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We investigated the magnetic helicity of the triple-q magnetic structure of the triangular skyrmion
lattice in the “A-phase” of EuPtSi for a magnetic field along the [111] axis by resonant x-ray
diffraction using a circularly polarized beam. We show that all three Fourier components of the
triple-q structure are perpendicular to the respective q vectors and have the same helicity. They are
connected by the rotation operations about the [111] axis. The helicity is the same as that of the
single-q helimagnetic phase at low fields, suggesting that the antisymmetric exchange interaction
inherent in the chiral structure supports the formation of the triangular skyrmion lattice. We also
observe that the helical plane in the helimagnetic phase is tilted to the magnetic field to form a
conical structure before the first-order transition to the skyrmion lattice phase.

I. INTRODUCTION

A cubic chiral helimagnet EuPtSi, with an ordering
temperature of TN=4.0 K, exhibits an emergent mag-
netic ordered phase in magnetic fields [1–7]. This ordered
phase is called the “A-phase” since it is reminiscent of
the similar phase observed in MnSi just below the or-
dering temperature and in a finite magnetic field range.
This interesting magnetic structure was originally clari-
fied in MnSi to exist as a crystallization of spin-swirling
particle-like objects composed of three helimagnetic mod-
ulation waves, which was named triangular skyrmion lat-
tice (SkL) [8–10]. In rare-earth EuPtSi, which belongs
to the same crystallographic space group P213 as MnSi,
the phase stability is more extended to lower tempera-
tures than that of MnSi. This is accompanied by a giant
anomalous Hall effect, suggesting an emergent field orig-
inating from the formation of a magnetic SkL [1].
The formation of SkL in magnetic fields for H ‖ [111]

has been demonstrated by the observation of a triple-q
magnetic order with q1 = (−δ3, δ1, δ2), q2 = (δ2,−δ3, δ1),
and q3 = (δ1, δ2,−δ3) (δ1=0.09, δ2=0.20, δ3=0.29),
where qi ⊥ H is realized, by neutron and resonant x-ray
diffraction [11, 12]. The single-q ordering of the zero-field
ground state below T ∗

N=2.5 K with q = (0.2, 0.3, 0) was
also established [11, 12]. The crystal and helimagnetic
structures at zero field are shown in Fig. 1(a) and 1(b),
respectively.
In chiral magnets without either space inversion or

mirror reflection symmetry, the Dzyaloshinskii-Moriya
(DM)-type antisymmetric exchange interaction in the
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form of Dij · (Si × Sj) arises, or equivalently, D(q) ·
(Sq × S−q) in the reciprocal space. This leads to the
selection of a single helicity and lifting of the chiral de-
generacy of the helimagnetic spiral. This is actually real-
ized in EuPtSi at zero field and was confirmed by polar-
ized neutron diffraction [11]. It should be noted that the
short period of the incommensurate spiral is determined
by the symmetric exchange interactions of Ruderman-
Kittel-Kasuya-Yosida (RKKY) type and the weak anti-
symmetric exchange interaction lifts the chiral degener-
acy.

In the triple-q SkL phase of the Bloch type, which
is described by a superposition of three helimagnetic
waves, the magnetic helicities of the three-component
waves must be the same [8]. Although the observation of
a higher harmonic diffraction peak provides strong evi-
dence for the triple-q SkL [12], an experimental observa-
tion of the spin-swirling structure in one direction, that
is, a direct observation of the single helicity, is necessary
to confirm the formation of the SkL.

For this purpose, we employed resonant x-ray diffrac-
tion (RXD) with a circularly polarized beam. This is
a direct observation in the reciprocal space, which is
complementary to the real-space observation of spin-
swirling structures by Lorentz transmission electron mi-
croscopy [13, 14]. In this study, we demonstrate that all
three Fourier components of the triple-q structure in Eu-
PtSi have the same helicity. In addition, we show that
the helical planes are almost circular and perpendicular
to the q vector, although they are not the necessary re-
quirements of the symmetry. The single-q helimagnetic
structure in the low-field phase is also investigated in de-
tail. We show that the helical plane, which is perpendic-
ular to the q vector at zero field, is slightly tilted toward
the magnetic field direction to form a conical structure
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FIG. 1. (a) Crystal structure of EuPtSi with four Eu atoms
in a unit cell. (b) Helical magnetic structure of the zero-field
ground state described by q = (0.2, 0.3, 0). Only the magnetic
moments of Eu-1 are shown. The moments at Eu-2, -3, and -4
are omitted. (c) Scattering geometry of the experiment. The
phase retarder is removed when linear polarization analysis
is performed. When θPR scan is performed, the detector is
placed directly on the diffracted beam along k′.

to gain the Zeeman energy.
Another interesting aspect of EuPtSi is the geomet-

rical frustration of the S = 7/2 spins on the three-
dimensional network of corner-sharing equilateral trian-
gles, as shown in Fig. 1(a), which is called the trillium
lattice [15–17]. The helimagnetic transition at TN=4.0
K, with q = (0.2, 0.3, δ) (δ = 0.04 at TN) [11], is a first
order transition accompanied by a sharp peak in specific
heat and a discontinuous magnetization jump, which are
superimposed on strong indications of magnetic fluctua-
tions above TN [4, 18–20]. We propose a model helimag-
netic structure of the zero-field ground state by consid-
ering first and second nearest-neighbor Heisenberg-type
exchange interactions.

II. EXPERIMENT

The RXD experiment was performed at BL-3A of the
Photon Factory, KEK, Japan. We used the same Eu-
PtSi single crystal used in Ref. 12. The x-ray energy
was tuned to 7.614 keV at the resonance of the Eu-L2

absorption edge. See Ref. 12 for the resonant energy
spectrum of the magnetic diffraction peak. The geome-
try of the RXD experiment is shown in Fig. 1(c). As in
Ref. 12, the scattering plane was spanned by the [1̄10]
and [1̄1̄2] axes and the magnetic field was applied along
the [1̄1̄1̄] direction.
A circularly polarized beam was obtained using a di-

amond phase-retarder system. The incident linear po-
larization is tuned to right-handed circular polarziation
(RCP) and left-handed circular polarization (LCP) by
manipulating ∆θPR = θPR − θB, where θB is the 111
Bragg angle of the diamond phase-plate. The degrees
of circular and linear polarization can be expressed as
P2 = sin(γ/∆θPR) (+1 for RCP and −1 for LCP) and
P3 = − cos(γ/∆θPR) (+1 for σ and −1 for π), respec-
tively, where γ is an experimentally determined param-
eter of the phase plate obtained by analyzing the ∆θPR

dependence of the intensity of the (2̄, 2, 0) fundamental
reflection, as explained in the Appendix. The ∆θPR-scan
of the magnetic Bragg-peak intensity is sensitive for de-
termining the helicity of the Fourier component. A lin-
ear polarization analysis of the diffracted x ray for the
π-polarized incident beam was also performed to deter-
mine the Fourier component more precisely. We used
the 006 Bragg reflection of a pyrolytic graphite (PG) an-
alyzer crystal. The intensity variation was measured as
a function of the detector angle (φA) measured from the
horizontal scattering plane. This analysis is more suit-
able for estimating the ratio between the horizontal and
vertical components, from which we can estimate the el-
lipticity of the helical plane.

III. RESULTS AND ANALYSIS

A. helical magnetic structure at zero field

In the helical magnetic phase at zero field, by combin-
ing the ∆θPR-scans and linear polarization analysis (φA

scans), we confirmed that the helical plane is almost per-
pendicular to the q vector and is almost circular. In the
single-q structure at zero field, the magnetic moment of
Eu-α (α = 1 ∼ 4) in the l-th unit cell at rl is generally
expressed as

µα,l = mq,αe
iq·rl +m∗

q,αe
−iq·rl (1)

using the Fourier component mq,α consisting of real and
imaginary parts to express the spiral structure. The E1
resonant scattering amplitude for the magnetic dipole or-
der is proportional to (ε′ × ε) · FM, where

FM =
∑

l,α

µα,le
−iQ·(rl+dα) (2)

is the magnetic structure factor at the scattering vector
Q = k′ − k. dα represents the atomic position of Eu-α
in the unit cell.
Examples of data analyses and comparisons with the

calculated intensity curves are shown in Fig. 2(a) and
2(b) for q = (−0.2, 0.3, 0) and q = (0.2, 0.3, 0). By
combining the ∆θPR-scans and φA-scans, we obtain
the Fourier components; mq,α = (−3,±2, 3.6i)eiφα for
q = (±0.2, 0.3, 0), mq,α = (3.6i,−3,±2)eiφα for q =
(0,±0.2, 0.3), and mq,α = (±2, 3.6i,−3)eiφα for q =
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FIG. 2. (a) ∆θPR dependences of the peak intensity at (4̄, 4, 0)
+ (δ2, δ3, 0) and (−δ2, δ3, 0) in the helical phase at 0 T and 1.8
K, where (δ2, δ3) = (0.2, 0.3). The x-ray energy is 7.614 keV
at resonance. The intensities are normalized at ∆θPR = 0,
where the raw intensity is 720 cps for (δ2, δ3, 0) and 980 cps
for (−δ2, δ3, 0). The solid lines are the intensities calculated
by assuming that the mq vector is circular, counterclockwise,
and perpendicular to the q vector. (b) Linear polarization
analysis of the helimagnetic Bragg peak. The solid lines rep-
resent calculations assuming the same helimagnetic structure.

(0.3, 0,±0.2). Note that the phases of the Fourier compo-
nents cannot be obtained from the present experimental
data. Although this does not affect the analysis, the rel-
ative angles between neighboring Eu moments in the real
space remain unknown. For this reason, we omitted the
magnetic moments of Eu-2, 3, 4 in Fig. 1(b).

In the real space, the magnetic moments rotate coun-
terclockwise when propagating along the q vector. This
result is the same as that obtained by polarized neutron
diffraction [11]. We can also conclude that the magnetic
moments rotate along a circular trajectory perpendicu-
lar to q. It should be noted that this is not a symmetry
requirement because the direction of the mq vector has
no symmetry restriction according to the irreducible rep-
resentation for this low-symmetric q vector. It is also
not required that the helical plane to be perpendicular
to the q vector and circular; i.e., the D(q) vector in the
reciprocal space does not need to be parallel to q [21].
However, the resultant structure suggests that D(q) is
parallel to q and the energy gain by the exchange inter-
action is maximized by taking this helical structure. Be-
cause the crystal field anisotropy for the S = 7/2 (L = 0)
state of Eu2+ is negligible, as inferred from the isotropic
magnetic susceptibility above TN [4, 6], the helical plane
is determined to be perpendicular to q presumably by
the DM-type antisymmetric exchange term, or by the
anisotropic exchange term, both originating from anti-
symmetric spin-orbit interaction inherent in a noncen-
trosymmetric metallic system [22, 23].
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FIG. 3. (a) ∆θPR dependences of the peak intensity at (4̄, 4, 0)
+ (δ2, δ3, δ1) in the helical phase at 0 T and 0.8 T, where
(δ2, δ3, δ1) = (0.2, 0.29, 0.09) at 0.8 T. The intensities are nor-
malized at ∆θPR = 0, where the raw intensity is 720 cps at 0 T
and 840 cps at 0.8 T. The solid lines represent the calculated
intensities as described in the text. (b) Linear polarization
analysis of the Bragg peak at 0 T and 0.8 T. The data at 0
T are the same as those in Fig. 2. (c) Relation between the q

vector, helical plane spanned by the real and imaginary parts
of mq, and the [111] axis. The dashed line represents the
normal to the helical plane.

B. helical magnetic structure at 0.8 T

In magnetic fields along [1̄1̄1̄], the helical magnetic do-
main with the propagation vector q = (δ2, δ3, δ1) is se-
lected, where δ2 = 0.2 and δ3 = 0.3 are nearly constant
and δ1 increases from zero to ∼ 0.09 at 0.8 T just before
the transition to the SkL phase [12]. The results of the
∆θPR-scan and the φA-scan for the helical Bragg peak at
q = (0.2, 0.29, 0.09) at 0.8 T are shown in Fig. 3(a) and
3(b), respectively, which are compared with the data at
0 T. In the ∆θPR-scan, the decrease and increase in in-
tensity at the LCP and RCP positions, respectively, are
less significant than those at 0 T. This indicates that
the helical plane is tilted to the vertical field direction;
in other words, the spiral component parallel to the hori-
zontal scattering plane (conical component) increases. In
a perfectly conical structure in which only the horizon-
tal spiral component and uniform magnetization along
the vertical field direction exist, the ∆θPR dependence is
expected to be flat.
In the φA-scan shown in Fig. 3(b), the maximum and

minimum positions are shifted by ∼ 25◦. These two
datasets of ∆θPR and φA scans at 0.8 T can be explained
by assuming that the helical plane is more tilted to the
vertical field direction by 7±1◦ from the position perpen-
dicular to q = (0.2, 0.29, 0.09). This process is illustrated
in Fig. 3(c) and the calculated intensities are shown by
the solid lines in Fig. 3(a) and 3(b), which explain the
data well. These results show that the increase of δ1 by
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applying a magnetic field is to gain the Zeeman energy
by increasing the horizontal helical component, which is
perpendicular to the vertical magnetic field. Therefore,
the increase in δ1 indicates that the helical plane and
propagation vector q are energetically coupled so that
they prefer to be perpendicular to each other. At the
same time, because there is no such symmetry restric-
tion, they can be decoupled, which leads to the slight tilt
of the helical plane by ∼ 7◦ that is more perpendicular
to the magnetic field, as indicated by the dashed line in
Fig. 3(c).

C. SkL phase

In the “A-phase” between 0.9 T and 1.3 T, a triple-
q magnetic structure is realized. The first harmonic
structure is expressed as the sum of three q-components,
which is written in the form of Eq. (1),

µα,l =

3
∑

n=1

{mqn,αe
i(qn·rl+ϕn) +m∗

qn,αe
−i(qn·rl+ϕn)} ,

(3)
where ϕn represents the phase of each component.
Top panels of Fig. 4 shows the ∆θPR dependences for

the three constituent q vectors in the triple-q SkL phase
in a magnetic field of 1.2 T ‖ [1̄1̄1̄]. The three q-vectors
satisfy the relationship q1+q2+q3 = 0. As shown by the
solid lines, all the data can be explained by assuming the
helimagnetic Fourier components ofmq1, mq2, andmq3,
being almost circular, counter clockwise, and perpendic-
ular to q1, q2, and q3, respectively, in the same manner
as for the helical structure at zero field. The linear po-
larization analysis shows that the helical plane is slightly
(∼ 12 %) compressed along the [111] field direction. To
be specific, mq used in the calculation is expressed as
vq + ihq, where vq is the vertical component parallel to
[111] and hq = (q/q) × 1.16vq is the horizontal compo-
nent.
The three ∆θPR dependences exhibit different behav-

iors, as shown in Fig. 4. This is simply due to the geo-
metrical factor of the E1 resonant scattering from mag-
netic dipole moments, which is expressed as (ε′×ε) ·mq.
The geometry of the three q-vectors in the SkL phase
for H ‖ [111] (and for H ‖ [1̄1̄1̄]) is shown in Fig. 5(a).
For the (4̄, 4, 0) + q reflections here, the 2θ angles are
close to 90◦ (97.7◦ for q1, 84.5

◦ for q2 and 93.3◦ for q3).
From Eq. (A2), the circular polarization (P2) dependent
term arises from F ∗

ππ′Fσπ′ , because Fσσ′ = 0 for mag-
netic scattering. Fππ′ arises from (ε′π × επ) · vq, which
is common to all q vectors. However, Fσπ′ arises from
(ε′π × εσ) · hq, where (ε′π × εσ) is parallel to k′ and is
almost perpendicular to hq1. This is the reason for the
weak P2 dependence in the (4̄, 4, 0) ± q1 reflections and
the clear P2 dependences in the (4̄, 4, 0)±q2,3 reflections.
In contrast, (ε′σ×επ) is parallel to k and is almost parallel
to hq1. This is the reason for the strong (weak) π-σ′ in-
tensity in the linear polarization analysis for (4̄, 4, 0)+q1

(−q2,+q3). This also provides a reason for the longer
horizontal component compared with the vertical com-
ponent.

Figure 5(b) shows a real-space image of the magnetic
structure of Eu-1 atoms viewed from the [111] axis. Three
successive (111) planes of Eu-1 atoms are superimposed
(1st, 3rd, and 5th layers, as shown in Fig. 12 of Ref. 2).
The distance between the skyrmion cores is ∼ 19.9 Å. Be-
cause the phase relations among the three Fourier com-
ponents are unknown in our diffraction experiment, it is
necessary to assume the phases to draw this real-space
image. We then set the phases such that the magnetic
moment at the origin in Fig. 5(b) points opposite to the
applied field, i.e., ϕ1 + ϕ2 + ϕ3 = π. A uniform magne-
tization of 0.25 along the z-axis is added to the modu-
lation of Eq. (3) with a maximum amplitude of 1. The
image thus obtained is consistent with the SkL structure
obtained theoretically by numerical simulation [24]. The
theory considers the RKKY-type symmetric exchange in-
teraction up to higher-order terms, which is considered
to be the origin of the stabilization of the triple-q struc-
ture [25].

The results of the helicity measurement in Fig. 4 clearly
show that the three constituent helimagnetic waves of
the triangular SkL in EuPtSi have the same magnetic
helicity. They are counterclockwise when propagating
along the q vector, which is the same as the helicity at
zero field. This provides direct evidence in the recipro-
cal space for the formation of Bloch-type SkL in EuPtSi.
The single helicity of the triple-q structure was also re-
produced theoretically by considering the DM-type ex-
change interaction [24]. This means that the DM-type
exchange interaction inherent in the chiral structure sup-
ports the formation of the triangular SkL. Simultane-
ously, we note that the driving force for the formation of
the triple-q structure is probably the higher-order term
in the RKKY interaction and not the DM-type exchange
interaction [24, 25]. There is even a case where the origi-
nal helicity at zero field is reversed when a SkL is formed
in a magnetic field [26].

It should be noted that the other magnetic moments
of Eu-2, -3, and -4 are omitted in Fig. 5(b). As in the
case of the helical phase atH = 0, this is because we have
no experimental information on the phase relationship or
the relative angles among the four Eu moments in a unit
cell. Because the relative angles should be associated
with the geometrical frustration inherent in the trillium
lattice structure of Eu, this is another important knowl-
edge to be clarified in the future by more detailed struc-
tural analysis. However, the triple-q SkL in Fig. 5(b)
should basically be a two-dimensional triangular lattice
of skyrmion tubes extending along the [111] axis. There-
fore, it is reasonable to consider that the magnetic mo-
ments of Eu-2, -3, and -4 are incorporated in the same
manner in the SkL structure shown in Fig. 5(b). Anti-
ferromagnetic coupling among the four Eu moments in
the SkL, which would reduce the topological Hall effect,
is unlikely.
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FIG. 4. (top panels) ∆θPR dependences of the three constituent q vectors in the SkL phase of EuPtSi for H ‖ [1̄1̄1̄]. The
intensities are normalized at ∆θPR = 0, where the raw intensity is 1800 (q1), 1010 (−q1), 1030 (q2), 1850 (−q2), 1410 (q3),
and 1120 (−q3) cps. The solid lines are the intensities calculated by assuming that the mq vectors are almost circular (∼ 12
% compressed along the [111] direction), counterclockwise, and perpendicular to the q vector. δ1=0.09, δ2=0.2, and δ3=0.29.
(bottom panels) Linear polarization analysis of the corresponding Bragg peaks in the top panels. The solid lines are the
calculations assuming the same helimagnetic structure.
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FIG. 5. (a) Three q vectors and the corresponding magnetic
Fourier components mq, consisting of vertical (vq ‖ [111])
and horizontal (hq ⊥ [111]) components, in the SkL phase of
EuPtSi. The x-ray wave vectors and the polarization vectors
represent the geometry for the (4̄, 4, 0)+q reflections. (b) Top
view of the schematic magnetic structure of the Eu-1 atoms
in the A-phase. Three layers of Eu-1 atoms are superimposed
on each other. The phases satisfy ϕ1 + ϕ2 + ϕ3 = π. The
uniform magnetization along the z-axis is set to 0.25. The
mean magnitude of the magnetic moment 〈µ〉 is 0.63, and the
standard deviation σµ is 0.053.

In a Bloch-type triangular SkL, the magnetic helicities
of the three constituent helimagnetic waves must be the
same to produce a spin-swirling structure rotating in a

specified direction. To experimentally prove this, real-
space observation by Lorentz transmission microscopy is
a straightforward method. However, it is often difficult
to observe short-period SkLs in rare-earth systems, such
as in the present case of EuPtSi. The present method
of RXD utilizing a circularly polarized beam, combined
with a linear polarization analysis, provides a direct ob-
servation in the reciprocal space, which can be a com-
plementary method. A high spatial resolution and the
ability to determine the Fourier components (mq) are
significant advantages. However, with respect to the rel-
ative phase relation of mq between different q compo-
nents and different Eu atoms, it is difficult to determine
from RXD analysis alone.

IV. DISCUSSION

A. Other possibilities of the SkL structure

In Fig. 5(b), the phases of the three Fourier compo-
nents are selected so that the center of the skyrmion
points opposite to the external magnetic field. If we
change the phase relations, different structures are ob-
tained, which are characterized by ϕ̃ = ϕ1+ϕ2+ϕ3 [27].
Fig. 5(b) corresponds to ϕ̃ = π. Although it is difficult
to determine this phase relation in this experiment on
limited number of reflections, let us discuss the possibil-
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FIG. 6. Other possibilities of the SkL structure in the A-phase
with different phases characterized by ϕ̃ = ϕ1 +ϕ2+ϕ3. The
uniform magnetic moment along the z-axis is set to 0.25. (a)
ϕ̃ = π/2. 〈µ〉 = 0.59, σµ = 0.23. (b) ϕ̃ = 0. 〈µ〉 = 0.54,
σµ = 0.32.

ities for alternative structures. For instance, by setting
ϕ̃ = π/2 we obtain a structure in which half skyrmions
with opposite signs are ordered alternately, as shown in
Fig. 6(a). Setting ϕ̃ = 0 results in a SkL where the
skyrmion center points towards the magnetic field, while
the periphery points opposite to the field, as shown in
Fig. 6(b). Distinguishing these differences is difficult in
diffraction experiments. However, it can be concluded
from the following discussion that the structure shown in
Fig. 5(b) is the most plausible.

When the modulated magnetic structure in Eq. (3) is
superimposed onto a uniform magnetization, the calcu-
lated magnetic moments at each Eu site generally have
unequal magnitudes. For example, in Fig. 5(b), where a
modulation with a maximum amplitude of 1 is superim-
posed onto a uniform magnetization of 0.25, the mean
magnitude 〈µ〉 is 0.63 and the standard deviation σµ

is 0.053, only ∼ 8 % of the mean value. Notably, this
structure yields a minimum σµ. In contrast, σµ for the
ϕ̃ = π/2 case in Fig. 6(a) is as high as ∼ 40 % of the
mean value. It increases to ∼ 59 % for the ϕ̃ = 0 case
in Fig. 6(b). Considering that such a significant disper-
sion is unlikely to arise in an ordered state of S = 7/2
spins of Eu, it seems reasonable to conclude that the SkL
structure shown in Fig. 5(b) is realized.

Furthermore, the validity of Fig. 5(b) can be inferred
from the intensity of higher-order reflections such as
q2 − q3. The higher-order reflections do not occur from
Eq. (3) only. It is necessary to add some modifications.
One method is to fix the spin orientations obtained from
Eq. (3), and equalize the magnitudes of the moments.
The difference then gives rise to higher-order terms. If
we calculate the magnetic structure factor FM(q2 − q3)
for the higher-order reflection at q2 − q3 and compare it
with the structure factor FM(q2) of the primary reflec-
tion at q2, the scattering intensity ratio is estimated to
be |FM(q2 − q3)/FM(q2)|2 ∼ 0.0012. This is compara-
ble to the experimental value of 0.002 [12]. By adjusting
ϕ̃ to 0.9π, the calculated intensity ratio agrees with the

experimental value. With such a small adjustment, how-
ever, the visual structure hardly differs from that shown
in Fig. 5(b). In contrast, applying similar calculations
to the cases of Fig. 6(a) and (b), the calculated intensity
ratios are 0.02 and 0.14, respectively. This implies that
higher-order reflections should appear at a much larger
intensity than that observed. Hence, Fig. 5(b) can be
considered the most plausible structure.

B. Helimagnetic structure at zero field

We omitted the magnetic moments of Eu-2, 3, 4 in
Fig. 1(b) for the single-q helical order at zero field, be-
cause the relative phases of mq,α for different Eu atoms
(α = 1 ∼ 4) have not been determined. To discuss
the possible helimagnetic structure, let us calculate the
classical Heisenberg-type exchange energy, which is ex-
pressed by

H = −
∑

〈i,j〉

JijSi · Sj (4)

=
2

N

∑

q

|S(α)
q · S(β)

−q |ŝqJαβ
q ŝ−q . (5)

ŝq = (s
(1)
q , s

(2)
q , s

(3)
q , s

(4)
q ) represents the phase factors of

the Fourier transform S
(α)
q =

∑

j Sj exp(−iq ·r(α)
j ). Jαβ

q

is a 4× 4 matrix (α, β = 1 ∼ 4) [15]. Jij > 0 corresponds
to ferromagnetic interaction.
Let us consider two cases. One is the ferromagnetic (F)

nearest-neighbor interaction (J1 > 0) and the other is
the antiferromagnetic (AF) nearest-neighbor interaction
(J1 < 0). By introducing second nearest neighbor inter-
action with the opposite sign, J2 < 0 (AF) for the former
and J2 > 0 (F) for the latter case, respectively, we can ad-
just the minimum energy to come midway in the Brillouin
zone. Examples of eigenvalues of the Jq matrix are shown
in Fig. 7(a) for (J1, J2) = (1,−0.52) and in Fig. 7(b) for
(J1, J2) = (−1, 0.2). The values of J2 are chosen such
that the minimum comes at |q| ∼ 0.36 as indicated by
the arrow, which corresponds to q = (0.2, 0.3, 0).
The four eigenstates at each q position represent the

relative phase (or angle) relationships among the four Eu
spins in the unit cell. A simple case is for q = (0, 0, 0).
The singlet corresponds to the ferromagnetic arrange-
ment, in which the four spins have the same phase, that
is, they are oriented in the same direction. Therefore,
the energy of the singlet is lowest (highest) when J1 > 0
(J1 < 0). The triplet corresponds to antiferromagnetic
arrangements, in which the sum of the four spins is zero.
Although the precise phase relation becomes more com-
plex at finite q positions, the basic phase relation de-
scribed above does not change. The inclusion of addi-
tional exchange parameters also does not seriously affect
this qualitative discussion.
Another important aspect is that the energy minimum

and its |q| value of ∼ 0.36 are almost isotropic, as has
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FIG. 7. (a) Left: Energy eigenvalues of Jq for (J1, J2) =
(1,−0.52) along q = (2η, 3η, 0) as a function of |q| (η =
0 ∼ 1/6). Right: A Model of helimagnetic structure for
q = (0.2, 0.3, 0) with ferromagnetic J1 and antiferromagnetic
J2. (b) Left: Energy eigenvalues of Jq for (J1, J2) = (−1, 0.2).
Right: A model of helimagnetic structure for q = (0.2, 0.3, 0)
with antiferromagnetic J1 and ferromagnetic J2.

generally been studied theoretically [15, 16]. The mini-
mum in the Heisenberg-type exchange energy is realized
by |q| ∼ 0.36 and hardly depends on the direction of q.
The true minimum of the exchange energy of the RKKY
interaction in EuPtSi is at (±0.2,±0.3,±0.04) and its
cyclic permutations, which correspond to the peaks in
χ(q). The 12 helimagnetic structures are degenerate, and
other close correlations with |q| ∼ 0.36 are expected to
give rise to a large fluctuation near the ordering tem-
perature. Diffuse scattering observed in MnSi provides a
good reference [28, 29]. When the q vector jumps at 0.9 T
from (δ2, δ3, δ1) = (0.2, 0.29, 0.09) in the helical phase to
(δ2,−δ3, δ1) = (0.2,−0.29, 0.09) in the triple-q SkL phase
to satisfy the q ⊥ H condition, the Heisenberg exchange
energy is only slightly affected. The three q vectors in
the SkL phase forH ‖ [111] simultaneously coincide with
the peak in χ(q) and drive the SkL formation through the
higher-order RKKY interaction [24, 25].

Hereafter, to discuss the helimagnetic structure, we

set q = (0.2, 0.3, 0) and S
(α)
q = {(−3, 2, 0)/

√
13 +

(0, 0, i)} exp(iφα) as deduced experimentally. We also as-
sume equal magnitudes of moments for Eu-1, 2, 3, and 4.
With respect to the F-J1 case with (J1, J2) = (1,−0.52),
the minimum energy (E = −3.43) is obtained at ap-
proximately ŝq = (1, e−iπ/6, 1, e−iπ/6), where almost the

same phase indicates a ferromagnetic local arrangement.
The real-space helimagnetic structure thus obtained is
illustrated in Fig. 7(a). The four spins in a unit cell
are oriented in almost the same direction. All moments
are perpendicular to q and rotate counterclockwise when
propagating along the q vector.
With respect to the AF-J1 case with (J1, J2) =

(−1, 0.2), the minimum energy (E = −2.81) is obtained
at approximately ŝq = (1, e−iπ/2,−1, eiπ/2). The sum of
the phase factors is zero, indicating an antiferromagnetic
local arrangement. The real-space helimagnetic structure
in this case is illustrated in Fig. 7(b). The four spins in
the unit cell are oriented in various directions. A serious
problem with this structure is that the magnetic struc-
ture factor becomes very small due to cancellation among
the four Eu sublattices. The square of the structure fac-
tor, which is proportional to the observed intensity, is two
orders of magnitude smaller than that in the F-J1 case
in Fig. 7(a). In the SkL structure shown in Fig. 5(b),
the spins at all four Eu sites are expected to have almost
the same phase because they swirl in the same direction.
Experimentally, the observed peak intensities in the he-
lical phase and SkL phase are almost the same [11, 12].
This indicates that the phase relation in the helical phase
should be ferromagnetic, that is, the structure shown in
Fig. 7(a) is more likely. The observed intensities around
the (3̄, 3, 0) fundamental peak also support this conclu-
sion. This is also consistent with the predominant fer-
romagnetic correlation inferred from the positive Weiss
temperature of 7.7 K [4].

V. CONCLUSION

Using resonant x-ray diffraction with a circularly polar-
ized beam, we studied the magnetic helicity of the triple-
q magnetic structure of the triangular SkL of EuPtSi for
a magnetic field along the [111] axis. We demonstrated
that all three Fourier components of the triple-q struc-
ture have the same helicity, which is a direct observa-
tion of the SkL in the reciprocal space. By combining
the circular polarization dependence and linear polariza-
tion analyses, we deduced that the Fourier components
are almost circular and perpendicular to the respective
q vectors. Because the helicity of the triple-q structure
is the same as that of the single-q helimagnetic struc-
ture at low fields, it is suggested that the antisymmetric
exchange interaction inherent in the chiral structure sup-
ports the formation of the triangular SkL. We also ob-
served that the helical plane is slightly tilted toward the
magnetic field to form a conical structure before the first-
order transition to the SkL phase. A possible helimag-
netic structure was discussed by considering the nearest
and second-nearest neighbor Heisenberg-type exchange
interactions. It is suggested that a ferromagnetic nearest-
neighbor interaction aligns the four Eu spins in the unit
cell in the same direction.
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Appendix A: Analysis of ∆θPR dependence

We use the scattering-amplitude-operator method to
analyze the experimental results of RXD [30]. The res-
onant scattering amplitude can be expressed by a 2 × 2
matrix F̂ , consisting of four elements of the scattering
amplitude for σ-σ′, π-σ′, σ-π′, and π-π′:

F̂ =

(

Fσσ′ Fπσ′

Fσπ′ Fππ′

)

. (A1)

Using the four elements of (A1), the scattering intensity
can be written as

I =
1

2

(

|Fσσ′ |2 + |Fσπ′ |2 + |Fπσ′ |2 + |Fππ′ |2
)

+ P1Re
{

F ∗
πσ′Fσσ′ + F ∗

ππ′Fσπ′

}

+ P2Im
{

F ∗
πσ′Fσσ′ + F ∗

ππ′Fσπ′

}

(A2)

+
1

2
P3

(

|Fσσ′ |2 + |Fσπ′ |2 − |Fπσ′ |2 − |Fππ′ |2
)

.

Therefore, the intensity for the incident beam described
by the Stokes parameters (P1, P2, P3) can generally be
written as

I = C0 + C1P1 + C2P2 + C3P3 , (A3)

which can be used as a fitting function for the ∆θPR scan
with four parameters of Cn (n = 0 ∼ 3) [31].

The ∆θPR dependence of the Stokes parameter P2 =
sin(γ/∆θPR) (+1 for RCP and −1 for LCP) and P3 =
− cos(γ/∆θPR) (+1 for σ and −1 for π) are shown in
Fig. 8(a), where γ is an experimentally determined pa-
rameter of the phase plate obtained by analyzing the
∆θPR dependence of the intensity of the (2̄, 2, 0) funda-
mental reflection. This is shown in Fig. 8(b). The solid

lines are the fits with

I = K
{

1− (1− P3) sin
2 2θ

2

}{

1− (1 − P3A) sin
2 2θA

2

}

(A4)
for a nonresonant Thomson scattering, where P3A and
2θA are the P3 Stokes parameter and the scattering angle,
respectively, at the analyzer crystal. K is a constant scale
factor. P3A is expressed as

P3A = −P ′
1 sin 2φA + P ′

3 cos 2φA , (A5)

where P ′
1 and P ′

3 are the Stokes parameters of the
diffracted x ray expressed as

P ′
1 =

P1 cos 2θ

1− 1

2
(1− P3) sin

2 2θ
,

P ′
3 =

P3 +
1

2
(1− P3) sin

2 2θ

1− 1

2
(1− P3) sin

2 2θ
. (A6)
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observed by 151Eu Mössbauer spectroscopy, J. Phys. Soc.
Jpn. 88, 094702 (2019).

[20] N. Higa, T. U. Ito, M. Yogi, T. Hattori, H. Sakai,
S. Kambe, Z. Guguchia, W. Higemoto, M. Nakashima,
Y. Homma, A. Nakamura, F. Honda, Y. Shimizu,
D. Aoki, M. Kakihana, M. Hedo, T. Nakama, Y. Ōnuki,
and Y. Tokunaga, Critical slowing-down and field-
dependent paramagnetic fluctuations in the skyrmion
host EuPtSi: µSR and NMR studies, Phys. Rev. B 104,
045145 (2021).

[21] R. Yambe and S. Hayami, Effective spin model in mo-
mentum space: Toward a systematic understanding of
multiple-Q instability by momentum-resolved anisotropic
exchange interactions, Phys. Rev. B 106, 174437 (2022).

[22] S. Hayami and Y. Motome, Néel- and Bloch-type mag-
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