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4 BOUNDARY UNIQUE CONTINUATION IN PLANAR DOMAINS

BY CONFORMAL MAPPING

STEFANO VITA

Abstract. Let Ω ⊂ R
2 be a chord arc domain with small constant. We show that a nontrivial

harmonic function which vanishes continuously on a relatively open set of the boundary cannot
have the norm of the gradient which vanishes on a subset of positive surface measure (arc length).
This result was previously known to be true, and conjectured in higher dimensions by Lin, in
Lipschitz domains. Let now Ω ⊂ R

2 be a C1 domain with Dini mean oscillations. We prove that
a nontrivial harmonic function which vanishes continuously on a relatively open subset of the
boundary ∂Ω ∩ B1 has a finite number of critical points in Ω ∩B1/2. The latter improves some
recent results by Kenig and Zhao. Our technique involves a conformal mapping which moves the
boundary where the harmonic function vanishes into an interior nodal line of a new harmonic
function, after a further reflection. Then, size estimates of the critical set - up to the boundary -
of the original harmonic function can be understood in terms of estimates of the interior critical
set of the new harmonic function and of the critical set - up to the boundary - of the conformal
mapping.

1. Introduction

Let Ω be a domain in the plane R
2. In this paper we are concerned with the local behaviour

of planar harmonic functions in Ω near a given open piece of the boundary where they vanish
continuously; that is, we consider weak solutions to

(1.1)

®

∆u = 0 in Ω ∩B1,

u = 0 on ∂Ω ∩B1.

Here we assume that 0 ∈ ∂Ω, z = (x, y) ∈ R
2, B1 = {|z| < 1} and Ω ∩ B1 is simply connected.

Aim of our work is to provide a conformal mapping Θ which locally moves the above boundary
problem into

®

∆U = 0 in {Y > 0} ∩B1,

U = 0 on {Y = 0} ∩B1.

Here u = U ◦ Θ and Z = (X,Y ) = Θ(x, y). After an odd reflection of U across the line {Y = 0},
one ends up with a harmonic function in a ball. At the end of this procedure, the map Θ turned
the original boundary ∂Ω into an interior nodal line of U

Θ(∂Ω ∩B1) ⊂ {Y = 0}.
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Then, the boundary behaviour of the solution u can be understood locally in terms of the interior

behaviour of the new harmonic function U and the boundary behaviour of the conformal mapping
Θ. This transformation provides solutions to classical problems in boundary unique continuation.

1.1. Boundary unique continuation in chord arc domains with small constant. Boundary

unique continuation typically concerns the following question: given a nontrivial solution u of (1.1),
and depending on the regularity of the domain Ω ⊂ R

n with n ≥ 2, how big can the singular set
S(u) = {u = |∇u| = 0} be - whenever it make sense - restricted to the boundary? Similar questions
can be raised for the full critical set C(u) = {|∇u| = 0} inside the domain and up to the boundary.
In this context, a famous problem was proposed by Lin [28].

Conjecture 1.1. Let us consider a harmonic function in a Lipschitz domain Ω in R
n vanishing

continuously on a relatively open subset V of the boundary ∂Ω. Suppose that the normal derivative
∂νu vanishes in a subset of V with positive surface measure. Then u ≡ 0.

The validity of the result above was first established in C1,1 domains [28], convex Lipschitz
domains [2], C1,α and C1,Dini domains [1, 24], C1 domains and Lipschitz domains with small Lip-
schitz constant [36]. We would like to mention also [29, 14] for estimates of singular and critical
sets in case of Lipschitz convex domains and Lipschitz domains with small Lipschitz constant,
respectively. The conjecture in its generality is still open.

The two dimensional case is commonly known to be true. The argument uses the subharmonicity
of log |∇u|, see [1, 37]. Among the other motivations, the paper aims to give an alternative proof
of Conjecture 1.1 in the two dimensional case. The idea is the following: after composing with the
conformal mapping Θ, one has

|∇u|2 = |detDΘ| · |∇U |2 ◦Θ,

where DΘ stands for the Jacobian of Θ. Then, the critical set of u is locally controlled in size by
the critical set of U and by the critical set of the conformal mapping

C(Θ) = {|detDΘ| = 0}.

Roughly speaking, the first is small, being an interior critical set - up to perform an odd reflection
- of a harmonic function (it consists of a finite number of points), and the latter is concentrated
along the boundary ∂Ω and has zero surface measure. The critical set of the conformal mapping
we provide is in fact the critical set of an auxiliary positive harmonic function vanishing on ∂Ω;
that is,

|detDΘ| = |∇v|2,











∆v = 0 in Ω ∩B1,

v > 0 in Ω ∩B1,

v = 0 on ∂Ω ∩B1.

The flatness of a Lipschitz domain allows to keep the interior critical points of v far from the
boundary, uniformly with respect to the Lipschitz constant (see for instance [7, Theorem 11.10] or
[26, Theorem 2.9]). So, up to further localize and standard covering (with a finite number of balls
- centered at the boundary - which depends on the Lipschitz constant), one can suppose that v has
no interior critical points, which for having local invertibility of the conformal mapping. Moreover,
along the boundary, |∇v| is σ-a.e. comparable to the density of the harmonic measure with respect
to the surface measure dσ. Besides, the harmonic measure is mutually absolutely continuous with
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respect to dσ. The latter two facts imply that the critical set of v along the boundary has zero
surface measure. In the two dimensional case, by surface measure we mean the arc length, which
corresponds to the one dimensional Hausdorff measure restricted to ∂Ω, i.e. σ = H1

x∂Ω.

An interesting consequence of our conformal approach is the extension of the two dimensional
result in Conjecture 1.1 to a more general class of planar domains, the chord arc domains with
small constant (δ-chord arc domains for δ > 0 small enough [19]). In two dimensions, a bounded
chord arc domain is a Jordan domain for which the boundary is locally rectifiable and there exists
a constant λ > 0 such that

σ(γ(z1, z2)) ≤ λ|z1 − z2|, ∀z1, z2 ∈ ∂Ω,

where γ(z1, z2) is the shortest arc in the boundary connecting z1 and z2, and σ(γ(z1, z2)) is its
length. In general, a chord arc domain in R

n is a non-tangentially accessible (NTA) domain [15]
whose boundary is Ahlfors-David regular, i.e. the surface measure on boundary balls of radius
r grows like rn−1. Then, the notion of δ-chord arc domain for δ ≤ δ∗ small enough (chord arc
domain with small constant) requires δ-Reifenberg flatness for δ small enough plus a control in
BMO sense of the oscillation of the unit normal vector to the boundary.

As we will see, the regularity and the quantitative flatness of a chord arc domain with small
constant provide the conditions together for constructing the conformal mapping Θ, just as in
the case of a Lipschitz domain. The non-tangential accessibility of the domain, together with the
Ahlfors-David regularity, allows to extend the gradient up to the boundary and to have at σ-a.e.
boundary point a well defined tangent plane as well as a normal vector. In addition, the mutual
absolute continuity between the harmonic measure and the surface measure remains valid, along
with the σ-a.e. comparability of |∇v| to the density of the harmonic measure with respect to the
surface measure [25]. These facts ensure that the critical set of v along the boundary still has
zero surface measure. The δ-Reifenberg flatness, for δ ≤ δ∗ small enough (a δ-approximation by
Lipschitz graph domains would suffice [26]), ensures that there are no interior critical points of v
near the boundary, uniformly with respect to δ∗. This, once again, provides uniform localization
and covering. Our first result can be stated as follows

Theorem 1.2. Let us consider a harmonic function in a chord arc domain with small constant Ω
in R

2 vanishing continuously on a relatively open subset V of the boundary ∂Ω. Suppose that the

norm of the gradient |∇u| vanishes in a subset of V with positive arc length. Then u ≡ 0. Actually,

given a chord arc domain with small constant Ω ⊂ R
2 and a nontrivial solution u to (1.1), then

H1(C(u) ∩Ω ∩B1/2) = 0.

In light of the above result, one might wonder if Conjecture 1.1 could be formulated in chord
arc domains with small constant in any dimension.

1.2. (n − 2) dimensional size control of singular and critical sets in C1,DMO domains.
When the boundary is more regular, one may ask for stronger information on the size of singular
and critical sets. That is, consider the following

Problem. Let u be a nontrivial solution to (1.1) in a domain Ω ⊂ R
n with n ≥ 2. Identify the

conditions on the boundary under which one can control

(1.2) Hn−2(S(u) ∩Ω ∩B1/2) ≤ C,
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or either

(1.3) Hn−2(C(u) ∩ Ω ∩B1/2) ≤ C.

This problem was recently addressed by Kenig and Zhao in a series of papers [21, 22, 23], using
also techniques developed by Naber and Valtorta [30]. The property (1.2) holds true in C1,Dini

domains [21], and counterexamples are provided below this threshold [22]. Actually, in [21] the
authors obtain upper estimates for the (n − 2) dimensional Minkowski content, which coincides
with the (n − 2) dimensional Hausdorff measure in the present planar case. The property (1.3),
which is stronger than (1.2), holds in C1,α domains [23]. The size bounds in [21, 23] are uniform
prescribing a bound on the Almgren frequency function of the solution at a macroscopic scale as
well as a control over the C1,Dini (respectively C1,α) character of the boundary parametrization.

Our conformal approach allows us to prove the stronger property (1.3), again in two dimensions,
any time the critical set of the conformal mapping has the suitable bound in measure

H0(C(Θ) ∩Ω ∩B1/2) ≤ C.

Here H0 stands for the counting measure. Our focus here is not on establishing conditions on
the boundary that yield the precise bound above, although many examples could be constructed.
Instead, we concentrate our analysis on a set of hypothesis which implies an empty critical set, i.e.

C(Θ) ∩ Ω ∩B1/2 = ∅.

With respect to our conformal mapping, this happens any time the following two conditions hold:

(P1) any solution u to (1.1) belongs to C1
loc
(Ω ∩ B1) (and the same holds true for solutions

having homogeneous Neumann boundary condition at ∂Ω);
(P2) the Hopf lemma holds true: any solution v to (1.1) which is positive in Ω∩B1 has ∂νv < 0

on ∂Ω ∩B1.

As we proved in [12], the properties above hold true when the domain is C1 with Dini mean
oscillations (C1,DMO), and this is true in any dimension. This class of domains was recently
introduced in [12] and strictly contains the C1,Dini class, see Section 3.1 for the precise definition.
For reader’s convenience, we would like to provide here a two dimensional example of a C1,DMO

local parametrization which fails to be C1,Dini: the domain is given, locally around 0 ∈ ∂Ω, by

Ω ∩B1/2 = {y > ϕ(x)} ∩B1/2, ∂Ω ∩B1/2 = {y = ϕ(x)} ∩B1/2,

with z = (x, y) ∈ R
2 and

ϕ(x) =
x

| log |x||1/2
, |x| < 1/2.

The following is our second result

Theorem 1.3. Let n = 2, Ω be a C1,DMO domain and u be a nontrivial solution to (1.1). Then,

Hn−2(C(u) ∩ Ω ∩B1/2) < ∞.

We believe that the above result is still valid in any dimension n ≥ 2. Let us stress the fact
that Theorem 1.3 is not in contradiction with [22], since the counterexamples proposed there do

not see our intermediate condition. We refer to Remark 3.1 for a detailed explanation of this fact.
Finally, although not the focus of the present paper, in Remark 3.2 we will discuss the possibility
of obtaining uniform size bounds prescribing macroscopic controls over the frequency function of
the solution and on the C1,DMO character of the boundary parametrization.
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2. The construction of the conformal mapping in chord arc domains

The conformal mapping Θ we are going to construct is the same for proving both Theorem
1.2 and Theorem 1.3. However, the construction in the first case is more delicate, since in chord
arc domains one has to work with generalized gradients, defined as non-tangential limits, and the
invertibility of the map is more subtle. The full section should be intended as the proof of Theorem
1.2.

2.1. Chord arc domains with small constant. In this brief subsection we would like to in-
troduce the chord arc domains with small constant. We refrain from providing precise definitions
here, but we do indicate some references for readers who wish to go deeper into these notions.

A NTA (non-tangentially accessible) domain Ω is one which enjoys an interior Harnack Chain
condition, as well as interior and exterior Corkscrew conditions. This notion was introduced in [15].
A chord arc domain is a NTA domain whose boundary is Ahlfors-David regular, i.e. the surface
measure on boundary balls of radius r grows like rn−1. We refer to [5] for precise definitions and
nice characterizations of chord arc domains. We also would like to refer to [25] for the proof of the
mutual absolute continuity between arc length and harmonic measure in chord arc domains, see
also [9, 10, 34] for the result in any dimension and [8, 16] for further references. For the definition of
a δ-chord arc domain, or chord arc domain with small constant, we refer to [19, Definition 1.10]: it
is a chord arc domain which is δ-Reifenberg flat for δ ≤ δ∗ small enough [32] and there is sufficient
control on the oscillation of the unit normal vector (in the BMO sense), see also [31, 17, 18, 20, 6].
Finally, we refer to [26, 27] for useful considerations on the gradient of positive harmonic functions
vanishing continuously on a relatively open subset of a chord arc boundary with small constant.

2.2. Non-tangential limits. Given a chord arc bounded domain Ω in R
n and the surface measure

σ on ∂Ω, one has for σ-a.e. z the existence of the tangent plane to ∂Ω in z and of the outer unit
normal vector ν(z). Then, given any parameter α > 0, let us consider the non-tangential approach
region to a point on the boundary z ∈ ∂Ω

Γα(z) = {ξ ∈ Ω : (1 + α)d(ξ, ∂Ω) > |z − ξ|},

and, given a measurable function w defined in Ω, the non-tangential maximal function at the
boundary point z ∈ ∂Ω

Nαw(z) = sup
ξ∈Γα(z)

|w|(ξ).

The definitions above do not depend by the choice of α > 0, so we can fix α = 1 and simply write
Γ(z) = Γ1(z) and Nw(z) = N1w(z). Then, we say that w converges non-tangentially to f at
z ∈ ∂Ω if

lim
ξ∈Γ(z), ξ→z

w(ξ) = f(z).

2.3. Positive harmonic function vanishing on ∂Ω with no interior critical points. The
first step is the construction of a solution to

(2.1)











∆v = 0 in Ω ∩B1

v > 0 in Ω ∩B1

v = 0 on ∂Ω ∩B1.
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The existence of such a function is given by the solvability of the Dirichlet problem for the Laplacian
on the chord arc domain Ω ∩B2, which is regular for the solvability of the Dirichlet problem. We
can assume that Ω∩B2 is still connected, so it is a bounded chord arc domain. One can prescribe
as Dirichlet data on ∂(Ω∩B1) the Green function Gz0 of Ω∩B2 with a given pole z0 ∈ Ω∩B2. The
function Gz0 vanishes on ∂(Ω∩B2) and is positive inside. Then, by the strong maximum principle
v is positive inside Ω ∩ B1. Moreover, this function can be built in such a way that |∇v| > 0 in
Ω ∩ BR for some 0 < R ≤ 1, see [26, Lemma 3.8]. Here we possibly have to restrict the ball.
However, there exists δ∗ small enough such that if Ω is δ-chord arc with δ ≤ δ∗ then for some
possibly small positive R = R(δ∗) and some C = C(δ∗) > 1, and any ξ ∈ ∂Ω ∩B2/3

(2.2)
1

C

v(z)

d(z, ∂Ω)
≤ |∇v(z)| ≤ C

v(z)

d(z, ∂Ω)
∀z ∈ Ω ∩BR(ξ).

Then, without loss of generality we can take ξ = 0 and suppose that R = 1. The full result follows
by a standard covering argument of Ω ∩B2/3 with a finite number of balls depending on δ∗.

2.4. The size of the singular set of positive harmonic functions at the chord arc bound-
ary. Now, being v a nonnegative solution to (2.1) in a bounded chord arc domain, by [25] and [27,
Theorem 1] we have that

(i) the harmonic measure ω is absolutely continuous with respect to σ on ∂Ω ∩B1 and dω ∈
A∞(∂Ω ∩B1, dσ);

(ii) the limit

∇v(z) := lim
ξ∈Γ(z), ξ→z

∇v(ξ)

exists for σ-a.e. z ∈ ∂Ω ∩ B1. Moreover, ∇v(z) = −|∇v(z)|ν(z) where ν stands for the
outer unit normal vector;

(iii) there exists p > 1 such that N|∇v| ∈ Lp(∂Ω ∩B1, dσ);
(iv) dω = |∇v|dσ for σ-a.e. z ∈ ∂Ω ∩B1.

Summing up the information above, we have that |∇v| can not vanish on a set of positive surface
measure, otherwise v ≡ 0. Then, combining this information with the fact that v has no interior
critical points, we have

(2.3) H1(C(v) ∩ Ω ∩B1) = 0,

with the critical points (which are singular points) all concentrated along the boundary.

2.5. The harmonic conjugate. Let us construct the harmonic conjugate of v by solving

(2.4) ∇v = J∇v in Ω ∩B1, J =

Å

0 1
−1 0

ã

.

Here J is the clockwise rotation matrix of angle π/2, such that J−1 = JT = −J . The condition
above corresponds to the Cauchy-Riemann equations. The form is closed in a simply connected
domain, so (2.4) admits a solution. In particular v has the following properties

∇v · ∇v = 0, |∇v| = |∇v|,

and is harmonic in Ω ∩ B1. Moreover, we can suppose that v(0) = 0, considering instead ṽ(z) =
v(z)− v(0).
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2.6. A hodograph conformal transformation and its invertibility. Following the idea we
introduced in [35], let us define the hodograph conformal mapping involving v, v

Θ(x, y) = (v(x, y), v(x, y)) = (X,Y ),

with Θ(0) = 0. We are going to prove that Θ is a homeomorphism. This transformation has good
properties: it is conformal, i.e. preserves harmonicity, and flattens the boundary where v vanishes.
It is clear that, up to dilations, the map send the open set Ω ∩ B1 into B+

1 = {Y > 0} ∩ B1 and
∂Ω∩B1 into B′

1 = {Y = 0}∩B1. Actually, the map is a deformation inside the domain, so it does
not preserve balls. However, this interior deformation does not affect our analysis, so for simplicity
we can suppose without loss of generality that the image domain is B+

1 . The Jacobian associated
with Θ is given by

DΘ =

Å

∂xv ∂yv
∂xv ∂yv

ã

, with |detDΘ| = |∇v|2 = |∇v|2.

Hence, the fact that v has no interior critical points implies the invertibility of the map between
the open sets Ω ∩ B1 and B+

1 . In order to extend the invertibility up to the boundary, we need
to prove that the restriction of the map along the boundary is injective there. In fact, along ∂Ω,
the map Θ may have many critical points, but they are a set of vanishing surface measure, as we
have already remarked. The injectivity follows from the following consideration. Let us consider
a path γ on ∂Ω connecting two points z1, z2 ∈ ∂Ω; that is, γ : [t1, t2] → R

2 with suppγ ⊂ ∂Ω
and γ(t1) = z1, γ(t2) = z2. The curve is rectifiable by definition of chord arc domain. Then the
parametrization can be chosen as a Lipschitz function. We choose the orientation in such a way
that a clockwise rotation of angle π/2 of the tangent vector to the curve γ′(t) goes in the same
direction of the outer unit normal vector ν(γ(t)). Then

v(z2)− v(z1) =

ˆ t2

t1

J∇v(γ(t)) · γ′(t) dt > 0.

Here, at ∂Ω, we are using the fact that γ′ is defined σ-a.e. and is a bounded function (the
parametrization is Lipschitz continuous). Moreover, the non-tangential gradient of v equals −|∇v|ν
as a Lp(dσ) function for some p > 1, summing (ii)-(iii), and it is nonzero σ-almost everywhere.
Notice that −Jν(γ(t)) is parallel to γ′(t) and goes in the same direction. This means that, restricted
to ∂Ω, the first component Θ1(γ(t)) = v(γ(t)) of the map Θ ◦ γ is monotone increasing in t, and
hence it is injective. This allows to extend the invertibility of the conformal mapping up to the
boundary.

2.7. Size control of the critical set. Let us consider U = u ◦Θ−1, which solves
®

∆U = 0 in B+
1

U = 0 on B′
1.

Hence, considering the odd reflection U(X,Y ) = −U(X,−Y ) across {Y = 0}, one ends up with a
harmonic function on the ball B1 for which Θ(∂Ω) is an interior nodal line {Y = 0}. Then, since

|∇u|2 = |detDΘ| · |∇U |2 ◦Θ,

we have
H1(C(u) ∩ Ω ∩B1/2) ≤ H1(C(Θ) ∩Ω ∩B1/2) +H1(C(U) ∩B+

1/2) = 0.

The latter is true due to (2.3) and classic size estimates of interior critical sets of harmonic functions.
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3. The construction of the conformal mapping in C1,DMO domains

The conformal mapping Θ we consider for the proof of Theorem 1.3 is the same we built in the
previous section, but enjoys better properties. The full section should be intended as the proof of
Theorem 1.3.

3.1. C1,DMO domains. First, let us recall the definition of C1,Dini domains in R
n with n ≥ 2. In

this case, the local boundary parametrization ϕ is a C1 function and the modulus of continuity of
its gradient is a Dini function. This means that locally

(3.1) Ω ∩B1 = {xn > ϕ(x′)} ∩B1, ∂Ω ∩B1 = {xn = ϕ(x′)} ∩B1,

with x = (x′, xn) ∈ R
n−1 × R, ϕ ∈ C1(B′

1) with B′
1 = B1 ∩ {xn = 0}, ϕ(0) = 0, ∇x′ϕ(0) = 0.

Then, there exist a positive constant and a modulus of continuity η such that for all i = 1, ..., n− 1
and x′, y′ ∈ B′

1

|∂iϕ(x
′)− ∂iϕ(y

′)| ≤ Cη(|x′ − y′|)

with

(3.2)

ˆ 1

0

η(r)

r
dr < ∞.

Let us now proceed with the definition of C1,DMO domains. Here, the boundary of the domain is
locally parametrized by a C1 function ϕ whose partial derivatives ∂iϕ are of Dini mean oscillations.
In other words, the parametrization is as in (3.1) with ϕ ∈ C1(B′

1), ϕ(0) = 0, ∇x′ϕ(0) = 0 and

ηi(r) = sup
x0∈B′

1

 

Br(x0)∩B′

1

|∂iϕ(x
′)− 〈∂iϕ〉x0,r|dx

′, with 〈∂iϕ〉x0,r =

 

Br(x0)∩B′

1

∂iϕ(x
′) dx′,

is a Dini function for any i = 1, ..., n− 1, i.e. satisfies (3.2).

3.2. C1,DMO domains enjoy properties (P1) and (P2). As we remarked in [12], after a stan-
dard local flattening of the C1,DMO boundary, the validity of (P1) follows by C1 boundary regu-
larity up to a flat boundary where homogeneous Dirichlet or Neumann boundary conditions are
prescribed, for solutions of PDEs with DMO coefficients. We refer to [11, Proposition 2.7] and [13,
Theorem 1.2]. Moreover, always after a standard flattening, property (P2) follows by the Hopf
Lemma proved in [33] on flat boundaries and DMO coefficients.

Remark 3.1. We would like to remark here that our result in C1,DMO domains is not in contra-
diction with the counterexample in [22]. In fact, the two dimensional example there is given by a
local paramentrization with fails to be C1,Dini but is convex. As we pointed out in [12, Proposition
3.1], a local C1,DMO parametrization ϕ which is convex satisfies the C1,Dini-paraboloid condition
[4]; that is,

ω(r) = sup
|x|≤r

ϕ(x)

|x|

is a Dini function. The same consideration above explains also why the validity of the Hopf lemma
in C1,DMO domains is not in contradiction with the counterexample in [3].
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3.3. Positive harmonic function vanishing on ∂Ω with no critical points. The first step is
the construction of a solution to (2.1). The existence of such a function is done as in Section 2.3.
However, properties (P1)-(P2) together imply that v ∈ C1 up to the boundary and that ∂νv < 0
on ∂Ω∩B1, which says, up to restrict a bit the ball R ≤ 1, that v has no critical points in Ω∩BR.
This further localization can be done uniformly, so again we can suppose R = 1.

3.4. The harmonic conjugate. Let us construct the harmonic conjugate v of v as in Section
2.5. Let us remark that v solves

®

∆v = 0 in Ω ∩B1

∂νv = 0 on ∂Ω ∩B1.

Then, by (P1) again, one has v ∈ C1 up to ∂Ω.

3.5. A hodograph conformal transformation and its invertibility. Let us define the hodo-
graph conformal mapping involving v, v as in Section 2.6

Θ(x, y) = (v(x, y), v(x, y)) = (X,Y ),

which is of class C1 with Θ(0) = 0. Then, since v has no critical points in Ω∩B1, the invertibility
of the map is even more direct this time, since |detDΘ| > 0 in Ω∩B1. Hence, this time Θ is a C1

diffeomorphism.

3.6. Size control of the critical set. Let us consider U = u ◦ Θ−1, and consider again the odd
reflection across {Y = 0}. One ends up again with a harmonic function on the ball B1 for which
Θ(∂Ω) is an interior nodal line {Y = 0}. Then, since

|∇u|2 = |detDΘ| · |∇U |2 ◦Θ,

we have

(3.3) H0(C(u) ∩ Ω ∩B1/2) ≤ H0(C(Θ) ∩ Ω ∩B1/2) +H0(C(U) ∩B+
1/2) = C.

The latter is true due to classic size estimates of interior critical sets for harmonic functions.

Remark 3.2. Similarly to [21], one could give a notion of Almgren frequency function for the
solutions u to (1.1) in C1,DMO domains

N(0, u, r) =
r
´

Ω∩Br

|∇u|2 dx
´

Ω∩∂Br

u2 dσ
,

and quantify the bound in (3.3) in terms of a macroscopic bound on the frequency function at 0,
and a bound on the C1,DMO-character of the boundary parametrization. In fact, these two bounds
combined would give a macroscopic bound on the Almgren frequency for the solution U after
composition with the conformal mapping. Let us remark that a control over the C1,DMO-character
of the domain gives the following uniform bounds for the associated conformal mapping

1

C
≤ |detDΘ| ≤ C.

The bound from above is trivial, while the one from below comes from a quantified version of the
Hopf lemma that can be obtained from [33].
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