
Exploration of Novel Neuromorphic Methodologies
for Materials Applications

Derek Gobin
George Mason University

Fairfax, VA, USA
dgobin@gmu.edu

Shay Snyder
George Mason University

Fairfax, VA, USA
ssnyde9@gmu.edu

Guojing Cong
Oak Ridge National Laboratory

Oak Ridge, TN, USA
congg@ornl.gov

Shruti R. Kulkarni
Oak Ridge National Laboratory

Oak Ridge, TN, USA
kulkarnisr@ornl.gov

Catherine Schuman
University of Tennessee - Knoxville

Knoxville, TN, USA
cschuman@utk.edu

Maryam Parsa
George Mason University

Fairfax, VA, USA
mparsa@gmu.edu

Abstract—Many of today’s most interesting questions involve
understanding and interpreting complex relationships within
graph-based structures. For instance, in materials science, pre-
dicting material properties often relies on analyzing the intri-
cate network of atomic interactions. Graph neural networks
(GNNs) have emerged as a popular approach for these tasks;
however, they suffer from limitations such as inefficient hard-
ware utilization and over-smoothing. Recent advancements in
neuromorphic computing offer promising solutions to these
challenges. In this work, we evaluate two such neuromorphic
strategies known as reservoir computing and hyperdimensional
computing. We compare the performance of both approaches
for bandgap classification and regression using a subset of the
Materials Project dataset. Our results indicate recent advances in
hyperdimensional computing can be applied effectively to better
represent molecular graphs.

I. INTRODUCTION

Graph Neural Networks (GNNs) are a popular strategy wher-
ever data can be expressed as a graph. The materials science
domain is no exception, where atomic structures naturally lend
themselves to graphical representations. This success is due
to GNNs’ ability to utilize the information and structure of
graphs to generate feature embeddings. Their state-of-the-art
performance is demonstrated across various tasks within the
Materials Project dataset [1], [2].

Despite these impressive results and the research attention
they have brought, GNNs still suffer from a number of chal-
lenges. Like all traditional deep learning strategies, they rely
heavily on the quantity and quality of data. This is particularly
significant in the materials domain, where obtaining high-
quality data for less common material structures can be ex-
pensive and time-consuming [3]. Another issue is that graphs
tend to be sparse with some nodes more heavily connected
than others [4]. These attributes make them inefficient on to-
day’s standard computational hardware that relies primarily on
parallel processing. Finally, one of the most significant chal-
lenges faced by today’s GNN researchers is over-smoothing,
which can limit the expressiveness and representative power
of GNN architectures. These challenges have led to GNNs

being surpassed in some tasks by more standard feed-forward
strategies that require handcrafted feature selection and careful
design [3].

In recent years, neuromorphic computing has emerged as a
popular area of research due to its efficiency and potential to
mimic biological learning processes. Neuromorphic hardware,
inherently asynchronous and optimized for handling sparse
data, is particularly well-suited for the graph domain. Fur-
thermore, promising learning strategies have developed for
generating feature representations. Reservoirs, for example,
have shown to be effective feature extractors across various
modalities through the use of a large untrained layer of
neurons [5], [6]. Alternatively, hyperdimensional computing
builds symbolic representations of data through projection
to high dimensional spaces. These methodologies are less
data intensive and computationally expensive than their deep
learning counterparts, requiring much less resources to train
and capable of running natively on neuromorphic hardware. To
examine these recent advances for application to the materials
domain, we apply reservoir and hyperdimensional computing
strategies to a small subset of the Materials Project dataset [1]
for bandgap classification and regression tasks.

Our key contributions are as follows:
• We perform an initial exploration and comparison of re-

cent reservoir and hyperdimensional computing strategies
for the representation of molecular graph structures.

• We introduce a novel strategy, called SSP-GrapHD, for
representing molecular structures and provide preliminary
results.

• Our results show that SSP-GrapHD reduces the mean
absolute error when compared to the state-of-the-art
ALIGNN approach [7] on our data subset.

II. RELATED WORK

Graph Neural Networks (GNNs) operate through a message
passing paradigm, where nodes receive information from their
connected neighbors. This information encodes the features of
the neighboring node and the edge connecting them. Through

ar
X

iv
:2

40
5.

04
47

8v
1 

 [
cs

.E
T

] 
 7

 M
ay

 2
02

4



this process, GNNs construct node embeddings that capture
both the structure and the data of the graph. While theoreti-
cally, these layers could continue to generate embeddings that
capture the entire network of connections within the graph,
in practice, GNNs are limited to one or two layers before
over-smoothing becomes a problem. Over-smoothing refers to
the process where connected nodes receive similar information
across the graph, leading to homogeneous representations
and a loss of information [8]. For materials discovery, GNN
techniques often rely on constructing line graphs to augment
the atomic structure graph and utilize careful feature selection
in addition to graph design [7], [9].

Neuromorphic applications to complex graph problems have
mainly focused on the text domain and citation networks [10],
[11], [12]. These strategies exploit specific characteristics of
these domains, which are not directly applicable to the material
science domain. However, the inherent efficiency and low-
power nature of neuromorphic computing holds promise for
overcoming limitations in processing large material science
graphs.

Reservoir computing, a neuromorphic strategy, utilizes a
large recurrent network of untrained neurons (called a reser-
voir) to generate high-dimensional feature representations.
These representations are then fed into a separate (usually
linear) read-out layer trained for the specific classification or
regression task. Reservoirs can be built with standard neurons
(called echo state networks) or biologically inspired spiking
neurons (called liquid state machines). In [5], the authors
explore using an echo state network for graph classification on
a small subset of the MUTAG molecular dataset. This work
primarily focuses on examining the hardware implementation
of a reservoir, achieving comparable results to their GNN
baselines, but with limited comparison to the state-of-the-art
methods.

Hyperdimensional computing is a relatively new approach
to computation inspired by how the brain represents in-
formation across a large number of synapses at any given
moment. Data is represented through projection to a high
dimensional space, where it can be manipulated via algebraic
operations (e.g. binding, bundling, permutation). The specific
operations used depend on the chosen type of hypervector,
which can range from binary vectors to more complex tensor
representations [13]. In this work, we evaluate the performance
of reservoir and hyperdimensional learning algorithms within
neuromorphic GNNs applied to materials science problems.
We compare their performance for bandgap classification and
regression tasks using the Materials Project dataset.

III. METHODOLOGY

To explore our selected strategies, two tasks were identified
for bandgap prediction: a simple binary classification prob-
lem (zero vs. non-zero bandgap) and a more challenging
regression problem (estimating the actual bandgap value). The
data used for this evaluation consisted of a selection of 54
data points from the Materials Project dataset [1], [2]. This
selection allows for an efficient evaluation of the performance

Fig. 1. Encoding the structure of (A) PbB2 molecule into (B) three spike
vectors.

of reservoir and hyperdimensional computing for these tasks
while enabling further exploration with larger datasets in future
work.

A. Reservoir Computing

For the reservoir computing architecture, we explored a liquid
state machine (LSM) due to its use of biologically plausible
spiking neurons.These spiking neurons are well-suited for
processing the sparse graph representations and offer potential
for further efficiency gains by leveraging specialized neuro-
morphic hardware. The architecture of the LSM is relatively
simple, consisting of an input layer, a large hidden layer (the
reservoir), and a readout layer.

While spiking neurons have certain advantages, they come
with the challenge of encoding graphical data into a set of
spikes. In the case of atomic structures, a weighted undirected
graph is used, with edge weights determined by the distance
between the connected atoms. To encode this information, we
generate a spike vector for each edge in the graph. Each node
and distance value has a corresponding index in the vector.
This index is set to 1 when the specific node or distance
is involved in the edge, and 0 otherwise. As an illustrative
example shown in Figure 1, consider the structure of PbB2
where each atom is connected to the other to form a triangle.
The lead atom (Pb) is connected to each boron (B) atom
equidistantly at a distance of d1, and the boron (B) atoms are
connected at a distance of d2. Therefore, the encoding would
be three spike vectors:

• A vector with a spike at node 1 (the lead atom), node 2
(one of the boron atoms), and d1

• A vector with a spike at node 1, node 3 (the second boron
atom), and d1

• A vector with a spike at node 2, node 3, and d2

After examining the dataset, we determined that a spike vec-
tor length of 165 would be sufficient. This vector encodes both
node position (140 potential spikes) and distances between
atoms (25 potential spikes, rounded to the nearest quarter
angstrom from 0 to 6 angstroms). Due to the sparsity and size
of this representation and contrary to standard GNN practice,
we only utilize the initial unit cell of the atomic structure,
rather than including periodic neighbor structures. This is also
in line with [5] where non-periodic molecular structures were
examined.



B. Hyperdimensional Computing

This section explores two approaches to study material science
graph data: 1. Adapting GraphHD: We evaluate the applicabil-
ity of the GraphHD methodology [13] for encoding material
science graphs within the hyperdimensional computing (HDC)
framework. 2. SSP-GrapHD: We further enhance the first
approach by incorporating a recent strategy called Spatial
Semantic Points (SSPs) to create 3D representations of the
molecular structures.
1. Adapting GraphHD:
In GraphHD, the authors propose the following strategy:
• Symbolic Representaion: A random symbolic hypervector

(denoted by H) is assigned to each potential node value,
along with a separate vector (denoted by V) representing
connected edges. Here, Multiply, Add, Permute (MAP)
vectors with a value range of {-1,1} are chosen for both H
and V.

• Node Memory Construction: A “node memory” (NM) is
constructed for each node, based on its connected neighbors
and their corresponding edge weights:

NM i =
∑
j

Vwij ∗Hj (1)

Here, V is the edge hypervector that has been permuted
based on the weight value W between the two nodes
(effectively incorporating the weight information into the
message passing process) and H is the connected neighbor
node’s hypervector. This operation is analogous to the
message passing operation in GNNs.

• Node Embedding and Graph Representation: Each node
representation (H) is then bound to its corresponding mem-
ory vector (NM) to create a final node embedding. All node
embeddings are bundled together to form a representation
of the entire graph:

G =
1

2

n∑
i=1

Hi ∗NM i (2)

To adapt this method to the materials science domain,
we randomly initialize 118 hyperdimensional vectors, corre-
sponding to the elements of the periodic table. We normalize
the distance between atoms to values between 0 and 1 to
align with the edge construction strategy presented in [13].
With these adjustments, the molecular structure graphs can be
readily applied to the GrapHD methodology to construct hy-
perdimensional graph representations. Similar to the reservoir
computing approach described earlier, we only consider the
atomic unit cell structure.

2. SSP-GrapHD:
To further explore the hyperdimensional computing space, we
integrated another strategy called Spatial Semantic Pointers
(SSP) [14]. SSPs offer a novel approach for representing con-
tinuous values, particularly spatial information. SSPs encode a
point in space (s = [x, y]) using two hyperdimensional vectors,
one for the x-axis (X) and one for the y-axis (Y). These vectors
are unitary, meaning each vector has a magnitude of 1.

Fig. 2. A simplified visualization of encoding (A) parent node A into (B)
an object hyperdimensional vector that incorporates neighbor nodes and a
spatial hyperdimensional vector that represents position. This process would
be repeated for each node in the graph.

The encoding process involves fractional binding of the
axis vectors through a mathematical operation called circular
convolution (denoted by ⊗). In simpler terms, this can be
thought of as element-wise multiplication with a specific shift
for each element. The resulting hypervector (S) represents the
specific point in space:

S = Xx ⊗ Y y. (3)

An object, represented by a separate hyperdimensional
vector (OBJ), can then be linked to its spatial location
through binding. Furthermore, a “spatial memory” (SM) can
be constructed by bundling the object vectors with their
corresponding spatial encodings (S):

SM =

m∑
i=1

OBJi ⊗ Si (4)

Here, OBJi represents the ith object and Si is its correspond-
ing spatial location.

Therefore, we propose a novel approach called SSP-
GrapHD that leverages the strengths of both methods to create
a 3D spatial representation of our molecular structure, extend-
ing beyond a simple 2D graph. This approach combines the
SSP equation for spatial encoding with a modified GraphHD
equation:

G =
1

2

m∑
i=1

OBJi ⊗ Si (5)

Here, S is a spatial location, represented as above but with a
third unitary vector to represent the Z axis. A diagram of this
encoding process is highlighted within Figure 2. OBJi now is
a binding of an element representation with its corresponding
memory vector NMi from the adapted GrapHD. However,
SSP-GrapHD utilizes only an unweighted graph representation
for node memory (NM)

NM i =
∑
j

Hj . (6)

This is because our objects are tied to 3D locations in space,
which inherently captures the distance information between
them.



IV. RESULTS

For the reservoir approach, we initialized the weights across a
random normal distribution, with a probability of connection
between neurons based on their distance. The excitatory to
inhibitory neuron ratio was 4:1. We explored reservoir sizes
of 400, 1650, and 10,000. These reservoir sizes were selected
based on existing literature on liquid state machines, while
also considering the need to enforce sparsity in the network
[6]. The classification layer used a linear stochastic gradient
descent classifier and a linear regressor was used for the
regression task. Data was split 70% for training and 30% for
testing. To account for the inherent randomness in reservoir
computing, we averaged results over 25 independent runs.

Our proposed approach, SSP-GrapHD, along with GrapHD,
were evaluated using a hyperdimensional vector dimension
size of 10,000 based on common practices in the literature.
Both approaches utilized a stochastic gradient descent classi-
fier and a linear regressor with a 70/30 train-test split. How-
ever, inspired by findings in [14] suggesting neural networks’
effectiveness with hyperdimensional representations, we also
explored neural networks for the regression task.

For SSP-GrapHD, a single hidden layer network with a size
of only 10 neurons achieved the best results. In contrast, a
two-hidden layer network performed best for GrapHD.

We implemented both the reservoir and the SSP-GrapHD
in Nengo [15] and GraphHD in torchHD [16].

Table I summarizes the performance of all approaches
on both the classification (accuracy) and regression (mean
absolute error - MAE) tasks. The GNN strategy ALIGNN [7]
serves as the baseline. ALIGNN is known for its effectiveness
on various Materials Project tasks, including bandgap predic-
tion. It was trained and tested on the same data subset using
hyperparameters recommended by the developers for small
datasets. For hyperdimensional strategies, neural network re-
sults for regression are reported with the linear regression
results given in parenthesis.

TABLE I
RESULTS ON THE MATERIALS PROJECT DATA [1] SUBSET

Method MAE Class. Acc.
ALIGNN 1.0688 –

Reservoir–400 2.311 0.5330
Reservoir–1650 1.7096 0.5084
Reservoir–10k 1.2035 0.5319

GrapHD 0.7025 (1.2270) 0.7647
SSP–GrapHD 0.5181 (1.095) 0.8235

As can be seen in Table I, SSP-GrapHD achieves the best
results by far for the data subset explored. Notably, SSP-
GrapHD achieves a classification accuracy of 82.35% and a
mean absolute error (MAE) of 0.5181 on the regression task,
outperforming all other approaches. Even without the neural
network, a simple linear regressor approaches ALIGNN’s
performance. These results indicate that the hyperdimensional
computing strategies are capturing graph information very
effectively, without any special deep learning architectures

or feature engineering. The SSP-GrapHD results may also
indicate that this strategy is very capable of generalizing,
marking a potential area of interest for future efforts.

The reservoir strategy, on the other hand, does not fair so
well. Interestingly, while increasing the size of the reservoir
does not help with classification, it appears to improve the
regression task. Continuing to increase the reservoir size could
lead to better representations; however, computational over-
head begins to become an issue. Additionally, the reservoir’s
black box nature makes it difficult to tune, understand, and
implement.

V. CONCLUSION AND FUTURE WORK

Hyperdimensional vectors have demonstrated several desir-
able qualities in this study: (1) they are largely transparent,
(2) they are constructed through a series of simple alge-
braic operations, and (3) achieve good results. Further, their
potential implementation on neuromorphic hardware makes
them computationally attractive. The results presented here,
particularly the success of our proposed SSP-GrapHD ap-
proach, strongly indicate that hyperdimensional computing
merits further exploration for material property prediction
tasks.

The immediate next step is to evaluate the performance
of hyperdimensional strategies on the full Materials Project
dataset. This will provide a more comprehensive understanding
of their effectiveness. Beyond the dataset size, several potential
improvements can be explored. The current approach for
node initialization could benefit from incorporating atomic
properties more explicitly. Similar considerations apply to
bond information. Further, GraphHD currently only considers
neighbors directly connected to a node for node memory. Like
GNNs, it could potentially benefit from building node memory
from neighbors further away. There are also other tasks beyond
bandgap regression that could be examined in more detail.

Interest in hyperdimensional vectors extends beyond the
materials application as well. Future efforts will seek to
compare hyperdimensional vectors more directly to traditional
embedding strategies to better understand how well they
incorporate information at a fundamental level. Exploration
of using hyperdimensional vectors for representing other data
types is also in progress, specifically for physics and image-
based understanding.

VI. ACKNOWLEDGMENT

The research was funded in part by National Science Founda-
tion through award CCF2319619.

REFERENCES

[1] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek,
S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson,
“Commentary: The Materials Project: A materials genome approach
to accelerating materials innovation,” APL Materials, vol. 1, no. 1, p.
011002, 07 2013. [Online]. Available: https://doi.org/10.1063/1.4812323

[2] A. Dunn, Q. Wang, A. Ganose, D. Dopp, and A. Jain, “Benchmarking
materials property prediction methods: the matbench test set and au-
tomatminer reference algorithm,” npj Computational Materials, vol. 6,
no. 1, p. 138, Sep. 2020.

https://doi.org/10.1063/1.4812323


[3] P.-P. De Breuck, G. Hautier, and G.-M. Rignanese, “Materials property
prediction for limited datasets enabled by feature selection and joint
learning with MODNet,” npj Computational Materials, vol. 7, no. 1,
p. 83, Jun. 2021.

[4] G. Cong, S. Kulkarni, S. Lim, P. Date, S. Snyder, M. Parsa, D. Kennedy,
and C. Schuman, “Hyperparameter optimization and feature inclusion
in graph neural networks for spiking implementation,” in 2023 Inter-
national Conference on Machine Learning and Applications (ICMLA),
2023, pp. 1541–1546.

[5] S. Wang, Y. Li, D. Wang, W. Zhang, X. Chen, D. Dong, S. Wang,
X. Zhang, P. Lin, C. Gallicchio, X. Xu, Q. Liu, K.-T. Cheng, Z. Wang,
D. Shang, and M. Liu, “Echo state graph neural networks with analogue
random resistive memory arrays,” Nature Machine Intelligence, vol. 5,
no. 2, pp. 104–113, Feb. 2023.

[6] L. Deckers, I. J. Tsang, W. Van Leekwijck, and S. Latré, “Extended
liquid state machines for speech recognition,” Frontiers in Neuroscience,
vol. 16, 2022.

[7] K. Choudhary and B. DeCost, “Atomistic line graph neural network for
improved materials property predictions,” npj Computational Materials,
vol. 7, no. 1, p. 185, Nov. 2021.

[8] T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey on oversmooth-
ing in graph neural networks,” 2023.

[9] R. Ruff, P. Reiser, J. Stühmer, and P. Friederich, “Connectivity
optimized nested line graph networks for crystal structures,” Digital
Discovery, vol. 3, pp. 594–601, 2024. [Online]. Available: http:
//dx.doi.org/10.1039/D4DD00018H

[10] G. Cong, S.-H. Lim, S. Kulkarni, P. Date, T. Potok, S. Snyder,
M. Parsa, and C. Schuman, “Semi-supervised graph structure learning
on neuromorphic computers,” in Proceedings of the International
Conference on Neuromorphic Systems 2022, ser. ICONS ’22. New
York, NY, USA: Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3546790.3546821

[11] D. Dold and J. S. Garrido, “Spike: spike-based embeddings for multi-
relational graph data,” in 2021 International Joint Conference on Neural
Networks (IJCNN), 2021, pp. 1–8.

[12] V. C. Chian, M. Hildebrandt, T. Runkler, and D. Dold, “Learning
through structure: Towards deep neuromorphic knowledge graph
embeddings,” in 2021 International Conference on Neuromorphic
Computing (ICNC). IEEE, Oct. 2021. [Online]. Available: http:
//dx.doi.org/10.1109/ICNC52316.2021.9607968

[13] P. Poduval, H. Alimohamadi, A. Zakeri, F. Imani, M. H.
Najafi, T. Givargis, and M. Imani, “Graphd: Graph-based
hyperdimensional memorization for brain-like cognitive learning,”
Frontiers in Neuroscience, vol. 16. [Online]. Available:
https://par.nsf.gov/biblio/10338293

[14] B. Komer, T. C. Stewart, A. Voelker, and C. Eliasmith, “A neural
representation of continuous space using fractional binding.” in CogSci,
2019, pp. 2038–2043.

[15] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith, “Nengo: a
python tool for building large-scale functional brain models,” Frontiers
in neuroinformatics, vol. 7, p. 48, 2014.

[16] M. Heddes, I. Nunes, P. Vergés, D. Desai, T. Givargis, and A. Nicolau,
“Torchhd: An open-source python library to support hyperdimensional
computing research,” arXiv preprint arXiv:2205.09208, 2022.

http://dx.doi.org/10.1039/D4DD00018H
http://dx.doi.org/10.1039/D4DD00018H
https://doi.org/10.1145/3546790.3546821
http://dx.doi.org/10.1109/ICNC52316.2021.9607968
http://dx.doi.org/10.1109/ICNC52316.2021.9607968
https://par.nsf.gov/biblio/10338293

	Introduction
	Related Work
	Methodology
	Reservoir Computing
	Hyperdimensional Computing

	Results
	Conclusion and Future Work
	Acknowledgment
	References

