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Abstract

Data assimilation aims to estimate the states of a dynamical system by optimally
combining sparse and noisy observations of the physical system with uncertain
forecasts produced by a computational model. The states of many dynamical
systems of interest obey nonlinear physical constraints, and the corresponding
dynamics is confined to a certain sub-manifold of the state space. Standard
data assimilation techniques applied to such systems yield posterior states lying
outside the manifold, violating the physical constraints.
This work focuses on particle flow filters which use stochastic differential
equations to evolve state samples from a prior distribution to samples from
an observation-informed posterior distribution. The variational Fokker-Planck
(VFP)—a generic particle flow filtering framework—is extended to incorporate
non-linear, equality state constraints in the analysis. To this end, two algorithmic
approaches that modify the VFP stochastic differential equation are discussed:
(i) VFPSTAB, to inexactly preserve constraints with the addition of a stabi-
lizing drift term, and (ii) VFPDAE, to exactly preserve constraints by treating
the VFP dynamics as a stochastic differential-algebraic equation (SDAE). Addi-
tionally, an implicit-explicit time integrator is developed to evolve the VFPDAE
dynamics. The strength of the proposed approach for constraint preservation in
data assimilation is demonstrated on three test problems: the double pendulum,
Korteweg-de-Vries, and the incompressible Navier-Stokes equations.
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1 Introduction

Data assimilation for state estimation attempts to combine uncertain, high-

dimensional model simulations of a system with noisy (and typically low-dimensional)

observations of the said system in a theoretically rigorous manner [1–3]. Data assimila-

tion is widely used to improve forecasts in the areas of weather prediction, hydrology,

seismology, and so on. Popular data assimilation methods include the well-known

Kalman filter [4], ensemble Kalman filter [5] (and its many variants such as the

ensemble transform Kalman filter (ETKF) [6], ensemble adjustment Kalman filter

(EAKF) [7], and the local ensemble transform Kalman filter(LETKF) [8]), variational

methods such as 3D-Var and 4D-Var [1, 3] like, and particle filters [9, 10].

Particle flow filters solve the assimilation problem by iteratively evolving an ensem-

ble of particles sampling the prior distribution into an ensemble of particles that sample

the posterior through stochastic differential equations (SDE). While there are many

flavors of particle flow filters [11–16], the main focus is on the authors’ Variational

Fokker-Planck (VFP) approach [17], a flexible and generalized particle flow frame-

work unifying many well-known particle flow methods. From the perspective of VFP,

the particle flow in the state space is driven by a McKean-Vlasov-Itô process whose

drift minimizes the Kullback-Leibler divergence between the particle distribution and

the posterior, and whose diffusion helps avoid particle collapse. Multiple assumptions

can be made on the prior and intermediate probability densities when computing the

drift, and at the same time, can be combined with localization techniques to mitigate

the curse of dimensionality [18].
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Many physical systems of interest obey constraints such as conservation laws for

mass, momentum, energy, enstrophy, etc [19, 20]. In this work, the general term con-

straint refers to any preserved fundamental property of a system. This work considers

non-linear equality constraints. In general, while the computational models are built

to preserve (in a numerical sense) the physical constraints of the system, standard

data assimilation algorithms are not. Traditional particle filters, which modify the

weights associated with the particles (and not the particle states), preserve nonlin-

ear constraints but are infeasible for high-dimensional problems [10, 18]. On the other

hand, ensemble Kalman-like algorithms can conserve linear equality constraints [21],

but not non-linear, or inequality constraints. Like most standard filtering methods,

the VFP framework [17] makes no guarantees about constraint preservation.

Modifying filtering algorithms to achieve constraint preservation is not a new idea

in data assimilation. Early work on preserving positivity constraints was done by Mas-

sicotte et. al [22], where they inexactly preserve positivity on filtered spectrometric

data by heuristically damping the non-negativity of the state by multiplication with

a deflation factor ∈ [0, 1]. Simon and Chia [23] discuss Kalman filtering with state

equality constraints. They describe a projection-based formulation for linear equality

constraints on the states and extend it to non-linear equality constraints by lineariza-

tion. They also present methods to restrict the Kalman gain such that the solution lies

on the constraint manifold. However, they conclude that the method of linearization

may result in convergence issues when projecting onto the constraint manifold.

Julier and LaViola Jr. [24] review and analyze two families of non-linear equality-

constrained Kalman Filters, namely the pseudo-observation and projection methods.

They identify two types of constraints, one that acts on the entire distribution (Type 1)

and the other that acts only on the mean of the distribution (Type 2). They conclude

that the computationally simpler pseudo-observation method (which includes con-

straints as observations with heuristically chosen error covariances) preserves neither
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constraint; while the more computationally expensive projection method can preserve

both types of constraints. Gupta and Hauser [25] introduce methods for inequality

and equality linear constraint by the projection method or by modifying the Kalman

gain. Sircoulomb et. al. [26] present a generic framework for dealing with non-linear

inequality constraints by iterative projection. Zanetti et. al.[27] modify the Kalman

gain operator for quadratic constraints, an approach useful when the norm constraint

considers a small subset of the state space. Prakash et. al. [28], propose a method

to incorporate box constraints by modifying the ensemble Kalman filter to work on

a truncated Gaussian distribution through a constrained optimization. Bavdekar et.

al. [29] extend the previous idea to dual state and parameter estimation using the

ensemble Kalman filter. Their methodology—to separate the state and (constrained)

parameter estimation—resulted in a lower error and a lower variance for the parameter

estimate at increased cost (coming from additional model evolutions) when compared

with a joint (state and parameter) EnKF approach.

Janjic et. al. [21] deal with positivity preserving constraints in the ensemble

Kalman filter by formulating the update as a sequence of quadratic programming

problems. Additionally, they show that the ensemble Kalman filters always con-

serve linear equality constraints assuming a preconsistent forecast. However, they also

state that localization prevents this conservation. Zeng and Janjic [20] analyze the

effect of localization radii, observed variables, and observation sparsity w.r.t the dis-

cretized grid on the conservation of mass, energy, enstrophy, divergence, and noise

for the two-dimensional shallow water equations. They observed that a small localiza-

tion radius or observing only the heights degraded the conservation properties. They

also observed that the enstrophy violation, which should be minimal for stable non-

linearities [19, 30], is highly correlated to the localization radius and surprisingly, the

ensemble inflation to prevent filter divergence. Zeng, Janjic, et. al. [31] extend the

quadratic penalty idea [21] to LETKF.
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Li et. al. [32] impose inequality constraints by projecting the unconstrained poste-

rior Gaussian analysis particles onto the constrained region such that the constrained

distribution is close in KL divergence to the unconstrained distribution. Albers et.

al [33] discuss imposing linear equality and inequality constraints into the ensemble

Kalman filter, by constraining the underlying EnKF quadratic optimization problem

when there is a constraint violation. They also extend it to the ensemble Kalman Inver-

sion methodology [34] to solve generic inverse problems. Chada et. al. [35] incorporate

box constraints into the Ensemble Kalman Inversion (EKI) by using a projected gra-

dient method [36], into the gradient flow structure of the continuous limit EKI. The

ensemble Kalman inversion idea relates somewhat to VFP as both methods involve

a gradient flow to move samples from a prior distribution to a posterior distribution.

Amor et. al [37] present a comprehensive overview of constraint-preserving techniques

for ensemble Kalman filters and particle filters.

The new contributions of this work are as follows.

1. The incorporation of constraint preservation methodology into the generic VFP

framework [17] to obtain physically consistent (w.r.t the constraint) states.

2. The first method—VFPSTAB—stabilizes the particle flow drift with an addi-

tional term to ensure the states are “close enough” to the constraint manifold.

VFPSTAB is computationally efficient but inexact for constraint preservation.

3. The second method—VFPDAE—adds a constraint preservation term along with

an algebraic constraint to the flow to ensure the states “exactly” respect the

constraint manifold at all times during the filtering process. Both these methods

lie in stark contrast with historical methods where the assimilation and constraint

preservation steps are treated independently, potentially leading to situations

where the posterior and the constraint cannot be reconciled.

4. Finally, an implicit-explicit time stepping scheme is developed to evolve VFPDAE

flow in pseudo-time efficiently.
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The remainder of the paper is organized as follows. Section 2 describes the data

assimilation problem, focusing on filtering, and then presents the notation used in

this work. Section 3 examines the role of constraints in data assimilation along

with a description of the traditional projection and pseudo-observation constraint

preservation methods. Section 4 introduces the variational Fokker-Planck method,

and develops two constraint preserving extensions, specifically, the VFPSTAB in

Section 4.1 and the VFPDAE in Section 4.2. Next, Section 5 describes techniques

for regularized covariance estimation in Section 5.1 and then compares VFPDAE and

VFPSTAB to modified versions of the ETKF, and LETKF using the double pendu-

lum (Section 5.2), Korteweg-de Vries (Section 5.3) and incompressible Navier-Stokes

(Section 5.4) problems. Finally, the conclusions are presented in section 6.

2 Data assimilation

A discrete-time dynamical system model is described by an operator that propagates

the states:

xk = Mk(xk−1), k ≥ 1, (1)

where k indexes the time tk, xk−1 ∈ Rns represents the states of the system at

time tk−1, and the model operator Mk : Rns → Rns evolves the states from time

tk−1 to time tk. This paper considers deterministic models M described by (partial)

differential-algebraic equations [38].

The model states must be combined with observations of the unknown reality to

track the true states. These observations of an unknown true state are typically sparse

(in space and time) and noisy, and given by

yk = Hk(xtrue,k) + ηok, (2)

6



where yk ∈ Rno is the observation at time tk,Hk : Rns → Rno the observation operator

and ηok is the observation noise. In a typical data assimilation setting, no ≪ ns as it is

infeasible to have a larger set of observations.

Filtering alternates between forecasting, where previous analysis states are propa-

gated to a future time using the computational model; and analysis, which combines

this forecast with the current observation to obtain new analysis states. This cycle is

summarized as

xf,k = Mk(xa,k−1), (Forecast)

xa,k = A(xf,k,yk;θ), (Analysis)

(3)

where θ ∈ Rp is a p-dimensional set of parameters of the analysis procedure. For

example, in the localized ensemble Kalman Filter, the parameters θ could include

ensemble inflation and localization radius. Through the Bayes’ rule, we have

P(xa,k) = P(xf,k | yk) =
P(yk | xf,k) · P(xf,k)

P(yk)
, (4)

where the analysis distribution is the (Bayesian) posterior that combines the obser-

vational likelihood P(yk | xf,k) and the prior distribution of the forecast P(xf,k).

Equivalently, we refer to the probabilities as P(xf,k) ≡ Pf(xk), P(yk | xf,k) ≡

Po(yk −Hk(xk)), and P(xa,k) ≡ Pa(xk).

This paper exclusively considers ensemble approaches to filtering, i.e.

Xf,k = Mk(Xa,k−1), (Forecast)

Xa,k = A(Xf,k,yk;θ), (Analysis)

(5)

where the ensemble

X∗,k =

[
x
[1]
∗,k x

[2]
∗,k . . . x

[ne]
∗,k

]
∈ Rns×ne , (6)
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has ne exchangeable random variables, representing samples (not necessarily inde-

pendent) from the same distribution. Here, it is assumed that x
[e]
f,k ∼ Pf(xk) and

x
[e]
a,k ∼ Pa(xk) for all e in the index set Ine = {1, 2, . . . , ne}.

3 Constraints

Many dynamical systems of interest, possess natural constraints on their states [21,

23, 25] as in eq. (7). For example, (i) geophysical systems obey conservation laws such

as mass, momentum, energy, and so on; (ii) mechanical systems are constrained by

lengths or velocities of its components. These constraints, which describe physical or

geometric laws, are ignored while filtering as they can be challenging to incorporate

into the filtering methodology [23].

For spatially distributed dynamical systems (typically described by PDEs), con-

straints are classified as global and local [39]. Global constraints preserve information

across the entire domain of the problem. For example, the conservation of total energy

of a closed system, the conservation of enstrophy for a closed fluid simulation, the

length of a pendulum, etc. Local constraints preserve information in a pointwise fash-

ion (i.e. at spatial locations) across the domain. For example, this can be the continuity

equation for an incompressible fluid where the divergence is pointwise zero at every

spatial location across the domain; or that of non-negativity where the concentra-

tion of a chemical is greater than or equal to zero at each point across the domain.

Constraints can also be divided into two types based on their origin.

1. Constraints defined by state invariants that do not change with either time or

across samples. For models such as eq. (1), the constraints are described by the

algebraic relations:

g(xk−1) = 0 ⇒ g(xk) = g (Mk(xk−1)) = 0, (7)
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where g : Rns → Rnc is the constraint function. If xk−1 were to be modified

as x̃k−1 such that g(x̃k−1) ̸= 0, the following situations could occur with x̃k =

Mk(x̃k−1).

(a) Some model dynamics naturally pull back the states onto the constraint

manifold, i.e. g (x̃k) = 0. The states need no special treatment in this scenario

and such models are not considered in this work.

(b) Some models permit a small degree of flexibility, i.e.

|g(x̃k−1)| ≤ ε ⇒ |g(x̃k)| ≤ ε, (8)

where the constraints are weakly preserved.

(c) Sometimes x̃k is not computable if g(x̃k−1) ̸= 0 or even if x̃k is com-

putable, g(x̃k) ̸= 0. For these situations, x̃k−1 must be modified to lie on the

constraint manifold and then evolved.

The following equations are all at time tk (subscript k has been dropped in the

equations for simplicity), the data assimilation problem assumes a preconsistent

forecast i.e.

∀e ∈ Ine g(x
[e]
f ) = 0, or |g(x[e]

f )| ≤ ε. (9)

The goal is to have analysis ensemble members who also live on the constraint

manifold as

∀e ∈ Ine
g(x[e]

a ) = 0, or |g(x[e]
a )| ≤ ε. (10)

Remark 1 The constraints can also vary across time, or differ across the ensem-

ble. We do not delve into these cases, because the underlying ideas regarding these

constraints and their preservation are mostly similar to the above.
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2. Constraints that preserve information between the forecast and analysis samples.

Essentially, the constraints (again, all at time tk) are defined as

∀e ∈ Ine
g[e](x[e]

a ;x
[e]
f ) = h(x[e]

a )− h(x
[e]
f ), (11)

where h : Rns → Rnc represents some preservable quantities. The constraint

preservation requires

∀e ∈ Ine
g[e](x[e]

a ;x
[e]
f ) = 0, or |g[e](x[e]

a ;x
[e]
f )| ≤ ε. (12)

Typically, these constraints are artificial (rather than natural) and enforced based

on need.

Problems with both constraint types can be formulated, such as the incompressible

Navier Stokes experiment in section 5.4. With a few exceptions, most filtering methods

ignore state constraints, and as a consequence, fail to preserve them [20, 23].

Example 1 (Pendulum) Consider an example problem with the simple pendulum

to motivate constraint preservation further. Consider the situation where the forecast

pendulum ensemble, the truth, the observation, and the constraint manifold are as

depicted in Figure 1. The constraint manifold here is defined by the geometric con-

straints of the pendulum such as its length and the extreme position (dictating the

total mechanical energy of the system in the absence of forcing or dissipation). While

the ETKF analysis (labeled Standard ETKF in Figure 1) ensemble is closer to the

observations, it is completely off the constraint manifold. These inconsistent analysis

states are meaningless as the pendulum’s length must remain constant after filtering,

and hence, a better and physically consistent analysis is preferred (labeled Constrained

ETKF in Figure 1).

We now discuss two different approaches to constrain analyses.
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Fig. 1: A simple pendulum example where the forecast ensemble members lie on the
constraint manifold, but the standard ETKF analysis does not. The goal is to obtain
an analysis ensemble that lives on the constraint manifold like the Constrained ETKF.

3.1 Projection onto constraint manifold after filtering

The projection after filtering approach has two main steps. First, a constraint agnostic

filtering scheme is applied to the forecast to obtain the unconstrained analysis:

x̂[e]
a = A(x

[e]
f ,y,θ), ∀e ∈ Ine

. (13)

Next, each analysis ensemble member is projected onto the manifold using:

x[e]
a = x̂[e]

a −G⊤(x̂[e]
a )λ[e], ∀e ∈ Ine

, (14a)

where λ[e] ∈ Rnc is a solution of the nonlinear equation:

0 = g
(
x[e]
a

)
= g

(
x̂[e]
a −G⊤(x̂[e]

a )λ[e]
)
, ∀e ∈ Ine , (14b)
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where the Jacobian of the constraints defines the tangent constraint manifold:

G(x) :=
dg(x)

dx
. (15)

The approach eq. (14) is to move the unconstrained analysis states along the adjoint

constraint manifold G⊤ until it lands onto the constraint manifold. This idea is sim-

ilar to projected Runge-Kutta methods for differential-algebraic equations [38]. For

linear constraints, formulation eq. (14) leads to the Mean Square Method derivation

of projection from Simon and Chia [23].

3.2 Pseudo-observations of constraints

The pseudo-observation formulation here follows Julier and LaViola Jr [24]. Formally,

the standard observation operatorH(x) is augmented with g(x) to obtain the extended

observation operator Ĥ:

Ĥ(x) :=

H(x)

g(x)

 , (16)

and the data with a pseudo-observation of the constraint value, to obtain the extended

observation ŷ:

ŷ :=

y
0

 . (17)

For any ensemble method, the observation error covariance R is augmented with a

user-defined covariance Rg that defines an acceptable amount of constraint violation:

R̂ :=

R 0

0 Rg

 . (18)
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The extended observation triplet Ĥ(x), ŷ, and R̂ is used in the standard way in filtering

methods. However, combining pseudo-observations with localization is difficult and is

not explored here.

4 Ensemble Variational Fokker Planck Filters

The ensemble variational Fokker Planck method [17] for data assimilation evolves a

set of samples from the prior distribution to the posterior distribution along a defined

stochastic differential equation [17] in pseudo-time. Specifically, the samples move

under a McKean-Vlasov-Itô process whose drift minimizes the Kullback-Leibler diver-

gence between the probability density of the samples and the target posterior and

whose diffusion is tuned to prevent filter divergence. This framework treats the density

as a ”parameter” estimated from the samples which can be chosen arbitrarily as long

as the log-gradient of the density can be computed exactly or estimated. Formally, the

McKean-Vlasov-Itô process defined as

dxτ = F(τ,xτ ,Pτ )dτ + σ(τ,xτ ,Pτ )dW, (19)

whose corresponding Fokker-Planck equation is

∂Pτ (x)
∂τ

= −∇x ·
(
Pτ (x)F−∇x ·

(
Pτ (x)σσ⊤

2

))
, (20)

where τ is the pseudo-time, xτ is a sample, Pτ is the density of the sample, F is the

KL divergence minimizing optimal drift, σ is the diffusion tensor and W is the Wiener

process and (∇x·) : Rns×ns → Rns is the divergence term. The initial conditions are

given as

τ = 0, xτ = xf and Pτ = Pf(x). (21)
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When eq. (19) is evolved in pseudo-time, we obtain the analysis samples as

τ → ∞, xτ = xa and Pτ = Pa(x). (22)

In practice, the integration is terminated at some finite pseudo-time based on a cri-

terion evaluating the convergence of the samples to the posterior. The optimal drift

that minimizes the KL-divergence between the ensemble estimate and the posterior

(derived in [17]) is given as

F(τ,x,Pτ ) = A(x,Pτ ) (∇x logPa(x)−∇x logPτ (x))

+

(
σσ⊤

2

)
∇x logPτ (x) +∇x ·

(
σσ⊤

2

)
,

(23)

where A(x,Pτ ) can be any symmetric positive definite matrix. The term ∇x logPa(x)

pushes the samples toward the posterior, ∇x logPτ (x) attempts to keep the samples

spread apart (deterministically), and the terms containing σσ⊤/2 account for the

stochastic diffusion. For a more rigorous description of this framework, we refer the

readers to our previous work [17].

The following simplifying assumptions are made for the remainder of the paper:

(i) Firstly, A(x,Pτ ) = Ins . This is a trivial choice (theoretically and computation-

ally) and further justification is discussed in [17].

(ii) Deriving the exact flow based on Pτ , Po, and Pf would require the estimation

of probability densities on manifolds. This idea is not explored in this work as

the main focus is on constraint preservation in the VFP framework. Thus, for

simplicity, the computational flow assumes the densities Pτ , Po, and Pf to all be

Gaussian. While the Gaussian assumption works in practice, VFP is not restricted

by this and can choose any quantifiable gradient log density to derive the flow

(discussed in [17]). It is more likely than not, that a Gaussian in Rns will not be

14



Gaussian on the constraint manifold. But practically, the experiments show that

this is a good enough approximation for the flow.

(iii) The diffusion is assumed to be some scaled square root (or Cholesky factor) of

the forecast covariance estimate σ(τ,xτ ,Pτ ) = α
√
Pf with α being a problem

specific tunable parameter. As σ is independent of xτ , we have
(

σσ⊤

2

)
= α2Pf

and ∇x ·
(

σσ⊤

2

)
= 0 Note that for σ ∈ Rns×ℓ, where ℓ < ns, the diffusion

dynamics are restricted to the forecast ensemble subspace [40].

Example 2 (Gaussian case) Under the Gaussian assumptions,

∇x logPτ (x) = −P−1
τ (x− x̄τ ) , and

∇x logPa(x) = −P−1
f (x− x̄f)−H⊤R−1 (H(x)− y) .

(24)

However, there are no guarantees about constraint preservation when considering

eq. (19) coupled with eq. (23) and the simplifying assumptions. Stochastic diffu-

sion without any special treatment almost always destroys constraints. Deterministic

dynamics with σ = 0 do not preserve constraints either. Thus, drawing inspiration

from the “ODE with invariants” section from Ascher and Petzold [38], we proceed as

follows. The first idea is to consider eq. (19) with the constraint g(x) = 0 as a stochas-

tic differential equation with an invariant. Next, through the equivalence between an

ODE with an invariant and a Hessenberg index-2 DAE (see equations 9.38, 9.39 in

Ascher [38]), we can reformulate eq. (19) as a Hessenberg index-2 stochastic DAE.

4.1 Ensemble Variational Fokker Planck Filters with

Stabilization (VFPSTAB)

In the VFPSTAB approach, the SDE in eq. (19) is stabilized for the constraint g(x).

Following Asher and Petzold [38, equation 9.40], we rewrite eq. (19) as

dxτ =
(
F(τ,xτ ,Pτ )− γG†(xτ )g(xτ )

)
dτ + σ(τ,xτ ,Pτ )dW, (25)

15



where γ > 0 is a tunable stabilization parameter and G† = G⊤(GG⊤)−1 is the

Moore-Penrose inverse of the Jacobian G eq. (15). Note that rather than G†, one

may use operators such as Ĝ(GĜ)−1 where Ĝ is any operator such that GĜ is

always boundedly invertible [38]. The choice for Ĝ defines the projection direction and

choosing Ĝ = G⊤, as in eq. (25) results in orthogonal projection. VFPSTAB is evolved

in time using either Euler-Maruyama [41] or Rosenbrock-Euler-Maruyama [17].

4.2 Stochastic Differential Algebraic Equation (VFPDAE)

In the VFPDAE approach, eq. (19) is equipped with constraint g(x) as a Hessenberg

index-2 stochastic differential algebraic equation (SDAE). Formally, by introducing an

algebraic variable z into eq. (19), we can write

dxτ =
(
F(τ,xτ ,Pτ )−G⊤(xτ ) z

)
dτ + σ(τ,xτ ,Pτ )dW,

0 = g(xτ ),

(26)

where G(xτ ) = ∇xg(xτ ). The algebraic variable z ∈ Rnc projects the solution along

G⊤, compensates not just for the deterministic dynamics but also the stochastic

Wiener process, which almost surely pushes the states off the constraint manifold.

Remark 2 The constraint 0 = g(xτ + dxτ ), implies the tangent constraint 0 =

G(xτ )dxτ . Plugging dxτ from eq. (26) into 0 = G(xτ )dxτ , we get

0 = G(xτ )
((
F(τ,xτ ,Pτ )−G⊤(xτ ) z

)
dτ + σ(τ,xτ ,Pτ )dW

)
, (27)

which gives

z dτ = (GG⊤)−1G(xτ ) (F(τ,xτ ,Pτ )dτ + σ(τ,xτ ,Pτ )dW) . (28)
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Plugging zdτ back in eq. (26), we get the SDAE system

dxτ = (I−G⊤(GG⊤)−1G(xτ )) · (F(τ,xτ ,Pτ ) dτ + σ(τ,xτ ,Pτ )dW)

0 = g(xτ ).

(29)

The (I−G⊤(GG⊤)−1G(xτ )) term is projecting the stochastic dynamics orthogonally

onto the constraint tangent manifold, while eliminating the algebraic variable z. Note

that GG⊤ must always be non-singular for the system to have index-2 uniformly.

Remark 3 Compared to VFPDAE (as in eq. (26)), VFPSTAB (as in eq. (25)) does

not satisfy the constraints exactly, but merely makes the states remain close to the

constraint manifold. However, VFPSTAB is computationally cheaper than VFPDAE

due to not having to solve a root-finding problem at each evolution step. Both methods

improve the preservation of constraints when compared to the standard VFP.

4.2.1 Time integration of stochastic differential-algebraic equations

While theory exists for the numerical solution of SDE [41] and index-2 DAEs [38,

42, 43], very minimal literature exists for index-2 SDAE. Due to this, we combine

ideas from SDE and DAE literature to evolve an index-2 SDAE. A direct half-explicit

solution to the SDAE in eq. (26) is obtained by taking an Euler-Maruyama step,

followed by a projection onto the constraint manifold:

x̃1 = x0 + hF(τ0,x0) +
√
hσ(τ0,x0)ξ,

Solve for z0 : g(x̃1 −G⊤(x0) z0) = 0,

x1 = x̃1 −G⊤(x0) z0,

(30)

where h = τ1 − τ0. This method projects the solution along the adjoint constraint

manifold evaluated at x0 (as the constraint does not change over pseudo-time τ).
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Alternatively, one may discretize eq. (26)

x̃1 = x0 + hF(τ0,x0) +
√
hσ(τ0,x0)ξ,

Solve for z1 : g(x̃1 −G⊤(x̃1) z1) = 0,

x1 = x̃1 −G⊤(x̃1) z1.

(31)

The difference between eq. (30) and eq. (31) lies in the evaluation of G at x0 versus x̃1.

This only changes the projection directionG⊤ to be computed at x1. Equation (31) can

be seen as an evolve and project approach where the solution is evolved by the posterior

flow dynamic using Euler-Maruyama [41] discretization which is then projected onto

the constraint manifold. The flow can also be discretized with the Rosenbrock Euler-

Maruyama (discussed in our work [17]), followed by the projection:

x̃1 = x0 + h (I− hFx(τ0,x0))
−1

F(τ0,x0) +
√
hσ(τ0,x)ξ,

Solve for z1 : g(x̃1 −G⊤(x̃1) z1) = 0,

x1 = x̃1 −G⊤(x̃1) z1.

(32)

Note that the rootfinding for z1 in eqs. (30) to (32) is typically low-dimensional

(of dimension Rnc) compared to the state dimension, i.e. nc ≪ ns. One may also solve

for x̃1 using any technique from [16, 44] and project the states onto the constraint

manifold. For the listed methods eqs. (30) to (32), the solution x̃1 will be half-th

order accurate (O(
√
h)). Since the algebraic variable z is just the projection vector,

we ignore whatever order it may be. In our experiments, we found eqs. (31) and (32)

to give faster results, and these methods have been used for all experiments.

Remark 4 As in remark 2, we can evolve the projected SDE as

x̃1 = x0 +
(
I−G⊤(GG⊤)−1G(x0)

)−1
(
hF(τ0,x0) +

√
hσ(τ0,x)ξ

)
, (33)
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and project x̃1 onto the constraint manifold. In practice, eq. (33) took longer wall-time

to converge to the analysis, without any qualitative difference from the solutions of

eqs. (31) and (32). For this reason, the results from eq. (33) are not reported in the

paper.

5 Numerical experiments

The VFPSTAB and VFPDAE methodologies are tested on three different test prob-

lems, namely: (i) the double pendulum, (ii) the Korteweg-de Vries equation, and

(iii) the incompressible Navier Stokes via barotropic vorticity equation. These results

are compared to the results from the standard VFP, the standard ETKF, ETKFP

(ETKF with projection as described in section 3.1), and ETKFA (ETKF augmented

with pseudo-observations as described in section 3.2). For the incompressible Navier-

Stokes, we also look at LETKFP and LETKFA which are R-localized [2] versions of

ETKFP and ETKFA respectively.

Two different metrics—the spatio-temporal root mean square error (RMSE) of

the analysis states and the spatio-temporal root mean square error of the analysis

constraints (CRMSE)—are used to evaluate the results. The RMSE at time tk is

defined as

RMSE(k) =

√√√√ 1

C1

k∑
i=ρ

ne∑
e=1

∥∥∥x[e]
a,i − xtrue,i

∥∥∥2
2
, (34)

where C1 = (k − ρ + 1)nens where ns is the number of states, ne is the number

of ensemble members, and ρ is the spinup steps before which the error statistics

are ignored. We chose to not use the traditional spatio-temporal RMSE formula√
1

(k−ρ+1)ns

∑k
i=ρ ∥x̄a,i − xtrue,i∥22, with x̄a,i = 1

ne

∑ne

e=1 x
[e]
a,i, since the mean of an

ensemble x̄a,i will not lie on the constraint manifold. In an ideal situation, one would

have to compute the mean on the constraint manifold and compute the errors using

distances on the constraint manifold. This approach is not pursued due to the com-

plexities of computing distances on a manifold. The CRMSE at time tk is defined
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as

CRMSE(k) =

√√√√ 1

C2

k∑
i=ρ

ne∑
e=1

∥∥∥E · g(x[e]
a,i)
∥∥∥2
2
, (35)

where C2 = (k − ρ+ 1)nenc and E is a chosen scaling matrix.

5.1 Covariance Regularization

Covariance estimation from a small ensemble is an important and challenging issue

in data assimilation [45]. Various justifiable heuristics such as inflation [46], localiza-

tion [47], covariance shrinkage [48], and modified Cholesky [49], have been developed

to improve the estimates.

For constraint-preserving systems the covariance in full state space is singular,

and the empirically estimated ensemble variances are small along directions normal

to the constraint manifold, leading to filter divergence. In the VFP, the computed

drift in eq. (24) requires a linear system solution of the covariance matrix. If the

covariance is either singular or if its entries are too small, the computed drift will be

inaccurate leading to filter divergence over multiple assimilation cycles. For this reason,

we propose covariance regularization approaches to prevent VFP filter divergence for

the dynamics of eqs. (25) and (26).

The estimated covariance is regularized via static covariance shrinkage for the

double pendulum. The estimated covariance P is shrunk to γshP + (1 − γsh)I, with

γsh = 0.01. While there are robust methods to compute γsh such as the Ledoit-Wolf

and the Rao-Blackwell Ledoit-Wolf methods [48], we prefer an experimentally tuned

static value for quicker computation.

For high-dimensional PDE systems, it is well-known that the square root of the

covariance matrix can approximated by the inverse of a spatial Laplacian-like oper-

ator [50, 51] by its structure (specifically, the inverse of the Laplacian-like operator

is diagonally dominant, symmetric, and positive definite). The precision matrix esti-

mate for the Kortweg-de Vries and the incompressible Navier-Stokes equations is given
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by scaling the discrete spatial Laplacian-like of the system with a scalar which is

the inverse of the maximum (across the ns states) variance of the ensemble. For the

incompressible Navier-Stokes problem, we assume that the velocities in the x and y

dimensions are uncorrelated. The specific Laplacian-like approximations are described

in section 5.3 and section 5.4 respectively.

5.2 Double Pendulum

The double pendulum is a constrained mechanical system [38, 43]. This problem was

chosen due to its chaotic dynamical nature and ease of constraint visualization while

posing a challenging assimilation problem. We consider the index-2 DAE formulation

of the pendulum dynamics

d2

dt2



x1

y1

x2

y2


=



−λ1x1 + λ2(x2 − x1)

−λ1y1 + λ2(y2 − y1)− gc

−λ2(x2 − x1)

−λ2(y2 − y1)− gc


, (36)

where gc = 9.8 is the acceleration due to gravity, x1, y1, x2, y2 are the positions of the

two pendulums in Cartesian coordinates with rod tensions λ1, λ2 being the solution

of the linear system

 x21 + y21 −(x1δx + y1δy)

−(x1δx + y1δy) 2(δ2x + δ2y)


λ1
λ2

 =

u21 + v21 − gcy1

δ2u + δ2v

 , (37)

where u1 = dx1

dt , v1 = dy1
dt , u2 = dx2

dt , v2 = dy2
dt are the velocities of the two pendulums

in the x and y directions, and δx = (x2 − x1), δy = (y2 − y1), δu = (u2 − u1),

δv = (v2 − v1). The system has nc = 5 constraints on the lengths of the two rods,
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velocities of the two rods, and total mechanical energy respectively defined as



0

0

0

0

0


=



0.5(x21 + y21 − 1)

0.5(δ2x + δ2y − 1)

x1u1 + y1v1

δxδu + δyδv

0.5(u21 + v21 + u22 + v22) + gc(y1 + y2 + 3)− E0


, (38)

where E0 is the total mechanical energy at the initial condition.

The masses and lengths are assumed to be unity, i.e. m1 = m2 = 1 and l1 = l2 = 1.

This index-2 system evolved as a first-order index-2 DAE and using a two-stage,

partitioned half explicit Runge-Kutta (PHERK) method [52, 53] for ∆tts = 0.01. The

coefficients of the second-order PHERK method [52, 53] are

A =

0 0

1 0

 , Ã =

0 0

1
2

1
2

 , c = c̃ =

0
1

 , b =
 1

2

1
2

 . (39)

The different matrices A and Ã are used to solve for the differential and algebraic

variables following the work of Murua [52].

The observation operator H(x) = x observes all states with an unbiased, indepen-

dent Gaussian error ηo ∼ N(0,R = 0.1 I8) every ∆t = 0.1 time units. The problem

is assimilated for 5501 steps (each step at ∆t = 0.1) and ignores the statistics from

the first σ = 501 spinup steps. A reference system state is chosen to be some posi-

tion of the double pendulum with zero velocities having a total mechanical energy of

E0 = 56.1741. This reference is then evolved ne = 30 times at a ∆tsamp = 0.008 to

create a trajectory of states. The truth and the ensemble are state samples without

repetition from this trajectory.

The assimilation methods and their parameters are as follows.
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1. ETKF, ETKFA, and ETKFP all use a covariance inflation of α = 1.08.

2. ETKFA uses the augmented error covariance Rg = 0.001I5. This value was hand-

tuned to balance between the RMSE and CRMSE.

3. All VFP variants—VFP, VFPSTAB, VFPDAE—have the diffusion parameter

σ = 0.001 diag

([
2 2 20 20 2 2 20 20

])
.

This was tuned to be a scaling of the climatological (or auto) covariance of

the double pendulum system. The VFP system was evolved to the posterior in

pseudo-time τ using Euler-Maruyama with a ∆τ = 0.001. The evolution was

terminated when the absolute change in the ensemble mean across pseudo-time

steps was under a specified tolerance, here 1e−6. The covariances Pτ , and Pf

were estimated using covariance shrinkage as discussed in Section 5.1.

4. VFPSTAB uses a hand-tuned stabilization constant of γ = 30 (to balance between

RMSE and CRMSE).
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Fig. 2: Results for the double pendulum experiments.
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Figure 2a compares the spatio-temporal root mean squared errors of various flavors

of ETKF and VFP. For this problem, all the ETKF variants behave slightly better

than all the VFP variants, with VFPDAE coming very close to plain ETKF. For the

ETKF methods, constraint preservation (ETKFA and ETKFP) shows a slightly lower

RMSE when compared to plain ETKF.

Figure 2b shows the CRMSE for each method with the scaling E =

diag

([
1 1 1 1 1

E0

])
. The asymptotic CRMSE values of ETKF, ETKFA, VFP, and

VFPSTAB are 0.005, 0.003, 0.065, and 0.046 respectively. As expected, ETKFP and

VFPDAE preserve the constraints to machine precision. ETKFA and ETKF have the

next lowest CRMSE. Due to constraint augmentation, ETKFA has a slightly lower

CRMSE than ETKF. Similarly, the CRMSE of VFPSTAB and VFP look identical,

but VFPSTAB has a slightly lower CRMSE due to stabilization.

5.3 Korteweg de Vries

The Korteweg-de Vries PDE represents non-linear, non-dissipative waves on shallow

water surfaces [54]. While this PDE has an infinite set of integrable constraints [55] on

the states, our experiments consider the first three only. The equation is written as:

∂x

∂t
+ 3

∂(x2)

∂x
+
∂3x

∂x3
= 0, (40)

where x is a non-dimensional wave-height displacement, and t is the non-dimensional

time. The mass, momentum, and energy integral invariants are respectively given by

ϕ1(x) =

∫
Ωx

xdx,

ϕ2(x) =

∫
Ωx

1

2
x2dx, (41)

ϕ3(x) =

∫
Ωx

(
x3

3
−
(
∂x

∂x

)2
)
dx.
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Thus, the nc = 3 constraints, are

0 = g(t,x) = ϕ(x)− ϕ(x0). (42)

The PDE is spatially discretized using the second-order central finite difference in

the periodic domain x ∈ [−10, 10] with ns = 100 points. This semi-discretized PDE

is evolved using the implicit midpoint scheme (with ∆tts = 0.01) which is known to

preserve the invariants [56]. Following [57], the third constraint in eq. (42) is discretized

with the first-order forward finite difference.

At time intervals of ∆t = 0.01, every fourth state is observed as H(x) = x(4 : 4 :

100) with an unbiased Gaussian observation error with covariance R = 0.2 I25. The

observation covariance corresponds to 10% of the climatological (or auto) covariance.

Assimilation is done for 2201 steps, and the reported results ignore the statistics from

the first ρ = 401 spinup steps. The initial true state xtrue,0 = 6 sech2(x) corresponds

to the two soliton problem. The constraints for this are ϕ(x0) =

[
12 48 −211.3815

]⊤
.

The initial ensemble with ne = 10 samples is created by perturbing xtrue,0 with

diagonal random noise and projecting this onto the constraint manifold.

We consider the following hand-tuned data assimilation methods:

1. ETKF, ETKFA, and ETKFP all use an inflation of α = 1.04 at every assimilation

step.

2. ETKFA uses an augmented error covariance Rg = 10 I5 for the constraints.

3. VFPSTAB, and VFPDAE use a hand-tuned diffusion of σ = 1e−4(∆+1e−3Ins
)−1

where ∆ is the discrete Laplacian. As stated in section 5.1, the covariances Pτ−1,

and Pf
−1 are estimated by multiplying (∆ + 1e−3Ins

)2 with the maximum vari-

ance of the intermediate and forecast ensembles respectively. The term 1e−3Ins
is

added to the discrete Laplacian as the discrete Laplacian is low-rank due to the

periodic domain. Additionally, perturbed observations [58] were used in the VFP
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methods to allow for a larger analysis spread with perturbations being drawn

from N (0, 0.052R). This is because increasing the diffusion results in irregular

solutions that do not lie on the constraint manifold.

4. The VFPSTAB and VFPDAE system are solved in pseudo-time τ using

Rosenbrock-Euler-Maruyama with a ∆τ = 0.01. The evolution is terminated

when the absolute change in the ensemble mean across pseudo-time steps falls

under a specified tolerance, here 1e−4.

The LETKF [8] (and LETKFP, LETKFA) results are not reported as they are similar

to the unlocalized ETKF (and ETKFP, ETKFA) results.
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Fig. 3: Results for the Korteweg-deVries experiments where the VFP methods out-
perform the ETKF methods.

Figure 3a shows the spatio-temporal RMSE in time for various analysis schemes.

The VFP methods (VFPDAE and VFPSTAB) perform better than the ETKF vari-

ants. Between the ETKF methods, ETKFA seems to perform better than ETKF and

ETKFP for the RMSE. This might mean that the ETKFP is attaining a worse solution
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on the manifold, while ETKFA is obtaining a relatively good solution on the mani-

fold compared to vanilla ETKF. VFPDAE outperforms all these methods. Figure 3b

shows the CRMSE values for the different assimilation methods with the scaling

matrix E = I3. The asymptotic CRMSE values of ETKF, ETKFA, and VFPSTAB

are 0.005, 0.003, and 0.0007 respectively. The asymptotic CRMSE values of ETKFP

and VFPDAE are at machine epsilon. ETKF is worse at preserving constraints than

ETKFA, both of which are worse than VFPSTAB. VFPSTAB is worse than ETKFP

and VFPDAE which preserve the constraints exactly.

5.4 Incompressible Navier-Stokes

The incompressible Navier-Stokes equations (in the vorticity-streamfunction form)

are used to model large-scale, oceanic flows in shallow basins [59]. Without external

forcing, this system must conserve the mass, while also conserving the total energy

and enstrophy [19, 30]. This problem was chosen since it has both local and global

constraints.

The equations are

∂ω

∂t
= −J(ψ, ω) +Re−1∆ω +Ro−1

(
∂ψ

∂x
+ F

)
,

ψ = −∆−1ω,

(43)

with the vorticity ω, streamfunction ψ, velocities (u, v) =
(
∂ψ
∂y ,−

∂ψ
∂x

)
, the Laplacian

∆ = ∂2

∂x2 +
∂2

∂y2 , the Reynolds number Re = 450, the Rossby number Ro = 0.0036, the

Jacobian J(ψ, ω) ≡ ∂ψ
∂y

∂ω
∂x − ∂ψ

∂x
∂ω
∂y , and symmetric double gyre forcing F = sin (πy).

The streamfunction and vorticity boundaries on x and y are homogeneous Dirichlet.

The settings are chosen from San et. al [59] to produce four gyre circulation over time.

The experiment setup involves solving the vorticity equation in time and then

computing the primitive variables (velocities (u, v)) as the forecast. After constraint

27



preserving assimilation on the velocities, the velocities are converted back to the vor-

ticity form as ω = ∂v
∂x−

∂u
∂y with appropriate boundary conditions and marched forward

in time. This approach allows the incompressible Navier-Stokes to be solved as an

ODE without computational difficulties.

Firstly, the primitive variables must be incompressible due to the conservation

of mass, i.e. ∂u
∂x + ∂v

∂y = 0. Next, additional constraints are constructed to preserve

the energy and enstrophy for each ensemble member before and after filtering. This

means that each ensemble member will have its own, independent constraint. The

incompressibility, energy, and enstrophy constraints are respectively

∂ua
∂x

+
∂va
∂y

= 0,

1

2

∫
Ω

(
u2a + v2a

)
dx dy =

1

2

∫
Ω

(
u2f + v2f

)
dx dy, (44)

1

2

∫
Ω

(
∂va
∂x

− ∂ua
∂y

)2

dx dy =
1

2

∫
Ω

(
∂vf
∂x

− ∂uf
∂y

)2

dx dy.

The problem is discretized on the domain x ∈ [0, 1] and y ∈ [−1, 1] with central

finite differences using 64 and 129 equidistant points in each dimension. This makes

ns = 16512 from having 2 variables (u and v) on the grid. This discretization results in

8256 local constraints due to incompressibility, and 2 global constraints for the energy

and enstrophy, making nc = 8258. The Arakawa Jacobian [30] with the RK3 [60]

method is used to evolve the semidiscretized PDE with a timestep of ∆ts = 0.0109/40.

The system is observed every ∆t = 0.0109 units equivalent to one real day with

this non-dimensionalization [59]. The velocities u and v are observed at 16× 16 = 256

equally spaced grid points in the interior of the domain, with a Gaussian observation

error covariance of R = 400I512. This observation error covariance is approximately

1% of the climatological (or auto) covariance of the velocities. The assimilation was

done for 881 steps neglecting the statistics from the first 81 steps as spinup. The true
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initial condition is generated by evolving a smooth random vorticity field for 100 days.

Random sampling around the truth generates the initial ensemble with ne = 10.

The following filtering methods are considered for this problem:

1. ETKF and ETKFP with hand-tuned inflations of α = 1.1 and α = 1.05,

respectively.

2. LETKF, and LETKFP, with an inflation of α = 1.05. Here, LETKF and

LETKFP use the Gaspari-Cohn localization [47, 61] with a hand-tuned radius of

rloc = 0.559 units. The distance used to compute the localization coefficients is

the spatial Euclidean distance.

3. VFPDAE with diffusion σ = blkdiag

([
∆ ∆

])−1

, where ∆ is the two-

dimensional discrete Laplacian on the grid. Note that this assumes that the

correlation between u and v on the same grid point is 0. From the authors’

experience, it was observed that the velocities in the x and y directions were

uncorrelated, making this heuristic meaningful. As discussed in section 5.1, Pτ−1,

and Pf
−1 are computed by scaling blkdiag

([
∆2 ∆2

])
with the maximum vari-

ance of the intermediate and forecast ensembles respectively. Also, to accelerate

convergence, we initialize the VFPDAE solution with a projected solution from

ETKF. The VFPDAE system initialized at the projected ETKF solution was

evolved to the analysis with the flow dynamic for 10 steps using Euler-Maruyama

with a ∆τ = 1e−6. Due to the cost of this method, the pseudo-time evolution

was stopped after 10 evolution steps.

4. Augmented observations could not be used for the ETKF and LETKF as the

constraint is different for each ensemble member.

The results in fig. 4 show that ETKF and ETKFP methods perform worse than

their localized variants LETKF and LETKFP. Our method VFPDAE performs better

than ETKF and ETKFP, but worse than LETKF and LETKFP. Even with 10 small

steps of size 1e−5, VFPDAE performs better than its initialization method ETKFP.
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Fig. 4: Incompressible Navier-Stokes: RMSE for different methods.

Perhaps more evolution pseudo-time could give better results but this was not done

due to the high computational cost.
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Fig. 5: CRMSE results for the Navier-Stokes experiments.

Figure 5a chooses an E = diag

([
0 . . . 0 1

])
) for looking only at the enstrophy.

The asymptotic CRMSE values for the ETKF, LETKF, and LETKFP, are 0.03, 0.02,
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and 6e-4 respectively. VFPDAE and ETKFP preserve the enstrophy to the numerical

limit, while ETKF and LETKF do not. LETKFP preserves enstrophy to the numerical

limit at all times except step 840, which makes its CRMSE go up. This happens

because the projection method fails to project the LETKF solution onto the constraint

manifold.

A more interesting situation is looking at the spatially averaged CRMSE for

only the divergence constraint across the states with E = diag

([
1 . . . 1 0 0

])
in

Figure 5b . LETKF violates the divergence constraint by a huge margin, with the final

time CRMSE being 0.08. It is important to notice that ETKF preserves it naturally

(around an asymptotic CRMSE of ten times machine epsilon) due to it being a linear

transform of the ensemble as also observed by [21]. ETKFP, LETKFP, and VFPDAE

preserve the divergence constraint to the numerical limit.

6 Conclusions

The VFP framework is extended to incorporate general non-linear equality constraints.

The two formulated methods—VFPDAE and VFPSTAB—respect the constraint man-

ifold throughout the evolution to the posterior. To preserve constraints exactly, one

must use the VFPDAE method which requires a somewhat expensive implicit-explicit

time-stepping method to evolve the dynamics. VFPSTAB allows one to make com-

putational cost gains at the cost of inexactly preserving the constraints. Both these

methods require covariance regularization as the constraint manifold can restrict the

particles to have small variance, leading to filter divergence over time. While not

tested, non-linear inequality and box constraints can be incorporated by drawing on

ideas from constrained optimization theory such as using an “active-set” of constraints

in the flow, enabling VFP to handle more generic constraints. The same constraint-

preserving ideas can be extended to smoothing over a trajectory of observations.

Future work will include work on both smoothing and inequality constraints.
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