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Chemical gradients can be used by a particle to determine its position. This positional information
is of crucial importance, for example in developmental biology in the formation of patterns in
an embryo. The central goal of this paper is to study the fundamental physical limits on how
much positional information can be stored inside a system. To achieve this, we study positional
information for general boundary-driven systems, and derive, in the near-equilibrium regime, a
universal expression involving only the chemical potential and density gradients of the system. We
also conjecture that this expression serves as an upper bound on the positional information of
boundary driven systems beyond linear response. To support this claim, we test it on a broad range

of solvable boundary-driven systems.

Introduction: Nature endows biological matter with the
astounding ability to self-organize fascinating spatio-
temporal patterns that pervade across several length
scales [1]. For instance, one often sees insects with their
bodies divided into segments of repetitive patterns or
birds and animals with unique patterns of spots and
stripes. One classic mechanism of pattern formation in
reaction-diffusion systems is Turing pattern [2]. While
naively, one expects diffusion to generate uniform con-
centration of chemicals, Turing showed that two diffusing
chemical species with distinct diffusion coefficients and
activation-inhibition interplay can, under suitable condi-
tion, spontaneously break the symmetry of homogeneous
concentrations and generate recurring structures such as
stripes, spots, or even more complex patterns.

Another important mechanism commonly studied in
the context of developing embryos is the the French-flag
model [3, 4]. In order to build complex body structures,
individual cells have to take decisions and adopt fates
suitable for their positions. Yet cells do not have any di-
rect way to measure their positions. The key idea in the
French-flag model is that during the early developmen-
tal stage of an embryo, some specific chemicals, called
‘morphogens’ are deposited locally on one side of the em-
bryo. Following diffusion, these chemicals are translated
inside the embryo thereby establishing a concentration
gradient [5, 6]. Unlike in Turing patterns, the spatial
symmetry is broken due to the presence of graded con-
centration of morphogens. Wolpert proposed that cells
could determine their positions from the local morphogen
concentrations within these graded profiles and take up
fates correlated with their positions [3, 7]. Therefore,
the graded-concentration profile of signalling morphogen
provides ‘positional information’ to the cells, see Figure
1. Cells, in turn, read out these positional cues in a
threshold-dependent manner and give rise to spatial pat-
terns with distinct boundaries.

Although the idea of positional information was origi-
nally introduced in the context of developmental biology,
its applications reach beyond this. For example, syn-
thetic versions of the French-Flag model have been con-

structed and positional information can play a crucial
role in the construction of self-assembling soft materials,
where individual components could determine their po-
sition through the chemical concentration of a signalling
molecule [8-11].

Recently a mathematical framework has been devel-
oped to quantitatively study positional information [12—
18]. Essentially, one defines the positional information as
the amount of information one gets about the position
x, given that one measures a concentration n of signal
molecules. Information theory dictates that this amount
of information is equal to
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where P(z,n) is the joint probability distribution of po-
sition z and concentration n and P,(z) and P,(n) are
the associated marginals. Without any prior knowledge,
one generally sets P, (x) to be uniform while other prob-
abilities are uniquely determined through the system’s
dynamics. We remark that if n and = take only discrete
values, then the integrations in Eq. (1) need to be re-
placed appropriately by their summations. Also, we have
written positional information as a function of model pa-
rameters {p} whose precise definition will be given later.
This framework has been successfully applied to bio-
logical systems. For example, experiments reveal that the
four gap genes in the Drosophila embryo carry approx-
imately ~ 4.2 bits of information. This amount of in-
formation enables cells to know their positions within an
errorbar of ~ 1% of the total embryo length [12]. On the
other hand, there are, to the best of our knowledge, no
results on the fundamental physical limits of how much
positional information can be stored inside a system.
The central goal of this paper is to fill this gap by de-
termining the maximal amount of positional information
stored in boundary-driven systems, in terms of their dis-
tance from thermodynamic equilibrium [19-25]. In par-
ticular, we will look at systems that are in contact with
two particle reservoirs with chemical potentials 7 and
pr [and Ap = (up — pgr) being their difference]. Our



FIG. 1. Lattice sites depicted in green are in contact with two
distinct reservoirs characterized by average densities pr, and
pr. Due to this coupling, the system attains a steady-state
with average density profile shown by the red solid line. How-
ever, due to noise, there are fluctuations around this mean
value which are indicated by dashed arrows. Positional in-
formation of a lattice site is obtained by measuring the local
particle density and employing the formula in Eq. (1).

study reveals that in the near-equilibrium regime, posi-
tional information takes a universal form in the steady-
state and is given in terms of the chemical potentials and
average densities at the left and right reservoirs (denoted
respectively by py, and pg):
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where p = (pr + pr)/2 and Ap = (pr — pr)/2. Here
kp is the Boltzmann constant and T is the absolute tem-
perature at which the system is kept. In the far-from-
equilibrium regime, we numerically demonstrate that the
right hand side of Eq. (2) provides an upper bound to the
positional information for a broad class of systems:
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This inequality provides a quantitative link between
the positional information and the drive to maintain
non-equilibrium. And for a given drive, it tells us that
there is a limit on how much positional information can
be generated. Since we will assume the temperature to
be constant, we set kgT = 1 in the remainder of our
letter.

Positional information near equilibrium: We be-
gin with a one-dimensional lattice system consisting of
N sites represented by index ¢ with 1 < ¢ < N. In
bulk where 1 < i < N, a particle can jump to either
of its neighbouring sites with an arbitrary rate (the
rate can also be a function of the number of particles
in the sites). On the other hand, at the two end sites
(1 =1 and ¢ = N), the system is in contact with two
particle reservoirs characterised by the average densities
pr and pr. Without any loss of generality, we will take
pr > pr throughout this paper. Due to the coupling

with the reservoirs, the system eventually reaches a
non-equilibrium steady-state.

Our starting point is to note that even though the system
as a whole is driven out-of-equilibrium, local regions
can still be described, to first order in gradients, by an
equilibrium measure with parameters that vary slowly
across the system [26, 27]. This local thermodynamic
equilibrium then allows us to identify thermodynamic
quantities such as chemical potential locally even in
out-of-equilibrium set-ups. With this idea in mind, one
can introduce a scaled continuous variable z = i/N and
take the limit N — oo, so that « € [0,1] and write the
distribution to observe a local density n(x) at position =
in the steady-state as [23]

P(n|z) ~ exp [~ (Gu() (n) = Guw) (p(2)))], (4)
where G, ;) (n) is given in terms of the Helmholtz free
energy a(n) as
da(n)
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Here p(z) stands for the local chemical potential which is
given in terms of the local average density p(x) = (n(z))
such that p(0) = pr and p(1) = prg.

In general, the form of the density p(z) can be both lin-
ear or non-linear in z, and depends on the specific model.
However, close to equilibrium, one generally expects it to
take a linear form p(x) ~ p — (2z — 1)Ap according to
the diffusion equation. This is also in agreement with
experimental observations for certain morphogens [28].
Plugging this in Eq. (4) then gives us the conditional dis-
tribution P(n|z). Recall that we also need the joint prob-
ability distribution P(n,z) in Eq. (1). To obtain this, we
assume that there is no information about the position
before the measurement, and therefore a flat prior distri-
bution, P,(z) = 1 [12]. This implies P(x,n) = P(n|z)
and we now have all quantities needed in Eq. (1). We
show in the supplemental materials [29] that under these
assumptions, the positional information is given by
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where o1 (p) = ((n — p)¥)eq is the k-th central moment
of the density at equilibrium (Ap = 0). As expected,
Tin,z) (P, Ap) goes to zero at equilibrium since the den-
sity remains constant across the system and therefore the
chemical concentration does not correlate with position.

We now establish the connection of positional infor-
mation with the chemical potential difference Ay =
(i —pr). Noting Eq. (5), this can be expressed in terms
of the derivative of the free energy. At the leading order
in Ap, we find Ap ~ as(p) Ap, where as(p) stands for the
second derivative of a(p). We next use the fluctuation-
response relation to write as(p) = 1/02(p); see [29] for a
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FIG. 2. Plot of the positional information as a function of p
for four different boundary-driven processes and its compari-
son with the numerical simulations. In each case, solid lines
illustrate the analytical expression, c.f., table I, while symbols
denote simulation data. We have fixed the bias to Ap = 0.25.

proof. This leads us to the expression of chemical poten-
tial difference as

2A
aa(p)

(7)

Combining this with Eq. (6), we arrive at the univer-
sal form of the positional information quoted in Eq. (2).
This is first main result of our letter. It is valid in the
near-equilibrium regime for any 1-dimensional boundary-
driven system.

Far-from-equilibrium regime: Up to now, our analysis
has focused on the near-equilibrium situation where local
thermodynamic equilibrium enabled us to derive a gen-
eral expression. An immediate question that now follows
is - what happens to Eq. (2) in the far-from-equilibrium
situations? Although we are unable to prove it generally,
numerical results on a broad range of models suggest that
the near-equilibrium result serves as an upper bound on
the positional information far from equilibrium. We will
now show this for four different models, namely symmet-
ric simple exclusion processes (SSEP), zero-range pro-
cesses (ZRP), independent random walkers (IRW), and
simple symmetric inclusion processes (SSIP).

Ezxample I: SSEP- Consider the SSEP model where
every lattice site can either be vacant (n; = 0) or be
occupied by a single particle (n; = 1). Any particle
in the bulk can jump to one of its neighbouring sites
with some rate p, as long as the target site is vacant.
However, dynamics at the end sites are modified due
to the presence of particle reservoirs, see [29] for de-
tails. Since the occupation number n for this model is
a binary variable, one can write the conditional prob-
ability P(n|z) = p()dn,1 + [1 — p(z)] bn,0 with den-
sity p(z) = p — (22 — 1)Ap [20-23]. If we now use this
in Eq. (1), the positional information can be calculated.
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FIG. 3. Upper bound on the positional information in terms
of the differences Ay and Ap for four different boundary-
driven processes. For all cases, the gray symbols are the an-
alytical results in Table (I) for different values of p and Ap,
while the red line corresponds to the upper bound in (3).
Clearly, the bound is saturated in the near-equilibrium limit.
We have set kT = 1.

We have presented this expression in Table (I), and vali-
dated it against numerical simulations in Figure 2. It is
also consistent with our general result in Eq. (2) in the
limit Ap — 0, as one can show that o2(p) = p(1 — p).
Our objective now is to compare this expression with
the chemical potential difference Ay quoted in Table (I).
In Figure 3, we have plotted both Z, ) (p,Ap) and
ApAp/121n2 for several values of p and Ap. The red
dashed line represents the bound in (3). Clearly all posi-
tional information values lie below this line. In fact, for
SSEP, we have rigorously proved in [29] that the bound
is valid across all parameter values. Hence, our upper
bound (3) holds for the SSEP arbitrarily far from the
equilibrium.

Example II: ZRP- As a second example, we look at
the boundary-driven zero-range process [24]. Unlike in
SSEP, the lattice sites are now capable of accommodat-
ing an arbitrary number of particles. In bulk, a par-
ticle can jump to any of its neighbouring side with a
rate of pu,,, where u,, is a non-negative function of n;.
At the boundaries, the dynamics are modified allowing
for the addition or removal of particles. For this model,
the steady-state density profile is non-linear. Moreover,
for the case of constant rate w, = 1, the positional in-
formation can be calculated as shown in Table (I). In
Figure 2, we have compared this expression with numer-
ical simulations and found a good agreement between
them. Next we employ this result in conjunction with
Ap to test the upper bound (3). As depicted in Fig-
ure 3, positional information values are situated below
the red line even for this model. This observation holds
true across all parameter regimes. The bound is satu-
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TABLE 1. Expressions of the positional information and chemical potential difference for different boundary-driven systems
studied in this letter. Derivation of these expressions along with the forms of different functions used to represent them are

provided in [29].

rated in the near-equilibrium regime where both Ay and
Ap approach zero as expected. Furthermore, in this ex-
ample also, Z(, ) (p, Ap) is bounded by (3) even in the
far-from equilibrium conditions.

Example III: IRW- Another choice of rate u,, = n cor-
responds to the independent, unbiased random walkers
[24] and turns out to be analytically solvable. Once again,
we use the positional information and chemical potential
difference Ay from Table (I) to check our bound for this
model. Plotting Z, ) (p, Ap) and (AplAp)/(12In2) in
Figure 3, we have demonstrated that the upper bound
is satisfied for this model. This model presents a third
solvable example where the upper bound is valid in all
parameter regimes.

Example 1V: SSIP- As a final example, we investigate
the simple symmetric inclusion process [30, 31]. For this
model also, a lattice site can accommodate an arbitrary
number of particles. However unlike the previous exam-
ples, the jump rate from ¢ — j [with j = (£ 1)] depends
on the both occupation numbers n; and n;. We choose
the form of this rate as pn;(n; + m) where m (> 0) is a
parameter in the model. Furthermore, the system is cou-
pled with two reservoirs at the boundaries which drive it
to a non-equilibrium steady-state. In this steady-state,
we calculate the positional information and Ay as pre-
sented in Table (I). These results are plotted in the bot-
tom panel of Figure 3. From this, it is evident that the
upper bound (3) is satisfied by this model. This further
reinforces the conjecture that our bound holds for general
boundary-driven system. Therefore, in all the examples
investigated in this letter, we observe that there exists a
quantitative constraint on the amount of positional in-

formation given in terms of the chemical potential and
density gradients driving the system.

Conclusions and outlook: In conclusion, we estab-
lished a link between positional information and non-
equilibrium statistical physics. More specifically, we de-
rived a universal expression for the positional information
T(n) (P, Ap) near equilibrium, involving only the chem-
ical potential difference driving the system, and the dif-
ference in average densities. Furthermore, our analysis
on several solvable models suggested that this relation
turns into an upper bound in the far-from-equilibrium
conditions: Z(y, z) (p, Ap) < Ap Ap/121In2. This means
that there is a limit on how much positional information
the morphogen particles can provide, depending on how
far the system is from equilibrium.

Our work paves the way for several future directions.
While we examined specific models to demonstrate the
bound, it remains an open problem to prove it generi-
cally. Moreover, throughout this letter, we have focused
only on lattice models that are driven out-of-equilibrium
from the boundary. Extending this study for other mod-
els with bulk drive is an important future direction. This
is especially relevant because, in some experiments, mor-
phogen molecules experience degradation effects inside
the embryo [5, 6]. Under this circumstance, the local
equilibrium assumption is no longer valid, and one needs
to develop new theoretical methodologies to tackle the
problem [32].
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In this supplementary note, we will present an extensive derivation of the results which were quoted in the main
text of our letter. To begin with, it is useful to recall the mathematical framework of positional information developed
in [1]

I. MATHEMATICAL FRAMEWORK FOR POSITIONAL INFORMATION

Wolpert’s idea is that although cells do not have any direct way to measure their positions, they can still acquire
positional information by reading out the local concentration of the signalling morphogen molecules [2]. During
the initial stage of development, cells inside an embryo have similar structures, and if one does not measure the
concentration of the morphogen, it could lie anywhere in the embryo. In the language of probabilities, this means
that the position x of a cell is drawn from a prior probability distribution P, (x), which we choose to be uniform,
i.e. Py(x) = 1. Now if one observes a certain certain morphogen concentration n, then the position of a cell can be
more accurately specified. However, due to the fact that the cells are in a noisy environment, the position of a cell
after measurement is still drawn from a probability distribution P(x|n) but conditioned on the value n. Observe that
this conditional distribution is always narrower than the prior P,(z), and the degree of this narrowness represents
the amount of positional information gained by the cells. For instance, if the distribution P(z|n) is still flat, then
not much information is gained about the position of the cell. On the other hand, if P(x|n) is highly peaked at some
value of x, then the position of a cell is determined with more precision.

The two distributions P,(x) and P(x|n) are the main ingredients in this framework and the information gained by
measuring the concentration n is given by

Lis = S[P:(2)] - S[P(ln)], (S1)

where S[P,(z)] and S[P(x|n)] are the entropies associated with distributions P,(x) and P(x|n)

S(Pu(2)] = — / dz Po(x)log, [Py ()] (52)
S{P(ein)] = - [ do Plaln) log, [Plan). (s3)

The fact that P(z|n) is narrower than P, (x) implies that S[P(z|n)] is smaller than S[P,(x)]. Hence I,,_,, in Eq. (S1)
can take only non-negative values. Moreover, we will assume that both « and n are continuous variables. When they
take discrete values, the integrations over x and n need to be replaced by their summations.

Now if we randomly choose a cell, then the morphogen concentration will be distributed as P,(n) and taking the
average of Eq. (S1) with this distribution gives us

Zina) (1)) = [ dn Puo) [SIP(0)] = S[P(alo)] (54)
= /dn dx P(z,n)log, [1%] . (S5h)

Here P(x,n) = P(z|n)P,(n) = P(n|x)P,(x) stands for the joint distribution of n and z. Moreover, we have written
positional information as a function of model parameters {p} whose precise definition will be given later. Interestingly,
the expression in Eq. (S5) emphasizes that the average information is mutual, i.e. the information gained about the
position of a cell by measuring the morphogen concentration is on average same as the information gained about the
morphogen concentration by measuring the position of a cell. We therefore have

T () = [ do Pata) [S[Pa(n)) = [Pk (56)



with entropies measured in bits as
S(Pa(n)) =~ [ dn P, () log; [Pa(r)]. (s7)
S[P(n|z)] = —/dn P(n|z)logy [P(n|z)]. (S8)

In some of our calculations below, Eq. (S6) turns out to be more useful to calculate the positional information.

II. A PERTURBATIVE APPROACH FOR POSITIONAL INFORMATION IN BOUNDARY-DRIVEN
SYSTEMS

In this section, we develop a perturbative approach to obtain the positional information for general boundary
driven systems. Let us consider a one-dimensional lattice system consisting of N sites represented by the index i with
1 <4 < N. These sites can either accommodate an arbitrary number of particles (as observed in systems like ZRP or
IRW) or can have at most a fixed number of particles (as seen in SSEP). In bulk where 1 < i < N, a particle can jump
to either of its neighbouring sites with an arbitrary rate (the rate can also depend on the occupation numbers of these
sites). On the other hand, at the two end sites (i = 1 and ¢ = N), the system is in contact with two particle reservoirs
characterised by the average densities p;, and pr and chemical potentials 7, and ur. However, both reservoirs have
the same temperature 7. Without any loss of generality, we will take p;, > pr and kgT = 1 (kp is the Boltzmann
constant) throughout our discussion. Due to the coupling with the reservoirs, we assume that the system eventually
reaches a non-equilibrium steady-state.

Our approach relies on the fact that even though there are significant departures from equilibrium in the system as a
whole, local regions can still be described, to first order in gradients, by an equilibrium measure with parameters that
vary slowly across the system This local thermodynamic equilibrium allows one to identify thermodynamic quantities
such as chemical potential locally even in out-of-equilibrium set-ups. With this idea in mind, we now define a scaled
continuous variable x = ¢/N (N > 1) with « € [0, 1] and write the probability distribution to observe a local density
n at position x as

P(n|a:) ~ exp [_ (gp(w) (’I’L) - gu(z) (p(l‘)))] ’ (89)
where G, () (n) is given in terms of the Helmholtz free energy a(n) as
0
Guio(0) = aln) = e and ) = 25| (s10)

Here p(z) is the local chemical potential which is given in terms of the local average density p(z) = (n(x)) such that
p(0) = pr and p(1) = pr. Although the precise form of p(z) depends on the specific model, it turns out useful to
expand p(z) as a series in Ap = (pr, — pr)/2 as

p(x) = p+ (1 —2x) Ap+ Y Li(w,p) ApF, (S11)
k=2

where p = (pr, + pr)/2. For computational convenience, we have written the k& = 1 term separately in the above
expression and taken it to be £q(z,p) = (1 — 22). This form is sensible because the average density should remain
invariant under the transformation pr, <> pr and = — (1 — z). By the same symmetry argument, we must also have
Li(z,p) = (=1)*Ly(1 — 2,p) for all values of k. Apart from this symmetry, we do not make any assumption on
Ly (z, p) and their specific forms will depend on the model.

Using the expansion in Eq. (S11), the local chemical potential p(z) and the free energy in Eq. (S10) can also be
expanded in Ap as

pa) =+ S P e (512
k=1 ’
Gutoy (n) = Gul) Y 2D [z ), (513)
k=1
Gur (0()) = Gal7) ~ 73 2P e e S EZ DD gy e (s14)

k=1 k=2



where we use the notation

a(p ka(p
=20 (= T Kwp) = ple) -5 (s15)
Plugging the expansions in Eq. (S9) yields
P(nla) = () exp |(n = 7) S 2 e gy 52 E DD ey e (s16)
k=1 ’ k=2 ’

where Pyq(n) ~ e~ (91(n)=9a(P)) is the equilibrium measure with average density p and chemical potential ji. The idea
now is to use this series expansion in Eq. (S5) to obtain a perturbation expansion for the positional information. Let
us calculate the first term in the expansion.

A. First term

It turns out, as also demonstrated later, that the first term is of the order ~ Ap?. Hence, we include all terms up to
this order in the density expansion in Eq. (S11) and truncate K(z, p) as

K(z,p) ~ (1 —2z) Ap+ La(z,p) Ap®. (S17)
From Eq. (516), it then follows
_ _ APQ _ 2 \2 2 2
P (n|z) =~ Peq(n) [1 +A8p (1=2z) az(p) (n — p) + T{ —ax(p) (1 —22)" + az(p)”(1 — 22)"°(n — p)
+(202(p) Lo, p) + as(p) (1= 22)) (n— p) }] . (S18)

By noting that the prior is chosen to be uniform, P,(x) = 1, the joint distribution P(z,n) is then equal to the
conditional probability P(n|z). Moreover, the marginal distribution P,(n) = fol dz P (n|x) can be calculated to be

Ap?

1
Pu(n) = Pag(n) |1 - G{am? (n—p)*+ (am + 6a2(p) / dz /:m,ﬁ)) (n— mH . (S19)

We now have all quantities required to compute the positional information in Eq. (S5). Inserting these distributions,
the first term in Z(, ) (p, Ap) can be written as

Ap? Ap?

T _ A ~ =\ 2 D)~ ——2
(n,z) (pa p) 61n2a2(p) UQ(p) 6In2 0'2([3),

(S20)

where o1 (p) = ((n — p)¥F)eq denotes the k-th central moment. In writing Eq. (S20), we have used the fluctuation-
response relation as(p) = 1/02(p). For completeness, the proof of this relation is provided in Section VI. To sum up,
we have derived the first term in the series expansion of Z(, ) (p, Ap) in terms of the second central moment of the
density at equilibrium.

B. Second term
In order to obtain the second order term in the expansion, we have to consider higher order terms in the expansion
of density in Eq. (S11). The second term is of the order ~ Ap* and we therefore take
K(z,p) ~ (1 —2z) Ap+ Lo(z,p) Ap? + Ls(x, p) Ap® + La(z,p) Ap?. (S21)

We now proceed exactly as before but keeping terms up to order ~ Ap? in the analysis. The positional information
can then be obtained to be

Naslp 5)2 =3
] A s apt [102(a(p) = 5(as(p)? + 02(0°)  a5ay(5) [ o
o) (0 80) = G105 00) T 25In2 32a3(p) T /0 dz Lo(w,p) (42" —1)

—%m(ﬁ) {(/01 dx £2(x,p))2 - /01 de Ly(x,p)” - 2/01 dz Ls(x,p) (1~ zx)H . (522)



For later comparison, it is useful to write this expression in terms of the o (p). To achieve this, we use the following
set of relations

p) = , p) = ————, ay(p) = ————= + — 3(p)? 4+ 02(p)?], S23
2(/)) 0_2(5) 3(p) 0,2(,0)3 4(p) 0_2(,0)4 0'2(0)5 [05(/)) UQ(p) } ( )
which have been derived in Section VI. The above expression now becomes
A2 sagt [7(0300% +020)°) = 402(0)04(5)  450(5)

1
ZLine) (P, Ap) =~ d o) (422 —1
) (P AP) = G o5 T B2 oa(p) 32 03 (p)? 1605 (p)? /O @ Lafe,p) (427 1)

- {(/01 iz £2(x,p))2 _ /01 do Lo(,p)? — 2/Oldx Lala,p)(1— 2x)H - (524)

This gives the first two terms in the series expansion of the positional information. One can also obtain the higher
order terms in the same way. In summary, we have developed a perturbative approach to calculate Z, , (p, Ap) for
a general boundary-driven system. Our approach relies on the local equilibrium assumption and requires only the
knowledge of the average density p(x). Positional information is then obtained as an expansion in Ap with coefficients
depending on the equilibrium central moments of the density (or equivalently the derivatives of the free energy).

C. Connection of Z, ) (p, Ap) with the chemical potential difference

Having developed a methodology to compute positional information, we are now in a position to establish its connection
with the chemical potential difference driving the system, Ay = uy, — pg. Following Eq. (S9), this can be written as

2A
Ap=ar(p+Ap) — ar(p—Ap) =~ (S25)
o2(p)
Combining this with the expression of Z(, ,) (p, Ap) in Eq. (S20), we obtain for the leading order in Ap
_ Ap Ap
Reinstating the kpT term, the expression becomes
_ Ap Ap
Z Ap) 2 ————, 2

This relation quantitatively gives the link between the positional information and non-equilibrium nature of the
system. At least with only the first term in Z(, ) (p, Ap) and Ay, Eq. (S27) tells us how positional information
increases on increasing the non-equilibrium drive.

Beyond linear response regime, writing any universal expression is difficult due to the dependence of higher-order
terms in positional information on the specific model, as illustrated in Eq. (S24). In absence of a general formulation,
we have studied several solvable boundary-driven systems. For each of these models, we find that the equality in
Eq. (S27) turns into an upper bound in the far-from equilibrium conditions and we obtain a fundamental limit on the
positional information in terms of the system’s distance from the equilibrium

_ Ap A

—_. 2
12 kT In2 (528)

Below, we demonstrate this relation for SSEP followed by a number of other models.

IIT. POSITIONAL INFORMATION FOR THE BOUNDARY-DRIVEN SSEP

One of the models that we discussed in the main text is the open symmetric simple exclusion process (SSEP). The
model consists of N lattice sites in one dimension represented by the index 4 that runs from 1 to N. Each lattice
site can either be vacant (n; = 0) or occupied by a single particle (n; = 1). The dynamics of the particles are as
follows: Within the bulk, where 1 < ¢ < N, a particle can jump to either of its neighbouring sites with a rate p,



provided that these neighbouring sites are empty. On the other hand, the two boundary sites (i = 1 and ¢ = N) are
in contact with two different particle reservoirs, and their dynamics are modified accordingly. At ¢ = 1, a particle
can be added (removed) with a rate oy, () if the site is vacant (occupied). Conversely, at i = N, a particle can be
added (removed) with a rate ar (Bg) if it is vacant (occupied). At any small time interval [t,¢ + dt], the occupancy
variable n;(t) for each lattice site evolves according to the following update rule [3, 4]

nir1(t), w.p.[1 —n;(t)] pAt,
n;—1(t), w.p. [l —n;(t)] pAt,
ni(t + At) —ni(t) = ¢ —ny(t), w.p.[1 —n1(t)] pAt, fori#1, i #N (S29)
—n;(t), w.p.[1 —mn;—1(t)] pAt,
0, otherwise,
—nq (¢), w.p. [l — na(t)] pAt,
na(t), w.p. [1 —n1(t)] pAt,
ny(t+ At) —ni(t) = 1, w.p. [l —ni(t)] apAt, (S30)
-1, w.p. ni(t) BLAL,
0, otherwise,
—nn(t), w.p. [l —ny_1(t)] pAt,
ny—1(t), w.p. [1 — nn(t)] pAt,
ny(t+ At) —nn(t) = 1, w.p.[1 —nn(t)] arAt, (S31)
—].7 W.p. nN(t) ﬂRAt,
0, otherwise,

where “w.p” is the short-hand notation for “with probability”. Our aim is to calculate the positional information
for this model. As evident from its definition, it is then necessary to compute the conditional probability P(n|i) of
having n particles at i-th site. Later, we show that this probability can be expressed in terms of the mean density
pi(t) = (n;(t)). Therefore, in what follows, we will first calculate p;(¢).

A. Average density p;(t) = (ni(t))

From the update rules written above, one can write the differential equations for p;(t) as

D) plpina0+pia (0 = 20(0]. (ori £ 1, i) (532)
ap(;t(t) =ap — (p+ar+BrL)p1(t) +p p2(t), (S33)
80(1{;!15(??) =ar— (p+ar+Br)p1(t) +p pn-1(t). (s34)

Since we are interested in the steady-state properties, we replace the time derivatives on the left hand sides of these
equations by zero and obtain the solution as

pilt = 00) = A+ (i—1) B, (35)

. B ar (ag + Br) (N —1) +p(ag + ar)
VA = B (ar + Br) (N — )+ plar + r + ar + Br)’ (836)
B arfr —arLBr (S37)

(ap +BL) (ar + Br) (N — 1)
For large N, we introduce a rescaled (continuous) variable = i/N where x € [0, 1] and rewrite p(z) = p;(t — 00)

AR

on+ B (538)

. ay,

p(x) = pr — (pr — pr)x, with pp = ———, pr=
() = 1.~ (o1 — o) e
We have used p;, and pr to represent the average densities of the left and the right reservoir respectively and are
expressed in terms of the parameters of our model. Furthermore, the approximate equality in Eq. (S39) is used to
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FIG. S1. Plot of the positional information as a function of g for four different boundary-driven processes and its comparison
with the numerical simulations. In each case, solid lines illustrate the analytical expression, while symbols denote simulation
data. We have fixed the bias to Ap = 0.25.

indicate that we are working in the large N limit. Finally, we express p(x) in terms of the variables p = (pr + pr)/2
and Ap = (pL — pr)/2

plx)~ p+ (1 —2z) Ap, (S39)

and utilize this form to derive the positional information.

B. Positional information

In order to obtain the positional information, we will use its definition in Eq. (S6) and calculate the entropies S[P(n|z)]
and S[P,(n)]. Recall that n(z) is a binary variable that can take values either 0 or 1 depending on whether the site
is vacant or occupied. We therefore have p(z) =1 x P(n = 1|z) + 0 x P(n = 0|z) = P(n = 1|x). The complementary
probability will then simply be P(n = 0|z) = 1 — p(z).

P(n=1lz)=px)=p+ (1 —2z) Ap, (540)
Pn=0lz)=1—p(z)=1—-p—(1—2x) Ap. (541)

From these, we get
S[P(n|z)] = = 3 P(n|z)logy[P(n|a)], (542)

n={0,1}
— (54 (1— 20) Apllogy [5+ (1 - 20) Ap — [1 - p— (1 - 22) Apllogy [1 — 5— (1— 20) Apl.  (S43)



For the average information in Eq. (S6), we also have to perform averaging of S[P(n|x)] over the prior distribution
P, (z) which we have chosen to be uniform. This yields

(S[P(nl2)) /de 1P(nl2)],

/dm
0

= e a7 A0 (5 A9) = (5= ) (5= Ap) = 280+ (1= 5+ A In (1= 7+ Ap)

[P+ (1 = 2x)Ap]logy [p+ (1 = 22)Ap] + [1 — p— (1 — 2x)Ap]log,y [1 — p — (1 — 2z) Ap]

—(l=p=Ap I (1-p-Ap)|.
(S44)
We next compute the other entropy, S[P,(n)], in the definition of Z(, ,) (p, Ap). We can write P,(n) by integrating
over z in the joint probability P(n,z) = P(n|z) and then using Eqgs. (540) and (S41) for P(n|z). This gives

Pu(n) = /0 dz P(nlz) = 5 6ns + (1= §) o, (S45)

Here 0,1 is the Kronecker delta which takes value one if n = 1 and zero otherwise (similarly for d, ). Using this
expression above, we find

S[Pa(n)] = = D Pa(n)logy [Pa(n)] = —plogy p— (1 — p) log,(1 — p). (546)
{n=0,1}

We now have all quantities essential for calculating the positional information. Substituting Eqgs. (S44) and (S46) in
Eq. (S6), the final expression is

1
L) (P, AP) = 16 16 Ap [y(ﬁ, Ap) +Y(1 = p,Ap) — 2Ap} — (1 —p)log, (1 —p) — plog, p, (547)

where Y(p, Ap) = (p+ Ap)°In (p+ Ap) — (5 — Ap)*In (p— Ap) . (S48)

This result has been quoted in the main text. Eq. (S47) is also consistent with our general result in Eq. (S24) in
the Ap — 0 limit. In Figure S1, we have plotted Z, ) (9, Ap) as a function of p and compared it with numerical
simulations. We see an excellent agreement between our theoretical formula and the numerics. Notice that for a given
Ap, p can vary between Ap and (1 —Ap). Within this range, we find that the positional information for SSEP changes
in a non-monotonic manner with p. To understand this heuristically, let us see what happens when p — (1 — Ap)
or equivalently pr, — 1. In terms of the jump rates, this means that oy > §; and sites near the left boundary are
more likely to be occupied with particles than those near the right boundary. Hence, if we pick a site randomly but
is occupied by a particle, it is more likely to be closer to the left boundary than the right one. From the probabilistic
perspective, this would imply that the distribution P(z|n = 1) is sharply peaked at = 0, while the complementary
probability P(xz|n = 0) peaks at z = 1. The resulting entropy (S[P(x|n)]), associated with these peaked distributions,
as expressed in Eq. (S1), is small which leads to a larger value of Z(, ) (p, Ap). Similarly, for p — Ap, one can argue
that the probabilities P(x|n = 1) and P(z|n = 0) are narrow functions of 2 which again give large Z,, »,) (p, Ap). In
between these large values, P(z|n = 1) and P(z|n = 0) are broadest at some p for which the entropy (S[P(z|n)])y, is
highest. This in turn leads to the smallest positional information via Eq. (S1).

C. Upper bound on Z, ) (5, Ap)

We will now use the derived expression of Z,, .y (p, Ap) to prove the upper bound in (528). Observe that the chemical
potential difference Ay is expressed in terms of the first derivative of the associated free energy in Eq. (S25). To
obtain this, we use the fluctuation-response relation in Eq. (S23) as

o Lo 1 (P
alp) = 5 = e — =t (12)). (549)

where 02(p) = p(1 — p) follows from Egs. (S40) and (S41) with Ap =0 and kgT = 1 is assumed. Using Eq. (S25), we

now get
_ p+Ap '\ p—Ap
Au—ln(l_ —Ap) ln<1—p—|—Ap>' (S50)
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FIG. S2. Left panel: Plot of the second derivative Ra(p*, Ap) = % ~ where p* = 1/2. For all Ap, the second
derivative takes only negative values. Right panel: Illustration of R(p*, Ap) in Eq. (S53) as a function of Ap. The solid black
line shows the plot while red dashed line indicates that R(p*, Ap) is always bounded by the value one.

To derive the bound (S28), it is useful to define a ratio R(p, Ap) as

Ap Ap

R(p, Ap) = . (s51)
We are interested in finding the maximum value of this ratio. Below we show that this maximum value turns out to
be one thereby proving the upper bound. Proceeding ahead, we take the first derivative of R(p, Ap) with respect to
p for fixed Ap

and setting it to zero, we find the condition for optimality as p* = 1/2. Moreover, the second derivative of R(p, Ap)

at p* is always negative indicating that the extremum is a maxima. This is illustrated in the left panel of Figure S2.
Therefore, we obtain

~ R(p.ap) | (552)

_ 1

3 (144 Ap?) Arctanh(2Ap) — 2Ap + 2Ap In(1 — 4Ap7) (S53)
= 242 In(1+ 2Ap) — In(1 — 2Ap) .

Plotting this expression in Figure S2 (right panel), we find that the value of R (p*, Ap) is always upper bounded by
one. From our analysis above, this translates to R(p, Ap) < 1 and we finally get

Aup Ap
< .
I(n,z:) (p> Ap) = 121n2

(S54)

Hence for SSEP, we have rigorously derived that the bound (S28) is valid. We have also illustrated this in Figure S3
where we have plotted the two sides of (S54) along the two axes. The red dashed line indicates our upper bound. We
clearly see that the positional information remains below this red line across all parameter values.

IV. POSITIONAL INFORMATION FOR THE BOUNDARY DRIVEN ZRP

We now demonstrate positional information for another model, namely the open zero-range process (ZRP) and
test our upper bound. The model consists of IV lattice sites and each site can accommodate an arbitrary number of
particles. This is different than the SSEP where each site can have at most a single particle. From any bulk site ¢,
a particle can jump to either of its neighbouring sites with a rate pu,,, where u,, is a non-negative function of the
number of particles n;. At the boundaries (¢ = 1 and ¢ = N), the dynamics are modified to allow for the addition
(removal) of a particle with rate ay (8pun,) for the left boundary and with rate ag (Bgrun, ) for the right one (see
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FIG. S3. Upper bound on the positional information in terms of the differences Ay and Ap for four different boundary-driven
processes. For all cases, the gray symbols are the analytical results for different values of p and Ap, while the red line corresponds
to the upper bound in (S28). Clearly, the bound is saturated in the near-equilibrium limit. We have set kgT = 1.

Figure S4). Following [5], whenever steady state exists, the probability to find n, = n number of particles in the i-th
site is given by

. i 1 . Qaj, Qaj, aR 71— 1

P(nli) = N;(z;)" , Wlthzi:——(———>( ), S55
=Mtz ] o~ = (555)

where N}, is the normalisation factor. For the case of u, = 1, the probability P(n|z) takes the form

. . ar, oy QR 1 —1
P(nli) = (z;))"(1 — z;), withz;=——|[——— . S56
(n}f) = ("1 = ) (5 5) (=) 50
As done for the SSEP, here again, we introduce the rescaled coordinate x = i/N for large N and rewrite Eq. (S56) as
P(n|z) =~ [2(2)]" [1 — 2(2)],  with z(z) = 2% — (ﬂ - “—R) z. (S57)
AL B Br

Since, we are interested in calculating the positional information in terms of the variables p = (pr + pr)/2 and
Ap = (pr — pr)/2, where pr, = (n(0)) and pr = (n(1)) are average densities at the two ends

ag, arR

_or o, _or 358
Br —ar, PR Br — ar (558)

prL =

we rewrite Eq. (S57) in the following manner

P(n|z) ~ [z(2)]" [I — 2(z)], with 2(2) = cy —x(cs —c_). (S59)



FIG. S4. Zero-range process with open boundaries

where ¢y = (p£ Ap)/(1 + p+ Ap). For this model, the average density in the bulk takes a non-linear form

P =045 +Ap (22— 1)

(S60)
In the remaining part of this section, we will demonstrate that even with this non-linear profile, the bound (S28)
remains still valid. To see this, we use the probability in Eq. (S59) and calculate the entropy

oo

S[P(]a)] = — 3" P(nfx) log, P(na) = — 2108220

+ (1 — z(z))logy (1 — 2(x))
2 1= 20)) . (S61)
Taking average with respect to the prior P,(z) =1 gives
(S[P(n]x)])
) / Lo 2()Togy 2(2) + (1 — 2(x) logy (1 — =())
0 (1—2(x)) 7
1

"o o) [Lig(l —cy)—Lis(l—c_)—cyIncy +e_lnece —(1—cy)In(l—cy) + (1 —c-)In(1 —c)

(562)
where Liz(y) denotes the poly-logarithmic function. Next we calculate the other entropy term S[P,(n)] in Eq. (S6)
for which we need the following probability

1 n+1 n+1 n+2 n+2
f(n) ) it =t e =

P = dx P P, = —— th — . S63

) = [ do Plafe)Pate) = S itk gy = S — (563)

This yields
oo 1 oo
S[Pa(n)] = — Z Pp(n)logy Py(n) = log, (¢4 —c-) — W Z f(n)log, f(n)
n=0 -

. (S64)
n=0
Using Egs. (562) and (S64), the expression of the positional information turns out to be
T (5 0) = (37 —o) [le(l — ;) —Lis(1—c_)—erInes +e_lnes — (1 —cy)ln(l —cyp)
(S65)
+(1—c)ln(l—c_ Zf )In f(n } +log,(cp —c_).
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We have compared this result with the numerical simulations in Figure S1, and found a good agreement between
them. Unlike in SSEP, the positional information for ZRP decreases monotonically with p and vanishes for large p.
For larger values of p but with fixed Ap, both boundary sites have a large number of particles available for hopping
in the bulk, as there is no exclusion. Hence, in the steady-state, we expect the same number of particles in the bulk
as well as in the boundaries. This can also be seen from Eq. (S60) where the density becomes independent of x for
large enough p. Therefore, the probability P(x|n) is broad with respect to x, and consequently the entropy S[P(z|n)]
takes a large value. From Eq. (S4), this would mean that the positional information is small. In fact our study shows
that, in processes with no exclusion, Z(, . (p, Ap) exhibits a monotonic decay.

Our expression in Eq. (S65) is also consistent with the one derived with perturbative approach in Eq. (S24). This
can be verified by expanding Eq. (S65) in Ap

Ap? 3+ p(11+7p)] Ap*
= 6In2 p(l1+p)  180In2 p3(1+ p)3

One essentially gets the same expression also from Eq. (S24) by plugging the central moments from Eq. (S59).

Now that we have obtained an exact expression for the positional information, we will employ it to test the bound in
Eq. (S28). First, we compute the chemical potential difference using Eq. (S25) for which we need the first derivative of
the free energy. In this regard, we follow a procedure similar to that of the SSEP and employ the fluctuation-response
relation in Eq. (523).

-+ 1 a(3) =1 [ —L—
a2(p)_oz(ﬁ)_/3(1+ﬁ)’:> 1(p) 1(1+ﬁ)' (S67)

The resulting expression for Ay is now found to be

p+Ap p—Ap )
Ap=In{———— ) -In[ ———). S68
8 n<1+p+Ap> n(1+p—Ap (568)

We now utilize these exact expressions to plot Z, ) (p, Ap) and (Au Ap)/(121n2) for all possible values of p and
Ap in Figure S3. Across all these parameter values, we see that the bound (S28) is satisfied, and it is saturated in
the near-equilibrium limit. To sum up, this section showcases an example of a model with non-linear density profile,
where (528) remains valid across all parameter values.

A. Independent random walkers

In our preceding analysis, we considered a special case of zero-range process where the rate u,, = 1 was chosen to be
constant. We now provide another example of u,, = n where an exact expression for the positional information can
be obtained and the bound can be assessed. This example corresponds to the case of independent random walkers
(IRW) [5]. We use u,, =n in Eq. (S55) and obtain the conditional probability as

Plnfr) = P exp [ p(a)), where p(a) = 5 (20~ )2, (69)

where we have written the expression in terms of the x variable. The marginal probability P, (n) follows to be

g(n)

I'(n+1,p—Ap)—T(n+1,p+Ap)
n!’ '

2 Ap

P,(n) = with g(n) = (S70)
We now have both probabilities required in the definition of positional information in Eq. (S6). One can now proceed
in the same manner as before and calculate the two entropies as

S[Pn(nﬂ:ZP ) log, ! — Zg logy g(n), (S71)
n=0 '

1

<S[P(n’x)]>z = m

{(ﬁ — Ap)*In(p — Ap) = (p+ Ap)*In(p + Ap) + 6p Ap} + Z P, (n)log, n! (S72)
n=0
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FIG. S5. Illustration of the upper bound on the positional information for SSIP model for two different values of the parameter
m. The corresponding expressions of Z, ) (5, Ap) and Ap are given in Egs. (S80) and (S81) respectively.

from which the expression of positional information can be calculated to be

o0

V(5. 8p) = 65 Ap| - Z Y logs g(n). (873)

1
T 0,Ap) = ———
(n,z) (pv p) In16 Ap —
with functions Y(p, Ap) and g(n) defined respectively in Eqgs. (S48) and (S70). Similarly, the chemical potential
difference driving this system is

Ap=In(p+ Ap) —In(p — Ap) (S74)

We now have at our disposal all the quantities needed to test the upper bound (S28) on the positional information.
Plotting Z(y, ») (p, Ap) and (Ap Ap)/(12In2) in Figure S3, we have illustrated that the bound is satisfied even for
this model. This model presents a third solvable example where the upper bound is valid.

V. POSITIONAL INFORMATION FOR THE BOUNDARY-DRIVEN SSIP

In all models examined thus far, the jump rate was either independent of the particle numbers or solely dependent
on the occupation number of the source site from which the jump takes place. In this section, we will consider the
SSIP model where the jump rate depends on the occupation numbers of both the source and the target sites [6, 7].
Like in ZRP, each lattice site is capable of accommodating an arbitrary number of particles. In the bulk site, a particle
can jump from ¢ — j [with j = (i £ 1)] with a rate pn;(n; + m) where m (> 0) is a parameter in the model. At the
boundaries (¢ = 1 and ¢ = N), a particle can be added with rate ay, (n1+m) for the left boundary and ag (ny+m) for
the right one. Similarly, a particle, if present, can be removed from these sites with rates Sn1 and Srny respectively.
The conditional probability to observe n particles at location x is [6]

m™(m + n)] [o(x)]" _
P(n|x) = ,  where p(x) =p— (22 — 1)Ap, S75
) = || A, where pla) = = (20~ 1) (s75)
from which the marginal probability P, (n) follows to be
~ mTI'(m+n) S(n)
P,(n) = A T(m) , where (S76)
1 54 Ap\ ™! 54 Ap p— Ap\ "t
= F(1 £2 4 s — -
S(n) 2(n + DAp ( m > o1 (14 n,m+n;2+n; - -

0+ A
X oF) <1+n,m+n;2+n;—ptn p)} (S77)
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Here o Fy (1 +n,m +n;2 + n; z) stands for the hypergeometric function. Now that we possess both probabilities, we
can compute the two entropies to be

S1Pun)] = — [logym + 3 Pu(n) log <W)] , (S78)
n=0 ’
(SIP(r1)) = g [V -+ 02 8) ~ V(5. 89) 2] — > P, (M), s

Using these two expressions, the positional information can be calculated to be

m I'(m + n) S()
I'(n+1)I'(m)

(Y5, 80) = Y(m + ,8p) + 2m Ap| + (m — 1) logy m — 3

n=0

10g2 'S(n)v
(S80)

1
I(n x) (pv Ap) 1 16 A

with functions Y(p, Ap) and S(n) given respectively in Eq. (S48) and (S77). Similarly, the chemical potential difference

driving the system is
p+Ap p—Ap
Ap=In{—— ) —-In[ ————— ] . S81
g n(m+ﬁ+AP> n(m+ﬁ—Ap) (581)

We are now equipped with all the necessary elements to assess the upper bound (S28) on positional information.
In Figure S3, we have again plotted Z(, ) (p, Ap) and Ap Ap/12In2 for m = 2 for different values of Ap and p.
Across all these values, we once again find that our bound is satisfied. We have also verified this for other values of
m in Figure S5. This consistency further reinforces the conjecture that our bound holds for general boundary-driven
systems.

VI. PROOF OF THE RELATIONS IN EQ. (S23)

For a system in equilibrium, we stated some relations in Eq. (S23) that give central moments of the density in terms
of the derivatives of the associated free energy. Here, we present a mathematical proof of these relations. Note that
the probability distribution to observe a density n at equilibrium is given by

e—la(n)—a(p)—p(n—p)]
fdn e—la(n)—a(p)—p(n—p)]’

P.y(n) = with kgT =1, (S82)

where p = (n)cq is the average density, and f is the chemical potential related to p by

__ da(p)
. S83
=0 (S83)
Eq. (S82) can be further simplified as
Poy(n) = &Xp [—aén) + ,un]’ with Zp = /dn exp [—a(n) + on] . (S84)
P
Any moment of the density can be computed by taking the derivative of the partition function Zp
1 0%Z
By L P
(N%)eq = 7 O (S85)
A. Variance of n
Putting k = 2 in Eq. (S85), we get the second moment
10°Z 0 [1 8% 1 9Zp)°
2
= — A —_ S86
(n)ea Zp O Of [Zp ofi Zp Ofi (S86)
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Now identifying {Z%: gfi

} = p, one can rewrite the above expression as

dp
n) = 2 — -2 _
02(7) = (0%)ea =7 = 0.

(S87)
To simplify further, we take & from Eq. (S83) and take its derivative with p to get a2(p) = ‘fl—‘;. Plugging this in
Eq. (S87) yields

1

02 (/5) = as (ﬁ) . (888)

This relation gives us the equilibrium variance of the density in terms of the underlying free energy of the system.

B. Third central moment of n

We next look at the third moment for which we put k = 3 in Eq. (S85). This gives

1 93Zp 1 0

3 - _ - = Z 2
<n >eq ZP aﬂg ZP a/j [ P <n >eq]a
(n?)
_ 2 eq
=p(n 4+ = (S89
()eq + 2 )
.. A neq _ n)eq dp _ \ 9(n?)eq
To evaluate the derivative with fi, we use Eqs. (S83) and (S87) as =521 = =520 28 = 05(p) —5*. Furthermore,
we also write (n?)eq = 02(p) + p. The expression of (n?)., then becomes
_ = _0oa(p
()eq =39 72(5) + 7 + 02(p) "2 (590)
With this expression, the third central moment o3(p) = ((n — p)3)eq turns out to be
~ _ Joa(p _ _
74(5) = 22(9) P = ~oa(p) (), (so1)

where for the second equality, we have used Eq. (S88). Proceeding in the same, one can show that the fourth central
moment is

ou(p) = —o2(p)* asa(p) + [03(p)* + 02(p)?] - (592)
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