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GEODESIC CONNECTIVITY AND ROOFTOP ENVELOPES

IN THE CEGRELL CLASSES

PER ÅHAG, RAFA L CZYŻ, CHINH H. LU, AND ALEXANDER RASHKOVSKII

Abstract. This study examines geodesics and plurisubharmonic envelopes
within the Cegrell classes on bounded hyperconvex domains in Cn. We estab-
lish that solutions possessing comparable singularities to the complex Monge-
Ampère equation are identical, affirmatively addressing a longstanding open
question raised by Cegrell. This achievement furnishes the most general form
of the Bedford-Taylor comparison principle within the Cegrell classes. Building
on this foundational result, we explore plurisubharmonic geodesics, broaden-
ing the criteria for geodesic connectivity among plurisubharmonic functions
with connectable boundary values. Our investigation also delves into the no-
tion of rooftop envelopes, revealing that the rooftop equality condition and
the idempotency conjecture are valid under substantially weaker conditions
than previously established, a finding made possible by our proven uniqueness
result. The paper concludes by discussing the core open problems within the
Cegrell classes related to the complex Monge-Ampère equation.
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1. Introduction

Since the appearance of the celebrated works of Bedford-Taylor [7], Calabi
[15], and Yau [55], complex Monge-Ampère equations have occupied a central
place in complex analysis and geometry. Acting on a smooth plurisubharmonic
function, the Monge-Ampère operator is the determinant of its Hessian matrix,
thereby defining a positive volume form. This is a consequence of the fact that the
associated (1, 1)-form is positive, and the determinant of the matrix is realized as
the wedge product of this (1, 1)-form. For non-smooth plurisubharmonic functions,
it remains positive but in the weak sense of currents, making the definition of the
Monge-Ampère operator for these functions a delicate task, as the wedge product
of positive currents cannot be straightforwardly taken.
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The breakthrough by Bedford-Taylor [7] succeeded in defining the complex
Monge-Ampère operator for locally bounded plurisubharmonic functions, thus
paving the way for pluripotential theory – the multidimensional counterpart of
potential theory in the complex plane. An indispensable tool in this theory is
the comparison principle, which in its simplest form states that if two bounded
plurisubharmonic functions within a bounded domain share the same boundary
values and Monge-Ampère measure, they are identical.

An example by Shiffman and Taylor [52] demonstrates that the Monge-Ampère
operator cannot be defined for all unbounded plurisubharmonic functions. In his
seminal works [16, 17, 18], Cegrell introduced several classes of unbounded pluri-
subharmonic functions for which the Monge-Ampère operator is well-defined and
exhibits all the expected continuity properties. Subsequently, the Cegrell classes
have attracted extensive study by numerous authors. Noteworthy is [3, Theorem
4.14], which established that the Monge-Ampère equation admits a solution pro-
vided a subsolution exists, thus extending the renowned bounded subsolution the-
orem by Ko lodziej [38]. Since the mid-1970s, the mathematical community has
faced the intricate challenge of establishing a comparison principle for Monge-
Ampère measures of plurisubharmonic functions that charge pluripolar sets, a
challenge that has constrained progress considerably. It is worth mentioning that,
according to [29, Corollary 5.4] and [56, Example 3.4], solutions can possess non-
comparable singularities. A significant advancement was achieved in [3, Theorem
3.6], where it was shown that comparable solutions are equivalent, provided their
Monge-Ampère measure is integrable against some negative plurisubharmonic
function. However, as illustrated in [18], this condition is restrictive; for exam-
ple, a bounded plurisubharmonic function with zero boundary values may have a
Monge-Ampère measure that is not integrable against any negative plurisubhar-
monic function. The necessity of this condition has been a core open question in
pluripotential theory.

In the first main result of this paper, we eliminate the above integrability con-
dition, thereby establishing an analog of the Bedford-Taylor comparison principle
that applies to all functions within the Cegrell classes.

Theorem 3.5. Let Ω be a bounded hyperconvex domain in Cn, and let u, v be

plurisubharmonic functions in the Cegrell class N (H), for some H ∈ E(Ω). If

u � v and (ddcu)n ≤ (ddcv)n,

then u ≥ v.

The result was previously established for cases where the measure (ddcv)n

does not assign mass to pluripolar sets, as demonstrated in [3, Corollary 3.2].
The notation u � v signifies that u is more singular than v, with further details
provided in Definition 3.1. Here, E(Ω) is the largest class of plurisubharmonic
functions on which the Monge-Ampère operator is well-defined and exhibits con-
tinuity along decreasing sequences. The condition u, v ∈ N (H) implies that u
and v share boundary values, as specified by H. Definitions and fundamental
properties of these classes are elaborated upon in the following section.

Our proof is based on a technique of plurisubharmonic rooftop envelopes, a
method recently utilized in multiple papers, including [27], [31, 32, 33], and [43,
50]. It is also noteworthy that [50] established uniqueness for solutions involving
non-pluripolar measures and non-Kähler forms. We establish here some important
properties of the envelopes and there Monge-Ampère measures, see Theorem 2.7
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and its corollaries, which has allowed us to treat the general case of functions in
Cegrell classes with controlled boundary behavior.

As applications of Theorem 3.5, we provide affirmative answers to several
questions concerning geodesic connectivity and rooftop envelopes. The concept
of plurisubharmonic geodesics was first introduced in Mabuchi’s seminal work
on constant scalar curvature Kähler metrics [44]. Subsequently, Semmes [51] and
Donaldson [30] independently showed that Mabuchi geodesics can be understood
as solutions to certain degenerate homogeneous complex Monge-Ampère equa-
tions. This concept has been further refined to describe geodesics as the upper
envelopes of subgeodesics, a perspective that Berman-Berndtsson [10], Abja [1],
Abja-Dinew [2], and Rashkovskii [47] adapted to the local setting. We direct
readers to [49] for a comprehensive overview of this topic.

Geodesics can be seen as optimal plurisubharmonic interpolations between
pairs of plurisubharmonic functions, somewhat similar to the classical Calderón
complex interpolation in Banach spaces. While constructing a geodesic segment
ut, 0 < t < 1, between two bounded plurisubharmonic functions u0 and u1 is
straightforward, the general case poses challenges in boundary behavior of the
geodesics at the endpoints. Namely, the limits of ut as t approaches 0 and 1 may
deviate from u0 and u1, leading to a disconnection. In [48], it was shown that
strong singularities within the domain and at its boundary remain invariant under
plurisubharmonic interpolation, preventing connectivity when singularities in the
data functions differ. Key to addressing this was the asymptotic rooftop envelopes
P [u](v) and the Green-Poisson residual function gu = P [u](0). For definitions, see
Section 4. Notably, gu is defined by the asymptotic behavior of u near its negative
infinity points, both inside the domain and on the boundary.

As shown in [48], Darvas’ method [26] can be readily adapted to prove that u0

and u1 are geodesically connected if and only if P [u0](u1) = u1 and P [u1](u0) =
u0. Furthermore, it was conjectured that these conditions are equivalent to having
gu0 = gu1 , signifying identical leading terms in their singularities. This has been
confirmed in [49] for certain classes of plurisubharmonic functions. Leveraging
Theorem 3.5, we significantly extend this connectivity criterion:

Theorem 4.13. Given H0,H1 ∈ E that are connectable by a plurisubharmonic

geodesic, and u0 ∈ N (H0), u1 ∈ N (H1), then u0 and u1 can be connected by a

plurisubharmonic geodesic segment if and only if

u0 ≤ gu1 and u1 ≤ gu0 . (1.1)

In particular, if gH0
= gH1

, then (1.1) is equivalent to gu0 = gu1 .

Apart from the uniqueness Theorem 3.5, the second crucial step of the proof
is the rooftop equality P [u](v) = P (gu, v), conjectured in [48] in the general
case and proved there and in [49] for particular cases. In Theorem 4.9, we have
extended it significantly.

Theorem 4.9. Assume H1 ∈ E, H2 ∈ PSH−(Ω), and

P [H1](H2) = P (gH1
,H2).

Then P [u](v) = P (gu, v), for all u ∈ N (H1), v ∈ N (H2).

In other words, our finding above confirms that if the rooftop equality is
verified for H1,H2, then it equally applies to every u ∈ N (H1), v ∈ N (H2). Since
the rooftop equality trivially holds for H1 = 0, by Theorem 4.9 we see that it
holds for all u ∈ N , v ∈ PSH−(Ω).
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We also highlight that the functions H2 and v may not be in E . Analyzing the
Monge-Ampère operator presents challenges due to its undefined status for both
P [u](v) and P (gu, v). Nonetheless, the singular part of their difference is manage-
able, and by applying the plurisubharmonic envelope, one secures a function in
E , where the Monge-Ampère measure vanishes.

In the global context on a compact Kähler manifold (X,ω) of dimension n,
for given ω-plurisubharmonic functions u, v in the same relative full mass class
E(X,ω, φ), the rooftop equality

P [u](v) = P (P [u], v)

is satisfied if the non-pluripolar Monge-Ampère measure (ω + ddcu)n possesses
positive mass [28, Theorem 3.14]. Due to the monotonicity of non-pluripolar
Monge-Ampère masses, this positive mass condition for u ensures the same for
its asymptotic rooftop P [u](0) = φ. In contrast, in our local setting, the non-
pluripolar Monge-Ampère measure for gu equals zero, and the monotonicity does
not apply. Moreover, unlike in the global context, functions may have infinite non-
pluripolar Monge-Ampère mass. Additionally, the boundary behavior of plurisub-
harmonic functions plays an immense role, highlighting an undeveloped area in
pluripotential theory.

As emphasized, the boundary functions H play a crucial role in our results.
Phạm [46] has announced that functions in E , whose Monge-Ampère measure in-
tegrates a non-trivial negative plurisubharmonic function, belong to N (H) when
H is maximal. We refer to H as the boundary values for these functions. In
Theorem 5.1, we provide a proof that slightly diverges from Phạm’s unpublished
approach.

Theorem 5.1. If u ∈ E and
∫

Ω(−w)(ddcu)n < +∞, for some w ∈ PSH−(Ω),
w < 0, then u has boundary values.

The paper is organized as follows. In Section 2, we provide the necessary defini-
tions and preliminary results, including fundamental properties of envelopes and
rooftop envelopes. In Section 3, we prove Theorem 3.5, establishing the general
form of the Bedford-Taylor comparison principle. Building on this foundational
result, Section 4 is devoted to exploring rooftop envelopes, idempotency, and geo-
desic connectivity, where we prove Theorem 4.13, and Theorem 4.9, among other
results. Section 5 addresses the boundary values of plurisubharmonic functions.
Finally, Section 6 discusses the core open problems related to the complex Monge-
Ampère equation, aiming to foster a deeper understanding and stimulate further
advancements in the field.

Acknowledgements. The project PARAPLUI ANR-20-CE40-0019 and the Cen-
tre Henri Lebesgue ANR-11-LABX-0020-01 partially support this work. The
project started when the fourth-named author was visiting Jagiellonian Univer-
sity and continued during his stay at Université d’Angers. He is grateful to both
institutions for their support.

2. Preliminaries

In this section, we introduce necessary definitions and establish foundational
facts essential for the remainder of this paper. For additional details and a broader
context, readers are encouraged to consult sources such as [3, 16, 17, 18, 23, 34].

Throughout this paper, we assume that Ω ⋐ Cn is a bounded hyperconvex

domain, i.e., there exists ψ ∈ PSH−(Ω) such that {z ∈ Ω : ψ(z) < c} ⋐ Ω
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for all c < 0. For technical results related to which pseudoconvex domains are
hyperconvex, see [5]. A fundamental component of this paper involves the Cegrell
classes, defined as follows:

E0(Ω) =

{
ϕ ∈ PSH− ∩ L∞(Ω) : lim

z→ξ
ϕ(z) = 0, ∀ξ ∈ ∂Ω,

∫

Ω
(ddcϕ)n < +∞

}
,

F(Ω) =

{
ϕ ∈ PSH−(Ω) : ∃ [ϕj ], ϕj ∈ E0(Ω), ϕj ց ϕ, sup

j

∫

Ω
(ddcϕj)

n < +∞

}
,

E(Ω) =
{
ϕ ∈ PSH−(Ω) : ∃ϕU ∈ F(Ω) such that ϕU = ϕ on U,∀ U ⋐ Ω

}
.

Let [Ωj] denote a fundamental sequence in the sense that it is an increasing
sequence of strictly pseudoconvex subsets of the bounded hyperconvex domain Ω,
such that Ωj ⋐ Ωj+1 for every j ∈ N, and

⋃∞
j=1 Ωj = Ω. Then, if u ∈ E , and [Ωj]

is a fundamental sequence, we define

uj = sup
{
ϕ ∈ PSH−(Ω) : ϕ ≤ u on Ω̄j

}
,

and

ũ =

(
lim

j→+∞
uj
)∗

.

The function ũ is the smallest maximal plurisubharmonic majorant of u. Alter-
natively, it can be described as follows. Since the rooftop (see Definition 2.8) of
two maximal plurisubharmonic functions is evidently maximal, the family of all
maximal plurisubharmonic majorants has a unique minimal element, and it is
precisely ũ.

Set

N = {u ∈ E : ũ = 0} .

We say that functions in N have (generalized) boundary values of 0. A less widely
recognized characterization of the class N , as found in [35], states: For a function
u ∈ E , the following assertions are equivalent:

(1) u ∈ N ,
(2) there is a plurisubharmonic function ϕ =

∑∞
j=1 ϕj , ϕj ∈ F , such that

u ≥ ϕ on Ω.

To summarize some additional facts about these classes:

i) E is the largest class of negative plurisubharmonic functions where the
complex Monge-Ampère operator is well-defined;

ii) log |z2| /∈ E(B), log |z| ∈ F(B) with (ddc log |z|)n = (2π)nδ0, (B is the unit
ball in Cn);

iii) E0 ( F ( N ( E ;

iv) E0,F ,N , E are convex cones;

v) For any u ∈ N we have

lim sup
Ω∋z→ξ

u(z) = 0 for all ξ ∈ ∂Ω,

but there are functions in N that additionally satisfy:

lim inf
Ω∋z→ξ

u(z) = −∞ for all ξ ∈ ∂Ω;

vi) F = {u ∈ N :
∫

Ω(ddcu)n < +∞}.
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Next, we introduce the Cegrell classes with generalized boundary values. It is
important to emphasize that in Definition 2.1, we assume H ∈ PSH−(Ω), rather
than the more common assumption of H ∈ E .

Definition 2.1. Let K ∈ {E0,F ,N , E}. A plurisubharmonic function u on Ω
belongs to the class K(Ω,H)(= K(H)), H ∈ PSH−(Ω), if there exists a function
ϕ ∈ K such that

H ≥ u ≥ ϕ+H.

For any subset K ⊆ E(Ω), we introduce the notation

Ka = {ϕ ∈ K : (ddcϕ)n vanishes on all pluripolar sets in Ω}.

We shall next discuss two aspects of the decomposition of Monge-Ampère
measures and see that they coincide. First, let us recall the Cegrell-Lebesgue
decomposition theorem: If µ is a non-negative Radon measure, then it can be
decomposed into a regular (non-pluripolar) and singular (pluripolar) part

µ = µCr + µCs ,

in such a way that

µCr = f(ddcϕ)n,

where ϕ ∈ E0 and f ≥ 0, f ∈ L1
loc((dd

cϕ)n), and µCs is carried by a pluripolar
subset of Ω. Furthermore, if µ = (ddcu)n, u ∈ E , then in addition we know that
µCs is carried by {z ∈ Ω : u(z) = −∞}.

On the second decomposition, for u ∈ PSH(Ω), and with the notation ut =
max(u,−t), for t > s > 0 we obtain

1{u>−s}(dd
cus)

n = 1{ut>−s}(dd
c max(ut,−s))

n

= 1{ut>−s}(dd
cut)

n = 1{u>−s}(ddcut)
n

≤ 1{u>−t}(ddcut)
n, (2.1)

where in the first and third lines we have used

{ut > −s} = {u > −s} ⊂ {u > −t}, us = max(ut,−s),

and in the second line, we have utilized the Bedford-Taylor maximum principle.
An important consequence of (2.1) is that the non-negative Radon measures
1{u>−t}(ddcut)

n increase with t, and hence we can define

µr(u) = lim
t→+∞

1{u>−t}(ddcut)
n.

If µr is locally finite, then it defines a positive Radon measure in Ω. From the
second line of (2.1) we also have

1{u>−s}(dd
cus)

n = 1{u>−s}(dd
cut)

n = 1{u>−s}1{u>−t}(ddcut)
n.

Then, by letting t→ +∞, we arrive at

1{u>−s}(dd
cus)

n = 1{u>−s}µr(u), ∀s > 0. (2.2)

It follows from [9, Theorem 2.1] that, for u ∈ E , the non-pluripolar Monge-Ampère
measure of u coincides with its full Monge-Ampère measure outside the pluripolar
locus:

µr(u) = 1{u>−∞}(dd
cu)n,

and it puts no mass on pluripolar sets. Thus, setting µs(u) = 1{u=−∞}(dd
cu)n,

we have

(ddcu)n = µs(u) + µr(u) = µCs (u) + µCr (u).
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The letter r (respectively, s) stands for the regular (respectively, singular) part
of the Monge-Ampère measure (ddcu)n.

We will need the following maximum principle on several occasions. The full
mass version of Theorem 2.2 can be found in [45].

Theorem 2.2. If u, v ∈ E, then

µr(max(u, v)) ≥ 1{u≥v}µr(u) + 1{u<v}µr(v).

If, in addition, u ≤ v then

1{u=v}µr(v) ≥ 1{u=v}µr(u).

Proof. With the standard notation ut = max(u,−t), vt = max(v,−t), t > 0, we
get

(ddc max(ut, vt))
n ≥ 1{ut≥vt}(ddcut)

n + 1{ut<vt}(dd
cvt)

n.

Multiplying with 1{min(u,v)>−s}, s < t, and then using (2.2), we obtain

1{min(u,v)>−s}µr(max(u, v)) ≥ 1{min(u,v)>−s}1{u≥v}µr(u)

+ 1{min(u,v)>−s}1{u<v}µr(v).

Letting s→ +∞, we arrive at the conclusion. �

A central tool we shall use is an envelope construction.

Definition 2.3. For a function h : Ω → R∪{−∞}, which is bounded from above,
we define the envelope P (h) as the upper semicontinuous regularization of the
function

x 7→ sup{u(x) : u ∈ PSH(Ω), u ≤ h quasi-everywhere in Ω},

with the convention that sup ∅ = −∞. If no plurisubharmonic function lies below
h quasi-everywhere, then we simply define P (h) to be identically −∞.

Here, quasi-everywhere means outside a pluripolar set. If there exists u ∈
PSH(Ω) such that u ≤ h quasi-everywhere, then P (h) ∈ PSH(Ω), and by
Choquet’s lemma, there exists an increasing sequence [uj ] ⊂ PSH(Ω) such that
uj ≤ h quasi-everywhere in Ω and (limj uj)

∗ = P (h). The set

{x ∈ Ω : lim
j
uj(x) < P (h)(x)}

is pluripolar. Since a countable union of pluripolar sets is pluripolar, we infer that
P (h) ≤ h quasi-everywhere in Ω.

We say that h is quasi-continuous if, for each ε > 0, there exists an open set
U such that CapΩ(U,Ω) < ε, and the restriction of h on Ω \ U is continuous. By
analogy, a set E is quasi-open if, for each ε > 0, there exists an open set U such
that

CapΩ(U \E ∪ E \ U) ≤ ε.

Recall that the Monge-Ampère capacity is defined as

CapΩ(E) = sup

{∫

E

(ddcu)n : u ∈ PSH(Ω),−1 ≤ u ≤ 0

}
.

Following Xing [53], we say that a sequence [uj ] converges in capacity to u if, for
every ε > 0 and any compact set K ⋐ Ω,

lim
j→+∞

CapΩ({|uj − u| > ε} ∩K) = 0.

It follows that monotone convergence implies convergence in capacity. We will
use the following fact.
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Lemma 2.4. If −C ≤ uj ≤ 0 are plurisubharmonic functions converging in

capacity to u ∈ PSH(Ω), and E is a quasi-open set, then

lim inf
j→+∞

∫

E

(ddcuj)
n ≥

∫

E

(ddcu)n.

Proof. We note that (ddcuj)
n weakly converges to (ddcu)n. Since E is quasi-

open and the measures (ddcuj)
n are uniformly dominated by CapΩ, the result

follows. �

Theorem 2.5. Assume [uj ] is a sequence in E that converges in capacity to u ∈ E.
Then

lim inf
j→+∞

µr(uj) ≥ µr(u).

Proof. Fix a smooth test function χ in Ω. Fix C > 0, ε > 0 and consider

fC,εj :=
max(uj + C, 0)

max(uj + C, 0) + ε
, j ∈ N,

and

uCj := max(uj ,−C).

Observe that for C fixed, the functions uCj ≥ −C are uniformly bounded in Ω

and converge in capacity to uC = max(u,−C) as j → ∞. Moreover, fC,εj = 0 if
uj ≤ −C. By the locality of the non-pluripolar product, we can write

fC,εj χ(ddcuCj )n = fC,εj χ(ddcuj)
n.

For each C, ε fixed, the functions fC,εj are quasi-continuous, uniformly bounded

(with values in [0, 1]), and converge in capacity to fC,ε, where fC,ε is defined by

fC,ε :=
max(u+ C, 0)

max(u+ C, 0) + ε
.

With the information above, we can apply Xing’s theorem [54] to get that

fC,εj χ(ddcuCj )n → fC,εχ(ddcuC)n as j → ∞,

in the weak sense of measures in Ω. In particular, since 0 ≤ fC,ε ≤ 1, we have
that

lim inf
j→+∞

∫

{uj>−C}
χµr(uj) = lim inf

j→+∞

∫

{uj>−C}
χ(ddcuCj )n

≥ lim inf
j→∞

∫

Ω
fC,εj χ(ddcuCj )n

=

∫

Ω
fC,εχ(ddcuC)n.

Now, letting ε → 0 and then C → +∞, by the definition of the non-pluripolar
measure, we obtain

lim inf
j→+∞

∫

Ω
χµr(uj) ≥

∫

Ω
χµr(u).

�

Corollary 2.6. If [uj ] is a sequence in E that increases almost everywhere to

u ∈ PSH−(Ω), then the following weak convergence holds:

µr(uj) → µr(u), µs(uj) → µs(u).
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Proof. We have µs(uj) ≥ µs(u), for all j, and (ddcuj)
n → (ddcu)n by [20]. The

result thus follows from Theorem 2.5. �

Theorem 2.7. If h is quasi-continuous in Ω and P (h) 6≡ −∞, then

1{P (h)<h}µr(P (h)) = 0.

Proof. Arguing as in the proof of Theorem 2.7 in [28], we can find a sequence [hj ]
of lower semi-continuous functions in Ω such that hj ց h quasi-everywhere in Ω.
By the standard balayage method, for all j, we have

∫

{P (hj)<hj}
(ddcP (hj))

n = 0.

For k < j, using {P (hk) < h} ⊂ {P (hj) < hj}, we then have
∫

{P (hk)<h}
(ddcP (hj))

n = 0.

Fixing t > 0, and using (2.2) for max(P (hj),−t), we obtain
∫

{P (hk)<h,P (h)>−t}
(ddc max(P (hj),−t))

n = 0.

The set {P (hk) < h,P (h) > −t} is quasi-open and the sequence (max(P (hj),−t))j
is uniformly bounded, thus letting j → +∞, we obtain, by Lemma 2.4,

∫

{P (hk)<h,P (h)>−t}
(ddc max(P (h),−t))n = 0.

We finally let k → +∞, and then t→ +∞ to arrive at the result. �

Having established the foundational aspects of plurisubharmonic functions
and the Cegrell classes, we now focus on rooftop envelopes, a significant tool
in contemporary pluripotential theory. We proceed to define this indispensable
concept and present a proof of Corollary 2.9, which will play a significant role in
Section 4.

Definition 2.8. The rooftop envelope P (u, v), for any two plurisubharmonic
functions u and v, is defined as the plurisubharmonic envelope of min(u, v), the
largest plurisubharmonic function lying below min(u, v).

Corollary 2.9. If u, v ∈ E then

µr(P (u, v)) ≤ 1{P (u,v)=u}µr(u) + 1{P (u,v)=v,P (u,v)<u}µr(v).

In particular, if µ is a positive measure such that µr(u) ≤ µ and µr(v) ≤ µ, then
µr(P (u, v)) ≤ µ.

Proof. We first note that P (u, v) 6≡ −∞ because u+v ≤ P (u, v). By Theorem 2.7,
µr(P (u, v)) is supported on the contact set D = D1 ∪D2, where

D1 = {P (u, v) = u} and D2 = {P (u, v) = v} ∩ {P (u, v) < u}.

Theorem 2.2 then yields

1D1
µr(P (u, v)) ≤ 1D1

µr(u), 1D2
µr(P (u, v)) ≤ 1D2

µr(v),

which finish the proof. �

Corollary 2.10. For all u, v ∈ PSH−(Ω), we have

µr(P (u− v, 0)) ≤ µr(u).
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Proof. Since P (u − v, 0) + v ≤ u with equality on the contact set D = {P (u −
v, 0) = u− v}, we have, by the maximum principle, Theorem 2.2,

1Dµr(P (u− v, 0)) + 1Dµr(v) ≤ 1Dµr(u).

By Theorem 2.7, µr(P (u−v, 0)) is supported on D, and this finishes the proof. �

3. Uniqueness in the Cegrell Classes

Building on the foundational concepts introduced in Section 2, this section
is dedicated to proving Theorem 3.5. This theorem establishes a powerful com-
parison principle for functions in N (H), offering a significant tool for exploring
uniqueness in the Cegrell classes. Prior to presenting the proof, we need some
preliminary results.

Definition 3.1. Given plurisubharmonic functions u, v in Ω, we say that u is

more singular than v if, for any compact set K ⋐ Ω, there exists a constant CK
such that u ≤ v + CK on K. If u is more singular than v, then we denote this
by u � v. We say that u and v have the same singularities if u � v and v � u,
denoted u ≃ v.

The following result follows directly from [3, Lemma 4.1]:

Lemma 3.2. If u, v ∈ E and u ≃ v, then µs(u) = µs(v).

The converse of it is not true, even assuming u � v. It turns out however that
the difference u− v is not very singular:

Lemma 3.3. Assume u, v ∈ E, u � v, and

1{u=−∞}(dd
cu)n = 1{v=−∞}(ddcv)n.

Then (ddcP (u− v, 0))n ≤ µr(u). In particular, P (u− v, 0) ∈ Ea.

Proof. For t > 0, define ϕt = max(u, v − t). Then, ϕt ∈ E and ϕt ≃ v, hence by
Lemma 3.2,

1{ϕt=−∞}(dd
cϕt)

n = 1{v=−∞}(ddcv)n = 1{u=−∞}(dd
cu)n.

As ϕt ց u when t→ +∞, [17] implies that (ddcϕt)
n weakly converges to (ddcu)n.

From this weak convergence,

(ddcϕt)
n = µr(ϕt) + 1{u=−∞}(dd

cu)n → µr(u) + 1{u=−∞}(dd
cu)n,

it follows that µr(ϕt) weakly converges to µr(u).
Next, define wt = P (ϕt − v, 0). Then wt ∈ E ∩ L∞(Ω), and wt + v ≤ ϕt, with

equality on the contact set Dt = {wt+v = ϕt}. By Theorem 2.2 and Theorem 2.7,

(ddcwt)
n = 1Dt(dd

cwt)
n ≤ 1Dtµr(wt + v) ≤ 1Dtµr(ϕt) ≤ µr(ϕt).

Since wt ց w = P (u − v, 0) ∈ E , it follows from [17] and the weak convergence
(ddcwt)

n → µr(u) that (ddcw)n ≤ µr(u), hence w ∈ Ea. �

Utilizing a similar approach, we arrive at the subsequent result:

Lemma 3.4. Assume u, v ∈ E, u � v, and (ddcu)n ≤ (ddcv)n. Then

(ddcP (u− v, 0))n = 0.
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Proof. Given (ddcu)n ≤ (ddcv)n and u � v, [3, Lemma 4.1] implies

1{v=−∞}(ddcv)n ≤ 1{u=−∞}(dd
cu)n ≤ 1{u=−∞}(ddcv)n = 1{v=−∞}(ddcv)n.

The last equality above follows from the fact that µr(v) puts no mass on the
pluripolar set {u = −∞} and 1{v=−∞}1{u=−∞} = 1{v=−∞}, since u � v. We
thus have

1{u=−∞}(dd
cu)n = 1{v=−∞}(ddcv)n.

Setting w = P (u − v, 0) and defining D = {w + v = u}, Lemma 3.3 ensures
w ∈ Ea. Since w + v ≤ u with equality on D, Theorem 2.2 yields

1Dµr(w) + 1Dµr(v) ≤ 1Dµr(u) ≤ 1Dµr(v).

Hence, 1Dµr(w) = 0. Furthermore, Theorem 2.7 gives that µr(w) is supported
on D, leading to µr(w) = 0, which completes the proof. �

By synthesizing the discussions above, we establish the main result of this
section, underscoring uniqueness in N :

Theorem 3.5. Assume H ∈ E, u, v ∈ N (H), and u � v.

(1) If (ddcu)n ≤ (ddcv)n, then u ≥ v.
(2) If (ddcu)n = (ddcv)n, then u = v.

Proof. Let ϕ ∈ N such that ϕ + H ≤ u ≤ H. Then, u − v ≥ ϕ, implying
P (u− v, 0) ∈ N . Moreover, Lemma 3.4 ensures that (ddcP (u− v, 0))n = 0. This,
together with [3, Theorem 3.6], leads to P (u − v, 0) = 0, thereby establishing
u ≥ v.

The second statement directly follows from the first. If (ddcu)n = (ddcv)n,
then u ≥ v, implying u ≃ v. Reversing the roles of u and v yields v ≥ u, thus
concluding u = v. �

Theorem 3.5 was previously known under the condition
∫

Ω(−w)(ddcu)n < +∞
for some w ∈ E0, w < 0; see [3, Theorem 3.6]. As illustrated in [18, Example 5.3],
there exists a function u ∈ N ∩ L∞ for which

∫
Ω(−w)(ddcu)n = +∞ for all

w ∈ PSH−(Ω), w < 0.
Thanks to the uniqueness result above, we present the following theorem:

Theorem 3.6. For any u ∈ N , there exist unique functions ur, us ∈ N satisfying

the following conditions:

(1) u ≤ ur, u ≤ us;
(2) (ddcur)

n = µr(u) = 1{u>−∞}(dd
cu)n;

(3) (ddcus)
n = µs(u) = 1{u=−∞}(dd

cu)n.

Moreover, ur + us ≤ u.

Proof. By Theorem 4.14 (2) in [3], there exists ur, us ∈ E satisfying the three
conditions in the theorem. It follows from Lemma 3.3 that P (u− us, 0) ∈ Ea and

(ddcP (u− us, 0))n ≤ (ddcur)
n.

By [3, Corollary 3.2], we get the uniqueness of ur and we also have ur ≤ P (u −
us, 0), hence ur + us ≤ u.

Assume now that v ∈ N is such that u ≤ v and (ddcv)n = (ddcus)
n =

1{u=−∞}(dd
cu)n. Then w = P (us, v) ∈ N and, by Lemma 4.1 in [3], since u ≤

w ≤ min(us, v),

1{w=−∞}(dd
cw)n = 1{v=−∞}(ddcv)n = 1{us=−∞}(dd

cus)
n.
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We get (ddcw)n = (ddcv)n = (ddcus)
n because these measures are supported

on pluripolar sets. Theorem 3.5 then ensures that v = w = us, finishing the
proof. �

4. Rooftops, Idempotency and Connectivity

By employing Theorem 3.5, this section not only aims to prove our result on
geodesic connectivity (Theorem 4.13) but also significantly advance the develop-
ment of rooftop techniques. We commence in Section 4.1 by revisiting the neces-
sary definitions of the asymptotic rooftop envelope P [u](v) and the Green-Poisson
residual function gu, commonly referred to as the residual function. Theorem 4.2
is then presented, offering insights into the Monge-Ampère measure associated
with these residual functions.

The idempotency property for residual functions, ggu = gu, was conjectured
in [48] to hold for all u ∈ PSH−(Ω). In Theorem 4.5, we provide an affirmative
answer in N , utilizing Theorem 3.5 and Theorem 4.2. We then proceed to the
discussion of the rooftop equality in Section 4.2. Recall that the rooftop equality

holds for a plurisubharmonic function u if

P [u](v) = P (gu, v), for all v ∈ PSH−(Ω).

This property, verified in [49] for functions in F , is substantially generalized in
Theorem 4.9.

Subsequently, in Section 4.3, we investigate the geodesic connectivity of pluri-
subharmonic functions. Building on the foundation established by Theorem 3.5
and Theorem 4.9, we complete the proof of Theorem 4.13.

We conclude this overview with the following conjecture, emphasizing that
if Conjecture 4.1 holds true, it would affirm the idempotency property for all
functions in PSH−(Ω). To see this, let ut be the largest plurisubharmonic geodesic
segment lying below u and 0, then u0 = gu. This is a direct consequence of
the geodesic connectivity criterion in [48] since P [u](0) = gu. Hence, any u ∈
PSH−(Ω) can be connected to gu by a plurisubharmonic geodesic (see also [48,
Corollary 8.2]). Thus, if the Conjecture 4.1 holds, then so is the idempotency
conjecture gu = ggu .

Conjecture 4.1. Let u0, u1 ∈ E. Then u0 and u1 can be connected by a plurisub-

harmonic geodesic if and only if gu0 = gu1 .

4.1. Asymptotic rooftops, residual functions, and idempotency. Given
u, v ∈ PSH−(Ω), the asymptotic rooftop envelope P [u](v) is defined as

P [u](v) =

(
lim

C→+∞
P (u+ C, v)

)∗

.

For the case where v = 0, we denote gu = P [u](0) and refer to it as the Green-

Poisson residual function of u, or simply the residual function of u. We will use
repeatedly that for any u, v, w ∈ PSH−(Ω), we have

P [u+ w](v) ≥ P [u](v) + gw.

In particular, gu+w ≥ gu + gw, and if gw = 0, then gu+w = gu. The condition
gw = 0 means that w does not possess strong singularities, neither in Ω nor on
the boundary ∂Ω.

By construction, it holds that u ≤ gu. However, their singularities may not
coincide, implying that the relation u ≃ gu may not hold. Nevertheless, the
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discrepancy between the singularities is minimal. In this context, gu can be viewed
as a singular skeleton of u.

Theorem 4.2. For all u ∈ PSH−(Ω), we have µr(gu) = 0. If u ∈ E, then

(ddcP (u− gu))n ≤ µr(u), so P (u− gu) ∈ Ea, and (ddcgu)n = µs(u).

Proof. Fix C > 0 and let [uj ] be a sequence of bounded plurisubharmonic func-
tions decreasing to u. Set ϕtj,C = max(ϕj,C ,−t), ϕj,C = P (uj + C, 0), ϕC =

P (u+ C, 0). According to Corollary 2.9 and (2.2), we have

1{ϕj,C>−t; uj>−C}(dd
cϕtj,C)n = 0,

leading to
f tj,C,ε(dd

cϕtj,C)n = 0,

where

f tj,C,ε =
max(ϕj,C + t, 0)

max(ϕj,C + t, 0) + ε
×

max(uj + C, 0)

max(uj + C, 0) + ε
,

are quasi-continuous, uniformly bounded (with values in [0, 1]), and converge in
capacity to

f tC,ε =
max(ϕC + t, 0)

max(ϕC + t, 0) + ε
×

max(u+C, 0)

max(u+ C, 0) + ε
,

as j → +∞. Thus, using Xing’s theorem [54, 34] we obtain

f tC,ε(dd
c max(ϕC ,−t))

n = 0.

For C0 < C, we then have

max(ϕC + t, 0)

max(ϕC + t, 0) + ε
×

max(u+ C0, 0)

max(u+ C0, 0) + ε
(ddc max(ϕC ,−t))

n = 0.

Letting C → +∞, we arrive at

max(gu + t, 0)

max(gu + t, 0) + ε
×

max(u+ C0, 0)

max(u+ C0, 0) + ε
(ddc max(gu,−t))

n = 0.

We finally let ε→ 0 and then C0 → +∞ to get

1{gu>−t}(dd
c max(gu,−t))

n = 0,

which yields µr(gu) = 0.
We next assume u ∈ E . To see that µs(u) = µs(gu), one can use [20]. We

provide an alternative proof using the plurisubharmonic envelopes. We set wt =
P (u − vt) = P (u − vt, 0). Then wt ∈ PSH−(Ω) ∩ L∞(Ω) and wt ց P (u − gu).
Arguing as in the proof of Lemma 3.3 we see that

(ddcwt)
n ≤ µr(u),

hence (ddcP (u− gu))n ≤ µr(u). In particular P (u− gu) ∈ Ea. Thus, from

gu + P (u− gu) ≤ u ≤ gu,

and Lemma 3.2 we conclude that µs(gu) = µs(u). �

Remark 4.3. If we assume that u ∈ E , in the first statement of Theorem 4.2,
then the proof can be simplified as follows. For each t > 0 we set vt = P (u+ t, 0).
Then vt ր gu almost everywhere in Ω, hence µr(vt) weakly converges to µr(gu)
as follows from Theorem 2.5. It follows from Corollary 2.9 that

µr(vt) ≤ 1{vt=u+t}µr(u) ≤ 1{u≤−t}µr(u) → 0

as t → +∞, giving µr(gu) = 0. Here, we use the fact that µr(u) is a positive
non-pluripolar measure.
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Remark 4.4. The relation P (u− gu) ∈ Ea means that the function u ∈ E differs
from gu by a plurisubharmonic function that lacks strong singularities. However,
this condition does not universally apply to all plurisubharmonic functions, as
demonstrated by the following example. Consider the function u(z) = u(z1, z

′) =
log |z1| in the unit ball B. For this function, we have

gu(z) = log
|z1|√

1 − |z′|2
, z = (z1, z

′)

(see [48, Example 4.7.1]). Consequently, for w = P (u − gu), it holds that w ≤
u− gu = 1

2 log(1 − |z′|2). Applying the maximum principle to the slices {z ∈ B :

z1 = z0
1}, we find w ≤ log |z1|, which leads to gw = gu.

Next, we establish that the idempotency property for residual functions, ggu =
gu, is valid, particularly for functions in N . This result extends the findings of [48,
Theorem 3.6].

Theorem 4.5. Let u ∈ N (H), H ∈ E. If H satisfies gH = ggH , then gu = ggu.
In particular, if gu ∈ N then ggu = gu.

Proof. Consider w ∈ N satisfying u ≥ H + w. Noting that

gu+w ≥ gu + gw ≥ gu + w,

we deduce that gu ∈ N (gH), ggu ∈ N (ggH ). Theorem 4.2 assures that (ddcgu)n =
(ddcggu)n = µs(u). Thanks to Theorem 3.5, we conclude that gu = ggu . �

4.2. Rooftop equality. In the next section, we address plurisubharmonic geodesics
and connectivity, where the rooftop equality is essential. That is, for any pluri-
subharmonic function u, the following holds:

P [u](v) = P (gu, v), for all v ∈ PSH−(Ω). (4.1)

In Theorem 4.9, we prove that if H1 ∈ E and H2 ∈ PSH−(Ω) satisfy (4.1), then
this relation extends to all u ∈ N (H1) and v ∈ N (H2). However, we must first
establish some auxiliary results.

Lemma 4.6. Let u, v ∈ PSH−(Ω), and set w = P (u, v). Then

1{−t<w<v}(ddc max(w,−t))n ≤ 1{−t<u}(ddc max(u,−t))n, t > 0.

Proof. For t > 0, define ut = max(u,−t), vt = max(v,−t), and wt = P (ut, vt).
Given s > t > 0, we apply Corollary 2.9 and (2.2) to obtain

f ts,ε(dd
c max(ws,−t))

n ≤ 1{−t<ws<vs}(ddcus)
n ≤ 1{−t<u}(ddcut)

n,

where the function

f ts,ε =
max(ws + t, 0)

max(ws + t, 0) + ε
×

max(vs − ws, 0)

max(vs − ws, 0) + ε
,

is quasi-continuous, uniformly bounded with values in [0, 1], and converges in
capacity to

f tε =
max(w + t, 0)

max(w + t, 0) + ε
×

max(v − w, 0)

max(v − w, 0) + ε
,

as s→ +∞.
Applying Xing’s theorem [54, 34], we deduce

f tε(dd
c max(w,−t))n ≤ 1{−t<u}(ddcut)

n.

As ε→ 0+, we conclude the proof with the desired result. �
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Corollary 4.7. Let u, v ∈ PSH−(Ω), and set w = P [u](v). Then

1{−t<w<v}(ddc max(w,−t))n = 0, t > 0.

Proof. Let us set uC = P (u + C, 0) and ϕC = P (uC , v). Notice that ϕC =
P (u+ C, v). Utilizing Lemma 4.6 with u replaced by uC , we derive

1{−t<ϕC<v}(ddc max(ϕC ,−t))
n ≤ 1{−t<uC}(dd

c max(uC ,−t))
n, t > 0.

Following the argument in the proof of Lemma 4.6 with

f tC,ε =
max(ϕC + t, 0)

max(ϕC + t, 0) + ε
×

max(v − ϕC , 0)

max(v − ϕC , 0) + ε
,

we reach the inequality

1{−t<w<v}(ddcw,−t))n ≤ 1{−t<gu}(ddc max(gu,−t))
n, t > 0.

To conclude, we apply Theorem 4.2 to obtain the desired result. �

Lemma 4.8. Let u ∈ E, v ∈ PSH−(Ω), and set w = P (P [u](v) − P (gu, v)).
Then (ddcw)n = 0.

Proof. For simplicity, denote ft = max(f,−t). Define

ϕ = P [u](v), ψ = P (gu, v), w = P (ϕ− ψ).

Since,

P [u](v) ≥ P (u, v) ≥ P (u− gu) + P (gu, v),

we obtain w ≥ P (u− gu). By Theorem 4.2, it follows that w ∈ Ea.
Considering the case w+ψt ≤ ϕt, equality holds on the set Dt = {w+ψt = ϕt}.

Specifically, if ψ(x) > −t, then w(x) + ψt(x) = w(x) + ψ(x) ≤ ϕ(x) ≤ ϕt(x). If
ψ(x) ≤ −t, then w(x)+ψt(x) = w(x)− t ≤ ϕt(x) since w ≤ 0. From Theorem 2.2,
we have

1Dt(dd
cw)n + 1Dt(dd

cψt)
n ≤ 1Dt(dd

cϕt)
n.

Multiplying with 1{ϕ=v}, and noting that {ϕ = v} ⊂ {ϕt = ψt}, we obtain

1Dt∩{ϕ=v}(ddcw)n + 1Dt∩{ϕ=v}(ddcψt)
n ≤ 1Dt∩{ϕ=v}(ddcϕt)

n

≤ 1Dt∩{ϕ=v}(ddcψt)
n.

Here, we have used ϕt ≤ ψt, and Theorem 2.2 to obtain

1{ϕt=ψt}(ddcϕt)
n ≤ 1{ϕt=ψt}(dd

cψt)
n.

It thus follows that 1Dt∩{ϕ=v}(ddcw)n = 0. By Corollary 4.7, we also have

1Dt∩{−t<ϕ<v}(ddcϕt)
n = 0.

Combining these we then have

1Dt∩{ϕ>−t}(ddcw)n = 0.

Let D = {w + ψ = ϕ}. Since {ϕ > −∞} ∩ D is contained in the union of
Dj ∩ {ϕ > −j}, j ∈ N, it follows that

∫

{ϕ>−∞}∩D
(ddcw)n = 0.

Since w ∈ Ea and (ddcw)n is supported on D (by Theorem 2.7), we infer that
(ddcw)n = 0, finishing the proof. �
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Theorem 4.9. Assume H1 ∈ E and H2 ∈ PSH−(Ω) satisfy

P [H1](H2) = P (gH1
,H2).

Then the same relation holds for all u ∈ N (H1), v ∈ N (H2), i.e.

P [u](v) = P (gu, v).

Remark 4.10. The equality P [H1](H2) = P (gH1
,H2) is satisfied, particularly

when there exists w ∈ E such that H2 +w ≤ H1 and gw = 0. This is seen through

P [H1](H2) ≥ P [H2 + w](H2) ≥ H2 + gw = H2 ≥ P (gH1
,H2).

In other words, Theorem 4.9 says that if the rooftop equality holds for H1,H2,
then it holds for all u ∈ N (H1), v ∈ N (H2). In particular, the rooftop equality
holds in N .

Proof. For notational convenience, let us write

ϕ = P [u](v), ψ = P (gu, v), w = P (ϕ− ψ).

Then ϕ ≤ ψ, hence w ≤ 0. We also have w ≥ P (u − gu). By the assumption
u ∈ N (H1), v ∈ N (H2), we deduce P (u−H1) ∈ N and P (v −H2) ∈ N , hence

P (u+C, v) ≥ P (P (u−H1) +H1 + C,P (v −H2) +H2)

≥ P (u−H1) + P (v −H2) + P (H1 + C,H2).

Letting C ր +∞, we arrive at

P [u](v) ≥ P (u−H1) + P (v −H2) + P [H1](H2)

= P (u−H1) + P (v −H2) + P (gH1
,H2)

≥ P (u−H1) + P (v −H2) + P (gu, v).

From this we get w ≥ P (u1−H1)+P (v−H2), hence w ∈ N . Since, by Theorem 4.2,
P (u−gu) ∈ Ea, we thus infer w ∈ N a. It follows from Lemma 4.8 that (ddcw)n = 0,
hence by uniqueness in N a (see [3, Corollary 3.2]), w = 0, ultimately giving
ϕ = ψ. �

Using the same ideas as above we now prove that the rooftop envelope com-
mutes with the Green-Poisson residual operator g, provided that the same identity
holds for the boundary values.

Theorem 4.11. Let H1,H2 ∈ E be such that

gP (H1,H2) = P (gH1
, gH2

).

Then, for any u ∈ N (H1) and v ∈ N (H2), it holds that gP (u,v) = P (gu, gv).

The relation gP (H1,H2) = P (gH1
, gH2

) is trivially satisfied when H1 = H2 = 0.
Consequently, this leads to the identity gP (u,v) = P (gu, gv) being valid for all
u, v ∈ N .

Proof. Setting w = P (u−H1) + P (v −H2) ∈ N , we have

P (u, v) ≥ w + P (H1,H2),

hence

gP (u,v) ≥ gw + gP (H1,H2) = gw + P (gH1
, gH2

) ≥ gw + P (gu, gv),

which yields gP (u,v) ∈ N (P (gu, gv)). On the other hand, we have

P (gu, gv) + P (u− gu) + P (v − gv) ≤ P (u, v) ≤ P (gu, gv).
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Note also that, by Theorem 4.2, P (u − gu) ∈ Ea and P (v − gv) ∈ Ea. It thus
follows from [3, Lemma 4.4] and Theorem 4.2 that

µs(P (gu, gv)) = µs(P (u, v)) = µs(gP (u,v)).

By Corollary 2.9 and Theorem 4.2 we have

µr(P (gu, gv)) = µr(gP (u,v)) = 0,

therefore

(ddcP (gu, gv))
n = (ddcgP (u,v))

n.

Since P (gu, gv) ≥ gP (u,v), from Theorem 3.5 we thus obtain P (gu, gv) = gP (u,v).
�

4.3. Geodesic connectivity. We start by revisiting the concept of plurisub-
harmonic geodesics. Consider a curve of plurisubharmonic functions t 7→ ut for
t ∈ [0, 1] and ut ∈ PSH(Ω). This curve defines a function U on Ω ×A(1, e) as

U(x, z) = ulog |z|(x), x ∈ Ω, z ∈ A(1, e),

where A(1, e) denotes the annulus in C with radii 1 and e. A subgeodesic segment

ut is characterized by the plurisubharmonicity of U in Ω ×A(1, e).
Let S(u0, u1) represent the set of all subgeodesic segments beneath u0 and u1,

satisfying

lim sup
t→0

ut ≤ u0 and lim sup
t→1

ut ≤ u1.

The function u0 + u1 is an element of S(u0, u1). Due to convexity, for each U ∈
S(u0, u1), we have

u(x, z) ≤ (1 − log |z|)u0(x) + log |z|u1(x),

where the right-hand side is upper semicontinuous. Consequently, the upper semi-
continuous regularization of

(x, z) 7→ sup{U(x, z) : U ∈ S(u0, u1)}

forms a plurisubharmonic subgeodesic below u0 and u1. Remarkably, this function,
identified as the largest plurisubharmonic geodesic segment below u0 and u1, does
not require further regularization.

Definition 4.12. Define ut, 0 ≤ t ≤ 1, as the largest plurisubharmonic geodesic
beneath u0 and u1. We say u0 and u1 are connectable by a plurisubharmonic
geodesic if

lim
t→0

ut = u0 and lim
t→1

ut = u1,

with the limit understood in terms of L1
loc convergence or capacity convergence,

which are equivalent as shown in [24, 48].

As established in [25, Theorem 5.2] and [48, Theorem 8.1], two functions
u0, u1 ∈ PSH−(Ω) are geodesically connectable if and only if

P [u0](u1) = u1 and P [u1](u0) = u0. (4.2)

We shall now use these conditions for the class N , relating them to the residual
functions gu0 and gu1 to arrive at our result on geodesic connectivity.
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Theorem 4.13. Given H0,H1 ∈ E that are connectable by a plurisubharmonic

geodesic, and u0 ∈ N (H0), u1 ∈ N (H1), then u0 and u1 can be connected by a

plurisubharmonic geodesic segment if and only if

u0 ≤ gu1 and u1 ≤ gu0 . (4.3)

In particular, if gH0
= gH1

, then (4.3) is equivalent to gu0 = gu1 .

Proof. Starting with (4.2), we observe that

P [H0](H1) = H1 = P (gH0
,H1) and P [H1](H0) = H0 = P (H0, gH1

).

Invoking Theorem 4.9, it follows that

P [u0](u1) = P (gu0 , u1) and P [u1](u0) = P (u0, gu1).

Thus the condition (4.3) is equivalent to (4.2), which is equivalent to the connec-
tivity of u0 and u1 through a plurisubharmonic geodesic.

Furthermore, if gH0
= gH1

, then gu0 , gu1 , and v = P (gu0 , gu1), all belong to
N (gH0

). Since u0 ≤ v ≤ gu0 , we deduce that

µs(v) = µs(u0) = µs(gu0).

Corollary 2.9 implies µr(v) = 0, leading to (ddcv)n = (ddcgu0)n. According to The-
orem 3.5, this results in v = gu0 . Interchanging u0 and u1, we similarly conclude
v = gu1 , ultimately showing that gu0 = gu1 . �

5. Boundary Values in the Cegrell Classes

Compared to the well-explored domain of boundary values for subharmonic,
convex, or holomorphic functions, the investigation into the boundary values
of plurisubharmonic functions remains less developed. Cegrell was inspired by
Riesz’s decomposition theorem, which asserts that any non-positive subharmonic
function on a bounded domain can be decomposed into the sum of a Green po-
tential and a harmonic function. The smallest harmonic majorant of the Green
potential is zero, and the behavior of the harmonic function near the boundary
determines it. Consequently, the boundary values of a subharmonic function can
be understood as the harmonic function in Riesz’s decomposition theorem. How-
ever, direct generalization of this decomposition to pluripotential theory is not
possible. Instead, as elaborated in [16, 18] (see Section 2 for details), we exam-
ine the Cegrell class N (H), which consists of functions with boundary values H,
satisfying the inequality:

H ≥ u ≥ ϕ+H, (5.1)

for some function ϕ ∈ N .
Theorem 5.1 ensures that a function u ∈ E , satisfying specific integrability

criteria, is in N (ũ), which means it possesses boundary values represented by ũ.

Theorem 5.1. Assume u ∈ E and there exists a function w ∈ PSH−(Ω), w < 0,
such that ∫

Ω
(−w)(ddcu)n < +∞.

Then u ∈ N (ũ).

We initiate with the proof of an existence and uniqueness result for the com-
plex Monge-Ampère equation. The existence part was first established in [41,
Proposition 4.3]. The novelty herein lies in the uniqueness part, which is achieved
through Theorem 3.5.
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Theorem 5.2. Assume u ∈ E and w ∈ E0 are such that −1 ≤ w < 0 and∫

Ω
(−w)(ddcu)n < +∞.

Then there exists a unique ϕ ∈ N such that u ≤ ϕ and (ddcϕ)n = (ddcu)n.

Proof. Consider a fundamental sequence [Ωj ] of Ω and define

uj = P (1Ωj
u).

We have uj ∈ F and (ddcuj)
n ≥ 1Ωj

(ddcu)n. According to [3, Theorem 4.14, (2)],
there exists a decreasing sequence [ψj ] ⊂ F satisfying

(ddcψj)
n = 1Ωj

(ddcu)n.

For a fixed j, and for each k > j, [3, Theorem 4.14, (2)] ensures the existence of
vj,k ∈ F such that

(ddcvj,k)
n = 1Ωk\Ωj

(ddcu)n, u ≤ vj,k+1 ≤ vj,k.

By [3, Lemma 3.5], we have
∫

Ω
(−vj,k)

n(ddcw)n ≤ n!

∫

Ω
(−w)(ddcvj,k)

n ≤ n!

∫

Ω\Ωj

(−w)(ddcu)n.

As k → +∞, vj,k decreases to vj ≥ u. Hence, vj ∈ E , and

(ddcvj)
n = 1Ω\Ωj

(ddcu)n,

∫

Ω
(−vj)

n(ddcw)n ≤ n!

∫

Ω\Ωj

(−w)(ddcu)n. (5.2)

Having vj, we repeat the above procedure to define vj+1,k ≥ vj, k = 1, 2, ..., and
thus construct an increasing sequence [vj ] ⊂ E satisfying (5.2). Given the finite-
ness of

∫
Ω(−w)(ddcu)n, the Lebesgue dominated convergence theorem implies

vj ր 0 almost everywhere.
Now, considering vj +ψj ∈ E and (ddc(vj +ψj))

n ≥ (ddcu)n, [3, Theorem 4.14
(2)] guarantees the existence of ϕ ∈ E with (ddcϕ)n = (ddcu)n and ϕ ≥ vj + ψj .
Hence,

ϕ̃ ≥ ṽj + ψ̃j ≥ vj,

where ψj ∈ F ⊂ N . Letting j → +∞, we conclude ϕ ∈ N , as desired.
Finally, we aim to establish the uniqueness of ϕ. Suppose ψ ∈ N with u ≤ ψ

and (ddcψ)n = (ddcu)n. Define w = P (ϕ,ψ); then w ∈ N and u ≤ w ≤ min(ϕ,ψ).
By [3, Lemma 4.1], we obtain

1{w=−∞}(dd
cw)n = 1{u=−∞}(dd

cu)n = 1{ϕ=−∞}(ddcϕ)n = 1{ψ=−∞}(ddcψ)n.

Further, according to Corollary 2.9, µr(w) ≤ µr(ϕ) = µr(ψ). Consequently, we
have (ddcw)n ≤ (ddcϕ)n and (ddcw)n ≤ (ddcψ)n. Applying Theorem 3.5, we
conclude that w = ϕ = ψ. �

Lemma 5.3. If u ∈ E, v ∈ N , u ≤ v, and (ddcu)n = (ddcv)n, then u ∈ N (ũ).

Proof. By Lemma 3.3, the function w = P (u−v) is in Ea and satisfies (ddcw)n = 0,
implying w̃ = w. Since w + v ≤ u ≤ w, applying the concavity of u 7→ ũ yields

w̃ = w̃ + ṽ ≤ ũ ≤ w̃.

Thus, ũ = w̃ = w and u is in N (ũ). �

We are now prepared to present a proof of Theorem 5.1. This proof demon-
strates the existence of boundary values for specific functions within E , which has
been the central focus of this section.
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Proof of Theorem 5.1. From Theorem 5.2 and the assumption it follows that
there exists v ∈ N such that u ≤ v and (ddcv)n = (ddcu)n. Lemma 5.3 then
ensures that u ∈ N (ũ) as desired. �

6. Core Open Problems in the Cegrell Classes

Let µ be a non-negative Radon measure defined on a bounded hyperconvex
domain in Cn, n ≥ 2, and consider the Dirichlet problem for the complex Monge-
Ampère equation: {

(ddcu)n = µ,

u ∈ N (H),

noting that the boundary values are implicitly defined within N (H). In light of
our recent progress, as detailed in Theorem 3.5, this section aims to reignite the
interest in the core open problems of the Cegrell classes and enhance the greater
understanding in the field. We organize our discussion around the following topics:

(1) Background
(2) Existence and uniqueness of solutions
(3) Boundary values

(1) Background: For equation (6.1) to be well-posed, it is necessary for u to
be in E . A classic example of a plurisubharmonic function not in E is log |z2|.
Furthermore, as demonstrated in [4, Example 4.6], there exists a function u ∈
PSH−(Ω) satisfying u > −∞ yet not belonging to E . For n = 2, it is established

that E = PSH− ∩W 1,2
loc (Ω) [11]. Additional characterizations of E can be found

in [12, 21]. A characterization of F is available in [8], and for N , in Section 2.
It is noteworthy that Kiselman [36] defined the complex Monge-Ampère op-

erator using the multiplication of distributions in the sense of Colombeau. The
potential for applying more contemporary distribution theory to define the com-
plex Monge-Ampère operator remains an area yet to be explored.

(2) Existence and uniqueness of solutions: In the context of boundary values
satisfying (ddcH)n ≤ µ, it is inferred from [3] that H = 0 can be assumed
without loss of generality. The condition that (ddcH)n ≤ µ is trivially fulfilled if
H is a maximal plurisubharmonic function in E [11, 13, 19]. In classical potential
theory, a positive measure µ is equal to the Laplacian of a negative subharmonic
function if and only if ∫

(−w)µ < +∞, (6.1)

for some negative subharmonic function w. Drawing inspiration from this classi-
cal potential theory, Cegrell demonstrated in [18] that if µ is null on all pluripolar
sets and there exists a w ∈ PSH(Ω), with w < 0, satisfying (6.1), then a unique
solution to (6.1) in N a is guaranteed. However, Cegrell also illustrated through
an example that such an equivalence does not transfer to the pluricomplex case
(also see [41, Example 4.1]). The complexity arises because a non-negative Radon
measure may accumulate excessive mass near the boundary, precluding it from
falling within the range of the Monge-Ampère operator. A forefront result con-
cerning the existence of solutions can be found in [41, Proposition 4.3] (see also
Theorem 5.2).

Let us now continue the existence of solutions when the Monge-Ampère mea-
sure can charge on pluripolar sets. To avoid the problem in previous paragraph
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we assume that we are instead in F = {u ∈ N :
∫

Ω(ddcu)n < +∞}. It is well-

known that there can be several solutions to a Monge-Ampère equation with
right hand side that can charge a pluripolar set, also with the solutions being
non-comparable (see e.g. [22, 29, 42, 56]). We emphasize that, at present, there
is only one known example of an atomless measure µ carried by a pluripolar
set, for which a function u ∈ F exists that satisfies (6.1) ([3, Example 4.10]).
To make the difficulties more transparent recall that there is function u ∈ F(Ω)

with {u = −∞} = Ω, and (ddcu)n = 0 on pluripolar sets ([17, Theorem 5.8]),

but on the other hand there is a function u ∈ F(Ω) with {u = −∞} = Ω, and
(ddcu)n = δ0 ([4, Example 2.1]). Even if µ = dλ× δ0 defined in the bidisc in C2,
we are not even close to know whether there exists a u ∈ F with (ddcu)n = µ.
Here dλ denotes the Lebesgue measure, and δ0 the Dirac measure, both defined
in the unit disc in C. For a few partial results see [4]. The existence of the solution
of the Monge-Ampère equation in N is far from being settled.

In Theorem 3.5, we solved the uniqueness of solutions under the assumption
that the solutions are comparable in the sense of Definition 3.1, and we applied
our result in Theorem 5.2.

(3) Boundary values: Given u ∈ E, can we assert that u also belongs to N (ũ)?
Cegrell verified this for functions u ∈ E with

∫
(ddcu)n < +∞. The second-

named author extended this result under the conditions that (ddcu)n vanishes
on pluripolar sets and for some function ϕ ∈ PSH(Ω) with ϕ < 0, the following
holds: ∫

Ω
(−ϕ)(ddcu)n < +∞

(see [23]). Subsequently, Phạm in [46] showed that the existence of boundary val-
ues does not require the vanishing of (ddcu)n on all pluripolar sets. In Theorem 5.1,
we presented a proof that slightly diverges from Phạm’s unpublished approach.
However, the question of boundary values of plurisubharmonic functions in E , as
initially raised by Cegrell, remains open.

Moreover, as explored in Section 4, the principal properties of functions in
N (H), such as idempotency, rooftop equality, and geodesic connectivity, stem
from the properties of H. Selecting H as ũ focuses on maximal plurisubharmonic
functions in E , which lack strong singularities inside the domain, and their bound-
ary behavior predominantly determines the outcomes. An example illustrating
strong boundary singularity is the pluricomplex Poisson kernel [14], discussed in
[48, Example 4.5]. In light of Theorem 4.13, obtaining a method to verify whether
two maximal plurisubharmonic functions share the ‘same’ singularity is crucial.
Therefore, understanding the boundary values of these functions becomes imper-
ative.

This section does not aim to provide a comprehensive historical overview. For
readers interested in the historical context, we recommend the following refer-
ences [6, 23, 37, 39, 40].
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