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Abstract. In source localization problems, the aim is to locate the sources within a

domain that causes given measurements on the boundary. In this type of problem,

biasing of the solution is one of the main causes of mislocalization. A technique

called standardization was developed to reduce biasing. However, the lack of a

mathematical background for this method can cause difficulties in its application

and confusion regarding the reliability of solutions. Here, we give a rigorous and

generalized background for the technique using the Bayesian framework to shed light

on the technique’s abilities and limitations. In addition, we take a look at the noise

robustness of the method that is widely reported in numerical studies. The paper

starts by giving a gentle introduction to the problem and its bias and works its way

toward standardization.
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1. Introduction

The inverse source localization problem of the Poisson equation takes the following form

under Neumann boundary conditions:

∇ · (M∇u) = f in Ω, (1)

n · (M∇u) = g on ∂Ω, (2)

for any f ∈ L2(Ω) and g ∈ L2(∂Ω), where tensor-valued M encodes the conductivity of

the domain and n denotes an outward unit normal vector of Ω. The goal is to localize the

few small pointwise compact supports of the source term. Such a problem can arise, e.g.,

in the electromagnetic inverse source problem [1, 2], electrocardiography inverse problem

[3], and inverse problems of geophysics [4] such as electrical resistance tomography [5, 6].

In these cases, among many others, the problem is linearised to obtain the numerical

solution due to the domain being geometrically complex and inhomogeneous by its

parameters. For example, in the quasi-static electromagnetic inverse source localization

problem [7], the usage of a realistic model of the head and folded brain structure helps

to locate the brain activity [8, 9], geometrically detailed model also helps estimate

cardiac electrical activity from voltage distributions measured on the body surface in

electrocardiography inverse problem [10]. Moreover, in this ill-conditioned problem, the

measurements obtained from the domain’s boundary are considered noisy. Thus, one

need to solve such a x ∈ R
n from the linear inverse problem

y = Lx+ q, (3)

that it has a set of non-zero values within the support of f . Here the y ∈ R
m denotes

measurements, L ∈ R
m×n is the system matrix, and noise vector q ∈ R

m is assumed

to follow zero-mean Gaussian distribution N (0, C) with measurement noise covariance

matrix C ∈ R
m×m.

The support of f is often assumed to be compounded from a few distinct points

called true sources. One possible approach is to use a sparse solver to reconstruct a

nearly point-like source. However, more complex algorithms pose limitations to the

forward model’s resolution, thus making a trade-off between spatial accuracy and the

sparsity of the solution, e.g, in the case of the well-known LASSO when it is implemented

using Least Angle Regression algorithm [11]. Consequently, the practice has been to

use lighter inverse algorithms and choose the component of the reconstructed parameter

vector with the largest magnitude as the indicator of source location [12, 13, 14]. This

localization practice has been demonstrated to be robust and reliable with a range of

inversion methods [15, 16].

As the forward modeling incorporates with probabilistic interpretation of the noise,

Bayesian modeling can be considered appropriate for regularization [17]. Consider

a common Gaussian process regression model, also called Bayesian minimum norm

estimate (BMNE) [18], with a posterior composed of a Gaussian likelihood y | x ∼
N (Lx, C) and a Gaussian prior x ∼ N (0,Γ), where and Γ ∈ R

n×n is a diagonal prior

covariance. An estimate for the realization of x can be obtained as the maximum a
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posteriori (MAP)

x̂ = arg maxx∈Rn {N (Lx, C)×N (0,Γ)} , (4)

which constitutes the following L2–L2 minimization problem, whose objective function

is composed of a L2 norm-based data fit and regularization term the latter one of which

can be associated with Tikhonov regularization:

min
x∈Rn

{

(y − Lx)TC−1(y − Lx) + xTΓ−1x
}

. (5)

This model, however, poses some challenges: Due to the maximum principle of elliptic

partial differential equations [19, 20], the maximum of the forward problem lies on the

boundary. Consequently, it biases the estimated source locations to the part of the

boundary where the measurement sensors are located. The most intuitive approach to

tackle bias is to use solution weighting that utilizes some norm of the system matrix

columns [21, 22]. This, however, could reduce the bias only depth-wise away from the

measurement sensors. More comprehensive unbiasing can be achieved by weighting the

regularization so that the point spread of each covered parameter is taken into account

[23, 24] in which case complete unbiasing can be achieved with noiseless data and when

the regularization parameter tends to zero. As the third known way to counter the

bias, Pascual-Marqui has introduced the technique called standardization [14], where

the components of an inverse solution are post-hoc weighted by the square roots of the

diagonal elements of the resolution matrix, that is

R = ΓLT
(

LΓLT + C
)−1

L (6)

as derived in [25], to form unbiased estimations for covering the location of a single

source. Resolution matrix is also known as Backus-Gilbert resolution kernel [26, 27]. It

defines a relation between inverse solution and forward model parameters under linear

inversion, essentially in L2-L2 minimization. It is mainly applied to electromagnetic

source imaging [28] and inversion problems of geophysics [25]. The matrix can be used

to estimate the resolution length of the estimation when the forward and inverse models

are known, and its diagonal elements are interpreted to evaluate the resolvability of the

target source [29]. Here we define localization bias as in [13] saying that the solution is

unbiased when the point-spread function has its maximum at the correct source location,

this means that the kth resolution matrix column has its maximum component at kth

entry, as we will see later. This definition assumes no uncertainty related to the forward

model.

Due to the formulation of the weights, the standardization weighting procedure is

closely related to the standardization of Gaussian random variables as the marginal

distribution of MAP for kth entry is N (0, Rkk). The localization of the source

via standardization of Gaussian process regression has been previously shown to be

simultaneously unbiased and errorless under specific conditions [30, 31], e.g., using the

boundary of a volumetric structure as the domain for calculations. By errorless, we

mean that the entry with the maximum magnitude of MAP estimate corresponds to the
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location of the true source. Moreover, the robustness of the method to the measurement

noise was described in [32, 33].

Even though standardization has been successfully applied in brain imaging

[34, 35, 36], its theoretical foundation remains unexplored and thus it is yet unclear

when this method performs well and what are the conditions under which we can

recover an exact source location. This work aims to shed light on the theoretical

background of the standardization and to provide the theoretical framework to apply

standardization to problems that are modeled with the help of the Poisson differential

equation. In particular, we consider the standardization technique within a general

discretized Poisson-type forward problem and a general Gaussian process regression

model for inversion to answer these open questions. In practice, we analyze the

forward model-induced localization bias related to the L2-norm data fitting and how

standardization can reduce it through simple settings. In this study, we are working

under the assumption that there is only one source to be localized and the discretized

forward model describes reality reasonably well, i.e., there is no uncertainty related to

it. In our analysis, it means that measurement can be written as y = aLk, where Lk

is kth column of the system matrix and a is source strength. As we will see later, we

can bypass the limitation of one source by generalizing the standardization technique

for every zero-mean Gaussian prior and using an educated guess about the prior via

Kalman filtering.

As our main contributions, we formalize a Bayesian extension of the technique

itself, derive the general conditions for perfect localization via the maximum of the

reconstruction, and examine the noise robustness of the localization by deriving a lower

bound probability for perfect localization for Gaussian distributed measurements. In

numerical examples, we demonstrate how multiple simultaneous and correlated sources

can be recovered and tracked via the generalized formulation of standardization which

is an impossible task with the original standardization [37, 38], and we demonstrate how

the lower bound relates to the observed localization results.

The paper is structured as follows. The forward problem and standardized inversion

method will be introduced in Section 2. The forward model-induced localization bias and

how standardization reduces it is examined in Section 3. The necessary conditions for

perfect localization via standardization are presented in Section 4. The lower probability

limit for perfect localization from Gaussian distributed data is presented in Section

5. Computational examples of unbiased localization and noise durability are given in

Section 6. Finally, this paper ends with a discussion and conclusion.

2. Methods

2.1. Standardized low-resolution brain tomography as probabilistic model

In this section, we give a probabilistic interpretation of the standardization technique

introduced in [14]. Simultaneously, we generalize the original underlying prior model
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one step further assuming independent but not identically Gaussian distributed sources.

Standardization is a post-hoc weighting of minimum norm estimate [18] developed to

overcome its localization bias. Namely, the method aims to have the highest magnitude

of the reconstruction to be located where the true source lies, and thus it produces

unbiased estimations in noiseless situations when considering that there are no modeling

uncertainties, i.e., models are perfect.

Let us assume that there is a random source spread and placement x ∼ N (0,Γ)

and noise vector n ∼ N (0, C) forming the randomized measurements y = Lx+n. The

task is to find the most probable originator for the source spread. This corresponds to

the minimization problem of the form (5) in which L has been substituted with LΓ1/2

as the forward operator, where [Γ1/2]ii = Γ
1/2
ii , and identity matrix as the Tikhonov

regularization matrix. Because of this, we are able to rewrite the measurements as

y = LΓ1/2u+ n where naturally u ∼ N (0, I).

A rigorous definition for the post-hoc weights can be given by filling in the blanks

via probability theory from the reasoning in [14]: Since the resolution matrix itself is an

intermodel concept, we should also consider the weighted reconstruction as such, and

therefore, we could derive the distribution of measurements via marginalized likelihood,

i.e.,

π(y) =

∫

Ω

N (LΓ1/2u | C)N (u | I) du = N (0 | LΓLT + C) (7)

from which one could define the distribution for MAP estimator of u as

π(û) = π(Γ−1/2L†y) = N
(

0,Γ−1/2RΓ1/2
)

. (8)

In addition, one should remark that û is not a MAP estimator of the original source

localization problem. It is then required to project the standardized estimation back via

Γ1/2. Consequently, by component-wise standardizing û for some sampled y, we obtain

eTk Γ
−1/2z =

eTk Γ
−1/2L†y

√

eTk Γ
−1/2RΓ1/2ek

, (9)

where ek is kth unit basis vector of Rn and z ∈ R
n is the parameter vector corresponding

to the original source localization problem. Since Γ is diagonal,

zk =
eTk ΓL

T
(

LΓLT + C
)−1

y
√

eTkRek
= R

−1/2
kk x̂k (10)

of which the largest in absolute value is chosen to indicate the estimated position of the

source.

The standardization technique is analogical to the Gaussian standardization of the

previous MAP estimation applied to each vector component individually. It means that

each projection [LΓ1/2]k to measurement space is as many standard deviations away from

the mean that is zero. This is equivalent to Z-scores [37, 39], where a set of Gaussian

random variables from different scales are unified to ensure a fair comparison.

As standardization is a weighting of the solution vector depending only on the model

parameters, we are able to write the standardized minimum problem as the following



On Bias and Its Reduction via Standardization 6

minimization problem

min
z∈Rn

{

(y − LTz)TC−1(y − LTz) + zTTTΓ−1Tz
}

, (11)

where T = Diag (R)1/2 and Diag(R) denotes a diagonal matrix with diag(R) as its

diagonal elements. It should be noted that due to the formulation of the standardization,

the technique works best in locating one source. The shortcomings of the method in

locating several simultaneous sources have been demonstrated before [38].

3. Localization bias of BMNE and its reduction

In this section, we examine which model parameters are responsible for the solution

bias of BMNE, i.e., which one determines the component of the reconstruction

vector with the largest absolute value. For that reason, we need to consider the

orthogonal decomposition of system matrix columns to parallel with measurement y

and components normal to it. We could see these components of decomposition as how

much a column Lk of the system matrix contributes to explaining the measurements

and how much of it is a nuisance. To measure the proportion that a vector is parallel

to measurement, we use normalized scalar projection (NSP)

projy(Lk | C) =
yTC−1Lk

√

yTC−1yLT
kC

−1Lk

(12)

presented for kth system matrix column, from which we can define normalized scalar

rejection as 1−projy(Lk | C). Utilizing the latter one, we can obtain that orthogonal sets

exist, for example, in a homogenous conductivity disk in Figure 1. From the illustration,

we see how the perpendicular set is larger for a source far from the sensors, indicating

that the accurate localization of such a source is more difficult than a source near sensors.

3.1. Example: localization bias of Minimum norm estimate in three source locations

Let us find the reconstruction x̂ = [x̂1, x̂2, x̂3] of a point source. As an illustration,

assume that the system matrix can be written as L = [L1, aL1, L3], where a ∈ R. Now,

assuming that we have a perfect forward model and the true source is at the location of

component 1, meaning that y is parallel with L1. To simplify the notation, we define

y = L1, and Mahalanobis distance as

ρ(u,v | Σ) =
√

(u− v)TΣ−1(u− v). (13)

By utilizing Mahlanobis distance, we can decompose another system matrix entry L3 in

parallel and orthogonal part with respect to L1 such that

ρ(L3, 0 | C)2 = ρ(bL1, 0 | C)2 + ρ(L⊥
1 , 0 | C)2 (14)

for some b ∈ R. Within this notation, the minimization problem (5) can be written as

min
x∈R3

{

ρ(L1,L1x1 + aL1x2 + bL1x3 | C)2 + ρ(0,L⊥
1 x3 | C)2 + ρ(0,x | Γ)2

}

. (15)
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Figure 1. Here we plot the normalized scalar rejection 1 − proj
y
(Lk | I) for two

different source configurations. A homogeneous conductivity disk where measurement

sensors are on the upper half of the disk (grey balls) is used as the modeling scheme.

Low values (dark blue area) are achieved when the columns of the system matrix

associated with this area are almost or completely parallel (as vectors) to measurements

caused by the source indicated via the red arrow. Values near 1 are achieved when

the columns are normal to measurement. The exact value 1 is indicated via dark

red coloring. Decomposing each column of the system matrix to a vector that can

explain the measurements (that is parallel in the optimal case) and nuisance part

(normal) helps us to understand the depth bias obtained from the estimator. The left

image shows the value contours for a source near sensors, and the right-hand-side one

represents a situation where the source is far from the sensors.

Moreover, when the 3× 3 prior covariance is diagonal,

Γ =





p1 0 0

0 p2 0

0 0 q



 , (16)

the solution is of the form




x̂1

x̂2

x̂3



 =





p1L
T
1 (L

TΓL+ C)−1L1

ap2L
T
1 (L

TΓL+ C)−1L1

b(q−1 + (L⊥
1 )

TC−1L⊥
1 )

−1LT
1 (L

TΓL+ C)−1L1



 (17)

We can easily see that the localization estimation is correct, i.e., absolute value x̂1 is

the largest if and only if

p1 > |a| p2 and p1 > |b| (q−1 + (L⊥
1 )

TC−1L⊥
1 )

−1. (18)

Relations between the expressions p1, |a| p2, and |b| (q−1 + (L⊥
1 )

TC−1L⊥
1 )

−1 in the

inequalities dictate the biasing of the inverse solution. In effect, the system matrix

columns model the measurements produced by sources in different locations. Due to

the maximum principle, the columns corresponding to sources near the boundary will

have higher absolute values than a column corresponding to a deeper interior location.

If the estimated variables are assumed to be identically distributed, meaning that there

is a positive number δ that Γ = δI, then the location of the maximum entry of the
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reconstruction mostly depends on the system matrix values if the system matrix columns

are not distinct enough, i.e., NSP is high between columns of the system matrix.

3.2. Standardization reduces solution bias

In this section, we show that the standardization technique introduced in 2.1 reduces

the bias of BMNE presented in the previous section. In practice, we show that the set

of parameter vector components attaining the maximum magnitude is analogical with

the set of individual system matrix columns that are parallel with given measurements

y. Here we denote the subset of system matrix column indices that are parallel to

measurement y by

S(y) =
{

k ∈ [1, n]: projy(Lk | C) = 1
}

. (19)

In this example, it means that there exists a real number sk for such that Lk = sky,

when k ∈ S(y). Standardization weights are defined as the reciprocal of the square root

of diagonal elements of the resolution matrix

Rkk = ΓkkL
T
k (LΓL

T + C)−1Lk. (20)

If we now assume that the measurement data is produced by a unit-strength source at

location i, i.e., y = Li, we obtain that every standardized component corresponding to

the set S(y) have the form

|zk| =
∣

∣

∣

∣

∣

skΓkkL
T
i (LΓL

T + C)−1Li
√

s2kΓkkLT
i (LΓL

T + C)−1Li

∣

∣

∣

∣

∣

=
√

ΓkkLT
i (LΓL

T + C)−1Li, (21)

meaning that the component values are only distinguished by the values of the

diagonal prior but not by the magnitude of the corresponding system matrix’s elements.

Moreover, the standardized reconstruction has its maximum component at every index

k ∈ S(y) as shown next.

Lemma 3.1. Supremum of

sup
u∈Rn

∣

∣

∣

∣

uTΣ−1v

(uTΣ−1u)1/2

∣

∣

∣

∣

(22)

is obtained for u parallel with v, where v is non-zero vector and Σ is positive definite.

Proof. We can see by straight calculation that

sup
u

∣

∣

∣

∣

uTΣ−1v

(uTΣ−1u)1/2

∣

∣

∣

∣

= sup
û

∣

∣

∣

∣

ûTv̂

(ûTû)1/2

∣

∣

∣

∣

= ‖v̂‖2 =
(

vTΣ−1v
)1/2

, (23)

due to the positive definity of the matrix Σ, and the supremum is reached with u parallel

with v.

It follows that in our case of the Bayesian model, the maximum reconstruction

vector component is the one having maximum prior variance Γkk, where k ∈ S(y).
Therefore, the prior model can be used to guide the solution to a certain region based

on the prior information on the source location and to avoid the possible case where the
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solution is non-unique due to S(y) containing more than one index. The alternative

unbiasing technique called exact low-resolution electromagnetic tomography (eLORETA)

[23] is less flexible in this regard because the weighted regularization is fixed, and thereby,

does not allow any alternation of the solution via prior information.

Moreover, we can connect standardization with Mahalanobis distance by noticing
√

ΓjjLT
j (LΓL

T + C)−1Lj =
√

Γjjρ(0,Lj | LΓLT + C), (24)

where the distance is taken with respect to the distribution of measurements as a

marginal distribution from the likelihood. Standardization by this Mahalanobis distance

can be interpreted so that each projection Lj from the source space to the measurement

space is equally achievable by the distribution of measurements, i.e., they are as many

standard deviations away from the mean.

4. Generalized case: Gaussian distributed source configuration

To expand the theory presented in Section 2.1, we consider general prior covariance

instead of diagonal ones. For that reason, we use the matrix square roots, calculated

utilizing Schur factorization [40], in the modified system matrix LΓ1/2. One could

use the left Cholensky factor of Γ instead, but we make our decision for the sake of

simplicity in notations and this particular decomposition is suggested to be used [30]

due to its symmetry. In this section, we show that we have a similar index set for

maximizing components for reformulated problems as the one presented in the previous

section. Likewise in Section 2.1, we consider randomized measurements written as

y = LΓ1/2u+ n. We introduce notation L̂ = LΓ1/2 to simplify the writings.

Let us define the decomposition of the new system matrix first, denoting

K̂ =
[

LΓ1/2
]

k
, k ∈ Ŝ (y) , (25)

where

Ŝ (y) =
{

k ∈ [1, n]: projy
([

LΓ1/2
]

k
| C
)

= 1
}

, (26)

and

Ĥ =
[

LΓ1/2
]

k
, k ∈ [1, n] \ Ŝ (y) . (27)

The following theorem states that the index set Ŝ(y) is, in fact, the set of nodes

having maximum reconstruction value for this newly formatted problem.

Theorem 4.1. For a standardized minimum norm problem

min
z∈Rn

{

ρ(y, K̂T̂z+ ĤT̂z | C)2 + ρ(0, T̂z | I)2
}

, (28)

where

T̂ = Diag

(

[

K̂T

ĤT

](

[ K̂ Ĥ ]

[

K̂T

ĤT

]

+ C

)−1

[ K̂ Ĥ ]

)1/2

, (29)
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if there exists a particular solution v0 for K̂v0 = y, where the sub-system matrix is given

by Equation 25, the maximum components of the reconstruction vector z corresponds

the system matrix column that can be written as K̂v and v belongs to the vector space

span(v0).

Proof. The problem of finding the maximizing index

arg maxi∈[1,n]

{

AT
i Σ

−1y
√

AT
i Σ

−1Ai

}

, (30)

where Ai is the ith column vector of the matrix A = [K̂ Ĥ] and Σ = AAT + C, can be

written as the following maximization problem

maximize xTATΣ−1y subject to
√
xTATΣ−1Ax = c, (31)

for some c > 0. The problem can be solved by first forming the following Lagrangian

L (x, λ) = xTATΣ−1y − λ(
√
xTATΣ−1Ax− c) (32)

and then calculating the derivatives

∂L

∂x
= (ATΣ−1y)T − λxTATΣ−1A√

xTATΣ−1Ax
, (33)

∂L

∂λ
= c−

√
xTATΣ−1Ax. (34)

By setting these to zero, we get

ATΣ−1

(

y − λ

c
Ax

)

= 0. (35)

Unless Σ−1(y− (λ/c)Ak) belong to the null-space of AT for some k ∈ [1, n] \ Ŝ (y) and

λ ∈ R which cannot be realized since y is assumedly image of A, therefore, there are no

local maxima for that index set. Contrarily there exists maximizing index k ∈ Ŝ (y) by

definition.

In addition, we can write a new maximization problem for the second case, noting

that optimum should contain a vector linearly dependent on y, and also yTΣ−1y does

not affect on maximum so that it can be neglected from the problem statement, that is

maximize xTĤTΣ−1y subject to

√

(Ĥx + y)TΣ−1(Ĥx+ y) = c. (36)

Solving this similarly as above, derivatives of this Lagrangian are

∂L

∂x
= (ĤTΣ−1y)T − λ

xTĤTΣ−1Ĥ + yTΣ−1Ĥ
√

(Ĥx+ y)TΣ−1(Ĥx+ y)
, (37)

∂L

∂λ
= c−

√

(Ĥx+ y)TΣ−1(Ĥx+ y). (38)

Yielding to the equation

ĤTΣ−1

((

1− λ

c

)

y − λ

c
Ĥx

)

= 0 (39)
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that has the solution (x, λ) = (null(ĤTΣ−1Ĥ), c) = (null(Ĥ), c) due to rank-nullity

theorem. Implying that the maximizing system matrix column comes from the vector

space span(y).

The formulation of the problem of the previous Theorem is analogical to the

following, which is written using the original system matrix:

min
z∈Rn

{

ρ(y, LT̂z | C)2 + ρ(0, T̂z | Γ)2
}

, (40)

where

T̂ = Γ1/2Diag
(

Γ1/2LT(LΓLT + C)−1LΓ1/2
)1/2

. (41)

The proper standardized problem involving the back-projection to the original problem

uses the transformation

T = Γ1/2Diag
(

Γ1/2LT(LΓLT + C)−1LΓ1/2
)1/2

Γ−1/2, (42)

which yields, in the case of diagonal covariance, the same as the problem 11. Thus, we

have presented a natural extension of the technique.

5. Noise robustness of localization via standardized model

Here we consider a case where the assumed Gaussian likelihood model holds, i.e., the

measurements are Gaussian distributed. We start by assuming the location of the true

source is in the kth node so that y ∼ N (L̂k, C). In order for the standardized method

to localize the activity correctly, we must have
∣

∣

∣L̂T
kΣ

−1y
∣

∣

∣

√

L̂T
kΣ

−1L̂k

≥

∣

∣

∣L̂T
i Σ

−1y
∣

∣

∣

√

L̂T
i Σ

−1L̂i

for all i ∈ [1, n], (43)

where Σ = L̂L̂T+C. Without loss of generality, we denote the forward model simply by

L̂ and assuming the prior model asN (0, I) but we could either denote the system matrix

by LΓ1/2 and end up with the same result as the previous section implies. The exact

probability that this inequality is true can be derived from the difference of generalized

chi-distributed random variables. However, the formulation would be really complex

and therefore impractical. So instead, we present a lower bound for the probability that

the correct element belongs to the set of reconstruction maxima by its index.

Theorem 5.1. Assume Gaussian distributed measurements y ∼ N (L̂k, C) produced by

a point source at kth location. Let

θ ≤ 1− projL̂k

(

L̂i | Σ
)

, (44)

for every i ∈ [1, n] \S(L̂k). Then the following inequality holds for the probability of the

kth standardized parameter attaining the maximum magnitude

P



{k} ⊆ arg maxi∈[1,n]







∣

∣

∣
L̂T

i Σ
−1y
∣

∣

∣

√

L̂T
i Σ

−1L̂i









 ≥ Ga

(

θ2
λmin(Σ)L̂

T
kΣ

−1L̂k

2λmax(C)
;
m

2
, 1

)

, (45)
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where λmax(·) and λmin(·) denotes the largest and smallest eigenvalues of a matrix,

respectively.

Proof. The proof aims to estimate the probability of
∣

∣

∣
L̂T

kΣ
−1y
∣

∣

∣

√

L̂T
kΣ

−1L̂k

≥

∣

∣

∣
L̂T

i Σ
−1y
∣

∣

∣

√

L̂T
i Σ

−1L̂i

(46)

for any i ∈ [1, n] \ {k}. Let us denote u = Σ−1/2L̂k/
√

L̂T
kΣ

−1/2L̂k and Σ−1/2y =

Σ−1/2L̂k + f = ℓk + f for simplicity. As we can now see that

L̂T
kΣ

−1y
√

L̂T
kΣ

−1L̂k

= uT (ℓk + f) . (47)

The end goal is to estimate an event Z ≥ 0 for a random number Z defined as

Z =
∣

∣uT (ℓk + f)
∣

∣−
∣

∣vT (ℓk + f)
∣

∣ . (48)

By decomposing the normalized system matrix column vector v to γu +
√

1− γ2u⊥,

where γ ∈ [−1, 1], u⊥ is unit vector and uTu⊥ = 0, we can obtain a lower bound for the

random variable

Z ≥ Z∗(γ) = ‖ℓk‖2 − |γ| ‖ℓk‖2 −
√

1− γ2 ‖f‖2 , (49)

and thus P(Z∗(γ) ≥ 0) ≤ P(Z ≥ 0). Considering Z∗(γ) as a function, let us assume

that Z∗(0) is positive, i.e., there is more data than noise. Therefore, the expression is

positive only when it is bounded by the zero of Z∗:

|γ| < ‖ℓk‖22 − ‖f‖22
‖ℓk‖22 + ‖f‖22

(50)

To strict this bound, we obtain

‖ℓk‖22 − ‖f‖22
‖ℓk‖22 + ‖f‖22

≥ 1− ‖f‖2
‖ℓk‖2

(51)

Noting that γ = uTv, we can write an event in the form

‖f‖2 <
(

1−
∣

∣uTv
∣

∣

)

‖ℓk‖2 . (52)

Because we cannot state anything about the vector v, we set θ ∈ (0, 1] such that

θ ≤ 1−
∣

∣uTv
∣

∣ for any v not parallel with u. Due to the properties of L2-norm

‖f‖2 ≤
∥

∥Σ−1/2C1/2
∥

∥ ·
∥

∥

∥
f̂
∥

∥

∥

2
≤
√

λmax (Σ−1) λmax (C)
∥

∥

∥
f̂
∥

∥

∥

2

=

√

λmax(C)

λmin(Σ)

∥

∥

∥
f̂
∥

∥

∥

2
. (53)
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As the original random number gets smaller values for each sample than the chi-

distributed one, the probability of ‖f‖2 <
(

1−
∣

∣uTv
∣

∣

)

‖ℓk‖2 is larger than with the

random number at the end of the previous inequality chain, therefore

P(Z ≥ 0) ≥ P(Z∗(γ) ≥ 0)

≥ P (‖f‖2 < θ ‖ℓk‖2) ≥ P

(
√

λmax(C)

λmin(Σ)

∥

∥

∥
f̂
∥

∥

∥

2
< θ ‖ℓk‖2

)

. (54)

The cumulative distribution of the lower bound at the end of the inequality chain can

be expressed via gamma distribution with shape parameter m/2 and scale parameter 1.

So by opening the expressions

P

(
√

λmax(C)

λmin(Σ)

∥

∥

∥
f̂
∥

∥

∥

2
< θ

√

L̂T
kΣ

−1L̂k

)

= Ga

(

θ2 L̂T
kΣ

−1L̂k

2λmax(C)/λmin(Σ)
;
m

2
, 1

)

. (55)

From the derived inequality, we can see that the lower bound is larger in situations

where the noise level is low, and the true source is near the measurement sensors,

where the system matrix magnitude is maximized. One could also approximate

further by considering a common situation where measurement noise is assumed to

be independent and identically distributed with standard deviation σ. Utilizing the

inequality L̂T
kΣ

−1L̂k ≥ λmin(Σ
−1)
∥

∥

∥
L̂k

∥

∥

∥

2

2
= λmax(Σ)

−1
∥

∥

∥
L̂k

∥

∥

∥

2

2
, one could then write

another bound using the signal-to-noise ratio (SNR) defined as the square of the signal

mean per variance, i.e.,
∥

∥

∥
L̂k

∥

∥

∥

2

2
/σ2, that reads

P



{k} ⊆ arg maxi∈[1,n]







∣

∣

∣
L̂T

i Σ
−1y
∣

∣

∣

√

L̂T
i Σ

−1L̂i









 ≥ Ga

(

θ2
λmin(Σ)

2λmax(Σ)
· SNR ;

m

2
, 1

)

. (56)

Based on this boundary, there can be at most 2 % of noise (at least 35 dB SNR) in the

measurement data to achieve the probability of 0.95 for the conductivity disk used in

Figure 1 and independent and identically distributed Gaussian sources. As a drawback

of the given boundary, without stating something about the rank of the system matrix

and decrease of the modeled signal strength along with distance away from the sensor,

the bound is generous for far-field sources.

6. Numerical exmples

This section is divided into three parts. The first part demonstrates that the

standardized localization is free from the localization bias of BMNE, and the second one

shows the advantage of the introduced generalized formulation (Section 4) in multisource

localization and tracking. The third section examines the spatial and noise level-related

behavior of the lower bound from Theorem 5.1. In practice, we examine the localization
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accuracy statistically reflecting the results to the lower bound. Both parts end with

their own results sections.

6.1. Localization of far-field source via BMNE and its standardization

In this example, we give a demonstration of the source localization in a homogenous

conductivity disk. Let us assume that we have a far-field source, i.e., far away from

the sensors that are on the upper half of the disk in Figure 1. The source is located at

point (0.2,0.6) and the measurements have 5 % of Gaussian white noise. The aim is to

localize the source via BMNE without and with standardization.

6.2. results

BMNE sLORETA

Figure 2. Localization of far-field source located at the position of red cross. The

normalized Bayesian minimum norm estimate (BMNE) value map is presented on the

left and the normalized value map of standardized BMNE, also called standardized

low-resolution brain tomography (sLORETA), is presented on the right. The black

ring in both of the pictures shows the location of the maximum reconstruction value

where the source is estimated to be.

Figure 2 presents the heat maps of reconstruction values before and after

standardization. As we can see, the BMNE value map is biased toward the sensor

locations while after standardization (sLORETA) the localization is perfect. The width

of the area of high reconstruction values is notably wider for sLORETA than BMNE.

6.3. Unbiasing via standardization and benefits of detailed posterior

6.3.1. Simulation setup In this section, we aim to track and localize a source time

series of two sources via the Kalman filter (KF), sLORETA, and Kalman filter for

standardized state variables (SKF) [41] whose algorithm is presented in Appendix A.

Here we select our evolution model to be a simple random walk for both Kalman filters.
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Let the underlying activity inside the previously used homogenous conductivity

disk (Figure 1) obey the following evolution model

sk+1 =

[

0.2 −0.3

−0.8 0.3

]

sk +

[

f((k + 1)∆t)

0

]

, (57)

where f(t) = exp(−105(t − 0.012)2) cos(500(t − 0.012) + π/2). The activity is tracked

25 ms with sampling rate of 1 kHz, yielding ∆t = 0.001. The first source (far-field

source) is placed at (0,-0.95), and the second (near-field source) is at (-0.4,0.8). For

measurement data creation, we add 5 % of Gaussian noise. One can clearly see that

the activities are not independent, which is why the usage of an advanced posterior

model could be appropriate. To estimate the Gaussian posterior along the time series,

we apply the Kalman filter to demonstrate the advantage of a detailed posterior model.

In the Bayesian sense, the Kalman filter gives a Gaussian posterior for each time step

with updated mean and covariance, therefore, based on the section 4, we are able to

apply standardization technique to it as a post-hoc weighting, where the weights are

updated at every time step.

In the discretization of the analytical forward model, we apply a regular grid of 650

nodes in the disk. For inversion, we form another grid with 30 % fewer points to avoid

an inverse crime. To track the activity, we listen to the location of true sources and

track the reconstruction value evolution in those regions.

In localization, we utilize the opposite polarity of the time evolutions. This way,

we estimate the location of both sources at every time step by seeking the minimum

and maximum value of the reconstruction. Finally, we will assign a Gaussian mixture

model to find two clusters that aid in interpreting the localization results.

6.3.2. Results Considering the localization results in Figure 3, the Kalman filter

is able to localize the near-field source with fair accuracy even if the variability in

individual localization at different time steps is large. As KF is analogical to BMNE,

the localization bias is prominent since the estimations are accumulated on the upper

boundary. sLORETA is able to localize the near-field source with higher accuracy and

with less variety than KF. Surprisingly, sLORETA cannot localize the far-field source

even if it is detecting signals inside the disk, and therefore, it does not exhibit bias of

BMNE. SKF, as a combination of both techniques, is capable of localizing both sources.

Variety in near-field localization estimates is slightly lower than with sLORETA as the

75 % confidence ellipse is a bit smaller. No individual near-field estimation hit the target

perfectly but the cluster mean is within sub-mesh accuracy from the true location of

the source.
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KF SKF sLORETA

Figure 3. Localization estimates at each time point starting from 6 ms, when the far-

field source starts effect. Individual estimates are indicated by yellow crosses, red balls

show the location of true sources, and a 75 % confidence ellipse of the 2-component

Gaussian mixture model is presented in turquoise. The used methods from left to

right are the Kalman filter (KF), standardized Kalman filter (SKF), and standardized

low-resolution brain tomography (sLORETA).

From the tracking results in Figure 4, we obtain that Kalman filter is tracking the

source near sensors, but the relative strength of the far source is suppressed. sLORETA

follows the near-field source well, but the far-field source’s track follows the other one

and seems to not have independent tracks as one could desire. Contrarily, Kalman filter

for standardized states can track both of the activities independently at the beginning of

the oscillation. The latter part of the far-field track is almost identical to the sLORETA’s

track.

6.4. Localization accuracy from noisy measurements

6.4.1. Simulation setup The purpose of these experiments is to demonstrate the spatial

(I) and SNR (II) dependence of the lower bound from theorem 5.1 and its relation to

actual localization accuracy via reconstruction. We have a great interest in how close

the bound is to the localization accuracy statistics observed in simulations.

In example (I), we place a true source in each mesh node once and then calculate

10,000 samples of measurement with Gaussian noise using 5 % and 15 % of noise. After

that, we use the standardized reconstruction technique to recover the location of the true

source while keeping track of how often the maximum absolute value of reconstructions

hits the target. From this, we can draw a contour map over the unit disk and compare

it with the map of the lower bound.

In example (II), we take three points from the y-axis and calculate the

reconstructions and localization success percentage similarly to experiment (I). This

time, we use multiple noise levels. The true sources are located from (0,0.90) to (0,0.6)

in decrements of 0.1.
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KF

SKF

sLORETA

Figure 4. Track of the source activity at the correct location running along with the

time that is expressed in milliseconds. Dashed lines represent the true track and solid

lines represent the estimated tracks. Blue lines are for the far-field source and red lines

are for the near-field source. The used methods from top to bottom are the Kalman

filter (KF), standardized Kalman filter (SKF), and standardized low-resolution brain

tomography (sLORETA).

6.4.2. Results By looking at the spatial probability maps of actual reconstruction to

localize correctly and the lower bound of that in Figure 5, we can see the gap between

sampled reality and the bound being closest to each other near sensors. The lower bound

drops quickly along the distance from measurement sensors, much quicker than in the

sampled case. In the 5 % noise case, the standardized reconstruction is accurate almost

everywhere with a probability higher than 0.9 except at the region most far away from

the sensors. At 15 % the region of over 0.9 probability has shrunk by about half and

patterns of lower probability pools emerge near sensors. The lower bound has only a

small over 0.9 probability area on the left side of the models near the second sensor in

clockwise order. The SNR tendency of the sampled probability and the lower bound at

different depths in Figure 6 shows small gaps between probability curves at high SNR

(low percent) but the curves diverge faster the deeper the situation is examined. If
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we say the curves are divergent when the difference is higher than 0.01, the divergence

points are at 13, 9, 6, and 3.5 % for points from 0.9 to 0.6 in decrements of 0.1.

5
%

Localizations Lower bound

15
%

Figure 5. Sampled probability of the standardized inversion to find the correct source

location (left) mapped over the unit disk and the spatial contours of the lower bound

from Theorem 5.1 (right). The upper row presents the results when 5 % of the noise

is applied to the measurements and the lower row shows the same results for 15 % of

noise.
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(0,0.6)
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0

0.2

0.4

0.6

0.8

1

Figure 6. Sampled probability of the standardized inversion to find the correct source

location (blue) from noise levels from 2 % to 20 %. The red curve shows the behavior

of the lower bound. Different graphs are calculated at different points of the y-axis

and the locations are presented above the graphs

7. Discussion and conclusions

This paper considers the standardization technique that is well-merited in the

electromagnetic inverse source problem [34, 35, 36, 42] described here for the general
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linearized Poisson problem with Neumann boundary condition. The bias of minimum

norm estimation due to the maximum principle is demonstrated as well as how

standardization can reduce this bias in the statistical sense utilizing the orthogonal

decomposition of the system matrix. Then, the inverse technique is generalized for any

Bayesian model of Gaussian posterior, i.e., Gaussian process regression problem, and

its analogy to the original presentation (sLORETA) that assumes independently and

identically distributed Gaussian recovering variables. We also derived a lower bound for

the probability that the method localizes the source perfectly under Gaussian distributed

measurements. The results show that even if the correct source location is found

with a forward model that fully describes reality, the set of solutions may be larger

than one point if the simulated measurements produced from different sources are not

distinct enough. This could, for example, be realized in a situation where the source

configuration can have sources near and far with respect to the measurement sensors, the

only difference of which is the strength of the measurement signal. Because the technique

standardizes the possible solutions in relation to the location, the strength of the signal

no longer has an effect. Therefore, one must design the Gaussian prior model with care to

pick the most probable source location from the feasible set provided via standardization.

Even if it is demonstrated previously that the standardized method utilizing Gaussian

posterior cannot recover multiple simultaneous sources when independent and identically

distributed sources are assumed as a prior [37, 38], our results suggest that this is not the

case with more complex Gaussian priors, particularly the one provided via Kalman filter,

that are viable via introduced Bayesian generalization of the technique itself. Moreover,

using the Bayesian extension of standardization, the technique could be coupled with any

conditionally Gaussian model having hyperpriors, for example, gamma, inverse gamma

[2], or half-Cauchy distribution [43] as the hyperprior model.

The probability limit for perfect localization explains why high noise robustness is

obtained when the true source is located near measurement sensors [32, 33]. Even though

the presented lower limit compares weakly to the hit rate of practical localization for far-

field sources and with particularly high noise levels, the limit could have its uses in the

estimation of high p-values for common low noise and near-field cases, where sources of

error could be said to be mostly modeling-originated. In actual measurement procedures,

the noise level is not necessarily very high due to the averaging over multiple trials,

and because of possible unfavorable sensor positioning and forward model parameters

or uncertainty of those, the purely inverse modeling-based accuracy of localization is

overshadowed by the practical sources of errors.
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Appendix A. Standardized Kalman Filter

Let us use a typical linear dynamical model

yt = Lxt + rt, (A.1)

xt = Atxt−1 + qt, (A.2)

where rt ∼ N (0, Rt) and qt ∼ N (0, Qt). Then, the prediction step is calculated as the

following

xt|t−1 = Atxt−1|t−1

Pt|t−1 = AtPt−1|t−1A
T
t +Qt

and the update step is

St = LPt|t−1L
T +Rt

Kt = Pt|t−1L
TS−1

t

xt|t = xt|t−1 +Kt

(

yt − Lxt|t−1

)

Pt|t = Pt|t−1 −KtStK
T
t

Wt = P
1/2
t|t−1Diag

(

P
−1/2
t|t−1KtStK

T
t P

−1/2
t|t−1

)−1/2

P
−1/2
t|t−1

zt|t = Wtxt|t.

The second last step introduces the time-depend post-hoc weights consisting of inversion

of matrix square root of the prior covariance matrix and the diagonal matrix, where

Diag(·) forms a diagonal matrix with the same diagonal elements as in the input matrix.

The formulation of the weighting matrix is derived from the equation (42). Vector zt|t
gives the standardized Kalman estimation at time step t.
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