ALMOST SPECIAL REPRESENTATIONS OF WEYL GROUPS

G. Lusztig

Introduction

0.1. Let W be an irreducible Weyl group and let \hat{W} be the set of (isomorphism classes of) irreducible representations of W over \mathbf{C}. Let $c \subset \hat{W}$ be a family of W (see [L79],[L84]). Let Γ_{c} be the finite group associated in [L84] to c and let $c \rightarrow M\left(\Gamma_{c}\right)$ be the imbedding defined in [L84]. (For any finite group Γ, we denote by $M(\Gamma)$ the set of Γ-conjugacy of pairs (x, σ) where $x \in \Gamma$ and σ is an irreducible representation over \mathbf{C} of the centralizer of x in Γ.)

In [L82] a set Con_{c} of (not necessarily irreducible) representations of W with all irreducible components in c was defined and it was conjectured that these are exactly the representations of W carried by the various left cells [KL] contained in the two-sided cell associated to c. (This conjecture was proved in [L86].)

We can view Con_{c} as a subset of the \mathbf{C}-vector space $\mathbf{C}[c]$ (with basis c) and hence with a subset of the \mathbf{C}-vector space $\mathbf{C}\left[M\left(\Gamma_{c}\right)\right]$ (with basis $M\left(\Gamma_{c}\right)$) via the imbedding $\mathbf{C}[c] \subset \mathbf{C}\left[M\left(\Gamma_{c}\right)\right]$ induced by $c \subset M\left(\Gamma_{c}\right)$. Note that $\operatorname{Ind}_{1}^{\Gamma_{c}}(1)$ can be also viewed as an element of $\mathbf{C}\left[M\left(\Gamma_{c}\right)\right]$ (namely $\sum_{\rho} \operatorname{dim}(\rho)(1, \rho)$ where ρ runs over the irreducible representations of Γ_{c}). We have $\operatorname{Ind}_{1}^{\Gamma_{c}}(1) \in C o n_{c}$ except when
(a) $|c|$ equals $2,4,11$ or 17 ;
(in these cases W is of exceptional type). To remedy this, we enlarge $C o n_{c}$ to the subset Con $_{c}^{+}=\operatorname{Con}_{c} \cup \operatorname{Ind}_{1}^{\Gamma_{c}}(1)$ of $\mathbf{C}\left[M\left(\Gamma_{c}\right)\right]$. (We have Con $_{c}^{+}=$Con $_{c}$ whenever c is not as in (a)).

The main result of this paper is a definition of
a subset $\mathcal{A}_{\Gamma_{c}} \subset c$ in canonical bijection with Con $_{c}^{+}$such that each element of $\mathcal{A}_{\Gamma_{c}}$ appears with nonzero coefficient in the corresponding element of Con_{c}^{+}.

In [L79a] a specific representation $s p_{c} \in c$ in c was defined (it was later called the special representation); it corresponds to $(1,1) \in M\left(G_{c}\right)$. One of its properties is that it appears with coefficient 1 in any element of $C o n_{c}^{+}$. We always have $s p_{c} \in \mathcal{A}_{\Gamma_{c}}$. In fact, $s p_{c}$ corresponds to $\operatorname{Ind}_{1}^{\Gamma_{c}}(1) \in \operatorname{Con}_{c}^{+}$. Thus the representations in $\mathcal{A}_{\Gamma_{c}}$ generalize $s p_{c}$; we call them almost special representations of W. (This name is justified in 2.4.)

[^0]We will show elsewhere that (in the case where W is of simply laced type) the irreducible representation of W attached in [L15] to a stratum of G is almost special.
0.2. Our definition of $\mathcal{A}_{\Gamma_{c}}$ relies on the theory of new basis [L19], [L20], [L23].

Let $\mathcal{Z}_{\Gamma_{c}}$ be the set of pairs $\left(\Gamma^{\prime} \subset \Gamma^{\prime \prime}\right)$ of subgroups of Γ_{c} with Γ^{\prime} normal in $\Gamma^{\prime \prime}$. For $\left(\Gamma^{\prime} \subset \Gamma^{\prime \prime}\right) \in \mathcal{Z}_{\Gamma_{c}}$ let

$$
\mathbf{s}_{\Gamma^{\prime}, \Gamma^{\prime \prime}}: \mathbf{C}\left[M\left(\Gamma^{\prime \prime} / \Gamma^{\prime}\right)\right] \rightarrow \mathbf{C}\left[M\left(\Gamma_{c}\right)\right]
$$

be the C-linear map defined in [L20, 3.1]. In [L23, 2.3] to c we have associated a subset $X_{\Gamma_{c}}$ of $\mathcal{Z}_{\Gamma_{c}}$.

Let $\bar{X}_{\Gamma_{c}}=X_{\Gamma_{c}} \cup\left\{\left(S_{1}, S_{1}\right)\right\}$. (We denote by S_{n} the symmetric group in n letters.) We have (S_{1}, S_{1}) $\in X_{\Gamma_{c}}$ if and only if c is not as in 0.1(a); in these cases we have $\bar{X}_{\Gamma_{c}}=X_{\Gamma_{c}}$. Now,
(a) $\left(\Gamma^{\prime} \subset \Gamma^{\prime \prime}\right) \mapsto \mathbf{s}_{\Gamma^{\prime}, \Gamma^{\prime \prime}}(1,1)$ is a bijection of $\bar{X}_{\Gamma_{c}}$ onto a subset $S\left(\Gamma_{c}\right)$ of $\mathbf{C}\left[M\left(\Gamma_{c}\right)\right]$ which is a part of a basis of $\mathbf{C}\left[M\left(\Gamma_{c}\right)\right]$. (See [L19],[L23]). We have $\operatorname{Con}_{c}^{+} \subset S\left(\Gamma_{c}\right)$. More precisely, (a) restricts to a bijection of

$$
\bar{X}_{\Gamma_{c}, *}:=\left\{\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right) \in \bar{X}_{\Gamma_{c}} ; \Gamma^{\prime}=\Gamma^{\prime \prime}\right\}
$$

onto Con_{c}^{+}. Let

$$
\underline{\bar{X}}_{\Gamma_{c}}=\left\{\Gamma^{\prime} ;\left(\Gamma^{\prime}, \Gamma^{\prime}\right) \in \bar{X}_{\Gamma_{c}, *}\right\} .
$$

In [L20] a bijection ϵ from a certain basis of $\mathbf{C}\left[M\left(\Gamma_{c}\right)\right]$ (containing $S\left(\Gamma_{c}\right)$) to $M\left(\Gamma_{c}\right)$ is defined. This restricts to an injective map from $\left.S\left(\Gamma_{c}\right)\right)$ to $M\left(\Gamma_{c}\right)$ whose image is equal to the image of $c \subset M\left(\Gamma_{c}\right)$ (if c is not as in 0.1 (a)) and is equal to the image of $c \subset M\left(\Gamma_{c}\right)$, disjoint union with a single element $(1, ?) \in M\left(\Gamma_{c}\right)-c$ (if c is as in 0.1(a)). From the definition of ϵ, the following holds.
(b) $\epsilon(B)$ appears with nonzero coefficient in B for any $B \in S\left(\Gamma_{c}\right)$.

For $\Gamma_{0}^{\prime} \in \underline{\bar{X}}_{\Gamma_{c}}$ let $\bar{X}_{\Gamma_{c}}^{\Gamma_{0}^{\prime}}$ be the set of all $\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right) \in \bar{X}_{\Gamma_{c}}$ such that Γ^{\prime} is conjugate to Γ_{0}^{\prime}. The following statement will be verified in $\S 1, \S 2$.
(c) For $\Gamma_{0}^{\prime} \in \underline{\bar{X}}_{\Gamma_{c}}$, the function $\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right) \mapsto\left|\Gamma^{\prime \prime}\right|$ on $\bar{X}_{\Gamma_{c}}^{\Gamma_{0}^{\prime}}$ reaches its maximum at a unique ($\Gamma^{\prime}, \Gamma^{\prime \prime}$).
For $\Gamma_{0}^{\prime} \in \underline{\bar{X}}_{\Gamma_{c}}$ (with corresponding $\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right)$ defined by (c)) we set
$B_{\Gamma_{0}^{\prime}}=\mathbf{s}_{\Gamma^{\prime}, \Gamma^{\prime \prime}}(1,1) \in S\left(\Gamma_{c}\right)$,
$E_{\Gamma_{0}^{\prime}}=$ element of c which maps to $\epsilon\left(B_{\Gamma_{0}^{\prime}}\right)$ under $c \subset M\left(\Gamma_{c}\right)$. (If c is as in 0.1(a), we necessarily have $\epsilon\left(B_{\Gamma_{0}^{\prime}}\right) \neq(1, ?)$.)

We can now define

$$
\begin{gathered}
{ }^{1} S\left(\Gamma_{c}\right)=\left\{B_{\Gamma_{0}^{\prime}} ; \Gamma_{0}^{\prime} \in \underline{\bar{X}}_{\Gamma_{c}}\right\} \subset S\left(\Gamma_{c}\right), \\
\mathcal{A}_{\Gamma_{c}}=\left\{E_{\Gamma_{0}^{\prime}} ; \Gamma_{0}^{\prime} \in \underline{\bar{X}}_{\Gamma_{c}}\right\} \subset c .
\end{gathered}
$$

The elements of $\mathcal{A}_{\Gamma_{c}}$ are said to be the almost special representations of W in c.

We have a bijection $\mathcal{A}_{\Gamma_{c}} \xrightarrow{\sim}$ Con $_{c}^{+}$given by $E_{\Gamma_{0}^{\prime}} \mapsto \mathbf{s}_{\Gamma_{0}^{\prime}, \Gamma_{0}^{\prime}}(1,1)$ for $\Gamma_{0}^{\prime} \in \underline{\bar{X}}_{\Gamma_{c}}$.
We have a bijection ${ }^{1} S\left(\Gamma_{c}\right) \rightarrow C o n_{c}^{+}$given by $B_{\Gamma_{0}^{\prime}} \mapsto \mathbf{s}_{\Gamma_{0}^{\prime}, \Gamma_{0}^{\prime}}(1,1)$ for $\Gamma_{0}^{\prime} \in \underline{X}_{\Gamma_{c}}$.
We have a bijection ${ }^{1} S\left(\Gamma_{c}\right) \rightarrow \mathcal{A}_{\Gamma_{c}}$ given by $B_{\Gamma_{0}^{\prime}} \mapsto E_{\Gamma_{0}^{\prime}}$ for $\Gamma_{0}^{\prime} \in \underline{\bar{X}}_{\Gamma_{c}}$.
The following statement will be verified in $\S 1, \S 2$.
(d) Let $\Gamma_{0}^{\prime} \in \underline{\bar{X}}_{\Gamma_{c}}$. Let $\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right) \in \bar{X}_{\Gamma_{c}}^{\Gamma_{0}^{\prime}}$. Assume that $(x, \sigma) \in M\left(\Gamma_{c}\right)$ appears with nonzero coefficient in $\mathbf{s}_{\Gamma^{\prime}, \Gamma^{\prime \prime}}(1,1)$. Then $(x, \sigma) \in M\left(\Gamma_{c}\right)$ appears with nonzero coefficient in $\mathbf{s}_{\Gamma_{0}^{\prime}, \Gamma_{0}^{\prime}}(1,1)$.
Assume now that $(x, \sigma) \in M\left(\Gamma_{c}\right)$ corresponds to $E_{\Gamma_{0}^{\prime}}$ under $c \subset M\left(\Gamma_{c}\right)$. By (b), (x, σ) appears with nonzero coefficient in $\mathbf{S}_{\Gamma^{\prime}, \Gamma^{\prime \prime}}(1,1)$ where $\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right)$ is defined by Γ_{0}^{\prime} as in (c). Using (d) we see that
(e) (x, σ) appears with nonzero coefficient in $\mathbf{S}_{\Gamma_{0}^{\prime}, \Gamma_{0}^{\prime}}(1,1)$.
0.3. Notation. Let F be the field $\mathbf{Z} / 2$. For a, b in \mathbf{Z} we write $a \ll b$ whenever $b-a \geq 2$. For a, b in \mathbf{Z} let $[a, b]=\{z \in \mathbf{Z} ; a \leq z \leq b\}$. For a finite set E we write $|E|$ for the cardinal of E.

1. Classical types

1.1. Let $D \in 2 \mathbf{N}$. Let \mathcal{I}_{D} be the set of all intervals $I=[a, b]$ where $1 \leq a \leq b \leq D$. For $I=[a, b], I^{\prime}=\left[a^{\prime}, b^{\prime}\right]$ in \mathcal{I}_{D} we write $I \prec I^{\prime}$ whenever $a^{\prime}<a \leq b<b^{\prime}$; we write $I \boldsymbol{\top} I^{\prime}$ if $a^{\prime}-b \geq 2$ or $a-b^{\prime} \geq 2$. Let \mathcal{I}_{D}^{1} be the set of all $I=[a, b] \in \mathcal{I}_{D}$ such that $a=b \bmod 2$. For $I=[a, b] \in \mathcal{I}_{D}^{1}$ we define $\kappa(I) \in\{0,1\}$ by $\kappa(I)=0$ if a, b are even, $\kappa(I)=1$ if a, b are odd.

A sequence $I_{*}=\left(I_{1}, I_{2}, \ldots, I_{r}\right)$ in \mathcal{I}_{D}^{1} is said to be admissible if

$$
I_{*}=\left(\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{r}, b_{r}\right]\right), r \geq 1
$$

where

$$
\begin{gathered}
a_{1} \leq b_{1}, a_{2} \leq b_{2}, \ldots, a_{r} \leq b_{r} \\
a_{2}-b_{1}=2, a_{3}-b_{2}=2, \ldots, a_{r}-b_{r-1}=2
\end{gathered}
$$

For such I_{*} we define $\kappa\left(I_{*}\right) \in\{0,1\}$ by $\kappa\left(I_{*}\right)=0$ if all (or some) a_{i}, b_{i} are even, $\kappa\left(I_{*}\right)=1$ if all (or some) a_{i}, b_{i} are odd.

For $I=[a, b] \in \mathcal{I}_{D}^{1}$ let

$$
I^{e v}=\{x \in I ; x=a+1 \quad \bmod 2\}=\{x \in I ; x=b+1 \quad \bmod 2\} .
$$

1.2. Let R_{D}^{1} be the set whose elements are the subsets of \mathcal{I}_{D}^{1}. Let $B \in R_{D}^{1}$. We consider the following properties $\left(P_{0}\right),\left(P_{1}\right)$ that B may or may not have:
$\left(P_{0}\right)$ If $I \in B, I^{\prime} \in B$ then either $I=I^{\prime}$ or $I \boldsymbol{\wedge} I^{\prime}$ or $I \prec I^{\prime}$ or $I^{\prime} \prec I$.
$\left(P_{1}\right)$ If $I \in B$ and $x \in I^{e v}$ then there exists I^{\prime} in B such that $x \in I^{\prime}, I^{\prime} \prec I$.
Let S_{D} be the set of all $B \in R_{D}^{1}$ that satisfy $\left(P_{0}\right),\left(P_{1}\right)$. (In [L19], two sets S_{D}, S_{D}^{\prime} are introduced and showed to be equal. What we call S_{D} in this paper was called S_{D}^{\prime} in [L19].)

For $B \in S_{D}, I \in B$ let $m_{I, B}=\left|\left\{I^{\prime} \in B ; I \subset I^{\prime}\right\}\right|$.
1.3. For $B \in S_{D}, I=[a, b] \in B$ we set

$$
X_{I, B}=\left\{I^{\prime} \in B ; I^{\prime} \prec I, m_{I^{\prime}, B}=m_{I, B}+1\right\} .
$$

Assuming that $a<b$, we show:
(a) $X_{I, B}$ is an admissible sequence

$$
\left(\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{r}, b_{r}\right]\right)
$$

(see 1.1) with $a_{1}=a+1, b_{r}=b-1$. Moreover $\kappa\left(X_{I, B}\right)=1-\kappa(I)$.
We have $a+1 \in I^{e v}$. By $\left(P_{1}\right)$ we can find $\left[a_{1}, b_{1}\right] \in B$ such that $a<a_{1} \leq$ $a+1 \leq b_{1}<b$; we must have $a_{1}=a+1$ and we can assume that b_{1} is maximum possible. Then $m_{\left[a_{1}, b_{1}\right], B}=m_{I, B}+1$. If $b_{1}=b-1$ then we stop. Assume now that $b \geq b_{1}+3$. Let $a_{2}=b_{1}+2$. We have $a_{2} \in I^{e v}$ hence by $\left(P_{1}\right)$ we can find $\left[x, b_{2}\right] \in B$ such that $a<x \leq a_{2} \leq b_{2}<b$; we can assume that b_{2} is maximum possible. Then $m_{\left[x, b_{2}\right], B}=m_{I, B}+1$. Since $\left[a_{1}, b_{1}\right] \boldsymbol{\top}\left[x, b_{2}\right]$, we must have $x=a_{2}$. If $b_{2}=b-1$ then we stop. Assume now that $b \geq b_{2}+3$. Let $a_{3}=b_{2}+2$. We have $a_{3} \in I^{e v}$ hence by $\left(P_{1}\right)$ we can find $\left[x, b_{3}\right] \in B$ such that $a<x \leq a_{3} \leq b_{3}<b$; we can assume that b_{3} is maximum possible. Then $m_{\left[x, b_{3}\right], B}=m_{I, B}+1$. Since $\left[a_{2}, b_{2}\right] \boldsymbol{\oplus}\left[x, b_{3}\right]$, we must have $x=a_{3}$. This process continues in this way and it eventually stops. This proves (a). (The last statement of (a) is obvious.)
1.4. Let $B \in S_{D}$. For $I=[a, b] \in B$ we have
(a) $\left|\left\{I^{\prime} \in B ; I^{\prime} \subset I\right\}\right|=(b-a+2) / 2$.

See $[\mathrm{L} 20,1.3(\mathrm{~d})]$. We now write the various $I \in B$ such that $m_{I, B}=1$ in a sequence $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{r}, b_{r}\right]$ where

$$
1 \leq a_{1} \leq b_{1} \ll a_{2} \leq b_{2} \ll \cdots \ll a_{r} \leq b_{r} .
$$

From (a) we deduce

$$
\begin{aligned}
& |B|=\sum_{i \in[1, r]}\left(b_{i}-a_{i}+2\right) / 2 \\
& \quad=-a_{1} / 2-\left(\left(a_{2}-b_{1}\right)+\left(a_{3}-b_{2}\right)+\cdots+\left(a_{r}-b_{r-1}\right)\right) / 2+b_{r} / 2+r \\
& \quad \leq\left(b_{r}-a_{1}\right) / 2-(r-1)+r \leq(D-1) / 2+1=(D+1) / 2 .
\end{aligned}
$$

Since $D \in 2 \mathbf{N}$ it follows that $|B| \leq D / 2$. We see that:
(b) the condition that $|B|=D / 2$ is that either
-each of $a_{2}-b_{1}, a_{3}-b_{2}, \ldots, a_{r}-b_{r-1}$ equals 2 except one of them which equals 3 and $a_{1}=1, b_{r}=D$, or
-each of $a_{2}-b_{1}, a_{3}-b_{2}, \ldots, a_{r}-b_{r-1}$ equals 2 and $a_{1}=1, b_{r}=D-1$, or
-each of $a_{2}-b_{1}, a_{3}-b_{2}, \ldots, a_{r}-b_{r-1}$ equals 2 and $a_{1}=2, b_{r}=D$.
We set $S_{D}^{D / 2}=\left\{B \in S_{D} ;|B|=D / 2\right\}$.
1.5. Let ${ }^{1} S_{D}$ be the set of all $B \in S_{D}$ such that $\kappa(I)=1$ for any $I \in B$ with $m_{I, B}=1$.

Let $B \in S_{D}$. We set ${ }^{1} B=B-\left\{I \in B ; \kappa(I)=0, m_{I, B}=1\right\} \in R_{D}^{1}$. From the definitions it is clear that ${ }^{1} B \in S_{D}$. We show that
(a) ${ }^{1} B \in{ }^{1} S_{D}$.

Let $I^{\prime} \in{ }^{1} B$ be such that $m_{I^{\prime},{ }^{1} B}=1$. We have either $m_{I^{\prime}, B}=1, \kappa\left(I^{\prime}\right)=1$ or else $m_{I^{\prime}, B}=2$ and $I^{\prime} \prec I^{\prime \prime}$ for some $I^{\prime \prime} \in B$ with $m_{I^{\prime \prime}, B}=1, \kappa\left(I^{\prime \prime}\right)=0$. In the second case we have $I^{\prime} \in X_{I^{\prime \prime}, B}$, so that from 1.3(a) we have $\kappa\left(I^{\prime}\right)=1$. This proves (a).

Thus $B \mapsto{ }^{1} B$ is a well defined map $S_{D} \rightarrow{ }^{1} S_{D}$.
1.6. Let $B \in{ }^{1} S_{D}$. We write the various $I \in B$ such that $m_{I, B}=1$ in a sequence

$$
\begin{gathered}
{\left[a_{1}^{1}, b_{1}^{1}\right],\left[a_{2}^{1}, b_{2}^{1}\right], \ldots,\left[a_{r_{1}}^{1}, b_{r_{1}}^{1}\right],} \\
{\left[a_{1}^{2}, b_{1}^{2}\right],\left[a_{2}^{2}, b_{2}^{2}\right], \ldots,\left[a_{r_{2}}^{2}, b_{r_{2}}^{2}\right],} \\
\ldots, \\
{\left[a_{1}^{s}, b_{1}^{s}\right],\left[a_{2}^{s}, b_{2}^{s}\right], \ldots,\left[a_{r_{s}}^{s}, b_{r_{s}}^{s}\right]}
\end{gathered}
$$

whose first r_{1} terms form an admissible sequence $I_{* 1}$, the next r_{2} terms form an admissible sequence $I_{* 2}, \ldots$, and the last r_{s} terms form an admissible sequence $I_{* s}$; we also assume that

$$
a_{1}^{2} \geq b_{r_{1}}^{1}+4, a_{1}^{3} \geq b_{r_{2}}^{2}+4, \ldots, a_{1}^{s} \geq b_{r_{s-1}}^{s-1}+4
$$

Here we have

$$
r_{1} \geq 1, r_{2} \geq 1, \ldots, r_{s} \geq 1, s \geq 0, \kappa\left(I_{* 1}\right)=1, \kappa\left(I_{* 2}\right)=1, \ldots, \kappa\left(I_{* s}\right)=1
$$

Let $Z(B)$ be the subset of \mathcal{I}_{D}^{1} consisting of:
all $\left[a_{1}^{i}-1, b_{r_{i}}^{i}+1\right](i \in[1, s])$ such that $a_{1}^{i} \geq 2$ (this is automatic if $i \geq 2$);
all $[u, u]$ with u even, $b_{r_{i-1}}^{i-1}+1<u<a_{1}^{i}-1$ for some $i \in[2, s]$ (if $s>1$);
all $\left[u, u\right.$] with u even, $1<u<a_{1}^{1}-1$ (if $s>0$);
all $[u, u]$ with u even, $b_{r_{s}}^{s}+1<u \leq D($ if $s>0)$;
all $[u, u$] with u even, $1<u \leq D$ (if $s=0$).
For any subset $U \subset Z(B)$ we set $B_{U}=B \sqcup U$; then $B_{U} \in S_{D}$ and $U \mapsto B_{U}$ defines a bijection from the set of subsets of $Z(B)$ to the fibre at B of the map $S_{D} \rightarrow{ }^{1} S_{D}, B^{\prime} \mapsto{ }^{1} B^{\prime}$. Note that $B_{\emptyset}=B$ and $B_{Z(B)} \in S_{D}^{D / 2}$. Moreover, $B \mapsto B_{Z(B)}$ is the bijection ${ }^{1} S_{D} \xrightarrow{\sim} S_{D}^{D / 2}$ whose inverse is the restriction to $S_{D}^{D / 2}$ of $S_{D} \rightarrow{ }^{1} S_{D}, B^{\prime} \mapsto{ }^{1} B^{\prime}$. (We use 1.4(b).)
1.7. A subset B of R_{D}^{1} is said to be in ${ }^{1} \dot{S}_{D}$ if it satisfies $\left(P_{0}\right)$ and if each $I \in B$ satisfies $\kappa(I)=1$. For $B \in{ }^{1} S_{D}$ we set $\dot{B}=\{I \in B ; \kappa(I)=1\}$. Then $B \mapsto \dot{B}$ is a map
(a) ${ }^{1} S_{D} \rightarrow{ }^{1} \dot{S}_{D}$.

We show:
(b) The map (a) is a bijection.

Let $C \in{ }^{1} \dot{S}_{D}$. For $I \in C$ we set $\dot{m}_{I, C}=\left|\left\{I^{\prime} \in C ; I \subset I^{\prime}\right\}\right|$.
For $k \in\{1,2,3, \ldots\}$ we set $C[k]=\left\{I \in C ; \dot{m}_{I, C}=k\right\}$.
Let $I=[a, b] \in C[k]$. As in 1.6 we can write the intervals $\left\{I^{\prime} \in C[k+1] ; I^{\prime} \prec I\right\}$ in a sequence

$$
\begin{gathered}
{\left[a_{1}^{1}, b_{1}^{1}\right],\left[a_{2}^{1}, b_{2}^{1}\right], \ldots,\left[a_{r_{1}}^{1}, b_{r_{1}}^{1}\right],} \\
{\left[a_{1}^{2}, b_{1}^{2}\right],\left[a_{2}^{2}, b_{2}^{2}\right], \ldots,\left[a_{r_{2}}^{2}, b_{r_{2}}^{2}\right],} \\
\ldots, \\
{\left[a_{1}^{s}, b_{1}^{s}\right],\left[a_{2}^{s}, b_{2}^{s}\right], \ldots,\left[a_{r_{s}}^{s}, b_{r_{s}}^{s}\right]}
\end{gathered}
$$

whose first r_{1} terms form an admissible sequence $I_{* 1}$, the next r_{2} terms form an admissible sequence $I_{* 2}, \ldots$, and the last r_{s} terms form an admissible sequence $I_{* s}$; we also assume that

$$
a_{1}^{2} \geq b_{r_{1}}^{1}+4, a_{1}^{3} \geq b_{r_{2}}^{2}+4, \ldots, a_{1}^{s} \geq b_{r_{s-1}}^{s-1}+4
$$

Here we have

$$
r_{1} \geq 1, r_{2} \geq 1, \ldots, r_{s} \geq 1, s \geq 0, \kappa\left(I_{* 1}\right)=1, \kappa\left(I_{* 2}\right)=1, \ldots, \kappa\left(I_{* s}\right)=1
$$

Moreover we have $a_{1}^{i} \geq a+2, b_{r_{i}}^{i} \leq b-2$ for all i.
Let Y_{I} be the subset of \mathcal{I}_{D}^{1} consisting of:
all $\left[a_{1}^{i}-1, b_{r_{i}}^{i}+1\right](i \in[1, s])$;
all $[u, u]$ with u even, $b_{r_{i-1}}^{i-1}+1<u<a_{1}^{i}-1$ for some $i \in[2, s]$ (if $s>1$);
all [u, u] with u even, $a<u<a_{1}^{1}-1$ (if $s>0$);
all $[u, u]$ with u even, $b_{r_{s}}^{s}+1<u<b$ (if $s>0$);
all $[u, u$] with u even, $a<u<b$ (if $s=0$).
For $l \geq 1$ we set $B[2 l-1]=C[l], B[2 l]=\sqcup_{I \in C[l]} Y_{I}$. We set $B=\sqcup_{l \in\{1,2,3, \ldots\}} B[l]$.
From the definition we see that $B \in{ }^{1} S_{D}$ and that $C \mapsto B$ is an inverse of the map ${ }^{1} S_{D} \rightarrow{ }^{1} \dot{S}_{D}, B \mapsto \dot{B}$. This proves (b).

We shall view any element $C \in{ }^{1} \dot{S}_{D}$ as a tableau with columns indexed by $[1, D]$, with rows indexed by $\{1,2,3, \ldots\}$ and with entries in $\cup_{j}\left[a_{j}, b_{j}\right]$. Any entry in the s-column is equal to s; the k-th row consists of the elements in $\cup_{I \in C[k]} I$.
1.8. Let $C \in{ }^{1} \dot{S}_{D}$. It is an unordered set of intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{t}, b_{t}\right]$. We can order them by requiring that $b_{1}<b_{2}<\cdots<b_{t}$. We view C as a tableau as in 1.7. We associate to C a new tableau \ddot{C} with columns indexed by $[1, D]$, with rows indexed by $\{1,2,3, \ldots\}$ and with entries in $\cup_{j}\left[a_{j}, b_{j}\right]$. This is obtained by moving the entry of C in the s-column and row k to the same s-column and to row $k+j$ where $j \in[0, t-1]$ is defined by $b_{j}<s \leq b_{j+1}$ (with the convention $b_{0}=0$); note that $s \leq b_{t}$ whenever the s-column of C is nonempty.

For example, ${ }^{1} \dot{S}_{4}$ consists of 5 tableaux: ($\left.\emptyset\right),(1) ;(3) ;\left(\begin{array}{ll}1 & 3) ;(123) .\end{array}\right.$ corresponding tableaux \ddot{C} are $(\emptyset),(1) ;(3) ;\left(\begin{array}{ll}1 & \\ & 3\end{array}\right) ;(123)$. Now ${ }^{1} \dot{S}_{6}$ consists of 14 tableaux:
(Ø); (1); (3); (5); (1
$3) ;(3$
5); (1
$5) ;\left(\begin{array}{ll}1 & 3\end{array}\right) ;(123) ;$

$$
5) ;(345) ;\left(\begin{array}{ll}
1 & 345
\end{array}\right) ;(12345) ;\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
& & 3 & &
\end{array}\right) .
$$

The corresponding tableaux \ddot{C} are

$$
\left.\begin{array}{rl}
(\emptyset) ;(1) ;(3) ;(5) ;\left(\begin{array}{cc}
1 & \\
& 3
\end{array}\right) ;\left(\begin{array}{ll}
3 & \\
& 5
\end{array}\right) ;\left(\begin{array}{lll}
1 & & \\
& & 5
\end{array}\right) ;\left(\begin{array}{lll}
1 & & \\
& 3 & \\
& & \\
& & 53
\end{array}\right) ;\left(\begin{array}{ll}
123 & \\
& 5
\end{array}\right) ;(345) ;\left(\begin{array}{ll}
1 & \\
& 345
\end{array}\right) ;(12345) ;\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right. & 5 \\
& \\
& 3
\end{array}\right) .
$$

Here are some further examples.
If $C=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ & & 3 & & \end{array}\right)$ then $\ddot{C}=\left(\begin{array}{ccccc}1 & 2 & 3 & & \\ & & 3 & 4 & 5\end{array}\right)$.
If $C=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & & 3 & & & & \end{array}\right)$ then $\ddot{C}=\left(\begin{array}{cccccccc}1 & 2 & 3 & & & & \\ & & 3 & 4 & 5 & 6 & 7\end{array}\right)$.
If $C=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & & & & 5 & & \end{array}\right)$ then $\ddot{C}=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & & \\ & & & & 5 & 6 & 7\end{array}\right)$.
If $C=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & & 3 & & 5 & & \end{array}\right)$ then $\ddot{C}=\left(\begin{array}{ccccccc}1 & 2 & 3 & & & & \\ & & 3 & 4 & 5 & & \\ & & & & 5 & 6 & 7\end{array}\right)$.
If $C=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & & 3 & 4 & 5 & & \end{array}\right)$ then $\ddot{C}=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & & \\ & & 3 & 4 & 5 & 6 & 7\end{array}\right)$.
If $C=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & & 3 & 4 & 5 & 6 & 7 & & \\ & & & & 5 & & & & \end{array}\right)$ then
$\ddot{C}=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & & & & \\ & & 3 & 4 & 5 & 6 & 7 & & \\ & & & & 5 & 6 & 7 & 8 & 9\end{array}\right)$.
We show:
(a) Let $j \in[1, t]$. Let k be such that $\left[a_{j}, b_{j}\right] \in C[k]$. In row j of \ddot{C}, b_{j} appears and $b_{j}+1$ does not appear.

In rows $j+1, j+2, \ldots, j+k-1$ of \ddot{C}, b_{j} and $b_{j}+1$ appear. In any other row of \ddot{C}, b_{j} and $b_{j}+1$ do not appear.
Assume first that $b_{j}<D$. Then in C, b_{j} appears in rows $1,2, \ldots, k$ and $b_{j}+1$ appears in rows $1,2, \ldots, k-1$. Since $b_{j-1}<b_{j} \leq b_{j}, b_{j}<b_{j}+1 \leq b_{j+1}$ we see that in \ddot{C}, b_{j} appears in rows $1+(j-1), 2+(j-1), \ldots, k+(j-1)$ and $b_{j}+1$ appears in rows $1+j, 2+j, \ldots,(k-1)+j$. This proves (a) in our case. Now assume that $b_{j}=D$ (in this case $j=t$ and $k=1$). Then in C, b_{t} appears in row 1 and in no other row. We have $b_{t-1}<b_{t} \leq b_{t}$. Hence in \ddot{C}, b_{t} appears in row $1+(t-1)$ and in no other row. Thus (a) again holds.

We show:
(b) Let $i \in[1, t]$. Let k be such that $\left[a_{i}, b_{i}\right] \in C[k]$. Define $j \in[0, t-1]$ by $b_{j}<a_{i} \leq b_{j+1}$. In row $k+j$ of \ddot{C}, a_{i} appears and $a_{i}-1$ does not appear.
In rows $j+1, j+2, \ldots, j+k-1$ of \ddot{C}, a_{i} and $a_{i}-1$ appear. In any other row of \ddot{C}, a_{i} and $a_{i}-1$ do not appear.
Assume first that $a_{i}>1$. Then in C, a_{i} appears in rows $1,2, \ldots, k$ and $a_{i}-1$ appears in rows $1,2, \ldots, k-1$. Then (since b_{j}, a_{i} are odd) we have $b_{j}<a_{i}-1 \leq$ b_{j+1}. Hence in \ddot{C}, a_{i} appears in rows $1+j, 2+j, \ldots, k+j$ and $a_{i}-1$ appears in rows $1+j, 2+j, \ldots,(k-1)+j$. This proves (b) in our case. Now assume that $a_{i}=1$ (in this case we have $k=1$). Then in C, a_{i} appears in row 1 and in no other row. We have $b_{0}<a_{i} \leq b_{1}$. Hence in \ddot{C}, a_{i} appears in row 1 and in no other row. Thus (b) again holds.

Now let $h \in \cup_{j}\left[a_{j}, b_{j}\right]$ be such that $h \neq a_{j}, h \neq b_{j}$ for all $j \in[1, t]$. We show:
(c) Any row of \ddot{C} that contains h must also contain $h+1$.
(d) Any row of \ddot{C} that contains h must also contain $h-1$.

There is a well defined $j \in[0, t-1]$ such that $b_{j}<h<b_{j+1}$.
We prove (c). Assume first that $h+1<b_{j+1}$. Then in C, h appears in rows $1,2, \ldots, k$ and $h+1$ appears in rows $1,2, \ldots, k$ (for some k). In \ddot{C}, h appears in rows $j+1, j+2, \ldots, j+k$ and $h+1$ appears in rows $j+1, j+2, \ldots, j+k$. Hence in this case (c) holds. Next we assume that $h+1=b_{j+1}$. Then in C, h appears in rows $1,2, \ldots, k$ and $h+1$ appears in rows in rows $1,2, \ldots, k+1$ (for some k). In \ddot{C}, h appears in rows $j+1, j+2, \ldots, j+k$ and $h+1$ appears in rows $j+1, j+2, \ldots, j+k+1$. We see again that (c) holds.

We prove (d). Assume first that $b_{j}<h-1$. Then in C, h appears in rows $1,2, \ldots, k$ and $h-1$ appears in rows $1,2, \ldots, k$ (for some k). In \ddot{C}, h appears in rows $j+1, j+2, \ldots, j+k$ and $h-1$ appears in rows $j+1, j+2, \ldots, j+k$. Hence in this case (d) holds.

Next we assume that $b_{j}=h-1$. Then in C, h appears in rows $1,2, \ldots, k$ and $h-1$ appears in rows $1,2, \ldots, k, k+1$ (for some k). Moreover in \ddot{C}, h appears in rows $j+1, j+2, \ldots, j+k$ and $h-1$ appears in rows $j, j+1, j+2, \ldots, j+k$. We see again that (d) holds.

From (a)-(d) we deduce:
(e) For $j \in[1, t]$, the row j of \ddot{C} consists of $a_{i_{j}}, a_{i_{j}}+1, a_{i_{j}}+2, \ldots, b_{j}$ for a well
defined $i_{j} \in[1, t]$ such that $a_{i_{j}} \leq b_{j}$. Moreover, $j \mapsto i_{j}$ is a permutation of $[1, t]$.
We show:
(f) For $u \in[2, t]$ we have $a_{i_{u-1}}<a_{i_{u}}$.

We set $i=i_{u}$.
Assume first that $\left[a_{i}, b_{i}\right] \in C[k], k \geq 2$. By (b), one row of \ddot{C} contains a_{i} but not $a_{i}-1$ (hence it is necessarily the row u) and the row just above it (that is row $u-1$) contains a_{i} and $a_{i}-1$. (We use that $k \geq 2$.) Now that row consists of $a_{i_{u-1}}, a_{i_{u-1}}+1, \ldots, b_{u-1}-1, b_{u-1}$. Thus we have $a_{i_{u-1}} \leq a_{i}-1<a_{i} \leq b_{u-1}$. In particular, $a_{i_{u-1}}<a_{i}$.

Next we assume that $\left[a_{i}, b_{i}\right] \in C[1]$. Now $\left[a_{i}, b_{u}\right]$ is contained in the union of all $I \in C[1]$ and consists of consecutive numbers. Hence it is contained in one such I which is necessarily $\left[a_{i}, b_{i}\right]$. Thus we have $\left[a_{i}, b_{u}\right] \subset\left[a_{i}, b_{i}\right]$.

Assume that $a_{i} \leq b_{u-1}$. In row 1 of C we have $a_{i} \leq b_{u-1}<b_{u}$. In row 2 of C, a_{i} is missing. Since $a_{i} \leq b_{u-1}$ the unique entry a_{i} in \ddot{C} appears in a row $\leq u-1$. In particular the row u of \ddot{C} does not contain a_{i}; but it contains b_{u}. This contradicts $a_{i}=a_{i_{u}}$. We see that we must have $b_{u-1}<a_{i}$. But $a_{i_{u-1}} \leq b_{u-1}$ hence $a_{i_{u-1}}<a_{i}$. This proves (f).
1.9. Let ${ }^{1} \ddot{S}_{D}$ be the set of tableaux with columns indexed by $[1, D]$, with rows indexed by $\{1,2,3, \ldots\}$ and with entries in $[1, D]$ such that any entry in the s column is equal to s; for any $k \in[1, t]$ (some t), the row k consists of the elements in some $I_{k}=\left[c_{k}, d_{k}\right] \in \mathcal{I}_{D}^{1}$ with $\kappa\left(I_{k}\right)=1$; for $k>t$ the row k contains no entries; we have $c_{1}<c_{2}<\cdots<c_{t}, d_{1}<d_{2}<\cdots<d_{t}$.

For $X, c_{1}<c_{2}<\cdots<c_{t}, d_{1}<d_{2}<\cdots<d_{t}$ as above we define a tableau \dot{X} with columns indexed by $[1, D]$, with rows indexed by $\{1,2,3, \ldots\}$ and with entries in $\cup_{j}\left[c_{j}, d_{j}\right]$. This is obtained by moving the entry of X in the s-column and row k to the same s-column and to row $k-j$ where $j \in[0, t-1]$ is defined by $d_{j}<s \leq d_{j+1}$ (with the convention $d_{0}=0$); note that we necessarily have $k>j$. (Indeed, we have $s \leq d_{k}$; if $k \leq j$ then $d_{k} \leq d_{j}$, hence $s \leq d_{j}$, contradicting $d_{j}<s$.)

From the definitions we see that $\dot{X} \in{ }^{1} \dot{S}_{D}$ and that $X \mapsto \dot{X}$ is a bijection ${ }^{1} \ddot{S}_{D} \rightarrow{ }^{1} \dot{S}_{D}$ inverse to $C \mapsto \ddot{C},{ }^{1} \dot{S}_{D} \rightarrow{ }^{1} \ddot{S}_{D}$.
1.10. Let U_{D} be the set of all tableaux

$$
\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{t} \\
d_{1}^{\prime} & d_{2}^{\prime} & \ldots & d_{t}^{\prime}
\end{array}\right)
$$

where $c_{1}<c_{2}<\cdots<c_{t}$ are odd integers in $[1, D], d_{1}^{\prime}<d_{2}^{\prime}<\cdots<d_{t}^{\prime}$ are even integers in $[1, D]$ and $c_{1}<d_{1}^{\prime}, c_{2}<d_{2}^{\prime}, \ldots, c_{t}<d_{t}^{\prime}$.

We have an obvious bijection ${ }^{1} \ddot{S}_{D} \xrightarrow{\sim} U_{D}$,

$$
\begin{aligned}
& \left(X, c_{1}<c_{2}<\cdots<c_{t}, d_{1}<d_{2}<\cdots<d_{t}\right) \mapsto \\
& \left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{t} \\
d_{1}+1 & d_{2}+1 & \ldots & d_{t}+1
\end{array}\right) .
\end{aligned}
$$

1.11. Let $\ddot{\Sigma}_{D}$ be the set of all symbols

$$
\Lambda=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{(D+2) / 2} \\
j_{1} & j_{2} & \ldots & j_{(D+2) / 2}
\end{array}\right)
$$

where

$$
\begin{gathered}
\left\{i_{1}, i_{2}, \ldots, i_{(D+2) / 2}\right\} \sqcup\left\{j_{1}, j_{2}, \ldots, j_{(D+2) / 2}\right\}=[0, D+1], \\
i_{1}<i_{2}<\cdots<i_{(D+2) / 2}, j_{1}<j_{2}<\cdots<j_{(D+2) / 2}, \\
i_{1}<j_{1}, i_{2}<j_{2}, \ldots, i_{(D+2) / 2}<j_{(D+2) / 2} .
\end{gathered}
$$

We then have $i_{1}=0, j_{(D+2) / 2}=D+1$.
For Λ as above let $c_{1}<c_{2}<\cdots<c_{t}$ be the odd numbers in $\left\{i_{1}, i_{2}, \ldots, i_{(D+2) / 2}\right\}$ (in increasing order) and let $d_{1}^{\prime}<d_{2}^{\prime}<\cdots<d_{t^{\prime}}^{\prime}$ be the even numbers in $\left\{j_{1}, j_{2}, \ldots, j_{(D+2) / 2}\right\}$ (in increasing order). We have necessarily $t=t^{\prime}$. We show:

$$
\begin{equation*}
c_{1}<d_{1}^{\prime}, c_{2}<d_{2}^{\prime}, \ldots, c_{t}<d_{t}^{\prime} \tag{a}
\end{equation*}
$$

Assume now that for some $s \in[0, t], s<t$ we already know that $c_{1}<d_{1}^{\prime}, c_{2}<$ $d_{2}^{\prime}, \ldots, c_{s}<d_{s}^{\prime}$. We show that $c_{s+1}<d_{s+1}^{\prime}$.

Assume that $d_{s+1}^{\prime} \leq c_{s+1}$. Let $Z=\left\{i_{k} ; k \in[1,(D+2) / 2] ; i_{k}<d_{s+1}^{\prime}\right\}$. Then

$$
Z=\left\{0,2,4, \ldots, d_{s+1}^{\prime}-2\right\} \sqcup\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}-\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{s}^{\prime}\right\} .
$$

(We use that $c_{1}<d_{1}^{\prime}, c_{2}<d_{2}^{\prime}, \ldots, c_{s}<d_{s}^{\prime}$. We also use that $d_{s+1}^{\prime} \leq c_{s+1}$.) We have $|Z|=\left|\left(0,2,4, \ldots, d_{s+1}^{\prime}-2\right)\right|$. We have $d_{s+1}^{\prime}=j_{m}$ for some $m \in[1,(D+2) / 2]$ and $i_{m}<d_{s+1}^{\prime}$ that is $i_{m} \in Z$. It follows that $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\} \subset Z$ so that $m \leq|Z|$. Let

$$
Z^{\prime}=\left\{j_{k} ; k \in[1,(D+2) / 2] ; j_{k} \leq d_{s+1}^{\prime}\right\} .
$$

We have $\left|Z^{\prime}\right|=m$. Now

$$
Z^{\prime}=\left\{1,3,5, \ldots, d_{s+1}^{\prime}-1 \sqcup\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{s}^{\prime}, d_{s+1}^{\prime}\right\}-\left\{c_{1}, s_{2}, \ldots, c_{s}\right\}\right.
$$

so that $\left.\left|Z^{\prime}\right|=\mid\left(1,3,5, \ldots, d_{s+1}^{\prime}-1\right)+1\right) \mid$. Since $\left|Z^{\prime}\right|=m$ and $m \leq Z$ we have $\left|Z^{\prime}\right| \leq|Z|$ so that

$$
\left.\mid\left(1,3,5, \ldots, d_{s+1}^{\prime}-1\right)+1\right)\left|\leq\left|\left(0,2,4, \ldots, d_{s+1}^{\prime}-2\right)\right|\right.
$$

This is obviously not true. This proves (a).

From (a) we see that

$$
\Lambda \mapsto\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{t} \\
d_{1}^{\prime} & d_{2}^{\prime} & \ldots & d_{t}^{\prime}
\end{array}\right)
$$

(as described above) defines a map

$$
\begin{equation*}
\ddot{\Sigma}_{D} \rightarrow U_{D} \tag{b}
\end{equation*}
$$

We show:
(c) The map (b) is injective.

To any

$$
\mu=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{t} \\
d_{1}^{\prime} & d_{2}^{\prime} & \ldots & d_{t}^{\prime}
\end{array}\right) \in U_{D}
$$

we associate a sequence

$$
\mu^{\prime}=\left(i_{1}, i_{2}, \ldots, i_{(D+2) / 2}\right)
$$

and a sequence

$$
\mu^{\prime \prime}=\left(j_{1}, j_{2}, \ldots, j_{(D+2) / 2}\right)
$$

as follows.
μ^{\prime} consists of the elements in $\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}$ and those in $\{0,2,4, \ldots, D\}-$ $\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{t}^{\prime}\right\}$ (in increasing order).
$\mu^{\prime \prime}$ consists of the elements in $\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{t}^{\prime}\right\}$ and those in $\{1,3,5, \ldots, D+1\}-$ $\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}$ (in increasing order).

From the definition we see that if $\Lambda \in \ddot{\Sigma}_{D}$ has image $\mu \in U_{D}$ under (b) then $\Lambda=\binom{\mu^{\prime}}{\mu^{\prime \prime}}$. From this it is clear that the map (b) is injective. This proves (c).

1.12. We show:

(a) The injective map $\ddot{\Sigma}_{D} \rightarrow U_{D}$ in 1.11(b) is a bijection.

Note that $\ddot{\Sigma}_{D}$ can be viewed as the set of standard Young tableaux attached to a partition with two equal parts of size $(D+2) / 2$. The number of such standard tableaux can be computed from the hook length formula so that it is equal to $(D+2)!/((D+2) / 2)!(D+4) / 2)!)$ that is to the Catalan number $C a t_{(D+2) / 2}$. (This interpretation of Catalan numbers in terms of standard Young tableaux has been known before.)

From the bijections

$$
U_{D} \leftarrow{ }^{1} \ddot{S}_{D} \rightarrow{ }^{1} \dot{S}_{D} \leftarrow{ }^{1} S_{D} \rightarrow S_{D}^{D / 2}
$$

(see $1.10,1.9,1.7,1.6$) we see that $\left|U_{D}\right|=\left|S_{D}^{D / 2}\right|$. By [LS], $\left|S_{D}^{D / 2}\right|$ is equal to the Catalan number $C a t_{(D+2) / 2}$. We see that the map in (a) satisfies $\left|\ddot{\Sigma}_{D}\right|=\left|U_{D}\right|=$ $C a t_{(D+2) / 2}$. It follows that this map is a bijection.
(It is likely that (a) has a more direct proof which does not rely on [LS].)
We show:
(b) If $\mu \in U_{D}$ and if $\mu^{\prime}, \mu^{\prime \prime}$ are as in the proof of 1.11(c), then $\binom{\mu^{\prime}}{\mu^{\prime \prime}} \in \ddot{\Sigma}_{D}$. Moreover $\mu \mapsto\binom{\mu^{\prime}}{\mu^{\prime \prime}}$ is the inverse of the map $\ddot{\Sigma}_{D} \rightarrow U_{D}$ in 1.11.
If $\mu \in U_{D}$, then by (a) we can find $\Lambda \in \ddot{\Sigma}_{D}$ whose image under the map 1.11(b) is μ. By the proof of 1.11 (c) we have $\Lambda=\binom{\mu^{\prime}}{\mu^{\prime \prime}}$. It follows that $\binom{\mu^{\prime}}{\mu^{\prime \prime}} \in \ddot{\Sigma}_{D}$.
1.13. Let V_{D} be the F-vector space with basis $e_{1}, e_{2}, \ldots, e_{D}$ and with the symplectic form $():, V \times V \rightarrow F$ given by $\left(e_{i}, e_{j}\right)=1$ if $i-j= \pm 1,\left(e_{i}, e_{j}\right)=0$, otherwise. For any subset J of $[1, D]$ we set $e_{J}=\sum_{j \in J} e_{j} \in V_{D}$.

For $B \in S_{D}$ let $$ be the subspace of V_{D} spanned by $\left\{e_{I} ; I \in B\right\}$. (This is actually a basis of $\langle B\rangle$, see [L19].)

For $j \in[1, D]$ and $B \in S_{D}$ we set $B_{j}=\{I \in B ; j \in I\}$ and

$$
\epsilon_{j}(B)=\left|B_{j}\right|\left(\left|B_{j}\right|+1\right) / 2 \in F
$$

. For $B \in S_{D}$ we set

$$
\epsilon(B)=\sum_{j \in[1, D]} \epsilon_{j}(B) e_{j} \in V_{D}
$$

We show:

$$
\begin{equation*}
\epsilon(B)=\sum_{I \in B ; m_{I, B} \in 2 \mathbf{N}+1} e_{I} . \tag{a}
\end{equation*}
$$

An equivalent statement is:
If $j \in[1, D]$ then $\left|\left\{I \in B_{j}, m_{I, B} \in 2 \mathbf{N}+1\right\}\right|$ is even if $\left|B_{j}\right| \in(4 \mathbf{Z}) \cup(4 \mathbf{Z}+3)$ and is odd if $\left|B_{j}\right| \in(4 \mathbf{Z}+1) \cup(4 \mathbf{Z}+2)$.
This follows immediately from the following statement (which holds by the definition of S_{D}):
B_{j} consists of intervals $I_{k} \prec I_{k-1} \prec \cdots \prec I_{1}$ in \mathcal{I}_{D}^{1} such that $m_{I_{k}, B}=$ $k, m_{I_{k-1}, B}=k-1, \ldots, m_{I_{1}, B}=1$.
For $C \in{ }^{1} \dot{S}_{D}$ we define

$$
\begin{equation*}
\dot{\epsilon}(C)=\sum_{I \in C} e_{I} \tag{b}
\end{equation*}
$$

For $\ddot{C} \in{ }^{1} \ddot{S}_{D}$ we define

$$
\begin{equation*}
\ddot{\epsilon}(\ddot{C})=\sum_{k} e_{\left[c_{k}, d_{k}\right]} \in V_{D} \tag{c}
\end{equation*}
$$

where $c_{k}, c_{k}+1, c_{k}+2, \ldots, d_{k}$ are the entries in the k-th row of \ddot{C}. From the definitions we have

$$
\begin{equation*}
\dot{\epsilon}(C)=\ddot{\epsilon}(\ddot{C}) \tag{d}
\end{equation*}
$$

if C, \ddot{C} correspond to each other under the bijection in 1.9.
1.14. By [L19, 1.16], $B \mapsto \epsilon(B)$ is an injective map $\epsilon: S_{D} \xrightarrow{\sim} V_{D}$. By $1.13(\mathrm{a})$, for $B \in{ }^{1} S_{D}$ we have $\epsilon(B)=\dot{\epsilon}(\dot{B})(\dot{\epsilon}$ as in 1.13(b)). Hence the restriction of ϵ to ${ }^{1} S_{D}$ can be identified with $\dot{\epsilon}:{ }^{1} \dot{S}_{D} \rightarrow V_{D}$ via the bijection $1.7(\mathrm{~b})$. In particular, $\dot{\epsilon}$ is injective. Using $1.13(\mathrm{~d})$ we see that via the bijection in $1.9, \dot{\epsilon}:{ }^{1} \dot{S}_{D} \rightarrow V_{D}$ becomes $\ddot{\epsilon}:{ }^{1} \ddot{S}_{D} \rightarrow V_{D}$. In particular, $\ddot{\epsilon}$ is injective.
1.15. Let Σ_{D} be the set of all unordered pairs $\binom{A}{B}$ of subsets of $[0, D+1]$ such that $[0, D+1]=A \sqcup B,|A|=|B| \bmod 4$.

There is a unique bijection $f: V_{D} \rightarrow \Sigma_{D}$ such that

$$
f(0)=\left(\begin{array}{ccccc}
0 & 2 & 4 & \ldots & D \\
1 & 3 & 5 & \ldots & D+1
\end{array}\right)
$$

and such that if $x \in V_{D}, f(x)=\binom{A}{B}$ and $i \in[1, D]$ then

$$
f\left(x+e_{i}\right)=\binom{A \sharp\{i, i+1\}}{B \sharp\{i, i+1\}}
$$

where \sharp is the symmetric difference; it follows that for $1 \leq i<j \leq D$ we have

$$
f\left(x+e_{i}+e_{i+1}+\cdots+e_{j}\right)=\binom{A \sharp\{i, j+1\}}{B \sharp\{i, j+1\}} .
$$

1.16. We can regard $\ddot{\Sigma}_{D}$ as a subset of Σ_{D}. If $\ddot{C} \in{ }^{1} \ddot{S}_{D}$ corresponds to $\mu \in$ U_{D} under 1.10 then from the definitions we have $f(\ddot{\epsilon}(\ddot{C}))=\binom{\mu^{\prime}}{\mu^{\prime \prime}}$ (notation of 1.12(b)). In particular we have
(a) $f(\ddot{\epsilon}(\ddot{C})) \in \ddot{\Sigma}_{D}$
and (using 1.12(b)) we see that
(b) $\ddot{C} \mapsto f(\ddot{\epsilon}(\ddot{C}))$ is a bijection ${ }^{1} \ddot{S}_{D} \xrightarrow{\sim} \ddot{\Sigma}_{D}$.
1.17. We have $V_{D}=V_{D}^{0} \oplus V_{D}^{1}$ where V_{D}^{0} is the subspace spanned by $\left\{e_{2}, e_{4}, \ldots, e_{D}\right\}$ and V_{D}^{1} is the subspace spanned by $\left\{e_{1}, e_{3}, \ldots, e_{D-1}\right\}$. For $I \in \mathcal{I}_{D}^{1}$ we have $I=I^{0} \sqcup I^{1}$ where $I^{0}=I \cap\{2,4, \ldots, D\}, I^{1}=I \cap\{1,3, \ldots, D-1\}$. As shown in [L19], for $B \in S_{D}$ we have $=_{0} \oplus_{1}$ where

$$
{0}=\cap V{D}^{0},_{1}=\cap V_{D}^{1}
$$

moreover,
(a) $_{1}$ has basis $\left\{e_{I^{1}} ; I \in B, \kappa(I)=1\right\}$,
$_{0}$ has basis $\left\{e_{I^{0}} ; I \in B, \kappa(I)=0\right\}$.
1.18. If \mathcal{L} is a subspace of $V_{D}^{\delta}(\delta \in\{0,1\})$ we set

$$
\mathcal{L}^{!}=\left\{x \in V^{1-\delta} ;(x, \mathcal{L})=0\right\}
$$

Let $\mathcal{C}\left(V_{D}^{\delta}\right)$ be the set of subspaces of V_{D}^{δ} of the form $_{\delta}$ for some $B \in S_{D}$. If $\mathcal{L} \in \mathcal{C}\left(V_{D}^{\delta}\right)$ we have $\mathcal{L}^{!} \in \mathcal{C}\left(V_{D}^{1-\delta}\right)$; see [L19, §2]. Let $\mathcal{A}\left(V_{D}^{1}\right)$ be the set of all $\left(\mathcal{L}, \mathcal{L}^{\prime}\right) \in \mathcal{C}\left(V_{D}^{1}\right) \times \mathcal{C}\left(V_{D}^{1}\right)$ such that $\mathcal{L} \subset \mathcal{L}^{\prime}$ and $\mathcal{L} \oplus \mathcal{L}^{\prime!}=$ for some $B \in S_{D}$.
(a) If $B \in S_{D}$ then $B \mapsto\left(_{1},{ }_{0}^{!}\right)$is a bijection $\Phi: S_{D} \rightarrow \mathcal{A}\left(V_{D}^{1}\right)$; see [L19, §2]. Let $\mathcal{A}_{*}\left(V_{D}^{1}\right)$ be the set of all $\left(\mathcal{L}, \mathcal{L}^{\prime}\right) \in \mathcal{C}\left(V_{D}^{1}\right) \times \mathcal{C}\left(V_{D}^{1}\right)$ such that $\mathcal{L}=$ \mathcal{L}^{\prime}. In $[\mathrm{L} 19, \S 2]$ it is shown that $\mathcal{A}_{*}\left(V_{D}^{1}\right) \subset \mathcal{A}\left(V_{D}^{1}\right)$; more precisely if $\mathcal{L} \in \mathcal{C}\left(V_{D}^{1}\right)$ then $\mathcal{L} \oplus \mathcal{L}^{!}=$ for a well defined $B \in S_{D}^{D / 2}$. Moreover $B \mapsto\left(_{1},_{0}^{!}\right)$is a bijection $S_{D}^{D / 2} \rightarrow \mathcal{A}_{*}\left(V_{D}^{1}\right)$ and $\left(\mathcal{L}, \mathcal{L}^{\prime}\right) \mapsto \mathcal{L}=\mathcal{L}^{\prime}$ is a bijection $\mathcal{A}_{*}\left(V_{D}^{1}\right) \rightarrow \mathcal{C}\left(V_{D}^{1}\right)$. The composition of these bijections is a bijection $B \mapsto_{1}$,
(b) $S_{D}^{D / 2} \xrightarrow{\sim} \mathcal{C}\left(V_{D}^{1}\right)$.

Next we note that $B \mapsto_{1}$ is also a bijection
(c) ${ }^{1} S_{D} \xrightarrow{\sim} \mathcal{C}\left(V_{D}^{1}\right)$.

This follows from (b) since the bijection (b) is a composition

$$
S_{D}^{D / 2} \xrightarrow{\sim}{ }^{1} S_{D} \rightarrow \mathcal{C}\left(V_{D}^{1}\right)
$$

where the fist map is the bijection $B \mapsto{ }^{1} B$ and the second map is the map in (c).
Here we use that
(d) $_{1}=<{ }^{1} B>_{1}$ for any $B \in S_{D}$,
which follows from definitions.
We show:
(e) For any $\mathcal{L} \in \mathcal{C}\left(V_{D}^{1}\right)$, the set

$$
\left\{\mathcal{L}^{\prime} \in \mathcal{C}\left(V_{D}^{1}\right) ;\left(\mathcal{L}, \mathcal{L}^{\prime}\right) \in \mathcal{A}\left(V_{D}^{1}\right)\right\}
$$

contains a unique \mathcal{L}^{\prime} with $\left|\mathcal{L}^{\prime}\right|$ maximal.
An equivalent statement is:
(f) For any $\mathcal{L} \in \mathcal{C}\left(V_{D}^{1}\right)$ the set $\left\{B^{\prime} \in S_{D} ;<B^{\prime}>_{1}=\mathcal{L}\right\}$ contains a unique B^{\prime} with $\left|<B^{\prime}>_{0}^{!}\right|$maximal (that is $\operatorname{dim}\left(<B^{\prime}>_{0}\right) \mid$ minimal).
By (b) we have $\mathcal{L}=_{1}$ for a well defined $B \in S_{D}^{D / 2}$. The condition that $<B^{\prime}>_{1}=_{1}$ is equivalent to $<{ }^{1} B^{\prime}>_{1}=<{ }^{1} B>_{1}$ (see (d)) and this is equivalent to ${ }^{1} B^{\prime}={ }^{1} B$ (see (c)). Hence the set in (f) is equal to
$\left\{B^{\prime} \in S_{D} ;^{1} B^{\prime}={ }^{1} B\right\}$.
By the results in 1.6 this is the same as $\left\{\left({ }^{1} B\right)_{U} ; U \in Z\left({ }^{1} B\right)\right\}$. By $1.17(\mathrm{a})$, for $U \in Z\left({ }^{1} B\right)$ we have

$$
\operatorname{dim}\left(\left({ }^{1} B\right)_{U}\right)_{0}=\operatorname{dim}\left({ }^{1} B\right)_{0}+|U|
$$

This is $\geq \operatorname{dim}\left({ }^{1} B\right)_{0}$ with equality if and only if $U=\emptyset$. This proves (f) and hence (e).

For $\mathcal{L} \in \mathcal{C}\left(V_{D}^{1}\right)$ we denote by $\mathcal{L}^{\text {max }}$ the element \mathcal{L}^{\prime} in (e) with $\left|\mathcal{L}^{\prime}\right|$ maximal. Let $\mathcal{A}^{*}\left(V_{D}^{1}\right)$ be the set of all $\left(\mathcal{L}, \mathcal{L}^{\prime}\right) \in \mathcal{C}\left(V_{D}^{1}\right) \times \mathcal{C}\left(V_{D}^{1}\right)$ such that $\mathcal{L}^{\prime}=\mathcal{L}^{\text {max }}$. We have $\mathcal{A}^{*}\left(V_{D}^{1}\right) \subset \mathcal{A}\left(V_{D}^{1}\right)$ and
(g) $\left(\mathcal{L}, \mathcal{L}^{\prime}\right) \mapsto \mathcal{L}$ is a bijection $\mathcal{A}^{*}\left(V_{D}^{1}\right) \rightarrow \mathcal{C}\left(V_{D}^{1}\right)$.

From (c), (g) we see (using the proof of (f)) that
(h) $B \mapsto\left(_{1},_{0}^{!}\right)$is a bijection ${ }^{1} S_{D} \xrightarrow{\sim} \mathcal{A}^{*}\left(V_{D}^{1}\right)$.
1.19. In this subsection we assume that $D \in\{2,4,6\}$. In each case we give a table with rows of the form $\alpha \ldots . \beta \ldots \gamma$ where $\alpha \in S_{D}^{D / 2}, \beta \in{ }^{1} S_{D}$ corresponds to α and $\gamma \in \ddot{\Sigma}_{D}$. We write an interval $[a, b]$ as $a, a+1, a+2, \ldots, b$ (without commas).

D=2
$\{2\} \ldots . . .\{\emptyset\} \ldots \ldots . .\left(\begin{array}{ll}0 & 2 \\ 1 & 3\end{array}\right)$
$\{1\} \ldots\{1\} \ldots \ldots \ldots\left(\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right)$
$D=4$

$$
\begin{aligned}
& \{2,4\} \ldots \ldots\{\emptyset\} \ldots \ldots\left(\begin{array}{lll}
0 & 2 & 4 \\
1 & 3 & 5
\end{array}\right) \\
& \{1,4\} \ldots . \ldots\{1\} \ldots \ldots .\left(\begin{array}{lll}
0 & 1 & 4 \\
2 & 3 & 5
\end{array}\right) \\
& \{3,234\} \ldots\{3\} \ldots \ldots\left(\begin{array}{lll}
0 & 2 & 3 \\
1 & 4 & 5
\end{array}\right) \\
& \{1,3\} \ldots\{1,3\} \ldots \ldots\left(\begin{array}{lll}
0 & 1 & 3 \\
2 & 4 & 5
\end{array}\right) \\
& \{2,123\} \ldots\{2,123\} \ldots \ldots\left(\begin{array}{lll}
0 & 1 & 2 \\
3 & 4 & 5
\end{array}\right) \\
& D=6
\end{aligned}
$$

$$
\{2,4,6\} \ldots \ldots\{\emptyset\} \ldots \ldots\left(\begin{array}{cccc}
0 & 2 & 4 & 6 \\
1 & 3 & 5 & 7
\end{array}\right)
$$

$$
\{1,4,6\} \ldots . .\{1\} \ldots \ldots .\left(\begin{array}{llll}
0 & 1 & 4 & 6 \\
2 & 3 & 5 & 7
\end{array}\right)
$$

$$
\{3,234,6\} \ldots\{3\} \ldots \ldots\left(\begin{array}{llll}
0 & 2 & 3 & 6 \\
1 & 4 & 5 & 7
\end{array}\right)
$$

$$
\{2,5,456\} \ldots\{5\} \ldots \ldots\left(\begin{array}{llll}
0 & 2 & 4 & 5 \\
1 & 3 & 6 & 7
\end{array}\right)
$$

$$
\{1,3,6\} \ldots\{1,3\} \ldots \ldots\left(\begin{array}{cccc}
0 & 1 & 3 & 6 \\
2 & 4 & 5 & 7
\end{array}\right)
$$

$$
\{1,5,456\} \ldots\{1,5\} \ldots \ldots\left(\begin{array}{llll}
0 & 1 & 4 & 5 \\
2 & 3 & 6 & 7
\end{array}\right)
$$

$$
\{3,5,23456\} \ldots\{3,5\} \ldots \ldots\left(\begin{array}{cccc}
0 & 2 & 3 & 5 \\
1 & 4 & 6 & 7
\end{array}\right)
$$

$$
\begin{aligned}
& \{1,3,5\} \ldots\{1,3,5\} \ldots\left(\begin{array}{llll}
0 & 1 & 3 & 5 \\
2 & 4 & 6 & 7
\end{array}\right) \\
& \{2,123,6\} \ldots\{2,123\} \ldots\left(\begin{array}{llll}
0 & 1 & 2 & 6 \\
3 & 4 & 5 & 7
\end{array}\right) \\
& \{4,345,23456\} \ldots\{4,345\} \ldots .\left(\begin{array}{llll}
0 & 2 & 3 & 4 \\
1 & 5 & 6 & 7
\end{array}\right) \\
& \{2,4,12345\} \ldots\{2,4,12345\} \ldots\left(\begin{array}{llll}
0 & 1 & 2 & 4 \\
3 & 5 & 6 & 7
\end{array}\right) \\
& \{1,4,345\} \ldots\{1,4,345\} \ldots \ldots\left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
2 & 5 & 6 & 7
\end{array}\right) \\
& \{2,123,5\} \ldots\{2,123,5\} \ldots \ldots\left(\begin{array}{llll}
0 & 1 & 2 & 5 \\
3 & 4 & 6 & 7
\end{array}\right) \\
& \{3,234,12345\} \ldots\{3,234,12345\} \ldots \ldots\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right)
\end{aligned}
$$

2. EXCEPTIONAL TYPES

2.1. Let W, c, Γ_{c} be as in 0.1 . We must show that $0.2(\mathrm{c}), 0.2(\mathrm{~d})$ hold.

If W is of type $A_{n}, n \geq 1$ we have $|c|=1, \Gamma_{c}=S_{1}$. In this case, $0.2(\mathrm{c}), 0.2(\mathrm{~d})$ are trivial.

If W is of type B_{n} or $C_{n}, n \geq 2$ or $D_{n}, n \geq 4$, we can identify $\Gamma_{c}=V_{D}^{1}$ for some $D \in 2 \mathbf{N}$. We can identify $M\left(\Gamma_{c}\right)=V_{D}$ as in [L19, 2.8(i)]. In these cases, $0.2(\mathrm{c}), 0.2(\mathrm{~d})$ follow from $1.18(\mathrm{e})$ and the proof of $1.18(\mathrm{f})$. Now \mathcal{A}_{c} is the same as $\ddot{\Sigma}_{D}$ (see 1.11) in the symbol notation [L84] for objects of \hat{W} (assuming that W is of type D and c is a cuspidal family).
2.2. In the remainder of this section we assume that W is of exceptional type. Then we are in one of the following cases.

$$
\begin{aligned}
& |c|=1, \Gamma_{c}=S_{1} ; \\
& |c|=2, \Gamma_{c}=S_{2}^{\prime} ; \\
& |c|=3, \Gamma_{c}=S_{2} ; \\
& |c|=4, \Gamma_{c}=S_{3}^{\prime} ; \\
& |c|=5, \Gamma_{c}=S_{3} ; \\
& |c|=11, \Gamma_{c}=S_{4} ; \\
& |c|=17, \Gamma_{c}=S_{5} .
\end{aligned}
$$

Here S_{2}^{\prime} (resp. S_{3}^{\prime}) is another copy of S_{2} (resp. S_{3}).
For the elements $\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right) \in \bar{X}_{\Gamma_{c}}$ we use the notation of [L23]. Following [L23] we give for each $\Gamma_{0}^{\prime} \in \underline{\bar{X}}_{\Gamma_{c}}$ the list

$$
L\left(\Gamma_{0}^{\prime}\right)=\left\{\Gamma^{\prime \prime} ;\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right) \in \bar{X}_{\Gamma_{c}}^{\Gamma_{0}^{\prime}}\right\}
$$

Assume that $|c|=1$. Then $L\left(S_{1}\right)=\left\{S_{1}\right\}$.
Assume that $|c| \in\{2,3\}$. Then
$L\left(S_{1}\right)=\left\{S_{2}, S_{1}\right\}, L\left(S_{2}\right)=\left\{S_{2}\right\}$.
Assume that $|c| \in\{4,5\}$. Then
$L\left(S_{1}\right)=\left\{S_{3}, S_{2}, S_{1}\right\}, L\left(S_{2}\right)=\left\{S_{2}\right\}, L\left(S_{3}\right)=\left\{S_{3}\right\}$.

Assume that $|c|=11$. Then
$L\left(S_{1}\right)=\left\{S_{4}, S_{3}, S_{2} S_{2}, S_{2}, S_{1}\right\}, L\left(S_{2}\right)=\left\{S_{2} S_{2}, S_{2}\right\}$,
$L\left(S_{2} S_{2}\right)=\left\{\Delta_{8}, S_{2} S_{2}\right\}, L\left(S_{3}\right)=\left\{S_{3}\right\}, L\left(\Delta_{8}\right)=\left\{\Delta_{8}\right\}, L\left(S_{4}\right)=\left\{S_{4}\right\}$.
Assume that $|c|=17$. Then
$L\left(S_{1}\right)=\left\{S_{5}, S_{4}, S_{3} S_{2}, S_{3}, S_{2} S_{2}, S_{2}, S_{1}\right\}, L\left(S_{2}\right)=\left\{S_{3} S_{2}, S_{2} S_{2}, S_{2}\right\}$,
$L\left(S_{2} S_{2}\right)=\left\{\Delta_{8}, S_{2} S_{2}\right\}, L\left(S_{3}\right)=\left\{S_{3} S_{2}, S_{3}\right\}, L\left(\Delta_{8}\right)=\left\{\Delta_{8}\right\}, L\left(S_{3} S_{2}\right)=\left\{S_{3} S_{2}\right\}$, $L\left(S_{4}\right)=\left\{S_{4}\right\}, L\left(S_{5}\right)=\left\{S_{5}\right\}$.
In each case we see that $L\left(\Gamma_{0}^{\prime}\right)$ contains a unique term with \| maximum. (It is the first term of $L\left(\Gamma_{0}^{\prime}\right)$.) We see that $0.2(\mathrm{c})$ holds in each case. Now $0.2(\mathrm{~d})$ can be easily verified using the tables in [L20, $\S 3]$.
2.3. Applying ϵ to $\mathbf{s}\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right)$ for each $\Gamma^{\prime \prime}$ in the list $L\left(\Gamma_{0}^{\prime}\right)$ (recall that $\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right) \in$ $\bar{X}_{\Gamma_{c}}^{\Gamma_{0}^{\prime}}$) we obtain a list $L^{\prime}\left(\Gamma_{0}^{\prime}\right)$ of elements in $M\left(\Gamma_{c}\right)$; we write in the same order as the elements of $L\left(\Gamma_{0}^{\prime}\right)$. (The notation for elements in $M\left(\Gamma_{c}\right)$ is taken from [L84].)

Assume that $|c|=1$. Then $L^{\prime}\left(S_{1}\right)=\{(1,1)\}$.
Assume that $|c| \in\{2,3\}$. Then $L^{\prime}\left(S_{1}\right)=\{(1,1),(1, \epsilon)\}, L^{\prime}\left(S_{2}\right)=\left\{\left(g_{2}, 1\right)\right\}$.
Assume that $|c| \in\{4,5\}$. Then
$L^{\prime}\left(S_{1}\right)=\{(1,1),(1, r),(1, \epsilon)\}, L^{\prime}\left(S_{2}\right)=\left\{\left(g_{2}, 1\right)\right\}, L^{\prime}\left(S_{3}\right)=\left\{\left(g_{3}, 1\right)\right\}$.
Assume that $|c|=11$. Then
$L^{\prime}\left(S_{1}\right)=\left\{(1,1),\left(1, \lambda^{1}\right),(1, \sigma),\left(1, \lambda^{2}\right),\left(1, \lambda^{3}\right)\right\}, L^{\prime}\left(S_{2}\right)=\left\{\left(g_{2}, 1\right),\left(g_{2}, \epsilon^{\prime \prime}\right)\right\}$,
$L^{\prime}\left(S_{2} S_{2}\right)=\left\{\left(g_{2}^{\prime}, 1\right),\left(g_{2}^{\prime}, \epsilon^{\prime \prime}\right)\right\}, L^{\prime}\left(S_{3}\right)=\left\{\left(g_{3}, 1\right)\right\}, L^{\prime}\left(\Delta_{8}\right)=\left\{\left(g_{2}^{\prime}, \epsilon^{\prime}\right)\right\}, L^{\prime}\left(S_{4}\right)=$ $\left\{\left(g_{4}, 1\right)\right\}$.

Assume that $|c|=17$. Then
$L^{\prime}\left(S_{1}\right)=\left\{(1,1),\left(1, \lambda^{1}\right),(1, \nu),\left(1, \lambda^{2}\right),\left(1, \nu^{\prime}\right),\left(1, \lambda^{3}\right),\left(1, \lambda^{4}\right)\right\}$,
$L^{\prime}\left(S_{2}\right)=\left\{\left(g_{2}, 1\right),\left(g_{2}, r\right),\left(g_{2}, \epsilon\right)\right\}, L^{\prime}\left(S_{2} S_{2}\right)=\left\{\left(g_{2}^{\prime}, 1\right),\left(g_{2}^{\prime}, \epsilon^{\prime \prime}\right)\right\}$,
$L^{\prime}\left(S_{3}\right)=\left\{\left(g_{3}, 1\right),\left(g_{3}, \epsilon\right)\right\}, L^{\prime}\left(\Delta_{8}\right)=\left\{\left(g_{2}^{\prime}, \epsilon^{\prime}\right)\right\}, L^{\prime}\left(S_{3} S_{2}\right)=\left\{\left(g_{6}, 1\right)\right\}$,
$L^{\prime}\left(S_{4}\right)=\left\{\left(g_{4}, 1\right)\right\}, L^{\prime}\left(S_{5}\right)=\left\{\left(g_{5}, 1\right)\right\}$.
The almost special representations in c are represented by the first term in each list. They are as follows.

If $|c|=1$ we have $\mathcal{A}_{\Gamma_{c}}=\{(1,1)\}$.
If $|c| \in\{2,3\}$ we have $\mathcal{A}_{\Gamma_{c}}=\left\{(1,1),\left(g_{2}, 1\right)\right\}$.
If $|c| \in\{4,5\}$ we have $\mathcal{A}_{\Gamma_{c}}=\left\{(1,1),\left(g_{2}, 1\right),\left(g_{3}, 1\right)\right\}$.
If $|c|=11$ we have $\mathcal{A}_{\Gamma_{c}}=\left\{(1,1),\left(g_{2}, 1\right),\left(g_{2}^{\prime}, 1\right),\left(g_{3}, 1\right),\left(g_{2}^{\prime}, \epsilon^{\prime}\right),\left(g_{4}, 1\right)\right\}$.
If $|c|=17$ we have
$\mathcal{A}_{\Gamma_{c}}=\left\{(1,1),\left(g_{2}, 1\right),\left(g_{2}^{\prime}, 1\right),\left(g_{3}, 1\right),\left(g_{2}^{\prime}, \epsilon^{\prime}\right),\left(g_{6}, 1\right),\left(g_{4}, 1\right),\left(g_{5}, 1\right)\right\}$.
2.4. In the case where $|c|=17$ we have that W must of type E_{8}. An element of each list $L^{\prime}\left(\Gamma_{0}^{\prime}\right)$ can be identified with an element of c (under the imbedding $\left.c \subset M\left(\Gamma_{c}\right)\right)$ represented by its dimension (with the single exception of $\left(1, \lambda^{4}\right)$). Then the lists $L^{\prime}\left(\Gamma_{0}^{\prime}\right)$ become:
$L^{\prime}\left(S_{1}\right)=\{4480,5670,4536,1680,1400,70, ?\}$,
$L^{\prime}\left(S_{2}\right)=\{7168,5600,448\}$,
$L^{\prime}\left(S_{2} S_{2}\right)=\{4200,2688\}$,
$L^{\prime}\left(S_{3}\right)=\{3150,1134\}$,

$$
\begin{aligned}
& L^{\prime}\left(\Delta_{8}\right)=\{168\}, L^{\prime}\left(S_{3} S_{2}\right)=\{2016\}, \\
& L^{\prime}\left(S_{4}\right)=\{1344\}, L^{\prime}\left(S_{5}\right)=\{420\}
\end{aligned}
$$

Note that the first representation in a given list $L^{\prime}\left(\Gamma_{0}^{\prime}\right)$ has the b-invariant (see [L84, $(4,1,2)])$ strictly smaller than the b-invariant of any subsequent representation in the list. (We expect that this property holds for any c.) This property is similar to the defining property of special representations [L79a] and justifies the name of "almost special" representations.

References

[L79] G.Lusztig, Unipotent representations of a finite Chevalley group of type E_{8}, Quart.J.Math. 30 (1979), 315-338.
[L79a] G.Lusztig, A class of irreducible representations of a Weyl group, Proc.Kon.Nederl. Akad.(A) 82 (1979), 323-335.
[KL] D.Kazhdan and G.Lusztig, Representations of Coxeter groups and Hecke algebras, Inv.Math. 53 (1979), 165-184.
[L82] G.Lusztig, A class of irreducible representations of a Weyl group, II, Proc.Kon.Nederl. Akad.(A) 85 (1982), 219-226.
[L84] G.Lusztig, Characters of reductive groups over a finite field, Ann.Math.Studies 107, Princeton U.Press, 1984.
[L86] G.Lusztig, Sur les cellules gauches des groupes de Weyl, C.R.Acad.Sci.Paris(A) 302 (1986), 5-8.
[L15] G.Lusztig, On conjugacy classes in a reductive group, Representations of Reductive Groups, Progr.in Math. 312, Birkhäuser, 2015, pp. 333-363.
[L19] G.Lusztig, A new basis for the representation ring of a Weyl group, Repres.Th. 23 (2019), 439-461.
[L20] G.Lusztig, The Grothendieck group of unipotent representations: a new basis, Represent.Th. 24 (2020), 178-209.
[L23] G.Lusztig, Precuspidal families and indexing of Weyl group representations, arxiv:2304.05130.
[LS] G.Lusztig and E.Sommers, Constructible representations and Catalan numbers jour arxiv:2403.02550.

Department of Mathematics, M.I.T., Cambridge, MA 02139

[^0]: Supported by NSF grant DMS-2153741

