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ALMOST SPECIAL REPRESENTATIONS OF WEYL GROUPS

G. Lusztig

Introduction

0.1. Let W be an irreducible Weyl group and let Ŵ be the set of (isomorphism

classes of) irreducible representations of W over C. Let c ⊂ Ŵ be a family of
W (see [L79],[L84]). Let Γc be the finite group associated in [L84] to c and let
c −→M(Γc) be the imbedding defined in [L84]. (For any finite group Γ, we denote
by M(Γ) the set of Γ-conjugacy of pairs (x, σ) where x ∈ Γ and σ is an irreducible
representation over C of the centralizer of x in Γ.)

In [L82] a set Conc of (not necessarily irreducible) representations of W with
all irreducible components in c was defined and it was conjectured that these are
exactly the representations of W carried by the various left cells [KL] contained
in the two-sided cell associated to c. (This conjecture was proved in [L86].)

We can view Conc as a subset of the C-vector space C[c] (with basis c) and
hence with a subset of the C-vector space C[M(Γc)] (with basis M(Γc)) via the

imbedding C[c] ⊂ C[M(Γc)] induced by c ⊂ M(Γc). Note that IndΓc

1 (1) can be
also viewed as an element of C[M(Γc)] (namely

∑

ρ dim(ρ)(1, ρ) where ρ runs over

the irreducible representations of Γc). We have IndΓc

1 (1) ∈ Conc except when
(a) |c| equals 2, 4, 11 or 17;

(in these cases W is of exceptional type). To remedy this, we enlarge Conc to the

subset Con+
c = Conc ∪ IndΓc

1 (1) of C[M(Γc)]. (We have Con+
c = Conc whenever

c is not as in (a)).
The main result of this paper is a definition of
a subset AΓc

⊂ c in canonical bijection with Con+
c such that each element of

AΓc
appears with nonzero coefficient in the corresponding element of Con+

c .
In [L79a] a specific representation spc ∈ c in c was defined (it was later called

the special representation); it corresponds to (1, 1) ∈M(Gc). One of its properties
is that it appears with coefficient 1 in any element of Con+

c . We always have

spc ∈ AΓc
. In fact, spc corresponds to IndΓc

1 (1) ∈ Con+
c . Thus the representations

in AΓc
generalize spc; we call them almost special representations of W . (This

name is justified in 2.4.)
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2 G. LUSZTIG

We will show elsewhere that (in the case where W is of simply laced type)
the irreducible representation of W attached in [L15] to a stratum of G is almost
special.

0.2. Our definition of AΓc
relies on the theory of new basis [L19],[L20],[L23].

Let ZΓc
be the set of pairs (Γ′ ⊂ Γ′′) of subgroups of Γc with Γ′ normal in Γ′′.

For (Γ′ ⊂ Γ′′) ∈ ZΓc
let

sΓ′,Γ′′ : C[M(Γ′′/Γ′)] −→ C[M(Γc)]

be the C-linear map defined in [L20, 3.1]. In [L23, 2.3] to c we have associated a
subset XΓc

of ZΓc
.

Let X̄Γc
= XΓc

∪ {(S1, S1)}. (We denote by Sn the symmetric group in n
letters.) We have (S1, S1) ∈ XΓc

if and only if c is not as in 0.1(a); in these cases
we have X̄Γc

= XΓc
. Now,

(a) (Γ′ ⊂ Γ′′) 7→ sΓ′,Γ′′(1, 1) is a bijection of X̄Γc
onto a subset S(Γc) of

C[M(Γc)] which is a part of a basis of C[M(Γc)].
(See [L19],[L23]). We have Con+

c ⊂ S(Γc). More precisely, (a) restricts to a
bijection of

X̄Γc,∗ := {(Γ′,Γ′′) ∈ X̄Γc
; Γ′ = Γ′′}

onto Con+
c . Let

X̄Γc
= {Γ′; (Γ′,Γ′) ∈ X̄Γc,∗}.

In [L20] a bijection ǫ from a certain basis of C[M(Γc)] (containing S(Γc)) to
M(Γc) is defined. This restricts to an injective map from S(Γc)) to M(Γc) whose
image is equal to the image of c ⊂M(Γc) (if c is not as in 0.1(a)) and is equal to
the image of c ⊂ M(Γc), disjoint union with a single element (1, ?) ∈ M(Γc) − c
(if c is as in 0.1(a)). From the definition of ǫ, the following holds.

(b) ǫ(B) appears with nonzero coefficient in B for any B ∈ S(Γc).

For Γ′
0 ∈ X̄Γc

let X̄
Γ′

0

Γc
be the set of all (Γ′,Γ′′) ∈ X̄Γc

such that Γ′ is conjugate to
Γ′
0. The following statement will be verified in §1,§2.

(c) For Γ′
0 ∈ X̄Γc

, the function (Γ′,Γ′′) 7→ |Γ′′| on X̄
Γ′

0

Γc
reaches its maximum at

a unique (Γ′,Γ′′).
For Γ′

0 ∈ X̄Γc
(with corresponding (Γ′,Γ′′) defined by (c)) we set

BΓ′

0
= sΓ′,Γ′′(1, 1) ∈ S(Γc),

EΓ′

0
= element of c which maps to ǫ(BΓ′

0
) under c ⊂M(Γc). (If c is as in 0.1(a),

we necessarily have ǫ(BΓ′

0
) 6= (1, ?).)

We can now define

1S(Γc) = {BΓ′

0
; Γ′

0 ∈ X̄Γc
} ⊂ S(Γc),

AΓc
= {EΓ′

0
; Γ′

0 ∈ X̄Γc
} ⊂ c.

The elements of AΓc
are said to be the almost special representations of W in c.
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We have a bijection AΓc

∼
−→ Con+

c given by EΓ′

0
7→ sΓ′

0
,Γ′

0
(1, 1) for Γ′

0 ∈ X̄Γc
.

We have a bijection 1S(Γc) −→ Con+
c given by BΓ′

0
7→ sΓ′

0
,Γ′

0
(1, 1) for Γ′

0 ∈ X̄Γc
.

We have a bijection 1S(Γc) −→ AΓc
given by BΓ′

0
7→ EΓ′

0
for Γ′

0 ∈ X̄Γc
.

The following statement will be verified in §1,§2.

(d) Let Γ′
0 ∈ X̄Γc

. Let (Γ′,Γ′′) ∈ X̄
Γ′

0

Γc
. Assume that (x, σ) ∈ M(Γc) appears

with nonzero coefficient in sΓ′,Γ′′(1, 1). Then (x, σ) ∈M(Γc) appears with nonzero
coefficient in sΓ′

0
,Γ′

0
(1, 1).

Assume now that (x, σ) ∈ M(Γc) corresponds to EΓ′

0
under c ⊂ M(Γc). By (b),

(x, σ) appears with nonzero coefficient in sΓ′,Γ′′(1, 1) where (Γ′,Γ′′) is defined by
Γ′
0 as in (c). Using (d) we see that
(e) (x, σ) appears with nonzero coefficient in sΓ′

0
,Γ′

0
(1, 1).

0.3. Notation. Let F be the field Z/2. For a, b in Z we write a ≪ b whenever
b− a ≥ 2. For a, b in Z let [a, b] = {z ∈ Z; a ≤ z ≤ b}. For a finite set E we write
|E| for the cardinal of E.

1. Classical types

1.1. LetD ∈ 2N. Let ID be the set of all intervals I = [a, b] where 1 ≤ a ≤ b ≤ D.
For I = [a, b], I ′ = [a′, b′] in ID we write I ≺ I ′ whenever a′ < a ≤ b < b′; we write
I♠I ′ if a′ − b ≥ 2 or a− b′ ≥ 2. Let I1D be the set of all I = [a, b] ∈ ID such that
a = b mod 2. For I = [a, b] ∈ I1D we define κ(I) ∈ {0, 1} by κ(I) = 0 if a, b are
even, κ(I) = 1 if a, b are odd.

A sequence I∗ = (I1, I2, . . . , Ir) in I
1
D is said to be admissible if

I∗ = ([a1, b1], [a2, b2], . . . , [ar, br]), r ≥ 1

where
a1 ≤ b1, a2 ≤ b2, . . . , ar ≤ br,

a2 − b1 = 2, a3 − b2 = 2, . . . , ar − br−1 = 2.

For such I∗ we define κ(I∗) ∈ {0, 1} by κ(I∗) = 0 if all (or some) ai, bi are even,
κ(I∗) = 1 if all (or some) ai, bi are odd.

For I = [a, b] ∈ I1D let

Iev = {x ∈ I; x = a+ 1 mod 2} = {x ∈ I; x = b+ 1 mod 2}.

1.2. Let R1
D be the set whose elements are the subsets of I1D. Let B ∈ R1

D. We
consider the following properties (P0), (P1) that B may or may not have:

(P0) If I ∈ B, I ′ ∈ B then either I = I ′ or I♠I ′ or I ≺ I ′ or I ′ ≺ I.
(P1) If I ∈ B and x ∈ Iev then there exists I ′inB such that x ∈ I ′, I ′ ≺ I.
Let SD be the set of all B ∈ R1

D that satisfy (P0), (P1). (In [L19], two sets
SD, S′

D are introduced and showed to be equal. What we call SD in this paper
was called S′

D in [L19].)
For B ∈ SD, I ∈ B let mI,B = |{I ′ ∈ B; I ⊂ I ′}|.
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1.3. For B ∈ SD, I = [a, b] ∈ B we set

XI,B = {I ′ ∈ B; I ′ ≺ I,mI′,B = mI,B + 1}.

Assuming that a < b, we show:
(a) XI,B is an admissible sequence

([a1, b1], [a2, b2], . . . , [ar, br])

(see 1.1) with a1 = a+ 1, br = b− 1. Moreover κ(XI,B) = 1− κ(I).
We have a + 1 ∈ Iev. By (P1) we can find [a1, b1] ∈ B such that a < a1 ≤
a+ 1 ≤ b1 < b; we must have a1 = a + 1 and we can assume that b1 is maximum
possible. Then m[a1,b1],B = mI,B + 1. If b1 = b − 1 then we stop. Assume now
that b ≥ b1 + 3. Let a2 = b1 + 2. We have a2 ∈ Iev hence by (P1) we can find
[x, b2] ∈ B such that a < x ≤ a2 ≤ b2 < b; we can assume that b2 is maximum
possible. Then m[x,b2],B = mI,B + 1. Since [a1, b1]♠[x, b2], we must have x = a2.
If b2 = b− 1 then we stop. Assume now that b ≥ b2 +3. Let a3 = b2 +2. We have
a3 ∈ Iev hence by (P1) we can find [x, b3] ∈ B such that a < x ≤ a3 ≤ b3 < b;
we can assume that b3 is maximum possible. Then m[x,b3],B = mI,B + 1. Since
[a2, b2]♠[x, b3], we must have x = a3. This process continues in this way and it
eventually stops. This proves (a). (The last statement of (a) is obvious.)

1.4. Let B ∈ SD. For I = [a, b] ∈ B we have
(a) |{I ′ ∈ B; I ′ ⊂ I}| = (b− a+ 2)/2.

See [L20, 1.3(d)]. We now write the various I ∈ B such that mI,B = 1 in a
sequence [a1, b1], [a2, b2], . . . , [ar, br] where

1 ≤ a1 ≤ b1 ≪ a2 ≤ b2 ≪ · · · ≪ ar ≤ br.

From (a) we deduce

|B| =
∑

i∈[1,r]

(bi − ai + 2)/2

= −a1/2− ((a2 − b1) + (a3 − b2) + · · ·+ (ar − br−1))/2 + br/2 + r

≤ (br − a1)/2− (r − 1) + r ≤ (D − 1)/2 + 1 = (D + 1)/2.

Since D ∈ 2N it follows that |B| ≤ D/2. We see that:
(b) the condition that |B| = D/2 is that either
-each of a2− b1, a3− b2, . . . , ar − br−1 equals 2 except one of them which equals

3 and a1 = 1, br = D, or
-each of a2 − b1, a3 − b2, . . . , ar − br−1 equals 2 and a1 = 1, br = D − 1, or
-each of a2 − b1, a3 − b2, . . . , ar − br−1 equals 2 and a1 = 2, br = D.

We set S
D/2
D = {B ∈ SD; |B| = D/2}.
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1.5. Let 1SD be the set of all B ∈ SD such that κ(I) = 1 for any I ∈ B with
mI,B = 1.

Let B ∈ SD. We set 1B = B − {I ∈ B; κ(I) = 0, mI,B = 1} ∈ R1
D. From the

definitions it is clear that 1B ∈ SD. We show that

(a) 1B ∈ 1SD.
Let I ′ ∈ 1B be such that mI′,1B = 1. We have either mI′,B = 1, κ(I ′) = 1 or else
mI′,B = 2 and I ′ ≺ I ′′ for some I ′′ ∈ B with mI′′,B = 1, κ(I ′′) = 0. In the second
case we have I ′ ∈ XI′′,B, so that from 1.3(a) we have κ(I ′) = 1. This proves (a).

Thus B 7→ 1B is a well defined map SD −→
1SD.

1.6. Let B ∈ 1SD. We write the various I ∈ B such that mI,B = 1 in a sequence

[a11, b
1
1], [a

1
2, b

1
2], . . . , [a

1
r1
, b1r1 ],

[a21, b
2
1], [a

2
2, b

2
2], . . . , [a

2
r2 , b

2
r2 ],

. . . ,

[as1, b
s
1], [a

s
2, b

s
2], . . . , [a

s
rs
, bsrs ]

whose first r1 terms form an admissible sequence I∗1, the next r2 terms form an
admissible sequence I∗2, . . . , and the last rs terms form an admissible sequence
I∗s; we also assume that

a21 ≥ b1r1 + 4, a31 ≥ b2r2 + 4, . . . , as1 ≥ bs−1
rs−1

+ 4.

Here we have

r1 ≥ 1, r2 ≥ 1, . . . , rs ≥ 1, s ≥ 0, κ(I∗1) = 1, κ(I∗2) = 1, . . . , κ(I∗s) = 1.

Let Z(B) be the subset of I1D consisting of:

all [ai1 − 1, biri + 1] (i ∈ [1, s]) such that ai1 ≥ 2 (this is automatic if i ≥ 2);

all [u, u] with u even, bi−1
ri−1

+ 1 < u < ai1 − 1 for some i ∈ [2, s] (if s > 1);

all [u, u] with u even, 1 < u < a11 − 1 (if s > 0);

all [u, u] with u even, bsrs + 1 < u ≤ D (if s > 0);

all [u, u] with u even, 1 < u ≤ D (if s = 0).

For any subset U ⊂ Z(B) we set BU = B ⊔ U ; then BU ∈ SD and U 7→ BU

defines a bijection from the set of subsets of Z(B) to the fibre at B of the map

SD −→
1SD, B′ 7→ 1B′. Note that B∅ = B and BZ(B) ∈ S

D/2
D . Moreover,

B 7→ BZ(B) is the bijection 1SD
∼
−→ S

D/2
D whose inverse is the restriction to S

D/2
D

of SD −→
1SD, B′ 7→ 1B′. (We use 1.4(b).)
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1.7. A subset B of R1
D is said to be in 1ṠD if it satisfies (P0) and if each I ∈ B

satisfies κ(I) = 1. For B ∈ 1SD we set Ḃ = {I ∈ B; κ(I) = 1}. Then B 7→ Ḃ is a
map

(a) 1SD −→
1ṠD.

We show:

(b) The map (a) is a bijection.

Let C ∈ 1ṠD. For I ∈ C we set ṁI,C = |{I ′ ∈ C; I ⊂ I ′}|.
For k ∈ {1, 2, 3, . . .} we set C[k] = {I ∈ C; ṁI,C = k}.
Let I = [a, b] ∈ C[k]. As in 1.6 we can write the intervals {I ′ ∈ C[k+1]; I ′ ≺ I}

in a sequence

[a11, b
1
1], [a

1
2, b

1
2], . . . , [a

1
r1 , b

1
r1 ],

[a21, b
2
1], [a

2
2, b

2
2], . . . , [a

2
r2 , b

2
r2 ],

. . . ,

[as1, b
s
1], [a

s
2, b

s
2], . . . , [a

s
rs
, bsrs ]

whose first r1 terms form an admissible sequence I∗1, the next r2 terms form an
admissible sequence I∗2, . . . , and the last rs terms form an admissible sequence
I∗s; we also assume that

a21 ≥ b1r1 + 4, a31 ≥ b2r2 + 4, . . . , as1 ≥ bs−1
rs−1

+ 4.

Here we have

r1 ≥ 1, r2 ≥ 1, . . . , rs ≥ 1, s ≥ 0, κ(I∗1) = 1, κ(I∗2) = 1, . . . , κ(I∗s) = 1.

Moreover we have ai1 ≥ a+ 2, biri ≤ b− 2 for all i.

Let YI be the subset of I1D consisting of:

all [ai1 − 1, biri + 1] (i ∈ [1, s]);

all [u, u] with u even, bi−1
ri−1

+ 1 < u < ai1 − 1 for some i ∈ [2, s] (if s > 1);

all [u, u] with u even, a < u < a11 − 1 (if s > 0);

all [u, u] with u even, bsrs + 1 < u < b (if s > 0);

all [u, u] with u even, a < u < b (if s = 0).

For l ≥ 1 we set B[2l−1] = C[l], B[2l] = ⊔I∈C[l]YI . We set B = ⊔l∈{1,2,3,...}B[l].

From the definition we see that B ∈ 1SD and that C 7→ B is an inverse of the map
1SD −→

1ṠD, B 7→ Ḃ. This proves (b).

We shall view any element C ∈ 1ṠD as a tableau with columns indexed by
[1, D], with rows indexed by {1, 2, 3, . . .} and with entries in ∪j [aj , bj]. Any entry
in the s-column is equal to s; the k-th row consists of the elements in ∪I∈C[k]I.
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1.8. Let C ∈ 1ṠD. It is an unordered set of intervals [a1, b1], [a2, b2], . . . , [at, bt].
We can order them by requiring that b1 < b2 < · · · < bt. We view C as a tableau
as in 1.7. We associate to C a new tableau C̈ with columns indexed by [1, D],
with rows indexed by {1, 2, 3, . . .} and with entries in ∪j [aj, bj]. This is obtained
by moving the entry of C in the s-column and row k to the same s-column and
to row k + j where j ∈ [0, t− 1] is defined by bj < s ≤ bj+1 (with the convention
b0 = 0); note that s ≤ bt whenever the s-column of C is nonempty.

For example, 1Ṡ4 consists of 5 tableaux: (∅), (1); (3); ( 1 3 ); (123). The

corresponding tableaux C̈ are (∅), (1); (3);

(

1
3

)

; (123). Now 1Ṡ6 consists

of 14 tableaux:
(∅); (1); (3); (5); ( 1 3 ); ( 3 5 ); ( 1 5 ); ( 1 3 5 ); (123);

( 123 5 ); (345); ( 1 345 ); (12345);

(

1 2 3 4 5
3

)

.

The corresponding tableaux C̈ are

(∅); (1); (3); (5);

(

1
3

)

;

(

3
5

)

;

(

1
5

)

;





1
3

5



;

(123);

(

123
5

)

; (345);

(

1
345

)

; (12345);

(

1 2 3 4 5
3

)

.

Here are some further examples.

If C =

(

1 2 3 4 5
3

)

then C̈ =

(

1 2 3
3 4 5

)

.

If C =

(

1 2 3 4 5 6 7
3

)

then C̈ =

(

1 2 3
3 4 5 6 7

)

.

If C =

(

1 2 3 4 5 6 7
5

)

then C̈ =

(

1 2 3 4 5
5 6 7

)

.

If C =

(

1 2 3 4 5 6 7
3 5

)

then C̈ =





1 2 3
3 4 5

5 6 7



.

If C =

(

1 2 3 4 5 6 7
3 4 5

)

then C̈ =

(

1 2 3 4 5
3 4 5 6 7

)

.

If C =





1 2 3 4 5 6 7 8 9
3 4 5 6 7

5



 then

C̈ =





1 2 3 4 5
3 4 5 6 7

5 6 7 8 9



.

We show:
(a) Let j ∈ [1, t]. Let k be such that [aj, bj] ∈ C[k]. In row j of C̈, bj appears

and bj + 1 does not appear.
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In rows j + 1, j + 2, . . . , j + k − 1 of C̈, bj and bj + 1 appear. In any other row of

C̈, bj and bj + 1 do not appear.
Assume first that bj < D. Then in C, bj appears in rows 1, 2, . . . , k and bj + 1
appears in rows 1, 2, . . . , k − 1. Since bj−1 < bj ≤ bj , bj < bj + 1 ≤ bj+1 we see

that in C̈, bj appears in rows 1 + (j − 1), 2 + (j − 1), . . . , k + (j − 1) and bj + 1
appears in rows 1 + j, 2 + j, . . . , (k − 1) + j. This proves (a) in our case. Now
assume that bj = D (in this case j = t and k = 1). Then in C, bt appears in row

1 and in no other row. We have bt−1 < bt ≤ bt. Hence in C̈, bt appears in row
1 + (t− 1) and in no other row. Thus (a) again holds.

We show:

(b) Let i ∈ [1, t]. Let k be such that [ai, bi] ∈ C[k]. Define j ∈ [0, t − 1] by

bj < ai ≤ bj+1. In row k + j of C̈, ai appears and ai − 1 does not appear.

In rows j + 1, j + 2, . . . , j + k − 1 of C̈, ai and ai − 1 appear. In any other row of
C̈, ai and ai − 1 do not appear.
Assume first that ai > 1. Then in C, ai appears in rows 1, 2, . . . , k and ai − 1
appears in rows 1, 2, . . . , k − 1. Then (since bj , ai are odd) we have bj < ai − 1 ≤

bj+1. Hence in C̈, ai appears in rows 1 + j, 2 + j, . . . , k + j and ai − 1 appears in
rows 1 + j, 2 + j, . . . , (k − 1) + j. This proves (b) in our case. Now assume that
ai = 1 (in this case we have k = 1). Then in C, ai appears in row 1 and in no

other row. We have b0 < ai ≤ b1. Hence in C̈, ai appears in row 1 and in no other
row. Thus (b) again holds.

Now let h ∈ ∪j [aj, bj] be such that h 6= aj, h 6= bj for all j ∈ [1, t]. We show:

(c) Any row of C̈ that contains h must also contain h+ 1.

(d) Any row of C̈ that contains h must also contain h− 1.
There is a well defined j ∈ [0, t− 1] such that bj < h < bj+1.

We prove (c). Assume first that h + 1 < bj+1. Then in C, h appears in rows

1, 2, . . . , k and h + 1 appears in rows 1, 2, . . . , k (for some k). In C̈, h appears
in rows j + 1, j + 2, . . . , j + k and h + 1 appears in rows j + 1, j + 2, . . . , j + k.
Hence in this case (c) holds. Next we assume that h + 1 = bj+1. Then in C, h
appears in rows 1, 2, . . . , k and h + 1 appears in rows in rows 1, 2, . . . , k + 1 (for

some k). In C̈, h appears in rows j + 1, j + 2, . . . , j + k and h+ 1 appears in rows
j + 1, j + 2, . . . , j + k + 1. We see again that (c) holds.

We prove (d). Assume first that bj < h − 1. Then in C, h appears in rows

1, 2, . . . , k and h − 1 appears in rows 1, 2, . . . , k (for some k). In C̈, h appears in
rows j +1, j+2, . . . , j+ k and h− 1 appears in rows j+1, j+2, . . . , j+ k. Hence
in this case (d) holds.

Next we assume that bj = h − 1. Then in C, h appears in rows 1, 2, . . . , k and

h− 1 appears in rows 1, 2, . . . , k, k + 1 (for some k). Moreover in C̈, h appears in
rows j + 1, j + 2, . . . , j + k and h− 1 appears in rows j, j + 1, j + 2, . . . , j + k. We
see again that (d) holds.

From (a)-(d) we deduce:

(e) For j ∈ [1, t], the row j of C̈ consists of aij , aij +1, aij +2, . . . , bj for a well
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defined ij ∈ [1, t] such that aij ≤ bj. Moreover, j 7→ ij is a permutation of [1, t].
We show:
(f) For u ∈ [2, t] we have aiu−1

< aiu .
We set i = iu.

Assume first that [ai, bi] ∈ C[k], k ≥ 2. By (b), one row of C̈ contains ai but
not ai − 1 (hence it is necessarily the row u) and the row just above it (that is
row u− 1) contains ai and ai − 1. (We use that k ≥ 2.) Now that row consists of
aiu−1

, aiu−1
+ 1, . . . , bu−1 − 1, bu−1. Thus we have aiu−1

≤ ai − 1 < ai ≤ bu−1. In
particular, aiu−1

< ai.
Next we assume that [ai, bi] ∈ C[1]. Now [ai, bu] is contained in the union of all

I ∈ C[1] and consists of consecutive numbers. Hence it is contained in one such I
which is necessarily [ai, bi]. Thus we have [ai, bu] ⊂ [ai, bi].

Assume that ai ≤ bu−1. In row 1 of C we have ai ≤ bu−1 < bu. In row 2
of C, ai is missing. Since ai ≤ bu−1 the unique entry ai in C̈ appears in a row

≤ u− 1. In particular the row u of C̈ does not contain ai; but it contains bu. This
contradicts ai = aiu . We see that we must have bu−1 < ai. But aiu−1

≤ bu−1

hence aiu−1
< ai. This proves (f).

1.9. Let 1S̈D be the set of tableaux with columns indexed by [1, D], with rows
indexed by {1, 2, 3, . . .} and with entries in [1, D] such that any entry in the s-
column is equal to s; for any k ∈ [1, t] (some t), the row k consists of the elements
in some Ik = [ck, dk] ∈ I

1
D with κ(Ik) = 1; for k > t the row k contains no entries;

we have c1 < c2 < · · · < ct, d1 < d2 < · · · < dt.
For X, c1 < c2 < · · · < ct, d1 < d2 < · · · < dt as above we define a tableau

Ẋ with columns indexed by [1, D], with rows indexed by {1, 2, 3, . . .} and with
entries in ∪j [cj , dj]. This is obtained by moving the entry of X in the s-column
and row k to the same s-column and to row k − j where j ∈ [0, t− 1] is defined
by dj < s ≤ dj+1 (with the convention d0 = 0); note that we necessarily have
k > j. (Indeed, we have s ≤ dk; if k ≤ j then dk ≤ dj , hence s ≤ dj , contradicting
dj < s.)

From the definitions we see that Ẋ ∈ 1ṠD and that X 7→ Ẋ is a bijection
1S̈D −→

1ṠD inverse to C 7→ C̈, 1ṠD −→
1S̈D.

1.10. Let UD be the set of all tableaux
(

c1 c2 . . . ct
d′1 d′2 . . . d′t

)

where c1 < c2 < · · · < ct are odd integers in [1, D], d′1 < d′2 < · · · < d′t are even
integers in [1, D] and c1 < d′1, c2 < d′2, . . . , ct < d′t.

We have an obvious bijection 1S̈D
∼
−→ UD,

(X, c1 < c2 < · · · < ct, d1 < d2 < · · · < dt) 7→
(

c1 c2 . . . ct
d1 + 1 d2 + 1 . . . dt + 1

)

.
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1.11. Let Σ̈D be the set of all symbols

Λ =

(

i1 i2 . . . i(D+2)/2

j1 j2 . . . j(D+2)/2

)

where

{i1, i2, . . . , i(D+2)/2} ⊔ {j1, j2, . . . , j(D+2)/2} = [0, D + 1],

i1 < i2 < · · · < i(D+2)/2, j1 < j2 < · · · < j(D+2)/2,

i1 < j1, i2 < j2, . . . , i(D+2)/2 < j(D+2)/2.

We then have i1 = 0, j(D+2)/2 = D + 1.

For Λ as above let c1 < c2 < · · · < ct be the odd numbers in {i1, i2, . . . , i(D+2)/2}
(in increasing order) and let d′1 < d′2 < · · · < d′t′ be the even numbers in
{j1, j2, . . . , j(D+2)/2} (in increasing order). We have necessarily t = t′. We show:

(a) c1 < d′1, c2 < d′2, . . . , ct < d′t.

Assume now that for some s ∈ [0, t], s < t we already know that c1 < d′1, c2 <
d′2, . . . , cs < d′s. We show that cs+1 < d′s+1.

Assume that d′s+1 ≤ cs+1. Let Z = {ik; k ∈ [1, (D + 2)/2]; ik < d′s+1}. Then

Z = {0, 2, 4, . . . , d′s+1 − 2} ⊔ {c1, c2, . . . , cs} − {d
′
1, d

′
2, . . . , d

′
s}.

(We use that c1 < d′1, c2 < d′2, . . . , cs < d′s. We also use that d′s+1 ≤ cs+1.) We
have |Z| = |(0, 2, 4, . . . , d′s+1−2)|. We have d′s+1 = jm for some m ∈ [1, (D+2)/2]
and im < d′s+1 that is im ∈ Z. It follows that {i1, i2, . . . , im} ⊂ Z so that m ≤ |Z|.
Let

Z ′ = {jk; k ∈ [1, (D + 2)/2]; jk ≤ d′s+1}.

We have |Z ′| = m. Now

Z ′ = {1, 3, 5, . . . , d′s+1 − 1 ⊔ {d′1, d
′
2, . . . , d

′
s, d

′
s+1} − {c1, s2, . . . , cs}

so that |Z ′| = |(1, 3, 5, . . . , d′s+1 − 1) + 1)|. Since |Z ′| = m and m ≤ Z we have
|Z ′| ≤ |Z| so that

|(1, 3, 5, . . . , d′s+1 − 1) + 1)| ≤ |(0, 2, 4, . . . , d′s+1 − 2)|.

This is obviously not true. This proves (a).
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From (a) we see that

Λ 7→

(

c1 c2 . . . ct
d′1 d′2 . . . d′t

)

(as described above) defines a map

(b) Σ̈D −→ UD.

We show:
(c) The map (b) is injective.

To any

µ =

(

c1 c2 . . . ct
d′1 d′2 . . . d′t

)

∈ UD

we associate a sequence
µ′ = (i1, i2, . . . , i(D+2)/2)

and a sequence
µ′′ = (j1, j2, . . . , j(D+2)/2)

as follows.
µ′ consists of the elements in {c1, c2, . . . , ct} and those in {0, 2, 4, . . . , D} −

{d′1, d
′
2, . . . , d

′
t} (in increasing order).

µ′′ consists of the elements in {d′1, d
′
2, . . . , d

′
t} and those in {1, 3, 5, . . . , D+1}−

{c1, c2, . . . , ct} (in increasing order).

From the definition we see that if Λ ∈ Σ̈D has image µ ∈ UD under (b) then

Λ =

(

µ′

µ′′

)

. From this it is clear that the map (b) is injective. This proves (c).

1.12. We show:
(a) The injective map Σ̈D −→ UD in 1.11(b) is a bijection.

Note that Σ̈D can be viewed as the set of standard Young tableaux attached to
a partition with two equal parts of size (D + 2)/2. The number of such standard
tableaux can be computed from the hook length formula so that it is equal to
(D + 2)!/((D + 2)/2)!(D + 4)/2)!) that is to the Catalan number Cat(D+2)/2.
(This interpretation of Catalan numbers in terms of standard Young tableaux has
been known before.)

From the bijections

UD ←−
1S̈D −→

1ṠD ←−
1SD −→ S

D/2
D

(see 1.10,1.9,1.7,1.6) we see that |UD| = |S
D/2
D |. By [LS], |S

D/2
D | is equal to the

Catalan number Cat(D+2)/2. We see that the map in (a) satisfies |Σ̈D| = |UD| =
Cat(D+2)/2. It follows that this map is a bijection.
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(It is likely that (a) has a more direct proof which does not rely on [LS].)
We show:

(b) If µ ∈ UD and if µ′, µ′′ are as in the proof of 1.11(c), then

(

µ′

µ′′

)

∈ Σ̈D.

Moreover µ 7→

(

µ′

µ′′

)

is the inverse of the map Σ̈D −→ UD in 1.11.

If µ ∈ UD, then by (a) we can find Λ ∈ Σ̈D whose image under the map 1.11(b) is

µ. By the proof of 1.11(c) we have Λ =

(

µ′

µ′′

)

. It follows that

(

µ′

µ′′

)

∈ Σ̈D.

1.13. Let VD be the F -vector space with basis e1, e2, . . . , eD and with the sym-
plectic form (, ) : V × V −→ F given by (ei, ej) = 1 if i − j = ±1, (ei, ej) = 0,
otherwise. For any subset J of [1, D] we set eJ =

∑

j∈J ej ∈ VD.

For B ∈ SD let < B > be the subspace of VD spanned by {eI ; I ∈ B}. (This is
actually a basis of < B >, see [L19].)

For j ∈ [1, D] and B ∈ SD we set Bj = {I ∈ B; j ∈ I} and

ǫj(B) = |Bj|(|Bj|+ 1)/2 ∈ F

. For B ∈ SD we set

ǫ(B) =
∑

j∈[1,D]

ǫj(B)ej ∈ VD.

We show:

(a) ǫ(B) =
∑

I∈B;mI,B∈2N+1

eI .

An equivalent statement is:
If j ∈ [1, D] then |{I ∈ Bj , mI,B ∈ 2N + 1}| is even if |Bj| ∈ (4Z) ∪ (4Z + 3)

and is odd if |Bj | ∈ (4Z+ 1) ∪ (4Z+ 2).
This follows immediately from the following statement (which holds by the defini-
tion of SD):

Bj consists of intervals Ik ≺ Ik−1 ≺ · · · ≺ I1 in I1D such that mIk ,B =
k,mIk−1,B = k − 1, . . . , mI1,B = 1.

For C ∈ 1ṠD we define

(b) ǫ̇(C) =
∑

I∈C

eI .

For C̈ ∈ 1S̈D we define

(c) ǫ̈(C̈) =
∑

k

e[ck,dk] ∈ VD

where ck, ck + 1, ck + 2, . . . , dk are the entries in the k-th row of C̈. From the
definitions we have

(d) ǫ̇(C) = ǫ̈(C̈)

if C, C̈ correspond to each other under the bijection in 1.9.
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1.14. By [L19, 1.16], B 7→ ǫ(B) is an injective map ǫ : SD
∼
−→ VD. By 1.13(a),

for B ∈ 1SD we have ǫ(B) = ǫ̇(Ḃ) (ǫ̇ as in 1.13(b)). Hence the restriction of ǫ to
1SD can be identified with ǫ̇ : 1ṠD −→ VD via the bijection 1.7(b). In particular,

ǫ̇ is injective. Using 1.13(d) we see that via the bijection in 1.9, ǫ̇ : 1ṠD −→ VD

becomes ǫ̈ : 1S̈D −→ VD. In particular, ǫ̈ is injective.

1.15. Let ΣD be the set of all unordered pairs

(

A
B

)

of subsets of [0, D+1] such

that [0, D + 1] = A ⊔B, |A| = |B| mod 4.
There is a unique bijection f : VD −→ ΣD such that

f(0) =

(

0 2 4 . . . D
1 3 5 . . . D + 1

)

and such that if x ∈ VD, f(x) =

(

A
B

)

and i ∈ [1, D] then

f(x+ ei) =

(

A♯{i, i+ 1}
B♯{i, i+ 1}

)

where ♯ is the symmetric difference; it follows that for 1 ≤ i < j ≤ D we have

f(x+ ei + ei+1 + · · ·+ ej) =

(

A♯{i, j + 1}
B♯{i, j + 1}

)

.

1.16. We can regard Σ̈D as a subset of ΣD. If C̈ ∈ 1S̈D corresponds to µ ∈

UD under 1.10 then from the definitions we have f(ǫ̈(C̈)) =

(

µ′

µ′′

)

(notation of

1.12(b)). In particular we have

(a) f(ǫ̈(C̈)) ∈ Σ̈D

and (using 1.12(b)) we see that

(b) C̈ 7→ f(ǫ̈(C̈)) is a bijection 1S̈D
∼
−→ Σ̈D.

1.17. We have VD = V 0
D⊕V

1
D where V 0

D is the subspace spanned by {e2, e4, . . . , eD}
and V 1

D is the subspace spanned by {e1, e3, . . . , eD−1}. For I ∈ I1D we have
I = I0 ⊔ I1 where I0 = I ∩ {2, 4, . . . , D}, I1 = I ∩ {1, 3, . . . , D − 1}. As shown in
[L19], for B ∈ SD we have < B >=< B >0 ⊕ < B >1 where

< B >0=< B > ∩V 0
D, < B >1=< B > ∩V 1

D;

moreover,
(a) < B >1 has basis {eI1 ; I ∈ B, κ(I) = 1},
< B >0 has basis {eI0 ; I ∈ B, κ(I) = 0}.
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1.18. If L is a subspace of V δ
D (δ ∈ {0, 1}) we set

L! = {x ∈ V 1−δ; (x,L) = 0}.

Let C(V δ
D) be the set of subspaces of V δ

D of the form < B >δ for some B ∈ SD.

If L ∈ C(V δ
D) we have L! ∈ C(V 1−δ

D ); see [L19, §2]. Let A(V 1
D) be the set of all

(L,L′) ∈ C(V 1
D)×C(V 1

D) such that L ⊂ L′ and L⊕L′! =< B > for some B ∈ SD.
(a) If B ∈ SD then B 7→ (< B >1, < B >!

0) is a bijection Φ : SD −→ A(V
1
D);

see [L19, §2]. Let A∗(V
1
D) be the set of all (L,L′) ∈ C(V 1

D)×C(V 1
D) such that L =

L′. In [L19,§2] it is shown that A∗(V
1
D) ⊂ A(V 1

D); more precisely if L ∈ C(V 1
D) then

L⊕L! =< B > for a well defined B ∈ S
D/2
D . Moreover B 7→ (< B >1, < B >!

0) is

a bijection S
D/2
D −→ A∗(V

1
D) and (L,L′) 7→ L = L′ is a bijection A∗(V

1
D) −→ C(V 1

D).
The composition of these bijections is a bijection B 7→< B >1,

(b) S
D/2
D

∼
−→ C(V 1

D).
Next we note that B 7→< B >1 is also a bijection

(c) 1SD
∼
−→ C(V 1

D).
This follows from (b) since the bijection (b) is a composition

S
D/2
D

∼
−→ 1SD −→ C(V

1
D)

where the fist map is the bijection B 7→ 1B and the second map is the map in (c).
Here we use that
(d) < B >1=< 1B >1 for any B ∈ SD,

which follows from definitions.
We show:
(e) For any L ∈ C(V 1

D), the set

{L′ ∈ C(V 1
D); (L,L′) ∈ A(V 1

D)}

contains a unique L′ with |L′| maximal.
An equivalent statement is:

(f) For any L ∈ C(V 1
D) the set {B′ ∈ SD;< B′ >1= L} contains a unique B′

with | < B′ >!
0 | maximal (that is dim(< B′ >0)| minimal).

By (b) we have L =< B >1 for a well defined B ∈ S
D/2
D . The condition that

< B′ >1=< B >1 is equivalent to < 1B′ >1=< 1B >1 (see (d)) and this is
equivalent to 1B′ = 1B (see (c)). Hence the set in (f) is equal to
{B′ ∈ SD; 1B′ = 1B}.

By the results in 1.6 this is the same as {(1B)U ;U ∈ Z(1B)}. By 1.17(a), for
U ∈ Z(1B) we have

dim((1B)U )0 = dim(1B)0 + |U |.

This is ≥ dim(1B)0 with equality if and only if U = ∅. This proves (f) and hence
(e).
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For L ∈ C(V 1
D) we denote by Lmax the element L′ in (e) with |L′| maximal. Let

A∗(V 1
D) be the set of all (L,L′) ∈ C(V 1

D)× C(V 1
D) such that L′ = Lmax. We have

A∗(V 1
D) ⊂ A(V 1

D) and
(g) (L,L′) 7→ L is a bijection A∗(V 1

D) −→ C(V 1
D).

From (c),(g) we see (using the proof of (f)) that

(h) B 7→ (< B >1, < B >!
0) is a bijection 1SD

∼
−→ A∗(V 1

D).

1.19. In this subsection we assume that D ∈ {2, 4, 6}. In each case we give a

table with rows of the form α....β....γ where α ∈ S
D/2
D , β ∈ 1SD corresponds to α

and γ ∈ Σ̈D. We write an interval [a, b] as a, a+1, a+2, . . . , b (without commas).

D = 2

{2}......{∅}........

(

0 2
1 3

)

{1}....{1}........

(

0 1
2 3

)

D = 4

{2, 4}......{∅}......

(

0 2 4
1 3 5

)

{1, 4}.....{1}.......

(

0 1 4
2 3 5

)

{3, 234}...{3}......

(

0 2 3
1 4 5

)

{1, 3}....{1, 3}......

(

0 1 3
2 4 5

)

{2, 123}....{2, 123}......

(

0 1 2
3 4 5

)

D = 6

{2, 4, 6}......{∅}.....

(

0 2 4 6
1 3 5 7

)

{1, 4, 6}.....{1}......

(

0 1 4 6
2 3 5 7

)

{3, 234, 6}...{3}.....

(

0 2 3 6
1 4 5 7

)

{2, 5, 456}...{5}.....

(

0 2 4 5
1 3 6 7

)

{1, 3, 6}....{1, 3}.....

(

0 1 3 6
2 4 5 7

)

{1, 5, 456}...{1, 5}......

(

0 1 4 5
2 3 6 7

)

{3, 5, 23456}...{3, 5}......

(

0 2 3 5
1 4 6 7

)
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{1, 3, 5}....{1, 3, 5}....

(

0 1 3 5
2 4 6 7

)

{2, 123, 6}....{2, 123}...

(

0 1 2 6
3 4 5 7

)

{4, 345, 23456}....{4, 345}.....

(

0 2 3 4
1 5 6 7

)

{2, 4, 12345}....{2, 4, 12345}....

(

0 1 2 4
3 5 6 7

)

{1, 4, 345}....{1, 4, 345}......

(

0 1 3 4
2 5 6 7

)

{2, 123, 5}....{2, 123, 5}......

(

0 1 2 5
3 4 6 7

)

{3, 234, 12345}....{3, 234, 12345}......

(

0 1 2 3
4 5 6 7

)

2. Exceptional types

2.1. Let W, c,Γc be as in 0.1. We must show that 0.2(c),0.2(d) hold.
If W is of type An, n ≥ 1 we have |c| = 1,Γc = S1. In this case, 0.2(c), 0.2(d)

are trivial.
If W is of type Bn or Cn, n ≥ 2 or Dn, n ≥ 4, we can identify Γc = V 1

D for
some D ∈ 2N. We can identify M(Γc) = VD as in [L19, 2.8(i)]. In these cases,
0.2(c), 0.2(d) follow from 1.18(e) and the proof of 1.18(f). Now Ac is the same as

Σ̈D (see 1.11) in the symbol notation [L84] for objects of Ŵ (assuming that W is
of type D and c is a cuspidal family).

2.2. In the remainder of this section we assume that W is of exceptional type.
Then we are in one of the following cases.
|c| = 1,Γc = S1;
|c| = 2,Γc = S′

2;
|c| = 3,Γc = S2;
|c| = 4,Γc = S′

3;
|c| = 5,Γc = S3;
|c| = 11,Γc = S4;
|c| = 17,Γc = S5.
Here S′

2 (resp. S′
3) is another copy of S2 (resp. S3).

For the elements (Γ′,Γ′′) ∈ X̄Γc
we use the notation of [L23]. Following [L23]

we give for each Γ′
0 ∈ X̄Γc

the list

L(Γ′
0) = {Γ

′′; (Γ′,Γ′′) ∈ X̄
Γ′

0

Γc
}.

Assume that |c| = 1. Then L(S1) = {S1}.
Assume that |c| ∈ {2, 3}. Then
L(S1) = {S2, S1}, L(S2) = {S2}.
Assume that |c| ∈ {4, 5}. Then
L(S1) = {S3, S2, S1}, L(S2) = {S2}, L(S3) = {S3}.
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Assume that |c| = 11. Then
L(S1) = {S4, S3, S2S2, S2, S1}, L(S2) = {S2S2, S2},
L(S2S2) = {∆8, S2S2}, L(S3) = {S3}, L(∆8) = {∆8}, L(S4) = {S4}.
Assume that |c| = 17. Then
L(S1) = {S5, S4, S3S2, S3, S2S2, S2, S1}, L(S2) = {S3S2, S2S2, S2},
L(S2S2) = {∆8, S2S2}, L(S3) = {S3S2, S3}, L(∆8) = {∆8}, L(S3S2) = {S3S2},
L(S4) = {S4}, L(S5) = {S5}.
In each case we see that L(Γ′

0) contains a unique term with || maximum. (It is
the first term of L(Γ′

0).) We see that 0.2(c) holds in each case. Now 0.2(d) can be
easily verified using the tables in [L20,§3].

2.3. Applying ǫ to s(Γ′,Γ′′) for each Γ′′ in the list L(Γ′
0) (recall that (Γ′,Γ′′) ∈

X̄
Γ′

0

Γc
) we obtain a list L′(Γ′

0) of elements in M(Γc); we write in the same order as
the elements of L(Γ′

0). (The notation for elements in M(Γc) is taken from [L84].)
Assume that |c| = 1. Then L′(S1) = {(1, 1)}.
Assume that |c| ∈ {2, 3}. Then L′(S1) = {(1, 1), (1, ǫ)}, L

′(S2) = {(g2, 1)}.
Assume that |c| ∈ {4, 5}. Then
L′(S1) = {(1, 1), (1, r), (1, ǫ)}, L

′(S2) = {(g2, 1)}, L
′(S3) = {(g3, 1)}.

Assume that |c| = 11. Then
L′(S1) = {(1, 1), (1, λ

1), (1, σ), (1, λ2), (1, λ3)}, L′(S2) = {(g2, 1), (g2, ǫ
′′)},

L′(S2S2) = {(g
′
2, 1), (g

′
2, ǫ

′′)}, L′(S3) = {(g3, 1)}, L
′(∆8) = {(g

′
2, ǫ

′)}, L′(S4) =
{(g4, 1)}.

Assume that |c| = 17. Then
L′(S1) = {(1, 1), (1, λ

1), (1, ν), (1, λ2), (1, ν′), (1, λ3), (1, λ4)},
L′(S2) = {(g2, 1), (g2, r), (g2, ǫ)}, L

′(S2S2) = {(g
′
2, 1), (g

′
2, ǫ

′′)},
L′(S3) = {(g3, 1), (g3, ǫ)}, L

′(∆8) = {(g
′
2, ǫ

′)}, L′(S3S2) = {(g6, 1)},
L′(S4) = {(g4, 1)}, L

′(S5) = {(g5, 1)}.
The almost special representations in c are represented by the first term in each

list. They are as follows.
If |c| = 1 we have AΓc

= {(1, 1)}.
If |c| ∈ {2, 3} we have AΓc

= {(1, 1), (g2, 1)}.
If |c| ∈ {4, 5} we have AΓc

= {(1, 1), (g2, 1), (g3, 1)}.
If |c| = 11 we have AΓc

= {(1, 1), (g2, 1), (g
′
2, 1), (g3, 1), (g

′
2, ǫ

′), (g4, 1)}.
If |c| = 17 we have
AΓc

= {(1, 1), (g2, 1), (g
′
2, 1), (g3, 1), (g

′
2, ǫ

′), (g6, 1), (g4, 1), (g5, 1)}.

2.4. In the case where |c| = 17 we have that W must of type E8. An element
of each list L′(Γ′

0) can be identified with an element of c (under the imbedding
c ⊂ M(Γc)) represented by its dimension (with the single exception of (1, λ4)).
Then the lists L′(Γ′

0) become:
L′(S1) = {4480, 5670, 4536, 1680, 1400, 70, ?},
L′(S2) = {7168, 5600, 448},
L′(S2S2) = {4200, 2688},
L′(S3) = {3150, 1134},
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L′(∆8) = {168}, L
′(S3S2) = {2016},

L′(S4) = {1344}, L
′(S5) = {420}.

Note that the first representation in a given list L′(Γ′
0) has the b-invariant (see [L84,

(4,1,2)]) strictly smaller than the b-invariant of any subsequent representation in
the list. (We expect that this property holds for any c.) This property is similar
to the defining property of special representations [L79a] and justifies the name of
“almost special” representations.
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