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Fractals and quasiperiodic structures share self-similarity as a structural property. Motivated by
the link between Fibonacci fractals and quasicrystals which are scaled by the golden mean ratio
1+

√
5

2
, we introduce and characterize a family of metallic-mean ratio fractals. We calculate the

spatial properties of this generalized family, including their boundaries, which are also fractal. We
then demonstrate how these fractals can be related to aperiodic tilings, and show how we can
decorate them to produce new, fractal tilings.

I. INTRODUCTION

Fractals can be used to understand the behaviours of
a range of complex systems, both natural and manufac-
tured [1–3]. Their application as models for biological,
chemical, and physical systems is varied and wide, and
there is also particular interest in the properties of fab-
ricated fractal materials. Within the context of physi-
cal media and/or condensed matter physics [4], the use
or exploration of fractals includes but is not limited to
the study of diffusive properties [5–8], topological states
(electronic, photonic, acoustic etc.) [9–14], and tunable
metamaterials and antennas [15–20].

The self-similarity of fractals is an attribute shared by
many quasicrystalline materials or aperiodic tilings, and,
the properties of such systems can be fractal [21–29]. In
particular, the 1D Fibonacci sequence is a ubiquitous
aperiodic structure which is routinely used as a model for
quasicrystals/aperiodic media, and its links with fractal-
ity are strong [30, 31]. It can be generated by two letters
A and B, using the substitutions A → AB and B → A,
and, when the sequence of A and B letters are drawn
with geometric Lindenmayer system (L-system) rules, it
produces a fractal structure [32–34].

Fibonacci systems and quasicrystalline structures are

also directly linked by the self-similar golden-mean 1+
√
5

2

– the ratio of A:B letters gives 1+
√
5

2 , and structural el-
ements of quasicrystalline intermetallic alloys are com-

monly scaled by 1+
√
5

2 (e.g. atom-atom distances, surface
step-edge heights etc.). However, aperiodic tilings are not
restricted to golden-mean scaling; tilings can be gener-
ated which are scaled by higher-order metallic-mean ra-
tios [25, 35–37]. Here, the entire family of metallic-mean
sequences are produced by expanding the Fibonacci se-
quence substitution rules as A → AmB,B → A, where
m = 1 returns the golden-mean m = 2 is silver, m = 3 is
bronze etc.

Motivated by Fibonacci word geometries [33, 34] and
these metallic-mean structures, we introduce a family of
fractals with a wide variety of customisable parameters
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which we generalize over all metallic-mean ratios. First,
we present the L-system used to create a golden-mean
fractal, calculate its properties, and demonstrate its ge-
ometric restrictions. Then, we move on to generalising
this fractal over all metallic-means, repeating our anal-
ysis in the general case. Lastly, we discuss how these
fractals can be decorated to give aperiodic tilings.

II. FRACTAL SYSTEM

We will start by introducing the golden-mean fractal
system using a basic set of parameters, before analysing
the effect of varying these same parameters. Then, we
will discuss the generalisation of the system (and its prop-
erties) over all of the metallic means. Here, we will refer
to a metallic mean φ in terms of m:

φm =
m+

√
m2 + 4

2
(1)

where m = 1 is the golden mean, m = 2 is silver, and so
on. Similarly, we will discuss the fractal systems in terms
of Fn

m, where n is the generation of the fractal, and m is
the metallic mean value as above. So, the first generation
of the golden-mean is F1

1, the second is F2
1, and so on.

A. Golden-mean

F1 is described as an L-system, with the following vari-
ables, constants, and rules:

Variables: A,B,C,A′, B′, C ′

Constants: +,−
Rules: A →C −B + C ′ +B′ − C

B →C −B + C ′

C →A

A′ →C ′ +B′ − C −B + C ′

B′ →C ′ +B′ − C

C ′ →A′

(2)
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F1
1 :A

F2
1 :C−B+C ′+B′−C

F3
1 :A−C−B+C ′+A′+C ′+B′−C−A

F4
1 :C−B+C ′+B′−C−A−C−B+C ′+A′+C ′+B′−C−B+C ′+A′+C ′+B′−C−A−C−B+C ′+B′−C

F5
1 :A−C−B+C ′+A′+C ′+B′−C−A−C−B+C ′+B′−C−A−C−B+C ′+A′+C ′+B′−C−B+C ′+A′

+C ′+B′−C−B+C ′+A′+C ′+B′−C−A−C−B+C ′+B′−C−A−C−B+C ′+A′+C ′+B′−C−B

+C ′+A′+C ′+B′−C−A−C−B+C ′+A′+C ′+B′−C−B+C ′+A′+C ′+B′−C−A−C−B+C ′+B′−C

(3)

FIG. 1: Generations n = 4, 5, 6, 7, 8 and 15 of the F1 system, drawn as an L-system according to the rules of Eq. 2,
where j = 3, and A = B = C = 1. The scale of each generation has been normalised to 1 in x. Arrows highlight the
approximate polygonal edges of F15

1 , where φ1 corresponds to Eq. 1 with m = 1.

where variables A, B, C (A′, B′, C ′) are segments which
move forward along a heading by an integer value, and
constants +,− rotate the heading by an angle θ clockwise
and counter-clockwise respectively. We note that θ is
controlled by an extra parameter j, such that θ = π

j

where j > 2. The rules for the A, B, and C segments
have mirror-symmetric counterparts in A′, B′, and C ′:
the + and − signs are flipped, while the rule ‘structure’
stays the same. For the purposes of clarity, when we
discuss specific properties of segments, we will refer to
both A and A′ simply as A and so on. We initially set
the lengths of A = B = C = 1 and j = 3. We discuss
the condition for j and the impact of changes to j and
the lengths of A,B,C further on.

The first few alphabet substitution generations of F1

are shown in Eq. (3), which we initialise with an A seg-
ment. We can start with any letter segment: starting
with B truncates the length of each generation with re-
spect to Eq. 3, while C simply ‘delays’ the generation by
1 (as C → A). Similarly, if we start using the mirror-
symmetric components, the results are identical except a

simple replacement for each symmetric pair (e.g. A : A′,
+ : −). For simplicity, we only discuss F1 as initialised
from A in the main text. It should be noted, however,
that the properties we discuss in the following are appli-
cable regardless of the starting segment.
Finally, as a point of interest, if we take F4

1, remove the
+/− constants and replace the A, B, and C segments
with integers 2, 1, and 0, we find a section of the ternary
Fibonacci sequence: 0101020102010102010201010. This
sequence takes the Fibonacci word (comprised of 1’s and
0’s) and replaces 00 pairs with 020 [38–40]. This appears
true for all even n - for odd n, the first segment needs to
be removed.

Geometry and the Hausdorff dimension of F1

Figure 1 shows the geometry of successive generations
of F1 starting from F4

1, with F15
1 also shown to indicate

the characteristic features of the curve at higher gen-
erations. Each curve has had its maximum scale in x
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FIG. 2: F7
1 decomposed into three sub-units: two F1

6

(black) and one F5
1 (red). The projected contribution to

the length of F7
1 in x is shown as a line, colour-coded to

the sub-unit.

normalised to 1. The polygonal boundary of F15
1 is a

trapezoid with edge lengths 1, 1/φ1, and 1/φ2
1, as indi-

cated on Figure 1. We note that initialising the sequence
with a B segment creates a fractal with a parallelogram
polygonal boundary with edge lengths 1, 1/φ1.
The Hausdorff dimension is a key property of a fractal,

and is a measure of the scaling behaviour of a set: how
the size of a set grows as its scale increases. In other
words, it is the roughness of the curve, in this case. It is
calculated by [41]:

Hd =
ln(N)

ln(S)
(4)

where N represents the increase in the number of seg-
ments created in successive generations, and S is the
scaling factor between generations. Similar to the analy-
sis used in the substitution rules of quasiperiodic tilings
[42], inspecting the substitution matrix of the L-system
rules can give us the number of segments generated after
each substitution, or, N . Eq. (5) shows the substitution
matrix of F1:

MN =



A B C A′ B′ C′

A 0 0 1 0 0 0
B 1 1 0 1 0 0
C 2 1 0 1 1 0
A′ 0 0 0 0 0 1
B′ 1 0 0 1 1 0
C′ 1 1 0 2 1 0

 (5)

As the absolute number of segments is independent of
their ’symmetry’, we can simply sum the contributions

of the symmetric components within each substitution
rule (A+A′ etc.), to give the equivalent:

MN =


A B C

A 0 0 1
B 2 1 0
C 3 2 0

, (6)

The largest eigenvalue, N , is 1+
√
2, or φ2, which is con-

sistent with other Fibonacci fractals [33]. For complete-
ness, the corresponding eigenvector of the eigenvalue φ2

is proportional to (1,
√
2, φ2), which tells us that the A

segments appear least frequently, B segments
√
2 more

often, and C segments φ2 more often than A segments.
We calculate the scaling factor S by deconstructing F1

after some generation n. Figure 2 shows F7
1, which has

been subdivided into three labelled segments, highlighted
by their parallelogram boundaries: two are F6

1 (black),
one is F5

1 (red). These segments are rotated (-) 2π3 and π

with respect to F7
1. The length of F7

1, L
7, can therefore be

described by the sum of the black and red segments pro-
jected onto x, as indicated below F7

1 in Figure 2. These
projected lengths are determined by the rotation of the
segments, such that we can generally describe:

Ln =Ln−1

∣∣∣∣cos(−2π

3

)∣∣∣∣+ Ln−1

∣∣∣∣cos(2π

3

)∣∣∣∣
+Ln−2|cos(π)|,

=Ln−1 + Ln−2

(7)

Then, as we know that

S =
Ln

Ln−1
=

Ln−1

Ln−2
(8)

such that,

Ln = SLn−1, Ln−2 =
Ln−1

S
(9)

we can therefore combine Eqs. Eq. 7 and 9 to give:

SLn−1 =Ln−1 +
Ln−1

S

S =1 +
1

S

S2 − S =1

(10)

whose solution gives S = 1+
√
5

2 , meaning:

Hd =
ln(φ2)

ln(φ1)
= 1.8316... (11)

which, following Monnerot-Dumaine [33], we can write
as:
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FIG. 3: (a)F10
1 , where the bottom boundary is overlaid and highlighted in red. (b) Generations of the L-system

which describes the boundary of the F1 system. Q,P, and R refer to segment lengths described in the text.

Hd =

ln

(
2 + 2

2+ 2

2+ 2
2+...

)

ln

(
1 + 1

1+ 1

1+ 1
1+...

) (12)

Boundary

The boundary of F1 is also a fractal. Figure 3(a) shows
F10
1 , where the bottom boundary is overlaid and high-

lighted in red. The left, right, and top boundaries are
the bottoms of F9

1, F
9
1, and F8

1 respectively, as expected
from Eq. 7. We also note that the perimeters of the in-
ternal triangular-like holes follow these boundary forms.
The boundaries can be constructed as an L-system by
considering three segments Q,P, and R and the same
angular parameters + and −. Eq. 13 shows the substi-
tution rules:

Q → P −R++R− P

P → Q

R → P

(13)

and Figure 3(b) shows how the boundary develops for
selected generations, where we have initialised with a Q
segment, and the lengths of the segments are Q = P = 1,
R = 1/φ1. As with the fractal itself, we can calculate Hd

by considering the number of segments in the boundary
NB at each generation by finding the largest eigenvalue
of the substitution matrix:

MNB =


Q P R

Q 0 1 0
P 2 0 1
R 2 0 0

, (14)

FIG. 4: Schematic to show self-intersection after four
successive − segments when j = 2. Sequence reads from
left to right: B′ − C −A− C −B, where the red circle
indicates the end of segment C intersecting with the
start of B′, and the red arrow shows the B segment
being overlaid on B′.

which is:

NB =
1

3

(
27− 3

√
57
) 1

3

+

(
9 +

√
57
) 1

3

3
2
3

= 1.7692...

Then, as SB is simply the scaling factor of F1, we find

HdB =
ln(NB)

ln(φ1)
= 1.1857... (15)

Effect of j on the Hausdorff dimension of F 1

So far we have fixed j = 3. Here, we show why j > 2,
and investigate the impact on Hd when j is increased.
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FIG. 5: (a-c) F1 for j = 4, 5, 6 respectively. Each curve has been normalized so that their lengths in x are equal. As
j increases, the curve flattens, so that at the infinite limit we produce a straight line.

Trivially, when j = 1, F1 is a straight line. To show
that j ̸= 2, it is convenient to analyse the distribution of
the angular changes in a sufficiently long sequence. Eq.
(16) shows the + and − signs only from F5

1:

−−++++−−−−++−−−−++++−−
++++−−−−++++−−++++−−−−
++−−−−++++−−

(16)

By inspecting Eq. (16) we can see that we have, at
most, four successive + or − segments. This is true over
arbitrary generations, and can be proven by analysing
the behaviour of adjacent segments under substitution,
which is demonstrated in Appendix A. The resultant ef-
fect of this behaviour can be shown by taking a sequence
of F1 which includes a quadruplet of angle changes:
B′−C−A−C−B. We note that the − quadruplet always
appears in this letter sequence, and the + in the mirror
inverse (B+C ′+A′+C ′+B′). The − sequence is shown
in Figure 4, where the arrows indicate the direction of
the sequence as read from left-to-right. If we set the ini-
tial orientation of the B′ segment to be 0◦, when j=2
(θ = π

2 ), the sequence is in self-contact with its initial
position after the second C segment, as indicated by the
red circle. Then, the final B segment self-intersects with
the sequence, as indicated by the overlaid red section and
arrow. In other words, the cumulative operation of this
quadruplet on the heading is equal to 0 + 4π

2 = 2π ≡ 0,
or zero displacement, such that the fractal is guaranteed
to loop and self-intersect. This looping behaviour cannot
occur for j > 2, as 4π

j < 2π for this condition.

Figures 5(a-c) show the effect of increasing j for j =
4, 5, 6 respectively, where the scale in x is normalized
to 1 for each of the curves. It is immediately obvious
that we obtain curves of different forms to when j =
3. This can be related back to Eq. 16, where we see
that angular changes also come in pairs i.e. ++ or −−.
When j = 3, both the pair and quadruplet angle changes
sum to be > π but < 2π, leading to a dense, winding
form: a consequence of construction using obtuse and
reflex angles. When j = 4, the pair changes sum to
equal π

2 , and the quadruplet π, such that we obtain a
‘flatter’ form essentially built from acute and right angles,
which removes the ‘winding’ element. This effect only
intensifies as j increases.

We now consider the change of Hd of F1 as j → ∞;
the number of segments N is a constant value for each

j m = 2 cos
(

π
j

)
S(m) Hd

3 1 1.618 1.832

4 1.414 1.932 1.338

5 1.618 2.095 1.192

6 1.732 2.189 1.125

7 1.802 2.247 1.089

8 1.848 2.285 1.066

9 1.879 2.312 1.052

10 1.902 2.331 1.041

1000 ∼ 2 2.414 ∼ 1

TABLE I: The Hd of F1 tends to 1 as j increases.
While the number of segments N is constant, the value

of S is calculated by Eq. 1, where m = 2 cos
(

π
j

)
.

FIG. 6: An example of self-contact in the F1 fractal
curve when j = 3 and the length of B ≥ A+ C. Here,
B = 2, and A = C = 1. Arrows indicate the ‘direction’
of the fractal curve as read from left to right in the
L-system. Letters and +/− indicate the segments of the
L-system, and a red circle indicates the point of
self-contact.

generation of n regardless of j, meaning we only have
to consider the scaling factor S. As the angle between
segments decreases, the absolute magnitude of the length
of the curve along the x-axis increases. This is evident
when we consider that the maximum length of a single
segment along the positive x-direction is determined by

cos
(

π
j

)
, which is equal to [0.5, 1] for j = [3,∞]. So,

in the infinite limit of j, S is determined by N parallel
segments laid end-to-end. In other words, for j = ∞,
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FIG. 7: (a-c) F6
2, F

5
3, and F4

4 respectively, where j = 3 and A = B = C = 1. Enlarged areas correspond to those
areas indicated by black arrows.

S ≡ N ≡ φ2. As such, S is simply equal to Eq. (1) for
m values between 1 and 2, where to find m for arbitrary

j we can use m = 2 cos
(

π
j

)
. Table I shows the values for

j,m, and Hd for a few values of j.

Different length values for A, B, C

Finally, we discuss the valid values for A,B, and C,
which so far have been fixed as A = B = C = 1. The
limiting factor for arbitrarily setting these lengths is self-
intersection, as with our argument on the limits for j,
this occurs when the curve ‘loops’ during angle change
segments. In other words, we need to find the conditions
for the lengths of A,B, and C which guarantee a non-
zero displacement from a certain position after successive
identical angle operations. We again note that we focus
on systems where the lengths of the segments and their
mirror-symmetric components are equal; the conditions
we find likely hold when this is not the case and only
require some simple extension to our proof.

We can use our analysis in the limits of j to find valid
lengths of A,B, and C: it is trivial that this looping can
only occur when we encounter our quadruplet of angle
changes. To self-intersect, and starting from an arbitrary
heading, we require that the total sum of angle changes
is ≥ π, which can only be achieved by four angle changes
when j > 2. Similarly, if j > 4, the curve cannot self-
intersect ( 4πj < π for this condition). Therefore, for any

j > 4, A, B, and C can be any value so long as A+B +
C ≥ 1. We show a few examples for arbitrary parameters
in Appendix B.

We can take a geometric approach for when j = 3, 4,
where we again consider the B′−C−A−C−B sequence.
When j = 4, we only require that one of A or C are non-

zero, to prevent B segments directly overlapping after a
cumulative heading change of π. For j = 3, we show
this sequence in Figure 6 with a few preceding segments:
C − B + C ′. Here, the lengths are A = C = 1, and
B = 2, which leads to a self-intersection point marked in
red. As stated, we require non-zero displacement from
the starting point of the B′ segment; in other words the
total displacement ∆ > 0, which we can write as:

∆ =B′ ·
(
cos
(
−π

3

)
sin
(
−π

3

))+ C ·
(
cos(0)
sin(0)

)
+A ·

(
cos
(
π
3

)
sin
(
π
3

))
+ C

(
cos
(
2π
3

)
sin
(
2π
3

))+B

(
cos(π)
sin(π)

)
> 0

(17)
Considering the x and y components separately, we find:

∆x =
A

2
− B

2
+

C

2
> 0 (18)

∆y =

√
3A

2
−

√
3B

2
+

√
3C

2
> 0 (19)

both of which can be rearranged to give:

A+ C > B (20)

which is our condition for segment lengths when j = 3.
We show some examples for arbitrary lengths which both
meet and fail this condition in Appendix B.

B. Generalising over φm

The fractal can be generalised over all metallic means
by extending the L-system rules we defined in Eq. 2. Us-
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ing ++ to indicate the concatenation of strings, the gen-
eralised substitution rules of the L-system can be written
as:

A →C −B + C ′ +B′ − C ++ (m− 1)× (−B + C ′ +B′ − C)

B →C −B + C ′ ++ (m− 1)× (+B′ − C −B + C ′)

C →A

A′ →C ′ +B′ − C −B + C ′ ++ (m− 1)× (+B′ − C −B + C ′)

B′ →C ′ +B′ − C ++ (m− 1)× (−B + C ′ +B′ − C)

C ′ →A′

(21)
where m is the metallic mean ratio as before, and the ×
operation multiplies the additional string section to be
concatenated. For example, for m = 3 and segment A,
we would add −B + C ′ + B′ − C − B + C ′ + B′ − C to
the original rule. The conditions we have discussed for j
and segment lengths still hold, as these are not affected
by the additional sequences added.

Geometry and the Hausdorff dimension of Fn

Figure 7(a-c) shows the resultant geometry for F6
2, F

5
3,

and F4
4 where j = 3 and A = B = C = 1. We choose

these generations to more directly compare each fractal’s
geometry: when m increases, the length of the sequences
increases, so that the density of the fractal also increases
for identical generations. Each of the curves has been
normalised so that their length in x = 1, which has the
effect of ‘shrinking’ each curve in y. Broadly speaking,
from a macroscopic view, the curves can be described as
m conjoined triangular morphologies. To show the finer
structure of the curves, we have enlarged areas specified
by the black arrows.

To calculate Hd over all m, we note that, trivially, Sm

will always be φm; what remains is to calculate Nm for
each m. As before, we transform Eq. 21 into a substitu-
tion matrix:

MNm
=


A B C

A 0 0 1
B 2m 2m− 1 0
C 2m+ 1 2m 0

, (22)

whose largest eigenvalue for arbitrary m values is:

Nm =
√

m2 + 1 +m ≡
2m+

√
(2m)2 + 4

2
, (23)

meaning we can write Nm = φ2m, such that:

Hd
m =

ln(φ2m)

ln(φm)
(24)

therefore as m → ∞, Hd
m → 1, or, Fn

∞ is a straight line.

FIG. 8: (a) The Hausdorff dimension Hd for the
fractals Fm and their boundaries Bm for m = [1, 100].
(b) In descending order, the boundaries of F5

2, F
5
3, F

5
4,

and F5
5, where j = 3 and A = B = C = 1.

Boundaries

We can similarly extend the L-system rules which de-
scribe the Fm boundaries as so:

Q → P −R++R− P ++ (m− 1)× (−R++R− P )

P → Q

R → P ++ (m− 1)× (−R++R− P )
(25)

such that we can describe the number of segments in the
boundary NBm by the following matrix:

MNBm
=


Q P R

Q 0 1 0
P m+ 1 0 m
R 2m 0 2m− 2)

, (26)
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FIG. 9: j = 3 initiators and their fractals. (a) A−A− hexagon with m = A = B = C = 1. (b) B −B− hexagon
with m = A = B = C = 1. (c) A−A− hexagon with m = 2, A = 3, B = 2, C = 1.

whose real eigenvalue is:

NBm =
4m2 − 5m+ 7

3c
+

2(m− 1) + c

3
, (27)

where c is1.

As before SBm is simply φm, meaning we can also
find HdB of the boundary for any m. We previously
showed that as m → ∞, Hd

m → ∞, so it also follows that
HdB

m → ∞ as the fractal approaches a straight line. We
plot Hd

m and HdB
m for m = [1, 100] in Figure 8(a), which

shows that both values tend towards both each other,
and 1. Out of interest, we note that the roughness of the
boundaries initially increases, and peaks at F3. Figure
8(b) shows, in descending order, the boundaries of F5

2,
F5
3, F

5
4, and F5

5. Upon inspection of these boundaries, it
becomes clear that the branch-like structures of F5

2 and
F5
3 gives way to a saw-tooth like curve (where of course

the ‘teeth’ also form a saw-tooth) as m increases and the
complexity decreases.

1

c3 =8m3 − 15m2 + 3
√
3
√

−m4 + 15m3 − 31m2 + 45m− 9

+ 24m+ 10

III. TILING SYSTEM

It is possible to create a wide array of fractal geome-
tries by initialising our L-system with any arbitrary se-
quence of segments. However, we are motivated by the
decorations of fractal curves which give aperiodic tilings
[43–45], and, in particular, the work on the dimer model
of the Penrose and Ammann-Beenker tilings which found
fractal membranes that can be decorated with the con-
stituent tiles of rhombs (and squares) [46–48]. Therefore,
we focus on developing closed curve ‘skeletons’ which can
be decorated with rhombuses to form the framework of
aperiodic tilings. Here, we show how to develop these
skeletons using simple initiators, demonstrate the geo-
metrical constraints for j, A,B, and C when decorating,
and finally present and discuss some of the tilings pro-
duced.

A. Skeletons and their decorations

First, we focus on creating the simplest closed curve
initiators which exhibit some rotational symmetry at
their centre point. In this case we can create closed curves
in terms of j, where all we have to do is define two ‘edges’
of a curve and multiply this by j. For example, for j = 3,
we can write:

j × (A−A−) = A−A−A−A−A−A− (28)

to create a hexagon, where we drop the superfluous −



9

FIG. 10: (a,b) Schematic for decorating segments of
lengths 2 and 3, respectively. (a) shows how a − angle
change causes the next segment to intersect with a
rhombus corner, while a + segment allows a valid tile
placement. (b) The inverse of (a).

segment at the end of the sequence. From here, we can
apply the rules of Eq. 21 to generate some fractal geome-
tries. Figure 9(a, b) show A−A− and B−B− hexagons
where m = A = B = C = 1. Figure 9(c) shows an
A−A− hexagon where m = 2 and A = 3, B = 2, C = 1.
Appendix C shows other examples with different j values
and arbitrary parameters.

We are motivated to find initiators and parameters
which allow us to create tiling systems based on the dec-
oration of skeletons. As such, we consider geometric ar-
guments to find how to decorate the segments of these
skeletons with respect to j and the angular changes +/−.
While it may be possible that we can decorate our skele-
tons with any set of polygons, we initially choose rhom-
bus tiles whose opposing internal angles are set to either
π
j or 2π

j . We note that to fill space the fractal tilings need

at least two tiles, which we discuss in the next section.
In this case, we envisage that the rhombus decorations
act as guides for where to place additional tiles.

Figure 10(a, b) each show two arbitrary segments
where we have set the lengths as 2 and 3 respectively,
and taken j = 3. Here, we decorate the start and end
points of each unit length within the segment, where ad-
jacent rhombuses are mirror symmetric and we have cho-
sen their initial orientations arbitrarily. We also show
potential next steps in the L-system as red and green
lines respectively. Figure 10(a) shows that for length 2
and an angle change of −, the next step coincides with a
rhombus vertex, whereas a + change allows a potential
tile placement. The converse is true for Figure 10 (b). As
such, we can deduce that segments which are succeeded
by a + change must have an even length, and those by a
− change must be odd. We note that by inspection of Eq.
2, − segments always follow an A or C, and a + always
follows a B (the inverse is true for the mirror symmetric
components as expected). Therefore, valid decorations
can be found when A,C are odd, and B is even, for any
m or j. Of course, the inverse condition is true if we dec-
orate the segments with mirror flipped rhombuses about
the x -axis.

B. Fractal tilings

Despite the conditions on length parameters, j, and
the requirement that we start with an isotropic initiator,
there is still an infinite set of unique fractals and therefore
tiling decorations which can be generated; there are no
upper bounds or limits for any of our parameters. There-
fore, to limit our scope, we restrict our investigations to
tilings consisting of only two types of tiles: rhombuses
with opposing internal angles set to either π

j or 2π
j as

mentioned, and polygons with all internal angles set to
2π
j . Here, we focus on a few examples of these tilings,

and discuss the natural limitations as we increase j.

j = 3 tilings

To illustrate the decoration of a skeleton, Figure 11(a)
shows the first six generations of a curve initiated by an
A − C− hexagon, where m = 1, A = 3, B = 2, and
C = 1. We have chosen these lengths as they are the
first integers in the Fibonacci sequence which obey the
even/odd length rules. Appendix D shows other rhombus
skeletons generated using arbitrary parameters. Figure
11(b), left, is the n = 6 generation decorated by rhombs,
which shows empty spaces or holes. Figure 11(b), right,
displays how these holes can be filled by regular hexagons
(internal angles of 2π

j ) and other rhombs; five of the mo-

tifs have been linked by black lines, and are also indicated
by white outlines.
Technically, any arrangement of space-filling hexagons

and rhombs could be used to pack these spaces, and the
examples in Appendix D have been left blank for those
interested in doing so. However, here we found that the
closed curve form of the rhombus tiles matches exactly



10

FIG. 11: (a) An A− C− initiator after 6 generations (left to right). Here, m = 1, j = 3, A = 3, B = 2,and C = 1.
(b) Left: rhombuses decorate the sixth generation of (a). Some empty spaces are indicated by black lines. Right:
the empty spaces are filled by hexagonal and rhombus tiles. The black lines point to each of the corresponding
spaces which are now filled, and white outlines serve to highlight the motifs. (c) Each of the motifs are enlarged to
show their inner structure. The larger motifs appear to form early generations of the fractal form used to generate
the skeleton.

with the distribution of rhombus tiles in the SEH00 tiling
we recently introduced [49], as demonstrated in Appendix
E. Therefore, we used this work as a guide to fill in the
missing pieces. Figure 11(c) shows each of the motifs we
have used, in ascending order of size, where we have ro-
tated the final motif by 2π

3 for easier comparison. We
note that, perhaps unsurprisingly, the latter two motifs
contain curves of rhombus tiles which replicate the first
two generations of Figure 11(a), indicated by the overlaid

black lines. The ‘generation’ of these connected curves
within the tiling may indicate a kind of self-similar sub-
stitution system, which is still an open question with
regards to the SEH00 tiling. It may be interesting to
explore whether a set of rules exist which could produce
the edges of tiles as their own fractal system, as with the
Penrose tiling [29].

Considering the link between the fractal and tiling sys-
tem, an alternative method to investigate arbitrary j = 3,
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FIG. 12: (a) Generation 3 skeletons decorated with rhombuses for j = 3, 4, 5 in descending order. Each skeleton has
been initiated using a A−A− polygon for their respective j values. Circles indicate sections which correspond to
five successive angle changes, and green (red) lines indicate valid (invalid) geometries for a two-tile system for
j = 4, 5. (b) Decorated generation 3 skeletons for A−C− polygon initiators which allow a two-tile system. (c) The
creation of a j = 4 tiling based on successive generations of the fractal system. Empty spaces have been filled with
squares and rhombuses, ensuring that we recreate the earlier fractals, which are indicated by white outlines. (d)
The generation 3, j = 5 skeleton can be filled by fat rhombuses, but not in such a way that recreates a connected set
of thin rhombus fractals.

m metallic ratio fractal systems would be to generate a
tiling first, then extract the linked rhombuses. Appendix
E shows several examples, where we use de Bruijn’s dual-
grid method [50, 51] to produce m-mean single edge-
length tilings and extract some A,B,C length param-
eters. Recent work has considered that metallic mean
hexagonal tilings with multiple edge-length tiles can ap-
proach modulated honeycomb crystals as m → ∞ [36].
In this work, domains of large hexagon tile honeycombs
are bounded by parallelograms and small hexagonal tiles;
in our case, these same domains are bounded by fractals
of rhombuses.

j > 3 tilings

Here we consider fractal tilings when j > 3, where
again we restrict ourselves to a two-tile scheme. First,
we consider further geometrical conditions when con-
structing an initiator. Figure 12(a) shows decorated
skeletons after 3 generations which have been initiated
with an A − A− sequence for m = 1, j = 3, 4, 5, and
A = C = 1, B = 0. For j = 3, it is clear that for both
systems, holes can be filled by rhombuses or hexagons.
However, for j = 4, while some gaps can be filled by
squares (indicated by green lines), other gaps are incon-
gruent (red lines). A similar situation is found for j = 5.
This arises from the fact that after (twice) substituting
Eq. 28, we find more than four successive angle changes:
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A−C−B+C+A+C+B − C −A−A− C−B... (29)

which produces the areas circled in Figure 12(a). In other
words, A − A− sequences do not occur naturally in Eq.
21. While 5× 2π

3 leaves a 2π
3 ‘gap’ associated with j = 3

geometry, 5× 2π
4 and 5× 2π

5 do not, and the same can be
found for larger values of j. Changing the initiator to an
A − C− sequence as in Figure 12(b), however, prevents
this: A− C− sequences are commonly found in Eq. 21.
Figure 12(c) shows a possible tiling for the j = 4,

A − C− initiator, where we take into consideration the
previous observations of the j = 3/SEH00 tiling: at
each generation we fill empty spaces with squares and
rhombuses, taking care to connect rhombuses so that
they recreate previous fractal curves – examples are high-
lighted in white in the final generation. In the same way
that the j = 3 case is related to the SEH00 tiling, it
would be interesting to explore whether the j = 4 exam-
ple has any relation to existing tilings.

Finally, Figure 12(d) shows that we cannot continue
this specific type of tiling construction when j = 5. From
a geometric standpoint, our system doesn’t allow a two-
tile tiling where our second tile is a polygon with all in-
ternal angles set to 2π

5 , and the same holds for any j > 4.
However, the gaps can still be filled such that we can tile
the plane, as demonstrated, although we cannot repli-
cate the closed-curve forms of connected thin rhombuses.
Whether the higher order j skeletons can be decorated in
a more sophisticated manner – i.e. with more than one
tile [46–48] – is an open question to explore.

IV. CONCLUSIONS

We have introduced a generalized metallic-mean frac-
tal L-system which can be tuned by a series of param-

eters: the metallic-mean m, the symmetry j, and some
length-scales (A,B,C). First, we thoroughly explored
the limits of the geometric parameters and calculated
the Hausdorff dimension, Hd, of the golden-mean frac-
tal, as an example. We also defined and briefly explored
its boundary in terms of another L-system. Then, we
generalised this system over all metallic-means, by way
of expanding the original L-system with additional terms.
By doing so, we were able to calculate Hd for both frac-
tal and boundary for k → ∞, showing that these systems
approach a straight line.

Finally, we showed that, for some conditions, we can
use these fractals as a basis for decoration, with the end
goal to create fractal tilings. In our restricted system, we
showed the link between a fractal system and the SEH00

tilings, demonstrated a quick example for the j = 4 case,
and showed the limitations of our decoration method as
j increases.

For future work, it may be interesting to compare the
experimental and theoretical states of these systems to
the abundance of work on existing fractals – particularly
those that share symmetries or are similar in morphol-
ogy. For instance, the j = 3 fractal is reminiscent of the
Sierpiński triangle [52] or the Koch curve [53]. Similarly,
it might be fruitful to explore whether the tuning of our
various parameters can yield properties of interest for a
given symmetry or metallic mean.
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Appendix A: Maximum number of successive +/– segments in F1

First, we note that Eq. 2 does not allow identical letters between + or − segments, which means that an A can only
be preceded or succeeded by a B or C, and so on. If we take A → C − B + C ′ +B′ − C, we see that the middle C ′

segment is neighboured by two +, and B/B′ segments, as underlined. This sequence of angular changes is extended
to four after we substitute for each of the segments: A − C − B+C ′ +A′ + C ′+B′ − C − A. The right-hand side
of the B substitution, C − B+C ′ concatenates with the +C ′+ substitution +A′+, and the left-hand side of the B′

substitution C ′+B′ − C, giving four successive + segments, and no more. Similar arguments can be made for other
sections under substitution.

Appendix B: Fractals with arbitrary j, A, B, and C for m = 1

Figures A1(a-c) show a series of F1 curves for j = 3, 4, 5 for arbitrary lengths. Lengths are labelled on each curve.
The first two curves in Figure A1(a), and the second in (b) break the length conditions we discuss in the main text.

FIG. A1: (a-c) j = 3, 4, 5 fractals with the length of their segments labelled. In some cases, these lengths break the
conditions we set in the main text, resulting in self-intersection.
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Appendix C: Arbitrary initiators

Figure A2 shows initiators for arbitrary parameters. The sequences used to generate the initiators are labelled
inside the first generation, and the parameters used for the curves can be found in the figure caption.

FIG. A2: Arbitrary initiators, where the initial sequence used to create the first generation polygons are labelled,
and the parameters are: (a) m = 2, j = 4, A = 1, B = 1, C = 1. (b) m = 1, j = 4, A = 0, B = 1, C = 1. (c)
m = 1, j = 5, A = 1, B = 6, C = 1. (d) m = 3, j = 6, A = 1, B = 1, C = 1.
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Appendix D: Skeleton decoration with arbitrary m, A, B, and C for j = 3

Figure A3 shows a few examples of different initiators and parameters which can be decorated with rhombus tiles
for j = 3. Parameters can be found in the figure caption.

FIG. A3: (a) A−A− initiator, m = 1, A = 3, B = 2, C = 1. (b) A− C− initiator, m = 3, A = 3, B = 2, C = 1. (c)
A− C −A−A− C −A initiator, m = 1, A = 3, B = 2, C = 3.
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Appendix E: Fractal and tiling relationships for j = 3 and m

FIG. A4: (a-f) Single edge-length hexagonal tilings generated for m = 1, ...6 respectively. Overlaid in black are the
fractal curves which connect rhombus tiles.

Figures A4(a-f) show single edge-length tilings generated using de Bruijn’s dual-grid method [50, 51] for m = 1, ..6.
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m A B C

1 3 2 1

2 5 4 1

3 7 6 1

4 9 8 1

5 11 10 1

6 13 12 1

TABLE II: Length scales of the fractal forms found in metallic-mean tilings.

We have rotated the tilings by 30◦ for graphical convenience. We overlay the fractal forms in black which are found
when connecting rhombus tiles. Table II shows the length parameters extracted from these forms after a sufficient
number of generations (typically 3).
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