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HARNACK INEQUALITY FOR PARABOLIC EQUATIONS IN

DOUBLE-DIVERGENCE FORM WITH SINGULAR LOWER ORDER

COEFFICIENTS

ISTVAN GYÖNGY AND SEICK KIM

Abstract. This paper investigates the Harnack inequality for nonnegative solu-
tions to second-order parabolic equations in double divergence form. We impose
conditions where the principal coefficients satisfy the Dini mean oscillation con-
dition in x, while the drift and zeroth-order coefficients belong to specific Morrey
classes. Our analysis contributes to advancing the theoretical foundations of para-
bolic equations in double divergence form, including Fokker-Planck-Kolmogorov
equations for probability densities.

1. Introduction and main results

We consider a parabolic operator in double divergence form

L
∗u := −∂tu + div2(Au) − div(bu) = −∂tu +Di j(a

i ju) −Di(b
iu),

where A = (ai j) and d × d symmetric matrix valued function and b = (b1, . . . , bd) is

a vector valued function defined on Rd+1 = R × Rd. Here, the usual summation
convention is adopted. We note that the operator L ∗ is the formal adjoint of L ,
where

L v := ∂tv + ai jDi jv + biDiv.

Let c be a real valued function on Rd+1. In this article, we are interested in
Harnack’s inequality for nonnegative solutions u to

L
∗u − cu = 0.

We assume that the principal coefficients matrix A = (ai j) is symmetric and
satisfy the uniform ellipticity condition. We also assume that A is of Dini mean
oscillation in x. This condition is stronger than A belonging to VMOx but is weaker
than A being Dini continuous in x. We allow the coefficient bi and c to be singular.
Refer to Section 2 for the precise conditions on the coefficients.

An important example of parabolic equations in double divergence form is
parabolic Fokker-Planck- Kolmogorov equations for densities. Interested readers
are asked to refer to an excellent survey book on this subject [3].

The main theorem of this paper is as follows.
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2 I. GYÖNGY AND S. KIM

Theorem 1.1. Assume Conditions 2.2 and 2.3 hold. Let R > 0 be a fixed number,
0 < r < R/4, and (t0, x0) ∈ Rd+1. Denote Cr = (t0 − r2, t0] × Br(x0). Suppose u ∈ L1(C4r)
is a nonnegative solution of

L
∗u − cu = 0 in C4r.

Then, we have

sup
(t0−3r2,t0−2r2)×Br/3(x0)

u ≤ N inf
(t0−r2,t0)×Br/3(x0)

u, (1.2)

where N is a constant depending only on d, δ, ωx

A
, p, q, β, b, c, and R.

A few remarks are in order. Harnack inequalities serve as crucial tools in the
study of elliptic and parabolic partial differential equations of the second order. For
divergence form elliptic equations with measurable coefficients, Moser [19] proved
the Harnack inequality for W1

2
weak solutions, which he later extended to the par-

abolic setting [20]. For non-divergence form parabolic equations with measurable
coefficients, Krylov and Safonov [16, 17] established the Harnack inequality for
W2

d+1
strong solutions. The elliptic counterpart of the Krylov-Safonov Harnack

inequality is particularly discussed in [21]. In contrast to equations in divergence
or non-divergence form, Harnack inequalities for double divergence form equa-
tions require more than a measurability condition. This is mainly due to the fact
that weak solutions to equations in double divergence form are not necessarily
bounded when the coefficients A lack some control on the modulus of continuity.
A counterexample in the elliptic setting is provided in [2]. However, if the coeffi-
cients A are Hölder or Dini continuous, weak solutions of double divergence form
equations are locally bounded and even continuous. See [22, 23] for elliptic equa-
tions in double divergence form with Hölder continuous coefficients. Recently, it
has been shown that if A has Dini mean oscillation, then weak solutions to double
divergence form equations are continuous. Refer to [6] for elliptic equations and
[8] for parabolic equations. The Harnack inequality for nonnegative solutions to

the elliptic equation div2(Au) = 0 with A belonging to the Dini mean oscillation
class was presented in [7]. In the parabolic setting, a corresponding result was
presented in [8], albeit somewhat implicitly. Recently, in [4], the Harnack inequal-

ity was established for elliptic equations in the form div2(Au) − div(bu) + cu = 0,
with A satisfying the Dini mean oscillation condition and b, c ∈ Lp,loc for p > d.
Our main theorem, Theorem 1.1, extends the result established in [4] to the par-
abolic context with less restrictive assumptions. Notably, we improve upon the
conditions required in [4] by only requiring c ∈ Lp,loc with p > d/2. For detailed
information, refer to Theorem 4.3.

It should be noted that there is another significant difference between equations
in divergence or non-divergence form and those in double divergence form. In
the former case, the Harnack inequality implies Hölder continuity estimates for
solutions. However, in the latter case, Hölder estimates for solutions are not
available in general. This is essentially because the constant function is not a
solution to the elliptic or the parabolic equation in double divergence form.

The organization of the paper is as follows: In Section 2, we introduce nota-
tions and present some preliminary results. In particular, we state the Harnack
inequality for nonnegative solutions to parabolic equations in double divergence
form without lower-order coefficients, which was not explicitly presented in [8], as
Theorem 2.20. In Section 3, we provide the proof of our main result, Theorem 1.1,
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by breaking it into several steps. The last section, Section 4, is a brief one devoted
to the Harnack inequality for elliptic equations in double divergence form.

2. Preliminaries

We represent a point inR×Rd = Rd+1 as X = (t, x), where x = (x1, . . . , xd) always
denotes a point in Rd. The parabolic distance between the points X = (t, x) and

Y = (s, y) in Rd+1 is defined as

|X − Y|p = max(
√

|t − s|, |x − y|).
Let Q ⊂ Rd+1. For 0 < α ≤ 1, we define

[u]C α/2,α(Q) = sup
X,Y∈Q
X,Y

|u(X) − u(Y)|
|X − Y|αp

.

Also, for a function u having a spatial derivative Du, we define

[u]C (1+α)/2,1+α(Q) = [Du]C α/2,α(Q) + sup
(t,x),(s,x)∈Q

t,s

|u(t, x)− u(s, x)|
|t − s|(1+α)/2

.

For p, q ∈ [1,∞) and a domain Q ⊂ Rd+1, we denote by Lp,q(Q) the space of
measurable functions f on Q with

‖ f ‖Lp,q(Q) = ‖ f1Q‖Lp,q =













∫

R

(∫

Rd

| f1Q(t, x)| dx

)q/p

dt













1/q

< ∞.

When p or q = ∞, we use essential supremum instead of the integral. We note that
Lp,p(Q) = Lp(Q), the usual Lebesgue class.

By W1,2
p,q (Q), we mean the collection of u such that ∂tu, D2u, Du, u ∈ Lp,q(Q). The

norm in W1,2
p,q (Q) is introduced in an obvious way. We drop Q if Q = Rd+1.

For X = (t, x) ∈ Rd+1 and r > 0, we define Cr(X) = (t− r2, t]×Br(x), where Br(x) is
the d dimensional open ball with radius r centered at x. Let us also introduce the
forward cylinder C̃r(X) = C̃r(t, x) = [t, t + r2) × Br(x) and let Cr be the collection of

all cylinders C̃r(X) in Rd+1.
For β ≥ 0, we define the Morrey space Ep,q,β as in [15], i.e., the set of all functions

g ∈ Lp,q,loc such that

‖g‖Ep,q,β := sup
ρ≤1, C∈Cρ

ρβ –‖g‖Lp,q(C) < ∞, (2.1)

where –‖g‖Lp,q(C) = ‖1‖−1
Lp,q(C)

‖g‖Lp,q(C) = N(d)ρ−d/p−2/q‖g‖Lp,q(C) for C ∈ Cρ. Define

E1,2
p,q,β
= {u : u, Du, D2u, ∂tu ∈ Ep,q,β}

and equip E1,2
p,q,β

with an obvious norm.

For C = C̃r(t0, x0) ∈ Cr, we set

Āx

C(t) =

?
Br(x0)

A(t, x) dx,

and for r > 0, we define

ωx

A(r) := sup
C∈Cr

?
C

∣

∣

∣A(t, x)− Āx

C(t)
∣

∣

∣ dxdt.
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Condition 2.2. The principal coefficient matrix A = (ai j) is symmetric and there
is a constant δ ∈ (0, 1] such that the eigenvalues of A(t, x) are in [δ, 1/δ] for all
(t, x) ∈ Rd+1. Moreover, A is of Dini mean oscillation in x, that is,

∫ 1

0

ωx

A
(t)

t
dt < ∞.

We shall denote A ∈ DMOx if A is of Dini mean oscillation in x. We observe that
A ∈ VMOx if A ∈ DMOx; refer to [12] for definition of VMOx.

Condition 2.3. Let p, q, and β be such that

p, q ∈ (1,∞), β ∈ (0, 1), d/p + 2/q ≥ β,

and denote

p̃ = βp/(β + 1), q̃ = βq/(β + 1).

The lower-order coefficients b = (b1, . . . , bd) and c are such that b ∈ Ep,q,β and
c ∈ Ep̃,q̃,β+1 with estimates

‖b‖Ep,q,β < b, ‖c‖Ep̃,q̃,β+1
< c,

for some b, c < ∞.

Remark 2.4. Let p, q ∈ (1,∞) be such that d/p+2/q < 1 and let β = d/p+2/q. Clearly,
for C ∈ Cρ, we have

ρβ –‖g‖Lp,q(C) ≤ N(d)‖g‖Lp,q(Rd+1).

Moreover, it follows from Hölder’s inequality that for ρ ≤ 1, we have

ρ1+β –‖g‖Lp̃,q̃(C) ≤ ρ2β –‖g‖Lp̃,q̃(C) ≤ ρ2β –‖g‖Lp/2,q/2(C) ≤ N(d)‖g‖Lp/2,q/2(Rd+1).

Therefore, if b ∈ Lp,q and c ∈ Lp/2,q/2, then Condition 2.3 is satisfied withβ = d/p+2/q.

Definition 2.5. Let Q ⊂ Rd+1 be a domain. We say that u ∈ L1,loc(Q) is a weak
solution of

L
∗u − cu = 0 in Q

if bu, cu ∈ L1,loc(Q), and the following identity holds for any η ∈ C∞c (Q):

I :=

"
Rd+1

u
(

L η − cη
)

dxdt

=

"
Rd+1

u∂tη + ai juDi jη + biuDiη − cuη dxdt = 0. (2.6)

The following lemma is an easy consequence of [8, Theorem 3.2] by following
essentially the same the arguments used in [5]; see also [6].

Lemma 2.7. Assume Condition 2.2. Let Cr = (−r2, 0] × Br ⊂ Rd+1 and let u ∈ L1(C2r)
be a solution to −∂tu + div2(Au) = f in C2r, where f ∈ Lp(C2r) for some p ∈ (1,∞), then
u ∈ Lp(Cr) and we have

‖u‖Lp(Cr) ≤ N
(

‖u‖L1(C2r) + ‖ f ‖Lp(C2r)

)

,

where N depends only on d, δ, p, r, and ωx

A
.
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Proof. We can assume r = 1. Also, it is enough to show that u ∈ Lq(C1) for some
q > 1; see [9]. By definition of a weak solution, we have"

C2

u∂tη + ai juDi jη =

"
C2

fη, ∀η ∈ C∞c (C2). (2.8)

For any g ∈ C∞c (C2), let v ∈W1,2
2

(C2) be the solution of the problem

vt + ai jDi jv = g in C2 (2.9)

with zero boundary condition on the parabolic boundary of C2. By [8, Theorems

1.2] (see also [8, Theorem 3.2]), we have v ∈ W1,2
∞ (C3/2). Let v(ε) be the standard

mollification of v. For any fixed cut-off function ζ ∈ C∞c (C3/2) such that ζ = 1 on C1,
we take η = ζv(ε) ∈ C∞c (C2). Then by (2.8), we have"

C2

u
(

ζtv
(ε) + ζv(ε)

t

)

+ ai ju
(

Di jζv
(ε) + 2DiζD jv

(ε) + ζDi jv
(ε)

)

=

∫

C2

fζv(ε). (2.10)

There is a sequence εn converging to 0 such that

v(εn) → v, Dv(εn) → Dv, D2v(εn) → D2v, v(εn)
t → vt a.e.

Also, note that for all sufficiently small ε > 0 we have

‖v(ε)‖W1,2
∞ (supt ζ) ≤ ‖v‖W1,2

∞ (C3/2) < ∞.
Hence, by using the dominated convergence theorem, we find that (2.10) is valid
with v(ε) replaced by v. On the other hand, by multiplying (2.9) with ζu and noting
that vt, D2v, g ∈ L∞(supt ζ) and ζu ∈ L1(C2), we have"

C2

vtζu + ai jDi jvζu =

"
C2

gζu. (2.11)

By combing (2.11) and (2.10) with v in place of v(ǫ), we obtain"
C2

ζug =

"
C2

ζtuv + ai jDi jζuv + 2ai juDiζD jv +

"
C2

fζv.

Note that we can choose ζ such that

‖ζ‖∞ + ‖ζt‖∞ + ‖D2ζ‖∞ + ‖Dζ‖∞ ≤ 64.

Therefore, we have
∣

∣

∣

∣

∣

∣

"
C2

ζug dxdt

∣

∣

∣

∣

∣

∣

≤ N
(

‖v‖L∞(C2) + ‖Dv‖L∞(C2)

)

‖u‖L1(C2) +N‖ f ‖Lp(C2)‖v‖L∞(C2). (2.12)

Since ai j ∈ DMOx ⊂ VMOx, we have for 1 < q < ∞ that

‖v‖W1,2
q (C2) ≤ N‖g‖Lq(C2).

Then by the Sobolev embedding (see, for instance, [18], and also Remark 2.19), we
have for q > d + 2 that

‖v‖L∞(C2) + ‖Dv‖L∞(C2) ≤ N‖g‖Lq(C2).

Since g ∈ C∞c (C2) is arbitrary, by combining the previous inequality with (2.12) and
using the converse of Hölder’s inequality, we have

‖u‖Lq′ (C1) ≤ ‖ζu‖Lq′ (C2) ≤ N
(

‖u‖L1(C2) + ‖ f ‖Lp(C2)

)

,

where 1 < q′ < d+2
d+1 . �
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The following lemma complements [15, Lemma 2.8].

Lemma 2.13. Let 0 < β ≤ d/p + 2/q and β < 1. Then for any u ∈ E1,2
p,q,β

(Rd+1) and

C ∈ C1, we have

[u]C (2−β)/2,2−β(C) ≤
(

‖D2u‖Ep,q,β + ‖∂tu‖Ep,q,β

)

.

Proof. Using [12, Lemma 3.2] and Hölder’s inequality, for any u ∈ C∞c (Rd+1), we
have

∫

C̃r

|Diu − (Diu)C̃r
| ≤ Nr1+d+2−d/p−2/q

(

‖D2u‖L1(C̃r)
+ ‖∂tu‖L1(C̃r)

)

.

Then by (2.1), for r ≤ 1, we have
∫

C̃r

|Diu − (Diu)C̃r
| ≤ Nrd+2+1−β

(

‖D2u‖Ep,q,β + ‖∂tu‖Ep,q,β

)

.

Then, applying Campanato’s theorem, for any C ∈ C1, we obtain

[Du]C (1−β)/2,1−β(C) ≤ N
(

‖D2u‖Ep,q,β + ‖∂tu‖Ep,q,β

)

. (2.14)

Next, we aim to demonstrate that for any C ∈ C1, we have

sup
(t,x),(s,x)∈C

t,s

|u(t, x) − u(s, x)|
|t − s|(2−β)/2

≤ N
(

‖D2u‖Ep,q,β + ‖∂tu‖Ep,q,β

)

. (2.15)

We consider a non-negative smooth function ηwith compact support in B1(0) ⊂ Rd,

satisfying
∫

Rd η = 1. Additionally, we assume that η is a radial function. The spatial

mollification u(ǫ) of u is defined as follows:

u(ǫ)(t, x) =

∫

Rd

u(t, x − ǫy)η(y) dy =
1

ǫd

∫

Rd

u(t, y)η
(x − y

ǫ

)

dy.

For (t, x) ∈ Rd+1, we shall estimate |u(t + r2, x) − u(t, x)| as follows:

|u(t + r2, x) − u(t, x)| ≤ |u(t + r2, x) − u(r)(t + r2, x)| + |u(t, x)− u(r)(t, x)|
+ |u(r)(t + r2, x) − u(r)(t, x)|. (2.16)

By using the assumptions that η(y) = η(−y) and
∫

B1
η = 1, for any s ∈ R, we obtain

u(r)(s, x) − u(s, x) =
1

2

∫

B1

{

u(s, x + ry) + u(s, x − ry) − 2u(s, x)
}

η(y) dy.

Since

u(s, x + ry) + u(s, x − ry) − 2u(s, x) =

∫ r

0

d

dτ
u(s, x + τy) dτ +

∫ r

0

d

dτ
u(s, x − τy) dτ

=

∫ r

0

(

Diu(s, x + τy) −Diu(s, x − τy)
)

yi dτ,

we have
∣

∣

∣u(r)(s, x) − u(s, x)
∣

∣

∣ =
1

2

∣

∣

∣

∣

∣

∣

∫

B1

∫ r

0

{

Diu(s, x + τy) −Diu(s, x − τy)
}

yiη(y) dτdy

∣

∣

∣

∣

∣

∣

≤ 1

2
‖η‖∞

∫

B1

∫ r

0

∣

∣

∣Du(s, x + τy) −Du(s, x − τy)
∣

∣

∣ dτdy

≤ Nr2−β
(

‖D2u‖Ep,q,β + ‖∂tu‖Ep,q,β

)

, (2.17)
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where we have used (2.14) in the last inequality.
On the other hand, we have

u(r)(t + r2, x) − u(r)(t, x) =

∫ t+r2

t

∂su
(r)(s, x) ds

=

∫ t+r2

t

∫

B1

∂su(s, x − ry)η(y) dyds.

Therefore,

∣

∣

∣u(r)(t + r2, x) − u(r)(t, x)
∣

∣

∣ ≤ ‖η‖∞r−d

∫

C̃r(t,x)

|∂su(s, y)|dyds

≤ Nr2−d/p−2/q‖∂tu‖Lp,q(C̃r)
≤ Nr2−β‖∂tu‖Ep,q,β . (2.18)

Combining (2.16), (2.17), and (2.18), we have

|u(x, t+ r2) − u(x, t)| ≤ Nr2−β
(

‖D2u‖Ep,q,β) + ‖∂tu‖Ep,q,β

)

.

We have proved (2.15). �

Remark 2.19. The proof of Lemma 2.13 shows the following well known result: if

u ∈W1,2
p,q with d/p + 2/q < 1, then

[u]C (1+α)/2,1+α ≤ N
(

‖D2u‖Lp,q + ‖∂tu‖Lp,q

)

.

However, there is no restrictions on d/p + 2/q in the previous lemma.

The following result can be inferred from [8], although it was not explicitly
stated there. For the reader’s convenience, we provide the statement here.

Theorem 2.20. Assume Condition 2.2 holds. Let R > 0 be a fixed number, 0 < r < R/2,
and (t0, x0) ∈ Rd+1. Suppose u ∈ L1(C2r) is a nonnegative weak solution of

−∂tu + div2(Au) = 0 in C2r.

Then, we have

sup
(t0−3r2,t0−2r2)×Br(x0)

u ≤ N inf
(t0−r2,t0)×Br(x0)

u,

where N is a constant depending only on d, δ, ωx

A
, and R.

Proof. By Lemma 2.7, we have u ∈ Lp,loc(C2r), for any 1 < p < ∞, and thus by [8,
Theorem 1.4], it is continuous in C2r. The conclusion of the lemma is derived by
consolidating Lemmas 5.2 and 5.7 in [8]. �

3. Proof of the main theorem

3.1. Regularization of singular zeroth order coefficient. We shall first demon-
strate how to transform a singular c to a regular c̃. Let u be a solution to

L
∗u − cu = 0 in Q ⊂ Rd+1,

Then we have the identity

I =

"
Rd+1

u(L − c)η dxdt = 0, ∀η ∈ C∞c (Q). (3.1)
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Let ζ be a function to be determined. By taking ζη in place of η in (3.1), we have

I =

"
Rd+1

u(L − c)ζη dxdt = 0, ∀η ∈ C∞c (Q). (3.2)

We note that

(L − c)ζη = ζL η + ηL ζ + 2ai jDiηD jζ − cζη

= ζ
(

L + 2ai j Diζ

ζ
D j

)

η + η(L − c)ζ. (3.3)

We shall consider ζ that is of the form ζ = 1 + ζλ, where ζλ is a solution to the
problem

(L − c − λ)ζλ = c in R
d+1. (3.4)

We note that for r ≤ 1, we have

r sup
C∈Cr

–‖b‖L(β+1)p̃,(β+1)q̃(C) ≤ r sup
C∈Cr

–‖b‖Lp,q(C) ≤ r1−β sup
C∈Cr

rβ –‖b‖Lp,q(C) ≤ r1−β
b.

Therefore, for any b̌ ∈ (0, 1], there exists a ρ ∈ (0, 1] such that we have

sup
r≤ρ

r sup
C∈Cr

–‖b‖L(β+1)p̃,(β+1)q̃(C) ≤ ρ1−β
b ≤ b̌.

By [15, Theorem 3.5], there exists a constant λ0 ≥ 1 depending only on d, δ, ωx

A
,

p, q, β, b, and c such that for λ ≥ λ0, the equation (3.4) has a unique solution ζλ in

the function space E1,2
p̃,q̃,β+1

satisfying

‖∂tζλ, D2ζλ
√
λDζλ, λζλ‖Ep̃,q̃,β+1

≤ N, (3.5)

where N is a constant depending only on d, δ, ωx

A
, p, q, β, b, and c.

Lemma 3.6. There exists a constant N that depends only on d, δ, ωx

A
, p, q, β, b, and c,

such that the following estimates hold:

‖ζλ‖L∞(Rd+1) ≤ Nλ(β−1)/2, [ζλ]C (1−β)/2,1−β(C) ≤ N, ∀C ∈ C1, ‖Dζλ‖Ep,q,β ≤ N. (3.7)

Proof. According to [15, Lemma 2.5], for any ǫ ∈ (0, 1], we have

sup
Rd+1

|ζλ| ≤ ǫ1−β
(

‖∂tζλ‖Ep̃,q̃,β+1
+ ‖D2ζλ‖Ep̃,q̃,β+1

)

+Nǫ−β−1‖ζλ‖Ep̃,q̃,β+1
.

Then, from (3.5), for ǫ ∈ (0, 1] and λ ≥ λ0, we have

|ζλ| ≤ N
(

ǫ1−β + ǫ−β−1λ−1
)

.

By taking ǫ = (λ0/λ)1/2 in the above, we get the first part of (3.7). The second and
third part of (3.7) follow from (3.5) and Lemmas 2.6 and 2.8 in [15]. �

By Lemma 3.6, we can choose λ large enough such that |ζλ| ≤ 1
2 . With this choice

of λ, we have ζ = 1 + ζλ satisfies

1/2 ≤ ζ ≤ 2. (3.8)

Moreover, for X = (t, x) and Y = (s, y) with |X − Y|p < 1, we have

|ζ(X) − ζ(Y)|
|X − Y|1−βp

≤ sup
C∈C1

[ζλ]C (1−β)/2,1−β(C) ≤ N.
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Note that the left-hand side of the previous inequality is bounded by 2 sup
Rd+1 |ζ|

whenever |X − Y|p ≥ 1. Hence, we deduce that

[ζ]C (1−β)/2,1−β(Rd+1) ≤ N. (3.9)

Since we have

(L − c)ζ = (L − c)(1 + ζλ) = −c + (L − c − λ)ζλ + λζλ = λζλ = λ(ζ − 1),

from (3.3), we obtain

(L − c)ζη = ζ
(

L + 2ai j Diζ

ζ
D j + λ

ζ − 1

ζ

)

η. (3.10)

We define

b̄ j = b j + 2ai j Diζ

ζ
, c̄ = −λ

(

ζ − 1

ζ

)

. (3.11)

Then from (3.2) and (3.10), we find that ū = ζu satisfies

I =

"
Rd+1

ū
(

ai jDi j + b̄iDi − c̄
)

η = 0, (3.12)

and thus ū is a solution to

−∂tū +Di j(a
i ju) −Di(b̄

iu) − c̄u = 0 in Q.

Remark 3.13. We observe from (3.8) and (3.11) that the functions b̄ j−b j are bounded,
implying that b̄ j belongs to the same Ep,q,β space as b j. Additionally, it follows from
(3.8), (3.9), and (3.11) that c̄ is a bounded Hölder continuous function. More
quantitatively, we have

‖b̄‖Ep,q,β ≤ ‖b‖Ep,q,β + 4δ−1‖Dζ‖Ep,q,β ≤ N,

‖c̄‖L∞(Rd+1) ≤ λ‖(ζ − 1)/ζ‖L∞ ≤ Nλ ≤ N,

[c̄]C (1−β)/2,1−β(Rd+1) ≤ λ[ζ]C (1−β)/2,1−β(Rd+1)/‖ζ‖2L∞(Rd+1)
≤ Nλ ≤ N,

where N depends only on d, δ, ωx

A
, p, q, β, b, and c.

3.2. Regularization of singular drift term. We proceed to regularize the drift term
through Zvonkin’s transform, which was first introduced in [24]. Below we use a
modification of this transformation introduced in [10].

LetΦ : Rd+1 → Rd+1 be an invertible mapping defined as

Φ(t, x) = (t,φ(t, x)),

where φ = (φ1, . . . , φd). The inverse ofΦ, denoted byΨ, is given by

Ψ(t, y) = (t,ψ(t, y)).

It is important to note that for each fixed t, we have ψ(t, ·) as the inverse of φ(t, ·),
meaning

ψ(t,φ(t, x)) = x, φ(t,ψ(t, y)) = y.

By utilizing η ◦Φ as a test function in place of η in equation (2.6), we have

I =

"
Rd+1

u(L − c)η ◦Φ dxdt = 0. (3.14)
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Clearly, we can observe that

∂t(η ◦Φ)(t, x) = ∂tη(t,φ(t, x))+Dkη(t,φ(t, x))φk
t (t, x),

Di(η ◦Φ)(t, x) = Dkη(t,φ(t, x))Diφ
k(t, x),

Di j(η ◦Φ)(t, x) = Dklη(t,φ(t, x))Diφ
k(t, x)D jφ

l(t, x)+Dkη(t,φ(t, x))Di jφ
k(t, x),

Therefore, we can express

(L − c)η(Φ(t, x)) = ∂tη(t,φ(t, x))+ ãkl(t, x)Dklη(t,φ(t, x))− c(t, x)η(t,φ(t, x))

+Dkη(t,φ(t, x))Lφk(t, x), (3.15)

with the notation

ãkl(t, x) = ai j(t, x)Diφ
k(t, x)D jφ

l(t, x) (3.16)

We will consider φ(t, x) in the form φ(t, x) = φλ(t, x) = x + ξλ(t, x), where ξλ
satisfies the system of equations

(L − λ)ξλ = −b in Rd+1. (3.17)

Once again, according to [15, Theorem 3.5], there exist a constant λ0 > 0 de-
pending only on d, δ, ωx

A
, p, q, β, b, and c, such that for λ ≥ λ0, the system (3.17) has

a unique solution ξλ = (ξ1
λ, . . . , ξ

d
λ).

Lemma 3.18. There exists a constant N that depends only on d, δ, ωx

A
, p, q, β, b, and c,

such that the following estimates hold:

sup
Rd+1

|ξλ| ≤ Nλ(β−2)/2, sup
Rd+1

|Dξλ| ≤ Nλ(β−1)/2. (3.19)

Proof. Similar to the proof of Lemma 3.6, by [15, Theorem 3.5], for λ ≥ λ0, we have

‖∂tξλ, D2ξλ,
√
λDξλ, λξλ‖Ep,q,β ≤ N‖b‖Ep,q,β ≤ N. (3.20)

Then, utilizing [15, Lemma 2.5], for ε ∈ (0, 1], the estimates

sup
Rd+1

|ξλ| ≤ N
(

ε2−β + ε−βλ−1
)

, sup
Rd+1

|Dξλ| ≤ N
(

ε1−β + ε−β−1λ−1
)

holds, where the constant N depends solely on d, δ, ωx

A
, p, q, β, b, and c. By setting

ǫ = (λ0/λ)1/2, we obtain (3.19). �

Lemma 3.21. For s, t ∈ R, such that |s − t| ≤ 1 and x ∈ Rd, we have

|ξλ(t, x) − ξλ(t, x)| ≤ Nλ−(1−β)/2|t − s|1/2.

Proof. By Lemma 2.13 and (3.20), for any C ∈ C1, we have

sup
(t,x),(s,x)∈C

t,s

|ξλ(t, x)− ξλ(s, x)|
|t − s|(2−β)/2

≤ N
(

‖D2ξλ‖Ep,q,β + ‖∂tξλ‖Ep,q,β

)

≤ N. (3.22)

On the other hand, by (3.19), we have

sup
(t,x)∈C

|ξλ(t, x)| ≤ Nλ(β−2)/2. (3.23)
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The lemma is established through interpolation inequalities, as demonstrated in,
for example, [11, Theorem 3.2.1]. To ensure completeness, we present the argument
below. Denote

A := sup
(t,x),(s,x)∈C

t,s

|ξλ(t, x) − ξλ(s, x)|
|t − s|1/2 and B := sup

(t,x),(s,x)∈C
t,s

|ξλ(t, x)− ξλ(s, x)|
|t − s|(2−β)/2

.

For any ǫ > 0, we claim that

A ≤ ǫB +N(β)ǫ−1/(1−β) sup
C

|ξλ|. (3.24)

We can choose (t, x), (s, x) ∈ C be such that

1

2
A ≤ |ξλ(t, x) − ξλ(s, x)|

|t − s|1/2 ≤ |t − s|(1−β)/2B.

If |t − s| ≤ (ǫ/2)2/(1−β), we have A ≤ ǫB, and (3.24) is true. Otherwise, we have

A ≤ 4|t − s|−1/2 sup
C

|ξλ| ≤ 4(ǫ/2)−1/(1−β) sup
C

|ξλ|.

We have proved the assertion (3.24). Now, the lemma follows by taking ǫ = λ−(1−β)/2

in (3.24), and utilizing (3.22) and (3.23). �

Using Lemmas 3.18 and 3.21, for any ε ∈ (0, 1
2 ), there exists λ sufficiently large

such that any (t, x) ∈ Rd, we have

|Dξλ(t, x)| ≤ ε, (3.25)

and for any s, t ∈ R, with |s − t| ≤ 1, and x ∈ Rd, we have

|ξλ(t, x) − ξλ(s, x)| ≤ ε|t − s|1/2.
Then, with this choice of λ, the function φλ(t, x) = x + ξλ(t, x) satisfies

(1 − ε)|x − y| ≤ |φλ(t, x) −φλ(t, y)| ≤ (1 + ε)|x − y|, ∀(t, x) ∈ Rd+1, (3.26)

and for any s, t ∈ R, with |s − t| ≤ 1, the following holds:

sup
x∈Rd

|φλ(t, x)−φλ(s, x)| ≤ ε|t − s|1/2. (3.27)

Since Dφλ(t, x) = I + Dξλ(t, x), we may assume that λ is chosen such that for each

(t, x) ∈ Rd+1, we have
1

2
≤ det(Dφλ(t, x)) ≤ 2. (3.28)

It is evident that for each t ∈ R, the mapping φλ(t, ·) is a C1 diffeomorphism on

Rd. Denote by ψλ(t, ·) the inverse of φλ(t, ·) on Rd. Note that

φλ(t,ψλ(t, x))−φλ(s,ψλ(t, x)) = φλ(s,ψλ(s, x)) −φλ(s,ψ(t, x))

and by (3.27) and (3.26) that

|LHS| ≤ ε|t − s|1/2, |RHS| ≥ (1 − ε)|ψλ(s, x) −ψλ(t, x)|.
Therefore, for any s, t ∈ R, with |s − t| ≤ 1, the following holds:

|ψλ(t, x) −ψλ(s, x)| ≤ ε(1 − ε)−1|t − s|1/2. (3.29)
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Lemma 3.30. LetΦλ(t, x) = (t,φλ(t, x)) andΨλ(t, x) = (t,ψλ(t, x)). Let I = (t0 − r2, t0)
and y0 = φλ(t0, x0). For any α > 0, we have

Φλ(I × Bαr(x0)) ⊂ I × B(α(1+ε)+ε)r(y0), (3.31)

Ψλ(I × Bαr(y0)) ⊂ I × B(1−ε)−1(α+ε)r(x0). (3.32)

Proof. For any (t, x) ∈ I × Bαr(x0), it follows that

|φλ(t, x) − y0| ≤ |φλ(t, x)−φλ(t, x0)| + |φλ(t, x0) −φλ(t0, x0)|
≤ (1 + ε)|x − x0| + ε|t − t0|1/2 ≤ (1 + ε)αr + εr,

utilizing the inequalities (3.27) and (3.26). Consequently, this leads to

|Φλ(t, x)− (t, y0)|p < (1 + ε)αr + εr,

resulting in (3.31). Similarly, taking into account that ψ(t0, y0) = x0, and utilizing
the inequalities (3.26) and (3.29), for any (t, y) ∈ I × Bαr(y0), we have

|ψλ(t, y) − x0| ≤ |ψλ(t, y)−ψλ(t, y0)| + |ψλ(t, y0) −ψλ(t0, y0)|
≤ (1 − ε)−1|y − y0| + ε(1 − ε)−1|t − t0|1/2

≤ (1 − ε)−1αr + ε(1 − ε)−1r.

This implies (3.32). �

Observe that with φ(t, x) = φλ(t, x) = x + ξλ(t, x), we have

Lφk = L (xk + ξ
k
λ) = bk +L ξk

λ = bk + (L − λ)ξk
λ + λξ

k
λ = λξ

k
λ. (3.33)

Therefore, by (3.15) and (3.33), the identity (3.14) becomes

I =

"
Rd+1

u(t, x)
{

∂tη(t,φ(t, x))+ ãkl(t, x)Dklη(t,φ(t, x))+ b̃k(t, x)Dkη(t,φ(t, x))

−c(t, x)η(t,φ(t, x))
}

dxdt = 0, (3.34)

where b̃k = λξk
λ
. Then, by the change of variables x = ψ(t, y) = ψλ(t, y), defining

û(t, y) := u(t,ψ(t, y)) |det Dψ(t, y)| = u(t, x) |det Dψ(t,φ(t, x))|, (3.35)

and setting (recall definition (3.16))

âkl(t, y) := ãkl(t,ψ(t, y)) = ãkl(t, x) = ai j(t, x)Diφ
k(t, x)D jφ

l(t, x),

b̂k(t, y) := b̃k(t,ψ(t, y)) = b̃k(t, x) = λξk
λ(t, x),

ĉ(t, y) := c(t,ψ(t, y)) = c(t, x),

(3.36)

we obtain

0 =

"
Rd+1

û(t, y)
{

∂tη(t, y) + âkl(t, y)Dklη(t, y) + b̂k(t, y)Dkη(t, y)− ĉ(t, y)η(t, y)
}

dydt.

Therefore, the identity (3.34) becomes

I =

"
Rd+1

û(∂t + âi jlDi j + b̂iDi − ĉ)η = 0,

so that û is a solution to

−∂tû +Di j(â
i jû) −Di(b̂

iû) − ĉû = 0 in Q′ := Ψ(Q).



HARNACK INEQUALITY 13

Remark 3.37. It is evident form (3.36) that Â = (âi j) satisfies Condition 2.2, as
φ(t, x) = x + ξλ(t, x) and ξλ satisfies the estimate (3.25); see [8, Lemma 3.4]. We

also note that b̂ = (b̂1, . . . , b̂d) is bounded and it is Lipschitz in x. Additionally, ĉ is
bounded and it is Hölder continuous in x under the condition that c possesses the
same property. This condition is certain satisfied when c undergoes regularization
as outlined in 3.1. Invoking Remark 3.13, we note that

sup
Rd+1

(

|b̂| + |Db̂|
)

≤ λ sup
Rd+1

(|ξλ| + |Dξλ|) ≤ N,

sup
Rd+1

|ĉ| ≤ sup
Rd+1

|c̄| ≤ N,

sup
t∈R

[ĉ(t, ·)]C 1−β(Rd) ≤ [c̄]C (1−β)/2,1−β(Rd+1) ‖Dψ‖
1−β
L∞(Rd+1)

≤ N,

where N depends only on d, δ, ωx

A
, p, q, β, b, c, and ε ∈ (0, 1

2 ).

3.3. Absorbing lower order coefficients into the principal coefficients. Let u be
a solution to

L
∗u − cu = −∂tu +

d
∑

i, j=1

Di j(a
i ju) −

d
∑

i=1

Di(b
iu) − cu = 0 in Q ⊂ Rd+1,

where b = (b1, . . . , bd) and c are bounded functions that are Hölder continuous in
x. More precisely, we assume that there exist constants b̃ and c̃ such that

‖b‖L∞(Rd+1) + sup
t∈R

[b(t, ·)]C 1−β(Rd) ≤ b̃, ‖c‖L∞(Rd+1) + sup
t∈R

[c(t, ·)]C 1−β(Rd) ≤ c̃. (3.38)

It is worth noting that by introducing a new variable y ∈ R, we can express

−
d

∑

i=1

Di(b
iu) − cu = −1

2

d
∑

i=1

∂y∂xi
(ybiu) − 1

2

d
∑

i=1

∂xi
∂y(ybiu) − 1

2
∂y∂y(y2cu).

This leads us to define Ã = (ãi j) as follows. Let ̺ be any positive number and let
ϕ : R→ R be a smooth function such that

ϕ(y) = y for |y| ≤ ̺, ϕ(y) = ̺ + 1 for |y| ≥ ̺ + 2, |ϕ′(y)| ≤ 1.

For (t, x, y) ∈ R ×Rd ×R = Rd+2, we define

ãi j(t, x, y) = ai j(t, x) (i, j = 1, . . .d),

ãi,d+1(t, x, y) = ãd+1,i(t, x, y) = − 1
2ϕ(y)bi(t, x) (i = 1, . . . , d),

ãd+1,d+1(t, x, y) = − 1
2ϕ(y)2c(t, x)+ µ,

(3.39)

where µ is a constant to be fixed shortly. Then, setting xd+1 = y, we deduce that
u(t, x, y) = u(t, x) satisfies

−∂tu +

d+1
∑

i, j=1

Di j(ã
i ju) = 0 in Q̃ := Q × (−̺, ̺) ⊂ Rd+2.
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We will show that Ã satisfies Condition 2.2. Utilizing (3.38), we obtain

d+1
∑

i, j=1

ãi jξiξ j =

d
∑

i, j=1

ai jξiξ j −
d

∑

i=1

ϕ(y)biξiξd+1 −
1

2
ϕ(y)2cξ2

d+1 + µξ
2
d+1

≥ δ
d

∑

i=1

ξ2
i − (̺ + 1)b̃|ξd+1|















d
∑

i=1

ξ2
i















1/2

− 1

2
(̺ + 1)2

c̃ξ2
d+1 + µξ

2
d+1

≥ δ
d+1
∑

i=1

ξ2
i − ǫ

d
∑

i=1

ξ2
i −

1

4ǫ
(̺ + 1)2

b̃
2ξ2

d+1 −
1

2
(̺ + 1)2

c̃
2ξ2

d+1 + µξ
2
d+1,

where we used the Cauchy’s inequality. Therefore, by taking ǫ = 1
2δ, and then

choosing

µ =
1

2
δ +

(̺ + 1)2

2δ

(

b̃
2 + δc̃2

)

,

we see that Ã = (ãi j) satisfies

d+1
∑

i, j=1

ãi j(t, x, y)ξiξ j ≥
δ

2

d+1
∑

i=1

ξ2
i , ∀(t, x, y) ∈ Rd+2, ∀ξ ∈ Rd+1.

Moreover, it is clear that ãi j are bounded on Rd+2. Therefore, there exists δ̃ ∈ (0, 1]
such that the eigenvalues of Ã lie in the interval [δ̃, 1/δ̃], and δ̃ is completely
determined by δ, b̃, c̃, and ̺. Also, it is evident from (3.39) that Ã is of Dini mean
oscillation in (x, y), and ωx

Ã
is controlled by ωx

A
, b̃, c̃, and ̺.

Conclusion 3.40. We have verified that Ã satisfies Condition 2.2 in Rd+2, with δ̃
replacing δ. Moreover, we have observed that δ̃ depends on δ, b̃, c̃, and ̺, and that
ωx

Ã
is controlled by ωx

A
, b̃, c̃, and ̺.

Remark 3.41. If b and c are obtained via the regularization processes described in
Section 3.1 and 3.2, then b̃ and c̃ are both bounded by a constant N depending by

d, δ, ωx

A
, p, q, β, b, c, and ε ∈ (0, 1

2 ). Refer to Remarks 3.13 and 3.37.

3.4. Proof of Harnack inequality. The subsequent proposition is an extension of
Theorem 2.20 to an operator with sufficiently regular lower order coefficients.

Proposition 3.42. Assume A satisfies Condition 2.2, and b and c satisfy (3.38). Let R > 0
be a fixed number, 0 < r < R/2, and (t0, x0) ∈ Rd+1. Suppose u ∈ L1(C2r) is a nonnegative
weak solution of

−∂tu + div2(Au) − div(bu) − cu = 0 in C2r = C2r(t0, x0).

Then, we have

sup
(t0−3r2,t0−2r2)×Br(x0)

u ≤ N inf
(t0−r2,t0)×Br(x0)

u,

where N is a constant depending only on d, δ, ωx

A
, b̃, c̃, and R.

Proof. We can assume that (t0, x0) = (0, 0). Denote Cr = (−r2, 0] × Br, where Br

is the (d + 1)-dimensional Euclidean ball centered at the origin with radius r. By
the process described in Section 3.3, with ̺ = R, we deduce that u(t, x, y) = u(t, x)
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satisfies−∂tu+div2(Ãu) = 0 in C2r. Therefore, by Theorem 2.20 and Conclusion 3.40,
we have

sup
(−3r2,−2r2)×Br

u ≤ N inf
(−r2,0)×Br

u,

where N is a constant depending solely on d, δ, ωx

A
, b̃, c̃, and R. The proposition

follows from the preceding inequality as u is independent of y. �

We are now in the position to prove our main theorem, Theorem 1.1. We can
assume that (t0, x0) = (0, 0) and R = 1. By applying the regularization procedure in
Section 3.1, we deduce that ū = ζu ∈ L1(C2r), and it is a weak solution of

−∂tū + div2(Aū) − div(b̄ū) − c̄ū = 0 in C2r,

where b̄ and c̄ satisfying the condition specified in Remark 3.13.
As 1/2 ≤ ζ ≤ 2 by (3.8), we find that if ū satisfies the Harnack inequality (1.2),

then u satisfies the same inequality, with 4N replacing N. Therefore, it is enough
to consider the case when c is bounded and Lipschitz continuous in x.

Next, recall the mappings φ = φλ and ψ = ψλ from Section 3.2. We choose
sufficiently large value for λ to ensure the satisfaction of (3.26) and (3.27) with
ε = 1/3, along with the fulfillment of (3.28). Then,

û(t, y) = u(t,ψ(t, y)) |det Dψ(t, y)| = u(t, x) |det Dψ(t,φ(t, x))|,

as defined in (3.35), is a weak solution of

−∂tû +Di j(â
i jû) −Di(b̂

iû) − ĉû = 0 inΨ(C4r),

where âi j, b̂i, ĉ are as defined in (3.36), andΨ(t, y) = (t,ψ(t, y)).

By Remarks 3.37 and 3.41, we deduce that the coefficients Â, b̂, and ĉ satisfy the
hypothesis of Proposition 3.42. It follows from (3.31) that

(−16r2, 0] × B2r(y0) ⊂Ψ(C4r), y0 = φλ(0, 0).

In particular, we deduce that C2r(0, y0) ⊂ Ψ(C4r). Therefore, by Proposition 3.42,
we have

sup
(−3r2,−2r2)×Br(y0)

û ≤ N inf
(−r2,0)×Br(y0)

û.

From (3.28) and (3.35), we obtain

sup
Φ((−3r2,−2r2)×Br(y0))

u ≤ 4N inf
Φ((−r2,0)×Br(y0))

u.

It is worth noting that from (3.32), we can infer the inclusion relationship:

(−3r2,−2r2) × Br/3 ⊂ Φ
(

(−3r2,−2r2) × Br(y0)
)

,

(−r2, 0) × Br/3 ⊂ Φ
(

(−r2, 0) × Br(y0)
)

.

Certainly, the theorem is a straightforward consequence of the simple observation
that the inclusion A ⊂ B implies the inequalities

sup
A

u ≤ sup
B

u and inf
B

u ≤ inf
A

u. �
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4. Harnack inequality for elliptic equations in double divergence form

In this section, we discuss the Harnack inequality for elliptic equations in double
divergence form. Let L be an elliptic operator in non-divergence form defined as
follows:

Lv := ai jDi jv + biv.

We are interested in the adjoint operator of L, denoted L∗, which is given by:

L∗u = Di j(a
i ju) −Di(b

iu).

Let c be a real-valued function on Rd. Our objective is to present Harnack’s
inequality for nonnegative solutions u to the elliptic equation in double divergence
form:

L∗u − cu = 0.

Condition 4.1. The principal coefficient matrix A = (ai j) is symmetric and there is
a constant δ ∈ (0, 1] such that the eigenvalues of A(x) are in [δ, 1/δ] uniformly in
x ∈ Rd. Moreover, A is of Dini mean oscillation, that is,

∫ 1

0

ωA(t)

t
dt < ∞,

where the mean oscillation function ωA : R+ → R is defined by

ωA(r) := sup
x∈B

?
B∩Br(x)

|A(y) − Āx,r| dy, where Āx,r :=

?
B∩Br(x)

A.

Condition 4.2. The lower-order coefficients b = (b1, . . . , bd) and c are such that
b ∈ Lp0,loc(R

d) and c ∈ Lp0/2,loc(R
d) for some p0 > d.

The following theorem serves as an elliptic counterpart to our main result,
enhancing Theorem 3.5 in [4] by requiring only c ∈ Lp,loc for p > d/2.

Theorem 4.3. Assume Conditions 4.1 and 4.2 hold. Let R > 0 be a fixed number,
0 < r < R/4, and x0 ∈ Rd. Denote Br = Br(x0). Suppose u ∈ L1(B4r) is a nonnegative
solution of

L∗u − cu = 0 in B4r.

Then, we have

sup
Br/2

u ≤ N inf
Br/2

u, (4.4)

where N is a constant depending only on d, δ, ωA, p0, R, ‖b‖Lp0
(BR), and ‖c‖Lp0/2

(BR).

Proof. We may assume that p0 ≤ 2d. We consider ζ that is of the form ζ = 1 + ζλ,
where ζλ is a solution to the problem

(L − c − λ)ζλ = c in BR, ζλ = 0 on ∂BR. (4.5)

Note that the assumptions for [14, Theorem 2.5] are satisfied withΩ = BR, p = p0/2,
qb = d, and qc = p0/2. Therefore, by [14, Theorem 2.5], there exist constant λ0 ≥ 1
and N0, depending only on d, δ, ωA, p0, R, ‖b‖Lp0

(BR), and ‖c‖Lp0/2
(BR), such that for

λ ≥ λ0, there exists a unique solution ζλ ∈ W̊2
p0/2

(BR) to the problem (4.5), satisfying

the estimates

‖D2ζλ‖Lp0/2
(BR) +

√
λ‖Dζλ‖Lp0/2

(BR) + λ‖ζλ‖Lp0/2
(BR) ≤ N0‖c‖Lp0/2

(BR).
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In particular, utiilizging λ ≥ λ0 ≥ 1, we obtain

‖ζλ‖W2
p0/2

(BR) ≤ N0‖c‖Lp0/2
(BR), ‖ζλ‖Lp0/2

(BR) ≤ N0λ
−1‖c‖Lp0/2

(BR). (4.6)

Since 2p0 > d, a well-known interpolation inequality yields (see [1, Theorem 5.8])

‖ζλ‖L∞(BR) ≤ N1‖ζλ‖d/2p0

W2
p0/2

(BR)
‖ζλ‖1−d/2p0

Lp0/2
(BR)
,

where N1 depends only on d, p0, and R. Therefore, we deduce from (4.6) that

‖ζλ‖L∞(BR) ≤ Nλ−1+d/2p0‖c‖Lp0/2
(BR).

Taking λ sufficiently large in the previous inequality, and utilizing the Sobolev
embedding, we find that ζ = 1 + ζλ satisfies

1/2 ≤ ζ ≤ 2 in BR, ‖Dζ‖Lp0
(BR) ≤ N‖c‖Lp0/2

(BR). (4.7)

We note that λ is determined by d, δ, ωA, p0, R, ‖b‖Lp0
(BR), and ‖c‖Lp0/2

(BR).
Then, similar to (3.12), the function ũ := ζu satisfies

∫

Rd

ũ

(

L + 2ai j
D jζ

ζ
Di + λ

ζ − 1

ζ

)

η = 0, ∀η ∈ C∞c (B4r).

Therefore, if we define

b̃i := bi + 2ai j
D jζ

ζ
and c̃ := −λζ − 1

ζ
,

then ũ = ζu is a solution of

Di j(a
i ju) −Di(b̃

iu) − cu = 0 in B4r.

Note that c̃ ∈ L∞(BR) and b̃ ∈ Lp0
(BR). Moreover, the following estimates hold:

‖b̃‖Lp0
(BR) ≤ ‖b‖Lp0

(BR) + 2δ−1γ−1‖Dζ‖Lp0
(BR), ‖c̃‖L∞(BR) ≤ λ. (4.8)

According to [4, Theorem 3.5], ũ = ζu satisfies the Harnack inequality

sup
Br/2

ũ ≤ N inf
Br/2

ũ,

where N depends only on d, δ, ωA, p0, R, ‖b̃‖Lp0
(BR), and ‖c̃‖Lp0

(BR). Therefore, we
derive (4.4) from the previous inequality, along with (4.7) and (4.8). �
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