, 155, 245

zebh

281

Z, complex conjugate, 73
Zo, 107
z =1+ 1y, 66

z;, Fuller system
z = (21,252,23) € (C3, 177, 194
Zspec, Special trajectory, 187
component, 166, 169

a, B, control matrix parameters,
149, 152, 166
', smooth sections of a vector
bundle, 145
v, planar curve, 55, 189
vs, hyperbolic arc, 43
~v € C*, Fuller system multiplier,
166
A, discriminant, 160, 220
A(K), minimal determinant, 38
0, density
d(K), greatest, 13
0(K,L), of lattice packing, 28
d(K,P), packing, 13, 28
0(z) density bound, 85
do(z), density bound, 87
01(K), greatest lattice, 28
Omin, Minimax, 29
doct, Of smoothed octagon, 85
0/6 X, functional derivative, 97,
150, 244
dij, Kronecker delta, 254
ee {—1,0,1}, sign
e {—1,0,1}, sign det(A;),
155, 207
€4, determinant of A, 72
€; € R, sign coordinate over 2,

178
¢ = exp(2mi/3), cube root of unity,
148, 194, 256
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0, angle, 73, 146, 159, 170, 186, 196
0, = mk/(3k + 1), 118
6, differential one-form, 55, 248
L = T o F' involution, 224
K, curvature
K = K1 + kg + K3, 60
Kk;, state-dependent curvature,
58
planar, 43
A, costate
A e 515(C), 152
Ag € sly, reduced, 96
A; € sly, 93
Al,cost = Al - 3)\cost‘]/27 1337
137
AlO € 5[2(R), 116
A1, Ag, multiplier, 116
A, on edge, 127
Acost, cost multiplier, 92, 207
Ag, solution specification for
Ag, 106
5\, approximation to costate on
edge, 129
A, eigenvalue, 54, 106, 118
p: C? — R, star denominator, 157
u* = p(w, z*), 158
v e T}h, cotangent variable, 102,
132
V1, Vg, components of v, 102
=, 202
Zw, Ew,0, Poincaré section,
203, 210
&;, quadratic control equation
coefficients
& =2+ |w|* — w?, 159
& =2+ |w|? — (we/|c|)?, 157
& = 2p(w — w)[w], 159
&, angular component, 202

INDEX OF NOTATION

I1, affine plane, 148
II, open half-plane, 78
T, projection
Trad, Tang, Tadial and angular
projections, 202
m: M — R2 function, 177

m=314...,16
p = fB/a > 0, control parameter,
149, 156, 207

p;, star function, 51, 59
pi(z) == p;i(®(2)), 81
Pj; 52
o;, multi-curve, 41, 256
7, dummy variable of integration,
129, 130
T, infinitesimal group of
symmetries, 145
T, time reversal involution, 171,
196
®:h— slh(R), 65,66
¢, cost integrand, 89, 145
Pedge = 2/y, on edge, 126
¢, weighted norm, 202
Xij, switching function, 115, 137,
196
XAmas XBmp, reduced
switching, 220
Xw, Weierstrass polynomial of,
238
U, auxiliary function in ODE
solution of Ag, 106
U, (t) = exp(s(—)), deformation of
identity matrix, 135
1, local auxiliary function or
integral, 243
1), section of a bundle, 181
1), solution specification for
AR, 106



INDEX OF NOTATION

1 : Vi — V,, diffeomorphism of
open neighborhoods, 145
¥ : h* — R, cutoff function, 90
¥;, compactly supported
functions, 135
1 = 05 — 0, phase difference, 219
Q< [0,2]% 177
¢, e;» copies of 2, 179
Qgpec+ < 2_4, subregion, 188
Qgpec— < 4, sign reversal of
Qspec-‘ra 189
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0Q% , = 0{ ., upper boundary
curve of 2, ,, 179

o) . = 04 4, lower boundary
curve of Q4 ,, 179

w, two-form

w¥, Kirillov, 252, 253

wy, for length n Fuller system,
172

on C3, 171

on h, 253, 259

on symplectic manifold, 248
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