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Novel critical phenomena beyond the Landau-Ginzburg-Wilson paradigm have been long sought
after. Among many candidate scenarios, the deconfined quantum critical point (DQCP) constitutes
the most fascinating one, and its lattice model realization has been debated over the past two
decades. Following the pioneering works with the fuzzy sphere methods [1–4], we apply the spherical
Landau level regularization to study the effective (2+1)D SO(5) non-linear sigma model with a
topological term and the potential DQCP therein. Utilizing the state-of-the-art density matrix
renormalization group method with explicit SU(2)spin ×U(1)charge ×U(1)angular-momentum symmetry
as well as exact diagonalization simulations, we provide a comprehensive phase diagram for the model
with a SO(5) continuous transition line — extension of the previous identified SO(5) multicritical
point [5] — while tuning interaction length. The state-operator correspondence with the conformal
tower structure is used to identify the emergent conformal symmetry with the best scaling dimension
of relevant primary fields and they match well with the critical exponents obtained from the crossing
point analysis of the correlation ratio. Our results thus further support the rich structure of the
phase diagram of the SO(5) model.

Introduction.— Novel critical phenomena beyond
Landau-Ginzburg-Wilson paradigm can fundamentally
enrich our understanding to the phase transitions of
highly entangled quantum matter. Amongst many,
the deconfined quantum criticality, known as the di-
rect continuous transition between two spontaneous
symmetry-broken states, has been long-sought-after [6–
10]. However, the initial proposed lattice realiza-
tions [11, 12], i.e. from Néel to valence bond solid (VBS)
transition in J-Q spin model, with drifting critical
exponents are incompatible with conformal bootstrap
bounds [13–18], has been shown to exhibit weakly
first-order transition behavior, over the years of heroic
efforts [13, 14, 19–22]. It can turn into a continuous
transition—a real DQCP—at least when N > 8 in the
SU(N) version of J1-J2 spin model [23–26]. At the large
N limit, the transition is believed to be described by
the Abelian Higgs theory with unitary conformal fixed
point [27–29].

The obstacles of finding a DQCP in the realistic SU(2)
setting originate from the symmetry emergence require-
ment. To be specific, in the SU(2) version of J-Q model
on square lattice, a U(1) symmetry is firstly required to
emerge from the Z4 symmetry in the VBS phase around
the transition point [11]. However, such U(1) symme-
try emergence is subtle due to the dangerously irrelevant
pertubation (the monopole event) [15, 17]: the U(1) is
emergent only in the infrared limit, while in contrast the
Z4 symmetry breaking term is relevant, which obscures
the numerical analysis when an additional Z4 symmetry
length scale is approached. Furthermore, the emerged
U(1) symmetry in the VBS phase should again combine
with the SU(2) symmetry in the Néel phase to give rise to
a final SO(5) symmetry [30]. Such symmetry emergence

requirement might set up a high bar for realizing SO(5) in
lattice models, where a slow renormalization group (RG)
flow may cause considerable finite-size effect, and even-
tually lead to the observation of the weakly first order
transition after years of accumulating works.

Given the situation, an explicit SO(5) model with
Wess-Zumino-Witten (WZW) topological term by pro-
jecting fermion density-density interaction on the Landau
level is proposed to circumvent such symmetry emergence
requirement in the Néel-VBS lattice models [31]. Such a
model has been numerically visited on both torus [32, 33]
and recently spherical geometries [4, 5]. As pointed out
in the seminal works of Refs. [1–4], the advantage of
the spherical geometry is to directly expose the under-
lying conformal field theory (CFT) algebra and opera-
tor content, since for a Hamiltonian living on Sd−1 × R
space-time geometry, the scaling dimensions of CFT op-
erators has one-to-one correspondence with the eigenen-
ergies of CFT states, dubbed as the state-operator cor-
respondence [34–36]. Recently, by using the idea of the
spherical regularization [37, 38], the conformal data in-
cluding the scaling dimensions and operator product ex-
pansion (OPE) coefficients have been characterised in the
(2+1)D Ising [1, 2], O(3) critical points [3], and SO(5)
pseudo-criticality [4] (we also note an conformal pertur-
bation theory approach in Ising [39] and O(2) cases [40]).
The conformal defect can also be studied with the fuzzy
sphere regularization [41, 42].

In our previous work of SO(5) model on sphere [5], we
mapped out the phase diagram of the model, not only
along the SO(5) symmetric line but also break the sym-
metry down to SO(3)×SO(2), and probe all the possi-
ble symmetry-breaking phases therein. We find a possi-
bly gapless SO(5) symmetric phase separating the Néel
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FIG. 1. Global phase diagram of the SO(5) model.
(a) The uK-uN plane is obtained from our previous work [5],
where tuning along the u axis respects the SO(5) symmetry.
We found a multicritical point (the green dot) separating the
SO(5) symetry-breaking line (the red segment) and a SO(5)
symmetric phase which further separates the Néel (green) and
VBS (blue) phases. In this work, we extend the interaction to
longer range by adding the V1 term in the Hamiltonian (pre-
serve the SO(5) symmetry), which allows us to scan the u-V1

plane to look for the transition point between SO(5) breaking
and SO(5) symmetric phases with the emergent CFT struc-
ture. (b) Obtained phase boundary in the u-V1 plane by iden-
tifying the calibrated scaling dimension ∆T µν = 3. One sees
the boundary is converged with N = 6 near the black ar-
row where the emergent CFT structure is discovered close to
V1 = 0.3. The red dashed line indicates the DMRG simula-
tions in Fig. 4 where the critical point and scaling dimension
from finite size crossing point analysis are consistent with the
CFT spectrum results.

and VBS phases, and the transitions from the symmetric
phase towards Néel and VBS symmetry breaking phases
acquire non-Wilson-Fisher critical exponents. More im-
portantly, these two phase boundaries meet at a multi-
critical point below which the SO(5) symmetry is spon-
taneously broken and the Néel-VBS transition becomes
first-order. Our results are consistent with recent un-
derstanding that the aforementioned Néel-VBS weakly
first-order transition [13, 14, 19–22, 25, 26] is located
close but below our multicritical point, and the recent
conformal bootstrap analysis of deconfined quantum tri-
criticality [43]. However, the precise critical exponents
are hard to derive there because of the still relatively
large finite size effect [4, 5]. One would need to further
fine-tune the Hamiltonian (preserving SO(5) symmetry)
to fully review the emergent conformal symmetry struc-
ture at the multicritical point within reachable sizes of
such spherical setting.

In this work, we accomplish this goal by extending the
interaction length of the Hamiltonian, which allows us to
search for a group of parameters with smaller finite-size
effect in the enlarged parameter space, where irrelevant
operators are sufficiently suppressed. Such prescription
has been successfully applied to the studies in the 3D
Ising and O(3) transitions in fuzzy sphere method [1–3].
With that parameters, several low-lying primary opera-

FIG. 2. Scaling dimension of stress tensor ∆T µν . Cal-
ibrated by ∆Jµ = 2, ∆T µν ’s are shown versus u/U0 for dif-
ferent system sizes N = 4, 5, 6, 7, 8, for different interaction
strength (a) V1 = 0, (b) V1 = 0.3, and (c) V1 = −0.3. The
∆T µν = 3 criterion determines the transition point for each
V1.

tors show perfectly conformal tower structure indicating
a CFT here. The phase transition point and scaling di-
mension of order parameter from finite-size crossing point
analysis of the SO(5) correlation ratio [5, 8, 15, 44–46],
match well with the conformal tower results. This self-
consistence check indicates the robustness of our conclu-
sion. Our results provide a strong evidence for the confor-
mal symmetry of the multicritical SO(5) CFT fixed point,
which separates the SO(5) symmetry-breaking first-order
transition line and the SO(5) symmetric phase in the
global phase diagram of the model (Fig. 1), and it is
from this multicritical point the non-Wilson-Fisher phase
boundaries between the symmetric to Néel and VBS
phases are originated.

Model and Methods.— We consider the (2+1)D
Hamiltonian HΓ =

∫
dr1dr2U(r1, r2)[n

0(r1)n
0(r2) −∑5

i=1 ui n
i(r1)n

i(r2)], where ni(r) = Ψ(r)
†
ΓiΨ(r)−2δi0

is a local density operator with Ψ(r) ≡ ψτσ(r) the
4-component Dirac fermion annihilation operator with
mixing valley τ and spin σ indices. Here Γ0 = I⊗ I is the
identity matrix and {Γ1,··· ,5} = {τx⊗I, τy⊗I, τz⊗σx, τz⊗
σy, τz ⊗ σz} are the 5 mutually anticommuting matrices
of the SO(5) group. The short-range density-density in-
teraction is U(r1, r2) =

g0
R2 δ(|r1−r2|)+ g1

R4∇2δ(|r1−r2|)
where g1 is used to tune the interaction length. In pre-
vious works [4, 5], only a purely local interaction is con-
sidered with g1 = 0.

Subsequently, we project the SO(5) Dirac fermion
Hamiltonian onto the zero energy Landau level on the
sphere, which is the same as the massive fermion low-
est Landau levels (LLL) of a sphere with 4πs mag-
netic monopole at its origin [37, 38, 47, 48], where the
(2s + 1)-fold degenerate LLL wavefunction takes the
form of Φm(Ω) ∝ eimϕ coss+m( θ2 ) sin

s−m( θ2 ) with m ∈
{−s,−s+1, · · · , s−1, s} and 2s ∈ Z. By enlarging s one
can effectively enlarge the surface (system size) of the
sphere while keeping the local magnetic field on the sur-
face unchanged. After projection ψ(Ω) →

∑
m Φm(Ω)cm,
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one can derive the projected Hamiltonian

Ĥ
(LLL)
Γ = Ĥ0 −

5∑
i=1

ui Ĥi,with

Ĥi∈{0,1,...,5} =
∑

m1,m2,m

Vm1,m2,m2−m,m1+m×

(
c†m1

Γicm1+m − 2δi0δm0

) (
c†m2

Γicm2−m − 2δi0δm0

)
(1)

where Vm1,m2,m3,m4
is connected to the Haldane pseudo-

potential Vl by Vm1,m2,m3,m4 =
∑

l Vl(4s − 2l +

1)

(
s s 2s− l
m1 m2 −m1 −m2

)(
s s 2s− l
m4 m3 −m3 −m4

)
. For

the considered short-range interaction here, only V0 and
V1 are involved in the above l-summation [c.f. Supple-
mental Material (SM) for the relation between (g0, g1)
and (V0, V1) [49]]. This model is known to be described by
a SO(5) non-linear sigma model with a WZW term [31–
33]. We define uK = u1 = u2 for the VBS control param-
eter, and uN = u3 = u4 = u5 for the Néel control param-
eter. Throughout this work, we set V0 = 1 as the energy
unit and focus on the SO(5) case, i.e. u = uK = uN
while tuning u (distance from SU(4) fixed point) and V1
(finite-length interaction strength) to reduce the finite
size effect of the SO(5) phase boundary found in our pre-
vious work [5]. Details of the spherical regulation is given
in SM [49]. We note this approach is used in Ref. [4] to
propose the pseudo-criticality along the uK = uN SO(5)
line.

In this work, we employ density matrix renormaliza-
tion group (DMRG) method with SU(2)spin×U(1)charge×
U(1)angular-momentum symmetry, and exact diagonaliza-
tion (ED), to accurately determine the phases and their
phase boundaries. In our DMRG simulations, the SU(2)
symmetry is implemented in the framework of the ten-
sor library QSpace [50–52], with up to 4096 SU(2) in-
variant multiplets (equivalent to ∼ 12000 U(1) states)
kept to render the truncation errors within 5 × 10−5.
We denote the system size by the Landau level degen-
eracy N = 2s + 1 and obtain converging results with
N = 3, 4, 5, ..., 12 to control finite size scaling behav-
ior. In the energy level computation, we exploit ED for
N = 4, 5, · · · , 7 and DMRG for N = 8.
Phase Diagram and the SO(5) phase transition.— We
first give a summary of the phase diagram. As shown
in Fig. 1 (a), for the case of V1 = 0, the uK − uN
plane of the phase diagram is investigated in our pre-
vious work [5], where generically the SO(5) symmetry is
split into SO(3)×SO(2) symmetry and the Néel (green)
and VBS (purple) phases are either separated by a direct
first-order transition (solid red line) or through an inter-
mediate symmetric phase (grey area). The SO(3) and
SO(2) transition lines (solid blue line) merge into a fine-
tuned multi-critical point (green dots) in the plane. Here,
we will show that, in the SO(5) cases of uK = uN = u,
by adding a V1 axis, the multi-critical point further ex-

tends as a transition line separating the SO(5)-breaking
(red area) and the SO(5)-symmetric phases.

To identify such SO(5) transition line, we resort to the
state-operator correspondence, i.e., for a CFT operator
Ok, the corresponding energy gaps Ek − E0 are propor-
tional to the scaling dimensions ∆k, i.e., Ek−E0 = v

R∆k,
where R is the radius of the sphere and v is a model-
dependent velocity [53, 54]. To search for the potential
SO(5) CFT points in the V1-u phase diagram, we need to
firstly match the energy spectra of the considered SO(5)
model with the operator spectrum, to be specific, deter-
mining the velocity v and to rescale the energy spectra
with the factor v/R. Note that, the symmetry current Jµ

and the energy-momentum tensor T µν don’t renormal-
ize in perturbation theory, i.e. they have zero anoma-
lous dimesions, meaning that their scaling dimensions
∆Jµ = d − 1 = 2 and ∆T µν = d = 3 [35], which can
serve as natural calibrators for the operator spectrum.

With the prescription established in 3D Ising transi-
tion [1, 2], O(3) Wilson-Fisher transition [3], and SO(5)
pseudo-criticality [4], we rescale the energy spectrum by
exactly setting ∆Jµ = 2 and searching in the V1-u param-
eter space for ∆T µν = 3. This will determine a critical
line which should coincide with the SO(5) phase bound-
ary obtained from the correlation ratio data, as we will
discuss in Fig. 4. As shown in Fig. 2, at the fixed V1 = 0,
0.3, −0.3 cuts, we plot the scaling dimension of T µν ver-
sus u for various system sizes N = 4, 5, ..., 8. By collect-
ing those ∆T µν = 3 points and we plot them as the phase
boundary in Fig. 1 (b).
Energy spectrum evidence for conformal symmetry.—
The finger-print evidence for the CFT nature is the
integer-spaced tower structure of the primary operators
and their descendant’s [1]. That is, for scalar primary
operator Ô with scaling dimension ∆ and Lorentz spin
l = 0, its descendants express as ∂ν1

· · · ∂νm
□nÔ with

m,n ≥ 0 whose scaling dimension will be ∆ + 2n + m,
and the Lorentz spin will be m [34, 35]. Note that, for
spin-l primary operator Oµ1···µl

, e.g. the spin-1 current
operator Jµ and the spin-2 stress tensor operator T µν ,
there are two types of descendants. The first type is ex-
pressed as

∂ν1
· · · ∂νm

∂µ1
· · · ∂µi

□nÔµ1···µl
(2)

whose scaling dimension will be ∆+2n+m+ i, and the
Lorentz spin will be l +m − i. The second type can be
expressed as

ϵµlρτ∂ρ∂ν1
· · · ∂νm

∂µ1
· · · ∂µi

□nÔµ1···µl
(3)

whose scaling dimension will be ∆ + 2n + m + i + 1,
and the Lorentz spin will be l +m − i. The ϵ tensor of
SO(3) will alter spacetime parity symmetry of Ôµ1···µl

.
In addition, for conserved operators like Jµ and T µν ,
due to the conservation law ∂µJ

µ = 0 and ∂µT µν = 0,
their descendants should have i = 0.
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FIG. 3. Conformal multiplets of several low-lying primary operators. Scaling dimension ∆ versus Lorentz spin l for
the lowest vector ϕ (1st column), the lowest rank-2 symmetric traceless tensor T (2nd column), the conserved current Jµ (3rd
column), the stress tensor T µν (4th column) and the scalar (singlet operator) S (5th column), when tuning interacting V1 = 0
(1st row), V1 = 0.2 (2nd row), V1 = 0.3 (3rd row), V1 = 0.4 (4th row). Following the pioneering work of Ref. [4], the scaling
dimensions ∆’s are calibrated by the scaling dimension of the conserved current ∆Jµ = 2. We find the emergent CFT structure
manifest close to V1 = 0.3 (indicated by the grey background) and it represent the CFT of the SO(5) multicritical point. Here
the solid/empty-filled circles depict the first/second type descendants [c.f. Eq. (2), Eq. (3)]. Note that, the first row (V1 = 0)
is consistent with the CFT spectrum observed in Ref. [4].

Due to finite size effect, the operator spectrum might
lose such integer-space structure, and our second step is
to suppress the irrelevant operators to expose the CFT
tower in a small size simulation by tuning the parameter
V1 along the phase boundary, as has been employed in
3D Ising and O(3) transitions [1–3]. Here, we consider
the SO(5) order parameter ϕ (the lowest vector repre-
sentation), the lowest rank-2 symmetric traceless tensor
T , the symmetry current Jµ, the stress tensor T µν , the
SO(5) singlet operator S (the lowest scalar representa-
tion), as well as their descendant’s. The degeneracy of
these operators with their associated quantum numbers
are explicitly given in the tensor representation of the
SO(5) group in SM [49].

As shown in Fig. 3, we align the towers of different op-
erators in separated columns, i.e., ϕ the first, T the sec-
ond, Jµ the third, T µν the fourth, and S the last column.
The different rows indicate different interactions strength
V1 = 0, 0.2, 0.3, 0.4. We note, the first row (V1 = 0) cor-
responds to the CFT spectrum observed in Ref. [4]. In

each plot, the operator spectrum with different Lorentz
spin l is split by the vertical solid lines, and the horizon-
tal dotted lines indicate the perfect integer-spaced tower
structure. The numerical results for the first/second type
descendants are depicted as solid/empty-filled circle in
the plots. It can be clearly seen that, as V1 increases,
the CFT towers get increasingly well-behaved, i.e., each
operator approaches to the corresponding integer-spaced
horizontal line. At V1 = 0.3, we find, the operator spectra
recover the CFT towers up to second descendant oper-
ators. Further increase V1 above 0.3, the structure dis-
appear again. Therefore, we find close to V1 = 0.3 and
along the u scan, the finite size effect, i.e. the irrelevant
operators, has been successfully removed.

Scaling dimensions of relevant operators.— Other than
the above primary operators, i.e., ϕ, T, S, we also find an-
other relevant operator, the 6π-monopole operator M6π

whose scaling dimension is smaller than 3. As shown in
Tab. I, we list all the relevant operators at V1 = 0.3.
Remarkably, we find that, the singlet operator S and
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TABLE I. Scaling dimension of relevant primary operator at
V1 = 0.3 for various system sizes N .

N
Operators 4 5 6 7 8

ϕ 0.642 0.642 0.644 0.646 0.647
T 1.622 1.622 1.627 1.633 1.636
Jµ 2.000 2.000 2.000 2.000 2.000
S 2.853 2.823 2.873 2.884 —

M6π 2.825 2.861 2.836 2.852 —
T µν 3.000 3.000 3.000 3.000 3.000

-0.5 0 0.5
0.5

0.6

0.7

0.8

0 0.1 0.2
-0.2

0

0.2

0.4

0 5 10
0.55

0.6

0.65

0.7

0.75

N

FIG. 4. DMRG data for SO(5) transition. (a) Correla-
tion ratio R of SO(5) order parameter are shown versus V1

at fixed u = 0.06. (b) The critical point is extrapolated from
the finite-size crossing point V ∗

c and yields Vc = 0.37(7), con-
sistent with the phase boundary in Fig. 1 (b). (c) The scaling
dimension extrapolated to be ∆ϕ = 0.62(2) is also consistent
with CFT spectrum in Tab. I.

the rank-2 tensor T possesse scaling dimensions ∆S ≃
2.884 < 3 and ∆T ≃ 1.636 < 3 which means that the
operator away from the SO(5) axis is relevant. That is,
the observed SO(5) CFT is a multicritical point (in the
SO(3)×SO(2) uK-uN plane) with two relevant singlet op-
erators, the SO(5) singlets S and T (this singlet comes
from decomposing T of SO(5) to SO(3)×SO(2) [43]), in
consistence with the recent conformal bootstrap analysis
of the deconfined quantum tricritical scenario [43]. We
also note that, Ref. [4] obtained the similar dimensions
∆S = 2.831, ∆T = 1.458 while having different interpre-
tation of pseudocriticality due to the vast region of CFT
behaviour in the case of V1 = 0, ruling out the possibility
of a quantum transition therein. Here, as shown in the
Fig. 1(b) that, the phase boundaries still vary slowly with
system size N , which can be improved by increasing V1
with well-converged phase boundaries around V1 = 0.3,
signaling the stabilization of the transition point and the
validity of the fine-tuning multicriticality scenario.

As an important sanity check, we also determine the
scaling dimension of the order parameter by calculat-
ing the correlation ratio of the SO(5) order parameter
in DMRG [5]. For the SO(5) ordered phase, we de-
fine Oi,l,m =

∫
dr Y ∗

lm (r)Ψ† (r) ΓiΨ (r) with Yl,m(r) be-
ing the spherical harmonic function, and compute the
squared order parameter m2

l = 1
N2

∑5
i=1⟨O2

i=1,l⟩ and the
corresponding correlation ratio R = 1−m2

l=1/m
2
l=0.

In Fig. 4 (a), we fix u = 0.06 and vary V1. The VBS
correlation ratio R exhibits a nice crossing behaviour,
which suggests the SO(5)-breaking phase at smaller V1
and the symmetric phase at larger V1. As in our previous
work [5], it can be seen that, the crossing points exhibit
slightly drifting behaviour, which can be described by the
scaling form V ∗

1 (N,N + 1) = Vc + N− 1
2ν −ω

2 (the aster-
isk indicates the finite-size crossing points and the critical
point in the thermodynamic limit is indicated by the sub-
script ‘c’). In Fig. 4 (b), we find the crossing points are
best fitted by a linear form V ∗

1 = a + b/N , and obtain
the critical point from the intercept Vc = a = 0.37(7),
consistent with the phase diagram in Fig. 1 (b). We then
define ∆∗

ϕ(N) = −N log m2(Vc,N+1)
m2(Vc,N) , which follows the

scaling form ∆∗
ϕ(N) = ∆ϕ + aN

1
2ν . Here the exponent

ν = 1
3−∆T

≃ 0.733 is determined from the ∆T in Tab. I.
And as shown in Fig. 4 (c), the order parameter scaling
dimension ∆ϕ = 0.62(2) is obtained, consistent with the
CFT ∆ϕ = 0.647 in Tab. I. Such consistency between
the finite size crossing point analysis of the SO(5) corre-
lation ratio and the CFT spectrum, in giving rise to the
same transition point and the scaling dimension of the
SO(5) order parameter, supports the analysis employed
in Ref. [5] and can be extended to the entire phase dia-
gram around the multicritical point.
Discussions.— Following the pioneering work of Ref. [4],
our study provides a comprehensive phase diagram for
the (2+1)D SO(5) non-linear sigma model with WZW
term on a sphere, as well as the multicritical proper-
ties of the SO(5) transition. Our findings reveal the
3D SO(5) multicriticality by identifying the CFT tower
structure when tuning irrelevant operators. These re-
sults, combined with recent observations of the weakly
first transition in the SU(2) spin models with Néel-VBS
transtions [13, 14, 19–22, 25, 26], provide a direction for
the long-standing question on the existence of DQCP in
various settings.

One of the remaining questions is the nature of the
symmetric phase and its previously determined non-
Wilson-Fisher transition towards the VBS and Néel
phases once one departs from the SO(5) line [5]. A few
possible CFT scenarios have already been proposed [55–
58] that requires emergent Z2 or SU(2) gauge fields. We
will present our analysis of these scenarios in a forthcom-
ing work. Also, the relation of the multicriticality and the
previously discovered pseudocriticality at V1 = 0 [4] will
be of interests to further explore. In addition, conformal
perturbation theory [39] can also be applied to study the
deviations from conformal spectrum in the future works.
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SUPPLEMENTAL MATERIALS FOR

EMERGENT CONFORMAL SYMMETRY AT THE MULTICRITICAL POINT OF (2+1)D SO(5)
MODEL WITH WESS-ZUMINO-WITTEN TERM ON SPHERE

In Supplemental Materials Section I, we explain the spherical Landau level regularization of the SO(5) model. In
Section II, we discuss the tensor representation of the SO(5) group, in which the irreducible representations with
their quantum numbers and degeneracies are explicitly given. In Section III, we present further analysis of the energy
spectra if other calibration criteria besides the ∆Jµ = 2 and ∆T µν = 3 in the main text are used. The purpose of
these alternative analysis is to explore the relation of thus obtained scaling dimensions with other recent related works
such as Refs. [22, 43]. In Section IV, we present the detailed derivation of the crossing point analysis of the SO(5)
order parameter, employed in our previous work [5].

Section I. SPHERICAL LANDAU LEVEL REGULARIZATION OF SO(5) MODEL

I. A. More on the SO(5) model

Our notation is based on that used in Refs. [1, 5, 32, 33].
We would like to project the SO(5) Hamiltonian onto the lowest Landau level (LLL) of the Haldane sphere. The

original Hamiltonian is

HΓ =

∫
dr1dr2U(r1, r2)[n

0(r1)n
0(r2)− u

5∑
i=1

ni(r1)n
i(r2)], (S1)

where ni(r) = Ψ(r)
†
ΓiΨ(r) − δi0 is a local density operator with Ψ(r) := ψτσ(r) the 4-component Dirac fermion

annihilation operator with mixing valley τ and spin σ indices. And Γ0 = I×I, Γi = {τx⊗I, τy⊗I, τz⊗σx, τz⊗σy, τz⊗σz}
are the 5 mutually anticommuting matrices. Here,

U(r1, r2) =
g0
R2

δ(|r1 − r2|) +
g1
R4

∇2δ(|r1 − r2|) (S2)

describes the SO(5)-preserving short-range interactions with g0 and g1 terms.

I. B. Spherical Landau level

For electrons moving on the surface of a sphere with 4πs monopole (2s ∈ Z), the Hamiltonian is H0 = 1
2Mer2

Λ2
µ,

and Λµ = ∂µ + iAµ. The eigenstates are quantized into spherical Landau levels with energies En = [n(n+ 1) + (2n+
1)s]/(2Mer

2) and n = 0, 1, · · · the Landau level index. The (n+1)th level is (2s+2n+1)-fold degenerate. We assume
all interactions are much smaller than the energy gap between Landau levels, and just consider the lowest Landau
level (LLL) n = 0, which is (2s + 1)-fold degenerate and we denote N = 2s + 1 as the system size of the problem.
The wave-functions of LLL orbital are monopole harmonics

Φm(θ, ϕ) = Nme
imϕ coss+m( θ2 ) sin

s−m( θ2 ), (S3)

with m = −s,−s+ 1, · · · , s and Nm =
√

(2s+1)!
4π(s+m)!(s−m)! .

I. C. Details on the LLL projection

The projection of HΓ on the LLL of the Haldane sphere is carried out as

H
(LLL)
Γ =

∫
dr1dr2 U(r1, r2)

∑
m1,n1

Φ∗
m1

(r1)Φn1(r1)
∑

m2,n2

Φ∗
m2

(r2)Φn2(r2)× (S4)

(
∑
α

c†m1,αcn1,α − 2δm1,n1
)(
∑
α

c†m2,αcn2,α − 2δm2,n2
)− u

5∑
i=1

(
∑
α,β

c†m1,αΓ
i
α,βcn1,β)(

∑
α,β

c†m2,αΓ
i
α,βcn2,β) (S5)
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According to the Legendre polynomial U (|r1 − r2|) =
∞∑
l=0

UlPl (cos (Ω12)) =
∑
l

Ul
4π

2l+1

l∑
m=−l

Y ∗
l,m (Ω1)Yl,m (Ω2). We

then arrive at the form,

H
(LLL)
Γ =

∑
l,m

Ul

∑
m1,m2

(−1)2s+m+m1+m2 (2s+1)2

2

(
s l s

−m1 −m m1 +m

)(
s l s

−m2 m m2 −m

)(
s l s
−s 0 s

)2

× (
∑
α

c†m1,αcn1,α − 2δm1,n1
)(
∑
α

c†m2,αcn2,α − 2δm2,n2
)− u

5∑
i=1

(
∑
α,β

c†m1,αΓ
i
α,βcn1,β)(

∑
α,β

c†m2,αΓ
i
α,βcn2,β)

=
∑

m1,m2,m

Vm1,m2,m2−m,m1+m

× (
∑
α

c†m1,αcn1,α − 2δm1,n1
)(
∑
α

c†m2,αcn2,α − 2δm2,n2
)− u

5∑
i=1

(
∑
α,β

c†m1,αΓ
i
α,βcn1,β)(

∑
α,β

c†m2,αΓ
i
α,βcn2,β)

(S6)

with

Vm1,m2,m3,m4
= (−1)2s+m1+2m2−m3 (2s+1)2

2

∑
l

Ul(2l + 1)

(
s l s

−m1 m1 −m4 m4

)(
s l s

−m2 m2 −m3 m3

)(
s l s
−s 0 s

)2

.

(S7)

I. D. Connection to Haldane’s pseudo-potential

In this part, we discussion the interaction we considered [c.f. Eq. (S2)] and its relation with the Haldane’s pseu-
dopotential Vl. The form factor Vm1,m2,m3,m4

[c.f. Eq. (S7) ] is connected to Vl by

Vm1,m2,m3,m4 =
∑
l

Vl(4s− 2l + 1)

(
s s 2s− l
m1 m2 −m1 −m2

)(
s s 2s− l
m4 m3 −m4 −m3

)
. (S8)

The relation between Ul and Vl is then given by,

V2s−l = (−)2s+l
∑
k

Uk

(
s k s
−s 0 s

)2 {
s s l
s s k

}
. (S9)

To be specific, for the short-range interaction U(r1, r2) = g0
R2 δ(|r1 − r2|) + g1

R4∇2δ(|r1 − r2|), only the contact
interaction of the form of delta function and its derivatives are considered, and only V0 and V1 are involved in the
Haldane’s pseudopotential. And the relations between (g0, g1) and (V0, V1) is given by

Vl =

{
g0(2s+1)−g1s

4s+1 , if l = 0
g1s
4s−1 , if l = 1.

(S10)

Section II. TENSOR REPRESENTATION OF SO(N) GROUP

In this section, we briefly recapitulate basic conclusions of SO(N) group and its irreducible representation [59, 60].
These information forms the foundation upon which we classify the energy levels in the ED and DMRG simulations
of the SO(5) model with WZW term.

By definition, the SO(N) group is the group of all N ×N matrices R satisfying RTR = I (orthogonal condition)
and det(R) = 1. These N ×N matrices thus form the defining representation, furnished by N -dimensional vectors.

To systematically construct representations with larger dimensions, one needs more complicated objects than vec-
tors, i.e., a rank-j tensor denotes as Tµ1µ2···µj with j indices, where µj can take the N integers. It transforms
as

T̃ ν1ν2···νj = Rν1
µ1
Rν2

µ2
· · ·Rνj

µj
Tµ1µ2···µj .
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The number of elements in rank-j tensor Tµ1µ2···µj is N j , and such generic rank-j tensors thus furnish a N j × N j

representation, which generally speaking is reducible. To be specific, it can be decomposed into sectors with different
index symmetries.

For instance, a rank-2 tensor can be decomposed as the symmetric part and the anti-symmetric part, i.e., T ij =
Sij + Aij , where Sij = (T ij + T ji)/2 is a symmetric tensor and Aij = (T ij − T ij)/2 is a anti-symmetric tensor. It
is straightforward to check such index permutation symmetries are preserved under SO(N) transformations. That is,
a subset of tensors with a given index symmetry constitute an invariant subspace. Note that, the trace of a tensor
remains the same under SO(N) rotation, which means that, the symmetric tensor can be further decomposed into
the traceless symmetric tensor and the trace itself. To sum up, for rank-2 tensors, the N2-dimensional space can be
decomposed into, a (N(N+1)/2−1)-dimensional invariant subspace (furnished by the traceless symmetric tensors), a
N(N−1)/2-dimensional invariant subspace (furnished by the anti-symmetric tensors), and a one-dimensional invariant
subspace (by the trace of the rank-2 tensors), denoted as,

N2 = N(N+1)
2 − 1 ⊕ N(N−1)

2 ⊕ 1.

For SO(5) group, this means

25 = 14⊕ 10⊕ 1.

For more complicated symmetries in higher rank tensors, one usually resorts to the simple yet powerful tools of
the Young tableaux, where each tableau represents a specific process of symmetrization and anti-symmetrization for
the indices of the tensor Tµ1µ2···µj [60]. In practice, one first fill in all indices into a given Young diagram [λ], then
symmetrizes all indices for each row and anti-symmetrizes all indices for each column. For instance, the Young diagram

[2, 1], depicted as
µ ρ

ν , represents the mix-symmetry rank-3 tensors Mµρν = (T νµρ +T νρµ)− (Tµνρ +Tµρν). The
dimension of a tensor representation can be given by the Young tableaux theory. When the number of rows in a given
Young diagram [λ] is not equal to N/2 (applied to the considered N = 5 case here), the dimension is then given by

the ratio of two tableaux Y
[λ]
T

Y
[λ]
h

. Here the denominator tableaux Y [λ]
h is simply given by filling in the hook length hij

into the box of the i-th row and j-th column, and calculating their product. The numerator tableaux Y [λ]
T is slightly

more complicated, where for a given box the number filled is the sum of that in the corresponding box of a set of
tableaux {Y [λ]

Ta
}. The rules to write down the series of Y [λ]

Ta
are as follows.

1. Tableaux Y [λ]
T0

is given by filling N − i+ j into the box at the i-th row and j-th column;

2. Let [λ1] = [λ]. We then define a series of diagram [λa] by removing the first row and column of the diagram
[λa−1], until the number of columns is less than 2.

3. Given diagram [λa], for the first-r boxes (with r being the row of [λa]) of the hook (1, 1), we successively fill in
(λa1 − 1), (λa2 − 1), · · · , (λar − 1). For each hook (i, 1) with 1 ≤ i ≤ r, we fill (−1) into the last-(λai − 1) boxes.

This ends the definition of tableaux Y [λ]
Ta

.
For the SO(5) group we considered in the main text, a few of the lowest-dimensional representations (without

spinor) are listed as follows.

1. (rank-1 tensor, the vector representation): the dimension is 5

1
= 5

1 = 5;

2. (the traceless symmetric rank-2 tensor): the dimension is 5 6 + -1 1

2 1
=

4 7

2 1
= 4×7

2×1 = 14;

3. (the anti-symmetric rank-2 tensor): the dimension is
5
4

2
1

= 5×4
2×1 = 10;

4. (the fully symmetric rank-3 tensor): the dimension is 5 6 7 + -1 -1 2

3 2 1
=

4 5 9

3 2 1
= 4×5×9

3×2×1 = 30;
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5. (the mixed-symmetry rank-3 tensor): the dimension is
5 6
4 +

0 1
-1

3 1
1

=

5 7
3

3 1
1

= 5×7×3
3×1×1 = 35;

6. etc.

In our ED calculation, we have the conserved quantum numbers, the z-component of the total spin σz, the total
valley τz, the total charge number qz. The tensor representations manifest themselves through the degeneracies in
each (σz, τz, qz) sector. As shown in Tab. S1 we list the SO(5) representations and their corresponding degeneracies
in (σz, τz, qz = 2(2s+ 1)) sectors. Here, we only list the sectors with σz ≥ 0 and τz ≥ 0, and the sectors (±σz,±τz)
should have the same degeneracy.

TABLE S1. The Young diagrams of different SO(5) irreducible representations (denoted as IREP) and the corresponding state
degeneracies in different (σz, τz) sectors.

SO(5)
IREP

Young
diagram (0,0) (0,2) (0,4) (0,6) (2,0) (2,2) (2,4) (4,0) (4,2) (6,0)

1 1

5 1 1 1

10 2 1 1 1

14 2 1 1 1 1 1

30 2 2 1 1 2 1 1 1 1 1

35 3 3 2 3 2 1 1 1

In our DMRG calculation, we have the conserved quantum numbers, the total spin S, the total charge number qz.
The tensor representations manifest themselves through the degeneracies in each (S, qz) sector. As shown in Tab. S2
we list the SO(5) representations and their corresponding degeneracies in (S, qz = 2(2s+ 1)) sectors.

TABLE S2. The Young diagrams of different SO(5) irreducible representations (denoted as IREP) and the corresponding state
degeneracies in different sectors with total spin S at half-filling case qz = 2(2s+ 1).

SO(5)
IREP

Young
diagram 0 1 2 3

1 1

5 2 3

10 1 9

14 3 6 5

30 4 9 10

35 2 18 15

Section III. ANALYSIS OF RECALIBRATED SPECTRUM

In the main text, we use the criteria of ∆Jµ = 2 and ∆T µν = 3 to determine the microscopic parameter at which
the CFT energy level structure is revealed. As shown in Tab. S3, we list our obtained scaling dimensions of several
operators, namely, the order parameter ∆ϕ, singlet operator ∆S , the lowest rank-2 tensor ∆T , and the symmetry
current ∆Jµ , together with the recent conformal bootstrap data assuming tricritical point [43], a recent ED study of
the same SO(5) model we consider in fuzzy sphere [4], and a recent QMC study of J-Q model [22].

As shown in the main text, the analysis still has noticeable finite size effect even if we tune the length of the
interaction. In this section, we try to loose the constraints of ∆Jµ = 2 and ∆T µν = 3 on the finite size data, and test
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TABLE S3. Scaling dimension of relevant primary operator at V1 = 0.3 and those from related works.

Operators ϕ S T Jµ

This work 0.646 2.884 1.633 2.000∗

Conformal Bootstrap tricritical point [43] 0.630∗ 2.359 1.519 2.000∗

Fuzzy sphere with SO(5) symmetry only and V1 = 0 [4] 0.585 2.831 1.458 2.000∗

J-Q model [22] 0.607(4) 2.273(4) 1.417(7) 2.01(3)

our energy levels with other criteria in such a way that, given the recent relevant work from the conformal bootstrap
analysis of the deconfined quantum tricrticality [43], and Quantum Monte Carlo simulation of J-Q model [22], how
large is the degree of freedom our obtained scaling dimensions are consistent with these other results.

As shown in Tab. S4, for the cases of V1 = 0.3, we instead calibrate our energy spectrum to make the scaling
dimension of symmetry current ∆J = 2 and order parameter ∆ϕ = 0.630 (the one taken in the conformal bootstrap
work [43]). It can be seen that, when V1 = 0.3, the rank-2 tensor has a scaling dimension of 1.593 which is closer to
the value of 1.519 given by the conformal bootstrap, whereas the singlet operator is 2.774 which is far from 2.359.

TABLE S4. Scaling dimensions of relevant primary operators at V1 = 0.3 for various system sizes N when recalibrating the
operator spectrum to make ∆J = 2 and ∆ϕ = 0.630 (the one taken in conformal bootstrap [43]).

Op.
ϕ T S Jµ T µν

N = 4 0.630∗ 1.590 2.777 2.000∗ 3.047
N = 5 0.630∗ 1.592 2.774 2.000∗ 3.042
N = 6 0.630∗ 1.593 2.780 2.000∗ 3.046

Conformal Bootstrap tricritical point [43] 0.630∗ 1.519 2.359 2.000∗ —

TABLE S5. Scaling dimensions of relevant primary operators at V1 = 0.3 for various system sizes N when recalibrating the
operator spectrum to make ∆J = 2 and ∆ϕ = 0.607 (the one obtained in J-Q model [22]).

Op.
ϕ T S Jµ T µν

N = 4 0.607∗ 1.531 2.688 2.000∗ 3.133
N = 5 0.607∗ 1.533 2.681 2.000∗ 3.121
N = 6 0.607∗ 1.533 2.684 2.000∗ 3.121

J-Q model [22] 0.607(4) 1.417(7) 2.273(4) 2.01(3) —

As shown in Tab. S5, for the cases of V1 = 0.3, we also calibrate our energy spectrum to make the scaling dimension
of symmetry current ∆J = 2 and order parameter ∆ϕ = 0.607 (the one obtained in the J-Q model [22]). It can be
seen that, when V1 = 0.3, the rank-2 tensor has a scaling dimension of 1.533 which is closer to the value of 1.417
obtained in the J-Q model, whereas the singlet operator is 2.684 which is far from 2.273.

Based on these analyses, we conclude that all these recent works on existence of the multicritical point of the SO(5),
although still differ at the second/third significant digit, but they reveal the consistent picture that for the SO(5) CFT
we find in this work, there exists two relevant singlets, the ∆S and ∆T , whose scaling dimensions are both smaller
than 3. And by tuning V1 = 0.3 and calibrate with ∆ϕ taken in the conformal bootstrap work [43] and obtained
in the QMC study of J-Q model [22], we observe the ∆s become closer to the bootstrap value and the J-Q value.
Such analysis supports the conclusion that the emergent CFT we have discovered, along with those from other related
works, is a multicritical point.

Section IV. CROSSING POINT ANALYSIS

In this section, we provide the detailed derivation for the scaling form of the crossing points, such that the position
of the critical point and the associated scaling dimension can be obtained in a controlled manner from the finite size
data. Such crossing point analysis has been widely applied and tested for quantum criticality of 2D Ising, SU(2)
and other spin models [8, 15, 44, 45] and can be further traced back to Fisher’s “phenomenological renormalization”,
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which was first numerically tested with transfer matrix results for the Ising model in Ref. [46]. It has been used in
our previous work [5] to determine the SO(5) phase diagram.

Let’s consider the standard form of finite-size scaling for an arbitrary observable,

O(δ, L) = L−κ/νf(δL1/ν , λL−ω). (S11)

Here, δ = q − qc is the deviation from the transition point qc, and we also consider the correction from the leading
irrelevant field λ and its corresponding exponent ω. In practise, due to the limit of computational resources, we only
increase the system size by x, and consider the crossing point of observable between size pair (N,N + x). For the
sake of notation simplicity, we express the scaling form as a function of total number of size N instead of linear size
L ∼

√
N , i.e.,

O(δ,N) = N− κ
2ν f(δN

1
2ν , λN−ω

2 ) = N− κ
2ν (a0 + a1δN

1
2ν + b1N

−ω
2 + · · · ), (S12)

where the second equality relation is simply from Taylor’s expansion up to first-order. Similarly, for system size N+x,
we have

O(δ,N + x) = (N + x)−
κ
2ν (a0 + a1δ(N + x)

1
2ν + b1(N + x)−

ω
2 + · · · ). (S13)

Then, at the crossing point δ∗, by definition we have O(δ∗, N) = O(δ∗, N + x), which leads to the scaling form for
the crossing point itself and the observable at the crossing point,

δ∗(N) =
a0
a1

(1 + x/N)−
κ
2ν − 1

1− (1 + x/N)
1−κ
2ν

N− 1
2ν +

b1
a1

(1 + x/N)−
ω
2 − κ

2ν − 1

1− (1 + x/N)
1−κ
2ν

N− 1
2ν −ω

2 + · · · . (S14)

In the case of Binder ratio, we have κ = 0 and when x≪ N , we then arrive at

δ∗(N) = aN− 1
2ν −ω

2 + · · · . (S15)

From the above scaling form [c.f. Eq. (S15)], in principle, we can fit the finite-size data of the crossing point, from
which the critical point can be extracted. In the main text, we applied this method to determine the transition point
between the SO(5) symmetry-breaking phase and the symmetric phase.

To determine the scaling dimension of order parameter ∆ϕ, by considering the order parameter ϕ(δ,N) =

N−
∆ϕ
2 (a0 + a1δN

1
2ν + · · · ), the logarithmic of the order parameter between size pair (N,N + x) will be

log
ϕ(δ,N + x)

ϕ(δ,N)
= −∆ϕ

2

x

N
+
a1
a0
δN

1
2ν
x

N
. (S16)

Then, we can define the finite-size value of ∆∗(N) as

∆∗
ϕ(N) ≡ −2N

x
log

ϕ(δ,N + x)

ϕ(δ,N)
, (S17)

which will take the scaling form as

∆∗
ϕ(N) = ∆ϕ + cN

1
2ν , (S18)

where both of the sides will take the value of scaling dimension ∆ϕ when N is extrapolated to 0.
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