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Abstract

In this study, we propose a novel surrogate modelling approach to efficiently and accurately
approximate the response of complex dynamical systems driven by time-varying Recently,
there has been increased interest in assessing the seismic fragility of industrial plants and
process equipment. This is reflected in the growing number of studies, community-funded
research projects and experimental campaigns on the matter. Nonetheless, the complexity of
the problem and its inherent modelling, coupled with a general scarcity of available data on
process equipment, has limited the development of risk assessment methods. In fact, these
limitations have led to the creation of simplified and quick-to-run models. In this context,
we propose an innovative framework for developing state-dependent fragility functions. This
new methodology combines limited data with the power of metamodelling and statistical
techniques, namely polynomial chaos expansions (PCE) and bootstrapping. Therefore, we
validated the framework on a simplified and inexpensive-to-run MDoF system endowed with
Bouc-Wen hysteresis. Then, we tested it on a real nonstructural industrial process component.
Specifically, we applied the state-dependent fragility framework to a critical vertical tank of a
multicomponent full-scale 3D steel braced frame (BF). The seismic performance of the BF
endowed with process components was captured by means of shake table campaign within
the European SPIF project. Finally, we derived state-dependent fragility functions based on
the combination of PCE and bootstrap at a greatly reduced computational cost.
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1 Introduction

1.1 Background and motivation

Assessing structural and non-structural component vulnerability to earthquakes is a key step in
modern probabilistic seismic risk assessment Du et al. (2021). The PEER Performance-based
earthquake engineering (PBEE) framework has gained significant momentum in this field, thanks
to its inherently versatile formulation. Its strength lies in a simple yet effective implementation
of the total probability theorem, which allows one to decouple and then combine the output
of probabilistic seismic hazard analysis (PSHA) with fragility, damage, and loss analysis. To
this end, the fragility analysis step offers the critical link between seismic hazard and structural
modelling, since it estimates conditional probability of attaining or exceeding a specified damage
state (DS), given an intensity measure (IM) of earthquake motion. Initially introduced for
nuclear safety evaluation Richardson et al. (1980), fragility curves are nowadays widely used,
ranging from assessment of collapse risk Eads et al. (2013) to loss estimation Rossi et al. (2020),
from resilience quantification at individual scale Cimellaro et al. (2010) to community scale
Burton et al. (2016), etc. In recent years, several novel methodological contributions to fragility
analysis have been made. They include the development of multivariate fragility functions Du
and Padgett (2020), the introduction of seismic fragility analysis based on a combination of
real Gentile and Galasso (2020) and artificial ground motions and surrogate modelling Abbiati
et al. (2021), and the consideration of both state Iervolino et al. (2015) and time-dependent
fragility Di Maio et al. (2020), Ghosh and Padgett (2010). Nonetheless, the majority of the past
research focus was committed to characterise the damage transition from a pristine state, i.e., no
seismic damage, to a more severe damage state for structures subjected to a single ground motion
Du and Padgett (2020), Gentile and Galasso (2020), Ghosh and Padgett (2010). Conversely,
significantly less research has been devoted to state-dependent fragility modelling, which (i) can
capture the damage accumulation due to sequential seismic events, and (ii) enables fragility
estimations of structures with different initial damage states. To the best of our knowledge, only
the first attempt has been made by Iervolino et al. (2015), Iervolino (2017), and Jia and Gardoni
(2018). As a matter of fact, the compounding effect of damage accumulation and disruption
caused by sequences of earthquakes (such as in Wenchuan (2008), Tohoku (2011) and central
Italy (2016)), has highlighted the importance of accurately capturing the effect of irreversible
damage accumulation for a reliable risk assessment. In this respect recent research, see, among
others, Abdelnaby (2018) and Kassem et al. (2019), deeply investigated the effects of sequential
seismic events and damage accumulation on the performance of RC frames, and computed the
corresponding fragility curves. The results clearly demonstrated a substantial difference in seismic
loss assessment. Similar conclusions are reached in Zhang et al. (2018) for fixed and base-isolated
steel frame structures. In parallel, consistent procedures for selecting ground motions for event
sequences have been the subject of thorough studies. Utilizing knowledge from prior work and
literature, the authors in Zhang et al. (2018) provided recommendations for selecting record pairs
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for sequential response history analysis and seismic performance assessment. In particular, the
authors recommended the use of a seismic sequence (SS) of main-shock (MS) and after-shock (AS)
record pairs, because they naturally capture and preserve within-sequence correlations. Besides,
the use of SS-MS-AS record sets is preferred since databases with MS-AS records continue to
expand and develop. However, to adequately populate the event sequences, ground motion
models may serve the purpose. Advances in non-linear structural response simulations have
yielded more accurate modelling of complex and multi-mode systems, allowing for gaining better
insights into critical issues and performance behaviour of structures and installed non-structural
components (NSCs). A more thorough discussion of these issues is reported in Quinci et al.
(2023). Recently, significant efforts have been made to further investigate the coupling effects
between the main structure and NSCs, both numerically Filiatrault et al. (2001) and De Biasio
et al. (2015b), and experimentally Nardin et al. (2022), Mosqueda et al. (2009). An important
milestone can be found in NIST GCR 17-917-44 (2017) that summarizes a year-long study, which
collected and documented the body of available knowledge related to the seismic performance of
NSCs for civil and industrial structures. Once again, since NSCs for industrial plants account for
the majority of direct property losses due to earthquake damage Filiatrault et al. (2001), FEMA
(2015), they were identified as a top priority in seismic risk assessment. However, to limit costly
and disruptive non-structural damage is challenging, due to the need of predictive non-linear
dynamic analysis for complex systems with strong coupling interactions with NSCs. They are
mostly limited by available computational resources. In addition, the computation of fragility
analysis requires a large number of non-linear time history analyses (NLTHA), limiting de facto
the total number of possible simulations. This issue is central in simulation-based uncertainty
quantification (UQ), which is tackled by replacing the computationally expensive NLTHA of
FE models with an equivalent surrogate model, as in De Rocquigny et al. (2008), Sudret (2007),
Sudret et al. (2017). In the context of fragility assessment, researchers have adopted different
metamodelling techniques to offset the computational burden related to the large number of
simulations needed. For example, the authors in Du et al. (2021) proposed a fragility modelling
approach based on artificial neural networks for the initial and final damage classification.
Moreover, Abbiati et al. (2021) adopted hierarchical Kriging to compute a multi-fidelity surrogate
that fuses the predictions of multiple models for fragility assessment. Among the catalogue of
families of surrogate models, polynomial chaos expansions (PCE) Blatman and Sudret (2008),
Bayesian networks Lu and Zhang (2021), support vector machines Hurtado (2007), and artificial
neural networks Roy and Chakraborty (2023) have arguably become the most popular in civil
engineering, since they provide more than just an approximation to the underlying computational
model. In particular, they additionally yield analytical estimates of the response moments of
the model, sensitivity indices or confidence levels for their own predictions. For example, Zhu
et al. (2023) estimated the full conditional probability distribution of EDP conditioned on IMs
by means of stochastic PCE. An in-depth literature review of the current state-of-the-art in
surrogate modelling for reliability assessment is presented in Teixeira et al. (2021) and Moustapha
et al. (2022). Undoubtedly, one of the most significant benefits of surrogate models is their
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computational efficiency after training, allowing for millions of model evaluations per second,
even on common end-user hardware. This enables the estimation of empirical fragility functions,
as addressed in the literature by the global earthquake model (GEM) Rossetto et al. (2015) and
Ioannou et al. (2012).

1.2 Scope and core contribution

On these premises, this paper presents a novel UQ-based framework for efficiently deriving state-
dependent fragility curves of industrial system components. This approach blends data from a
reduced number of complex and expensive sequential NLTHAs with cutting-edge metamodelling
techniques. In detail, the paper is organised as follows. In Section 2, we present the heuristics
and the novel framework for state-dependent fragility assessment. In Section 3, we validate the
methodology on an inexpensive-to-evaluate benchmark case study. Specifically, state-dependent
fragility functions derived from brute-force Monte Carlo Simulation (MCS) are compared with
surrogate-based MCS. In Section 4, we applied the framework to a real industrial case study.
Precisely, the case study deals with a critical non-structural component (NSC) installed on the
steel braced frame (BF) substructure, i.e. a vertical tank, as part of the project SPIF (Nardin
et al. (2022)). Finally, we provide in Section 5 a summary of the main findings as well as future
development perspectives.

2 A state-dependent fragility analysis framework

Limited by the availability of time and information, risk-informed assessments are commonly
carried out on the basis of simplified and quick-to-evaluate models. However, as highlighted in the
recent NIST GCR 17-917-44 (2017) report devoted to industrial facilities, these proven strategies
lead to neither economically viable nor rational designs. On these premises, this Section presents
the heuristic of a novel framework for system vulnerability assessment. Specifically, based on a
combination of experimental data and surrogate models, the proposed methodology enables the
computation of state-dependent fragility curves that consider several aspects of the problem.

State-dependent fragility curves are defined as a class of fragility curves conditioned not only
by a measure of seismic intensity IM (which in generalised form is a vector), but also by the
initial state of (discrete) damage DSi of the structure (see, Iervolino et al. (2015)). Hence,
state-dependent fragilities enable the assessment of the vulnerability of a system that has already
experienced damage, as defined by the generalised equation:

P
[
DSj|DSi, IM = im

]
= P

[
DS ≥ DSj|DSi, IM = im

]
− P

[
DS ≥ DSj+1|DSi, IM = im

]
,

(1)

for j > i, and i indices ranging among the identified and most severe damage limit states.
Figure 1(a) shows the generalised transition probability state matrix for a system with three
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possible levels of damage, i.e., DS0 to DS2. Each row of the matrix represents the initial damage
state or level; whilst each column indicates the final damage state. Each bin represents the
transition probability between the initial (row) and final (column) state, including the permanence
within the same level. The lower triangular part of the matrix represents the recovery processes
of the investigated system, which, for brevity, we do not consider in this paper. Moreover, the
ultimate damage limit state DS2 is considered an absorption state, i.e., a condition that, cannot
be exited or recovered once reached. A typical example would be the collapse of the structural
system. Similarly, Figure 1(b) shows the Markovian diagram underlying the transition state
matrix, e.g., the allowable jumps between the three-level damage states.
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Figure 1: Transition state (a) matrix and (b) diagram, respectively.

State-dependent fragility analysis requires a vast number of NLTHAs because each position of the
transition matrix needs to be sufficiently populated. As a consequence, time histories of multiple
seismic events, e.g., seismic sequences, are cast and applied as input for the NLTHAs. This
enables us to cover each transition state and different damage initial configurations effectively.
Then, the structural and non-structural system performances are clustered according to the
damage reference metric. Hence, either empirical or parametric fragility functions are derived,
conditioned on the initial damage state condition and the IM of the seismic input. Figure 2
describes the fundamental steps of the workflow, i.e., from the FE and seismic input models
definition (steps A − B) to the complete NLTHAs and fragility computations (step C). However,
when considering realistic computational models, the significant computing demands of an
extensive set of sequential NLTHAs generally hinder this direct derivation of state-dependent
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fragilities, as in step C upper-right corner of Figure 2. To tackle this limit, the global UQ
framework developed in Sudret (2007) and Sudret (2008) is adapted in the proposed methodology.
The following three steps are used to define the UQ problem: (i) step A, i.e., the definition of
the computational model M(·); (ii) step B, description of the input parameters; (iii) step C,
propagation of the uncertainties and processing of the quantities of interests (QoIs). Specifically,
in the proposed framework, for the steps A − B, we first perform a given number of sequential
NLTHAs:

Y = M (X ) = MF E ◦A(t,X ) = MF E (A(t,X )) , (2)

where A(t,X ) is a given seismic sequence generated by a stochastic site-based ground motion
model (GMM), and ◦ represents the function composition. X is a high-dimension random
vector which represents both the epistemic (i.e., the stochastic nature of the model parameters),
and the aleatory uncertainties (i.e., the Gaussian random variables representing the Gaussian
noise). Specifically, X = [X1, . . . ,Xj , . . .XM ]T , where Xj is a random vector which represents the
stochastic nature of a given ground motions (gms) and M the total number of seismic events that
constitute the seismic sequence. Moreover, MF E(·) represents the expensive-to-run FE model; Y
a random vector that collects the QoIs of the case study. In particular, Y = [Y1, . . . ,Yj , . . .YM ]T ,
where Yj is the time series response of the associated Xj random seismic event.
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Figure 2: UQ-based framework and key steps for performing state-dependent fragility analysis.
The top red-contoured row displays the brute-force MCS path on expensive-to-run NLTHAs
(step A to C), while the green one embeds the surrogate-based MCS method. Specifically, for the
top row, complex and computationally demanding FE models are developed in step A; whilst, in
step B, a GMM is deployed to compose stochastic seismic sequences to assign as input. However,
the computational burden hinders the allowable number of MCS. This results in a constraint to
the derivation of state-dependent fragility functions, as highlighted by the interrupted red-crossed
arrow. Nevertheless, the obtained limited NLTHAs QoIs are clustered according to the damage
initial state metric DS0,1,2. Those clustered data, coupled with the corresponding seismic event of
the sequence, constitute the DoE Ds for the surrogate models (step A−B). First, a comprehensive
vector of IMs is extracted. Then, PCA is applied to limit the dimensionality of the input.
This allows us to set PCE metamodels for each Ds, s ∈ [DS0,DS1]. Finally, a vast number of
surrogate-based MCS enables the derivation of state-dependent fragilities, (step C).

Next, instead of expensive-to-run FE models, cost-effective metamodels for each initial damage
level—i.e., rows of the transition matrix of Figure 1(a)—are tailored on the physics-informed
problem and trained on a much smaller dataset. In particular, the QoIs resulting from the
NLTHAs are clustered according to the predefined damage initial states, i.e., the number of
rows of the transition state matrix of Figure 1(a). For clarity, only the allowable transition
state jumps are sketched. The clustering determines the pairs of (xj , yj), where j identifies
each gm of the seismic sequences. This step serves to define different designs of experiment
(DoE) depending on the initial state of the structure. Specifically, we identify the different
DoEs with Ds, where s identifies the initial state of the structure, i.e., s ∈ {DS0,DS1}. In
the following step, a low-dimensional input representation is used instead of the time series
sequences to build a time-invariant surrogate model. Specifically, we used a vector of IMj ,
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following the classical approach of vector-PSHA analysis. Besides the most popular IMs such as
PGA and PGV, novel and less widespread IMs have also been introduced. Among them: the
IRG,a Riddell–Garcia Intensity acceleration and velocity measures, which minimise dispersion of
hysteretic energy-dissipation spectra of inelastic systems; the IF Fajfar Intensity, a compound IM
that takes into account the damage capacity of medium-period structures; and the E-ASAR,x

equipment relative average spectral acceleration, introduced in De Biasio et al. (2015b). The
last one is of particular interest since it allows us to consider shifts in the frequency range of
the structure due to damage experienced by the installed equipment. The Table 1 enlists the
considered 41 IMs. Since among the list of IM several of them are strongly correlated, we seek
specific patterns that allow dimensionality reduction. Therefore, we perform principal component
analysis (PCA), to obtain a low dimension vector ÎMj , which can be interpreted as a vector of
uncorrelated pseudo-IMs.

Particularly, PCA was used to select the least number of principal components (PCs) to satisfac-
torily characterise ÎM. Finally, we build PCE surrogate models based on the pairs (îmj ; yj):

Ŷ = MP CE
s

(
ÎM

)
, (3)

where MP CE
s (·) is the PCE surrogate model; Ŷ is the vector collecting the surrogated QoIs;

s ∈ [DS0; DS1] identifies the initial state of the structure. The vast number of MCS surrogate-
based analyses enables us to derive non-parametric state-dependent fragilities functions, as
defined in Eq. 1. Moreover, notice that the framework is not intrusive, meaning that the complex
FE model is completely decoupled from the UQ analysis. This allows FE experts to work
independently from UQ experts. In the following Sections, the proposed UQ-based framework
is applied twice. Specifically, in Section 3 on an inexpensive-to-run benchmark case study, to
validate the methodology and to illustrate its key steps and tools. Then, in Section 4, we derive
state-dependent fragility functions for a vertical tank installed on the industrial mock-up of the
SPIF project.

3 Benchmark case: Hysteretic MDoF system

To test the validity of the proposed framework, we examine the case of an equivalent mechanical
cheap-to-evaluate multiple-degree-of-freedom (MDoF) shear-type system with Bouc-Wen hystere-
sis. This allows us: (i) to perform a vast number of sequential NLTHAs, and (ii) to evaluate
state-dependent fragilities in terms of the inter-storey drift ratio (ID-ratio). Then, the MCS
brute-force fragilities are quantitatively and qualitatively compared with the surrogate-based
MCS fragilities, derived by applying the UQ-based framework of Section 2.

3.1 Step A - Computational model description

According to the scheme depicted in Figure 2, the MDoF system belongs to step A of the
framework, i.e., the definition of the numerical model. The benchmark case study is a 2D
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Table 1: A comprehensive list of ground motion IM parameters De Biasio et al. (2015b) -
Hariri-Ardebili and Saouma (2016).

No. Description of IM Symbol Units Mathematical model

1 Peak ground acceleration PGA [m/s2] max(|ü(t)|)

2 Peak ground velocity PGV [m/s] max(|u̇(t)|)

3 Peak ground displacement PGD [m] max(|u(t)|)

4,..,8 Spectral displacement Sd [m] Sd(Tx)

9,..,13 Spectral velocity Sv [m/s] Sv(Tx)

14,..,18 Spectral acceleration Sa [m/s2] Sa(Tx)

∗ where T ∗ ∈ [0.50; 0.35; 0.25; 0.15; 0.10]

19 Arias intesity IA [m/s] π/2g ·
∫ tf

0 a2(t)dT

20 Total cumulative energy Ecum [m2/s3]
∫
ü2(t)dt

21 Riddell–Garcia Intensity Acceleration IRG,a [m/s5/3] (PGA)+1 · (Td)+1/3

22 Riddell–Garcia Intensity Velocity IRG,v [m2/3/s1/3] (PGV )+2/3 · (Td)+1/3

23 Significant time duration Td [s] t95 − t05

24 Root mean square of acceleration RMS(ü (t)) [m/s2]
√

( 1
N

∑N
n=1 |x2

N |)

25 Characteristic intensity IC [m3/2/s3/2] RMS(ü(t))1.5 · T 0.5
d

26 Cumulative absolute velocity CAV [m/s]
∫ tf

0 |a(t)|dT

27 Cosenza–Manfredi Intensity ICM [− 2g/π · (PGA)−1(PGV )−1(AI)+1

28 Average spectral acceleration ASA40 [m/s] 2.5/f1
∫ f1

0.6·f1
Sa(f, ε)df

29 Acceleration spectral intensity ASI [m/s2]
∫ 0.5

0.1 Sa(T, ε)dT

30 Effective peak acceleration EPA [m/s2] 1/2.5
∫ 2.5

0.1 Sa(T, ε)dT

31 Velocity to acceleration ratio Iv/a [s] PGV/PGA

32 Fajfar Intensity IF [m/s3/4] (PGV )+1 · (Td)+1/4

33 Mean frequency Fm [1/s] ∑
i U

2
i (fi)/

∑
i U

2
i

34 Rate of change mean frequency Ḟm [−] dFm(T )/dt

35 Fourier amplitude spectrum area FASarea [m/s2] 1
4df

∫ f1+2df
f1−2df U(f)df

36,..,41 Equipment relative average spectral acceleration E-ASA**
Rxx [m/s2] 1

f1·(Xf −1) ·
∫ Xf ·f1

f1
Sa(f, ε)df

∗∗ R indicates the chosen percentage of drop of the fundamental frequency (Xf = 1 − (R/100));

R ∈ [40; 67; 80; 100; 150; 200]

condensation of the complex 3D industrial frame, namely SPIF #2 system. Conversely, the full
3D system is studied in Section 4.1. The SPIF #2 project focused on investigating the seismic
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behaviour of a prototype multi-storey BF structure equipped with complex secondary industrial
components by means of shaking table tests. More details on the project can be found in Quinci
et al. (2023), whilst the shake table test campaign and system performance are described in
Nardin et al. (2022). The primary objective of the MDoF model is to efficiently capture the
displacement and shear response time histories at each floor level of the complex BF system. To
allow the execution of a significant number of NLTHAs, a strong emphasis on minimizing the
computational resources and time is devoted. In this context, the engineering demand parameter
(EDP) is represented by the maximum ID-ratio. Thus, according to Table C1-3 Structural
Performance Levels and Damage of FEMA 356 Agency (2000), the identified damage metrics
DSi are 0.5% and 2.0% of the ID-ratio, for Immediate Occupancy (IO) and Collapse Prevention
(CP) limit states, respectively. The numerical model implemented in-house with MATLAB© is
defined by the semi-discretised system of equations of motion,

M ü + C u̇ + K [αu + (1 − α) z] = −M üg, (4)

where the stochastic base input üg is a realization of the process A (t,X ), later on presented in
Eq. 6 of Section 3.2. Both the mass M and the stiffness K matrices are calculated from the
experimental data collected during the SPIF #2 test campaign Nardin et al. (2022); while, the
damping C is set to match a viscous damping ratio of 4.5%, as detailed in Quinci et al. (2023).
The {α, βN , γN , δD, δν, δη, z} terms related to the Bouc-Wen hysteresis follow the formulation
presented in Haukaas and Der Kiureghian (2003), summarized as:

ż = D u̇ − {β|u̇|z|z|n−1 + γ|z|nu̇} · ν
η

. (5)

All system parameters are reported in Table 2, whilst Figure 3 depicts the comparison of the
hysteresis at the top level for the reduced MDoF Bouc-Wen-based model versus the full FE BF
model under seismic excitation.

Table 2: Bouc-Wen parameters for the MDoF system.

Parameter Value

α, n, βN ,γN [-] [0.01; 1.5;0.167; 0.50]
δD,δν,δη [-] [0.002; 1.00; 1.00]E-08

K0 [N/m] [1.72;1.77;0.96]E+07
M [kg] [9.5;14.5;12.4]E+03
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,

(a)

(b)
Figure 3: (a) Schematics of the 2D MDoF system; (b) comparison of the hysteretic cycles at the
top level of the 2D MDoF and the 3D BF model.

3.2 Step B - Input definition

Sequential chains of seismic events derived from the site-based GMM of Rezaeian and Der Ki-
ureghian (2010) are used as the excitation. We consider the far-field GMM scenario described in
Nardin et al. (2022) for the experimental test campaign of SPIF #2. Briefly, the GMM is based
on a modulated and filtered discretized white-noise process described by the following equation:

A (t,X ) = q (t,Θq)
[√

2πS∆t
σh(t)

k∑
l=1

h [t− tl,Θh(tl)] · Zl

]
with tk ≤ t < tk+1, (6)

where q(t,Θq) is the modulating function, Zl denote the standard normal Gaussian Random
Variables, and σ2

h = 2πS∆t∑k
l=1 h

2[t− tl, θ(tl)] the standard deviation of the discrete filtered
white-noise process. Moreover, tl is a set of equally spaced time points (with l = 0, 1, ..., L, t0 = 0,
and tL representing the total duration of the motion) and k = int(tL/∆t) = 0, 1, . . . , L. As shown
in Rezaeian and Der Kiureghian (2010), Θq = [Ia, tmid, D5−95] are the parameters of the modulat-
ing function, while Θh = [ωmid, ω̇, ζ] are the filter parameters. Provided with this representation,
X (in Eq. (2)) is written as follows X = [Ia, D5−95, tmid, ωmid, ω̇mid, ζf , Z1, . . . , ZL]. Observe
that X includes both an aleatory component represented by the Gaussian random variables
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and an epistemic component represented by the randomized GMM parameters. The marginal
distributions of the GMM parameters are summarized in Table 3. In Nardin et al. (2022), these
distributions were inferred from selected INGV and ITACA datasets based on the following
assumptions: (i) distance fault-site R > 10[km]; (ii) moment magnitude Mw > 5.5; (iii) main
shock seismic events only; (iv) strong motion intensities expressed in terms of PGA > 0.075[g].
The complete list of the selected natural records and their characteristics is provided in Nardin
et al. (2022). Then, the calibrated GMM is used to generate an ensemble of 104 simulated ground
motions (gms). Based on the following assumptions: (i) mainshock events characterized by
long return periods, (ii) no recovery/restoring processes, and (iii) negligible degradation effects
with respect to seismic damage, gms are randomly extracted from the generated synthetic gms
ensemble to compose sequences of seismic time histories, as sketched in Figure 2-Step B. Observe
that we do not consider after-shock sequences, but only sequences of main shock events. Next,
we construct the dataset in the following way. We simulate 104 gms and then we randomly
generate a sequence of 10 seismic events by randomly permuting the 104 gms. Thus, the resulting
artificial dataset comprises 103 sequences of 10 gms. Finally, we reproduce 100 of such datasets.
In particular, the generation of the GMM parameters is sampled using the 100 predefined seeds
(for reproducibility). Notice that the white noise is not reproducible. The adoption of earthquake
sequences allows for considering seismic damage accumulation through time, thus mimicking the
effect of non-pristine initial conditions on the structure.

Table 3: Probabilities density distributions of the parameters of the site-based GMM.

Model Units Distribution µ σ Distribution
Parameters Bounds

Ia Arias Intensity [m/s] Log-normal -0.46 0.51 (0; +∞)
D5−95 Time interval of 95% of the Ia [s] Log-normal 2.21 0.23 (0; +∞)
tmid Time interval of 45% of the Ia [s] Log-normal 1.698 0.21 (0; +∞)
ωmid/2π Filter frequency at tmid [Hz] Uniform 4.8 1 [3.8; 5.8]
ζf Filter damping ratio [-] Uniform 0.35 0.1 [0.25; 0.45]

*ω̇mid, rate of change of frequency with t, is assumed constant and equal to -0.5

3.3 Step C - QoI response

3.3.1 Brute-force MCS for state-dependent fragility functions

A total amount of 106 sequential NLTHAs were performed, thanks to the minimal computational
effort required by a single sequential NLTHA1. For each simulation, the initial and final damage
configurations were identified based on the EDP. Next, simulations were clustered according to
the initial and the final damage state level associated with each ground motion of the seismic

1≈3s on an Intel(R) Core(TM) i9-10900K CPU @3.70GHz, 10 Core(s) - 128 GB RAM
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sequence, as in Figure 4. Thus, six combinations among initial-final damage configurations are
possible: '0-0' , '0-1' , '0-2' , '1-1' , '1-2' , '2-2'. Those represent the transition states of the
system, as sketched in Figure 1(a). Specifically, the '0-0' , '0-1' , '0-2' identify, given a pristine
DS0 initial state condition, the permanence in the DS0 and transition to damage state level DS1

and DS2, respectively. Similarly, '1-1' ,'1-2' identify the permanence in DS1 and transition to
damage state level DS2, given an initial damage state level DS1. Finally, the '2-2' refers to the
absorption state of collapse.
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Figure 4: Example of seismic sequence time history response clustered according to the initial
and final damage state level, e.g., ranging from DS0 (pristine) to DS2 (collapse).

Table 5(a) collects the numbers of clustered results of the MCS, while Table 5(b) the percentages.
Nearly 74% of the total simulations exhibited an initial damage level of DS1, with approximately
70% concentrated within the '1-2' cluster. Conversely, around 20% of simulations were performed
with no initial damage, e.g., DS0. The remaining 6% of simulations resulted in an absorption
collapse state. According to Eq. 1, to evaluate state-dependent fragilities, an optimal IM, or a
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Figure 5: Transition state matrices: (a) counters and (b) percentages of simulation for each
initial-final damage state level cluster, respectively.

vector of optimal IMs, needs to be defined. To do so, we implemented an efficiency criterion βeff

based on Hariri-Ardebili and Saouma (2016) and Zentner et al. (2017). Based on Figure 6, first,
we determine the xq = 25th − 50th − 75th quantiles of each marginal IM distribution of Table 1.
Second, we evaluate the 90th inter-quantile range IQR in correspondence with the previous
quantiles of the marginal IM distributions. Third, we sum these 90th IQR ranges. Finally, the
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optimal βeff is the minimum among the IMi. Eq. 7 describes the criterion:

βeff(IMi) = min

∑
xq

IQRxq
(IMi)|0.90

0.10

 , (7)

with IMi ranging across the 41 elements of the vector IM defined in Table 1. Next the optimal
IM is selected as follow IM∗ = argminIMi

βeff(IMi). This procedure is applied for each transition
state. It follows that transitions can have different optimal IM∗s. The collection of the optimal
transition IM∗s defines the optimal vector IM∗, which is used to construct state-dependent
fragility functions. At this stage, brute-force MCS on cheap-to-evaluate systems allows us to
reach a full probabilistic description of fragilities. Given the vast number of simulations, empirical
fragilities were evaluated for each transition state. Specifically, non-parametric curve-fitting on
the cumulative distributions of data against the optimal IM was implemented, as in Rossetto
et al. (2015).

Figure 6: βeff criterion explained: step (i), determine the xq = 25th − 50th − 75th quantiles
on the marginal IM; step (ii), evaluate the IQR|0.90

0.10 on xq; step (iii), repeat ∀IMi and find the
minimum.

Figure 7 represents the collection of state-dependent fragility functions based on IM∗. Notice
that this Figure does not represent the transition matrix defined in Eq. 1. In fact, this is used
to highlight the components of IM∗ = [PGA, IRG,a, ASI, E −ASAR80]. Each one of the 100
MCS seeds is associated with a grey line. The curves representing the 90% confidence bounds
are displayed in a dashed-dotted dark red style, while those for the 50% confidence bounds are
represented with dashed lines. The first row, corresponding to a pristine initial damage state
condition, is characterized mainly by PGA-derived IMs, while the second row is characterized
by Sa-related features. Furthermore, it becomes evident that the optimal IM changes as moving
toward more severe damage states or starting from a non-pristine initial condition. Particularly,
the evolving IM is characterized by features capable of capturing reductions in stiffness due
to the accumulation of damage, and shifts in the frequency range of the structure, such as
E-ASAR*. The βeff values are collected in Table 4. A limitation of this approach is that one
needs to develop a fragility model based on IM∗, which can become computationally demanding
(in terms of memory allocation). In this specific example, the state-dependent fragility models,
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Figure 7: Brute-force MCS state-dependent fragility functions: grey lines represent single seed
simulations; dashed-dot dark-red lines depict the 90% confidence bounds, whilst dashed-dark
red ones the 50%. Different IMs are adopted in x-axes, according to the optimal βeff for each
transition state.

Table 4: Brute-force MCS state-dependent fragility functions: top five βeff efficiency indices for
each transition state.

Frag. '0-0' βeff Frag. '0-1' βeff Frag. '0-2' βeff Frag. '1-1' βeff Frag. '1-2' βeff

Optimal IM index Optimal IM index Optimal IM index Optimal IM index Optimal IM index

PGA 9.60E-02 IRG,a 1.83E-02 ASI 8.59E-02 ASI 7.00E-03 E-ASAR80 1.96E-02
IC 1.01E-01 PGA 2.10E-02 EPA 9.55E-02 EPA 7.70E-03 E-ASAR200 2.24E-02
IRG,a 1.03E-01 IRG,v 2.50E-02 RMS(ü) 9.82E-02 PGA 7.70E-03 E − ASAR100 2.31E-02
E-ASAR80 1.07E-01 E-ASAR80 2.62E-02 PGA 9.83E-02 IRG,v 7.90E-03 E-ASAR150 2.63E-02
RMS(ü) 1.10E-01 PGD 2.63E-02 E-ASAR80 1.17E-01 IRG,a 8.10E-03 IRG,a 4.10E-02

P(DSj |DSi, IM∗) are four-dimensional functions. Moreover, a vector-based seismic risk analysis
needs to be developed to use this model directly. While this is not a limit in a Monte-Carlo-based
seismic risk analysis, it becomes prohibitive for direct integration. A more straightforward
approach is to use state-dependent fragilities as functions of one optimal IM for the entire
transition states. This is especially convenient when performing risk assessment since it allows
the use of directly available GMPEs. Therefore, we proposed a global efficiency metric defined as

βeff,glob(IMi) = min

 S∑
s=0

βeff(IMi)|s(∑41
j βeff(IMj)

)
|s

 , ∀IMi ∈ IM and s = {0, . . . , S} (8)

where s represents the allowable transition states, e.g., '0-0','0-1','0-2','1-1','1-2'. Specifically, we
first normalize the βeff index for each transition state over the i to 41 IMs. Then, we sum the
same IMi across the transition states, and, finally, we select the minimum. Table 5 gathers the
global ranking for optimal IMs.
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Global βeff ,glob

Optimal IM index[%]

1. PGA 9.12
2. PGD 9.20
3. E-ASAR800 9.21
4. IRG,a 9.39
5. Sa(T1) 9.49

Table 5: Ranking of the optimal IMs according to the global βeff,glob, defined in Eqn. 8.

Figure 8 shows the probabilistic description of state-dependent fragilities as functions of the
global optimal IM, i.e., the PGA. According to the definition of Eq. 1, Figure 8 reproduces
the transition matrix of Figure 1(a), i.e., the probabilities of transition to a specific DSi state.
Specifically, in the first row, the probabilities of permanence in DS0 given DS0, i.e., P00, is
defined as P (DS = DS0|DS0, IM) = 1 − P01 − P02. Here, particular attention is paid to the
definition of P01, as also highlighted in the Figure by the ∗ character. Indeed, the P01 is defined
as the transition probabilities to attain DS1 only. This is different than the probabilities of
exceedance DS1, which implies the probabilities of attaining DS1 or worse, e.g., DS2, as reported
for completeness and clarity in Figure B.1 of the B. The transition diagrams below each fragility
clarify this by remarking only the allowable transitions. Similarly, P02 is defined as the probability
of reaching DS2. There are no other worse conditions, since DS2 stands for the collapse case. Note
a straightforward definition for the second row, since only two states are allowed. Particularly, in
this row, an x marks the transition state associated with recovery processes, not addressed in
this paper. Finally, the last row of Figure 1(a) is not included because represents the absorption
case, i.e., the unit probability of collapse given collapse as initial conditions. Moreover, Figure 8
reveals a greater dispersion in the '0-2' curves with respect to the others. This is strictly related
to the lower number of clustered data in this transition state. Indeed, the dispersion of fragilities
is positively related to the number of clustered data that describes the fragilities functions.

3.3.2 Surrogate-based MCS for state-dependent fragility functions

To test the methodology of Section 2, surrogate models are developed for the MDoF model, using
as input the low dimensional representation of the seismic input, that is ÎM. Specifically, PCE
is adopted, since it provides a functional approximation of the computational model M(ÎM)
through its spectral representation on suitably built basis ψα (·) of polynomial functions Marelli
et al. (2022). In real-world problems, due to limited computing power, the bases are truncated
and the governing equation becomes:

Y ≈ MP CE
(
ÎM

)
=

∑
α∈A

cαψα

(
ÎM

)
, (9)

where A is the set of selected multi-indices of multivariate polynomials and cα are the corre-
sponding coefficients to be determined. The cα coefficients can then be calculated via projection,
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Figure 8: Brute-force MCS state-dependent fragility functions, by means of PGA: grey lines
represent single seed simulations; dashed-dot dark-red lines depict the 99% confidence bounds,
whilst dashed-dark red ones the 50%. PGA is the IM adopted, according to the global optimal
βeff,glob among transition states. Notice that this Figure is in accordance with Eq. 1; therefore, the
subplot at line 1 column 2 represents P(DS = DS1|DS0, IM). Therefore, this is not a commonly
used “fragility function,” which reports the exceedance probability, i.e. P(DS ≥ DS1|DS0, IM).
Figure B.1, in B, reports the commonly used fragility function.

i.e., Gaussian or sparse quadrature, or regression methods, i.e., least-square algorithms. In
this framework, we adopted the least-square method to determine the coefficients. Specifically,
separated cα were estimated for each DoE Ds, constituted by the clustered pairs of pseudo-IMs
and QoI of FE model response, i.e., (ÎM; Y), as:

cα = argmin 1
N

N∑
i=1

[
yi −

∑
α∈A

cαψα

(
ÎMi

)]2

, (10)

where N is the cardinality of the Ds, s ∈ [DS0; DS1] denotes the initial damage state level of
the DoE, and {y(1), . . . , y(N)} the realizations of Y. The choice of a least-square regression
strategy is motivated by the possibility of adopting the bootstrap resampling method. This
is particularly insightful when the size of the Ds is limited, since it allows the user to explore
exhaustively the information on the variability of the dataset. This can be achieved by first
generating a set of bootstrap-resampled experimental design pairs (ÎM(b)

,Y(b)) and then, by
calculating a corresponding set of coefficients c(b)

α . Therefore, the response of each bootstrap
PCE can be evaluated, yielding a family of b surrogate models that can be interpreted as
trajectories. As recently explored in Marelli and Sudret (2017), this process of bootstrap-based
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trajectories resampling can be directly employed to assess the confidence bounds on surrogate-
based estimators.
In this case, surrogates are developed for the two sets of initial damage state conditions, i.e.,
DS0 (pristine) and DS1 (damaged) configurations. As recommended in Lüthen et al. (2021), the
subspace pursuit (SP) solver was deployed in the PCE metamodel. Nevertheless, to identify the
most suitable way to calculate the coefficients cα of the PCEs, investigations were carried out on
different sizes of the Ds and the vector of pseudo ÎM, describing the seismic input. Specifically,
the vector of pseudo ÎM is defined as the n, PCA most significant PCA principal components.

ÎM = [PC1, PC2, . . . ,PCn,P CA]T . (11)

Figure 9 reports the variability covered by increasing the number of PCs through a scree plot.
As one can notice, the first 3 PCs are sufficient to describe more than the 80% of the input data,
6 PCs the 90% and 10 PCs are needed to get the 99% of the input variance. Since there is no
notable increase in computational burden between choosing either 6 or 10 PCs, we opt for the
latter.

Figure 9: Scree plot of the seismic input.

To highlight which and how each imi contributes to PCs, the first three PCs are displayed on
the biplots in Figure 10. Particularly, in Figure 10, only the relevant IMs—i.e., the ones that
present high scores—are plotted and labelled with the corresponding number ID of Table 1.
Therefore, the information provided is twofold: (i) on the correlation among IMs; (ii) on the
magnitude of the importance of the IMs in the definition of PCs. For instance, for PC2: almost
all the plotted IMs are positively correlated with PC2 itself. The 33-IM, i.e.,Fm, represent the
exception, since it is in the opposite direction with PC2, thus entailing a negative association.
The positive/negative correlations and the order of magnitude are summarized in the coordinates
of the PCs next to the biplot, until the tenth coefficient. More details on the correlations among
IMs are discussed in the attached A, along with histograms and inferred marginal distributions.
To determine the optimal size of the DoE, three measures of errors on the performances of the
PCE surrogates were used: (i) the relative generalization εgen; (ii) the leave-one-out εLOO; and
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PC1 = + 0.202 ASI + 0.198 EPA + 0.190 E-ASAR200 +

+ 0.190 ICM + 0.186 Ecum + 0.183 PGA +

+ 0.180 IA + 0.175 Sv(T5) + 0.175 Sd(T5) + . . .

PC2 = − 0.021Fm + 0.005 AV − 0.047 ICM + 0.136 Sv(T1)+

+ 0.136 Sa(T1) + 0.136 Sd(T1)) + 0.109 PGD +

+ 0.146 IRG,v + 0.150 PGV + 0.149 IF + . . .

PC3 = − 0.036 Td + 0.149 CAV − 0.047 ICM + −0.061Fm +

+ 0.180 IA + 0.187 Ecum + 0.146 IRG,v + 0.190 Ic +

+ 0.149 IF + 0.181 Sd(T5) + . . .

Figure 10: 3D biplots of PCs 1, 2 and 3 for the IMs. For clarity, only the relevant
imi, identified by numbers as labelled in Table 1, are depicted.

(iii) the empirical εemp error. In particular, the former

εgen = E
[(

Y − MP CE
(
ÎM

))2
]
/Var[Y] (12)

is best suited if a validation set is available; otherwise, as it is commonly the case with expensive
computational models, the other two are preferred and evaluated with the following definition:

εLOO =

Nsims∑
i=1

(
yi − MP CE\i

(
îmi

))2

Nsims∑
i=1

(yi − µ̂Y )2
, (13)

εemp =

Nsims∑
i=1

(
yi − MP CE

(
îmi

))2

Nsims∑
i=1

(yi − µ̂Y )2
, (14)

where Nsims is the total number of PCE-based MCS, yi the realizations of Y, and µ̂Y is the
sample mean of the DoE response. In addition, the bootstrap technique is applied to PCE to
provide a local error estimator. Precisely, resampling with substitution is used on the DoE Ds,
thus generating a set B = 500 bootstrap replications with the same number of sample points as
the original Ds. Each b ∈ [1, B] replication is used to evaluate the corresponding PCE, yielding
to b different sets of the PCE coefficients and predictions. Those b sets of responses are used to
calculate the local variance and quantiles of the PCE predictor, exploiting all the information of
the finite Ds size. Figure 11 shows the error trends against the DoE Ds size. The results agree
with the latest investigations reported in Lüthen et al. (2021) concerning the ideal size of the DoE.
Both the PCE-surrogate models for the D0 and D1 locate the optimal solution in 250 samples
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(a) (b)

Figure 11: Error plots for the initial damage limit state (a) DS0, namely DoE D0, and the (b)
DS1, namely DoE D1. The error threshold is fixed to 0.10 and is represented by the red dotted
horizontal line. In both datasets, the εLOO and εemp perform better than the εgen, despite the
vast validation set available in DoE D1, see Table 5a.

for the DoE dimension. Beyond this threshold, additional efforts to reduce model error result
in marginal improvements or overfitting issues. The estimation of the PCE coefficients for the
undamaged D0 initial condition converged to a polynomial degree 3 with εLOO ≃ 0.15. Figure 12
reports the histograms and validation YD0-YPCE plots. A validation set of 104 samples is deployed,
thanks to the large number of simulations carried out on the MDoF. A good agreement in terms
of matching distributions between YD0-YPCE is reached; also, samples-pairs are neatly aligned
on the 45◦ line of the YD0-YPCE plot, indicating a favourable performance. Similarly, for the
damaged D1 initial condition of the system, the estimation of the PCE coefficients converged to
a polynomial degree 3 with εLOO ≃ 0.14. Figure 13 displays histograms of 104 samples for the
YP CE and FE YD1 data. Again, since YD1-YPCE pairs are well aligned to the 45◦ line, a good
agreement is demonstrated. Finally, state-dependent fragility curves are evaluated based on the
results provided by the bootstrap PCE of both the pristine-D0 and the damaged-D1 datasets. As
for the results of the brute-force MCS, fragilities are displayed referring to the optimal global IM.
Thus, the βeff,glob(IMi) of Eq. 8 is evaluated for each transition state over the i to 41 IMs. Next,
the global optimal IM∗∗ is selected as follow IM∗∗ = argminIMi

βeff,glob(IMi). Thus, Figure 14
shows the state-dependent fragilities as functions of the global optimal IM∗∗, i.e., the PGA.
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(a) (b)

Figure 12: (a) Comparison of the histograms for the outputs, YP CE , of the PCE metamodel
and the EDPs, YD0 , of the D0 dataset, i.e., the initial damage state condition DS0, and (b) the
associated validation YD0-YPCE plot. Limit state thresholds and ±1 · σ, due to the uncertainties
related to different initial damage conditions, are reported in the histograms of (a).

(a) (b)

Figure 13: (a) Comparison of the histograms for the outputs, YP CE , of the PCE metamodel
and the EDPs, YD1 , of the D1 dataset, i.e., the initial damage state condition DS1, and (b) the
associated validation YD1-YPCE plot.
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Figure 14: Bootstrap-PCE-based MCS state-dependent fragility functions: grey lines represent
single seed simulations; dashed-dotted dark red lines depict the 90% confidence bounds, whilst
dashed-dark red ones the 50%.
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3.3.3 Validation of the framework

A visual comparison between state-dependent fragilities derived by brute-force MCS (benchmark
case) and surrogate-based MCS shows a good agreement, see for instance Figure 8 vs Figure 14,
respectively. From a quantitative point of view, we measure the difference between the two
fragility functions using the efficiency indices, the Kullback–Leibler (KL) divergence, and the
Kolmogorov-Smirnov (KS) distance2. In particular, Table 6 gathers the ∆(βeff) expressed as(
|βPCE

eff − βeff |
)
/βeff for each of the best indices of the transition states. The closer the delta is to

0, the better the matching of surrogate-based MCS with brute-force MCS results. It is generally
observed that the ∆(βeff) remains under the 0.20 threshold, which we consider, in this case, a
good matching of responses. The KL divergence, DKL(P ∥ Q), quantifies how one probability

Table 6: ∆(βeff) efficiency indices calculated as
(
|βPCE

eff − βeff |
)
/βeff for the same top IMs for

each transition states.

Frag. '0-0' ∆(βeff ) Frag. '0-1' ∆(βeff ) Frag. '0-2' ∆(βeff ) Frag. '1-1' ∆(βeff ) Frag. '1-2' ∆(βeff )
Optimal IM index Optimal IM index Optimal IM index Optimal IM index Optimal IM index

PGA 0.12 IRG,a 0.13 ASI 0.14 ASI -0.17 E − ASAR80 0.07
IC 0.15 PGA 0.14 EPA 0.13 EPA -0.19 E-ASAR200 0.08
IRG,a 0.15 IRG,v 0.16 RMS(ü) 0.15 PGA -0.19 E-ASAR100 0.08
E-ASAR200 0.12 E-ASAR200 0.16 PGA 0.14 IRG,v -0.17 E-ASAR150 -0.08
RMS(ü) -0.05 PGD 0.16 E-ASAR200 0.15 IRG,a -0.15 IRG,a -0.16

distribution P is different from a second Q, defined on the same sample space. Specifically,
P denotes the empirical probability distribution (Figure 14); while Q represents the empirical
probability distribution of the mean brute-force MCS state-dependent fragillities (Figure 8).
Thus, KL is evaluated as provided in Eq. 15:

DKL(P ∥ Q) =
∑
x∈X

P (x) log
(
P (x)
Q(x)

)
(15)

where X represents the sample space, that is, the domain of the optimal IM for each transition
state. Figure 15 shows the mean PCE-based and brute-force MCS state-dependent fragility
functions for the transition states '0-1', '0-2', and '1-2'. As Table 7 shows, the DKL distance is
bounded ∈ [0.12 − 0.19], meaning an overall good agreement (see Perez-Cruz (2008)). The KS
distance is defined as

DKS = sup
x

|F1(x) − F2(x)|, (16)

where F1 and F2 are the mean empirical cumulative distribution functions of the MCS brute-force
and surrogate-based fragilities, respectively, and sup is the supremum function. Thus, Table 7
collects the results. The distance between the mean of the MCS brute-force functions and the

2Technically speaking, the fragility functions are not proper CDFs, as the variable IM is in its conditional form.
However, as they are assumed to be monotonically increasing, then they can be treated as CDFs, and the KL and
KS distances are therefore used to assess the difference between the MCS and the PCE-based fragilities.
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Figure 15: Mean PCE-based and brute-force MCS fragility functions comparisons for the
transition states '0-1', '0-2', and '1-2'with PGA as IM. Note that the probability of exceedance is
adopted for the transition state '0-1'.

surrogate-based is considered acceptable within the simulation framework. Moreover, fragilities
must be integrated with the hazard curves; therefore, we consider these minimal differences as
negligible.

Table 7: DKS and DKL measures for the mean PCE-based vs brute-force MCS state-dependent
fragility functions.

IM = PGA
'0-1' '0-2' '1-2'

DKS 0.067 0.085 0.096
DKL 0.164 0.200 0.186

4 Industrial case: vertical tank installed on a 3D braced-frame
structure

The above framework was applied to the SPIF #2 case study, Quinci et al. (2023),Nardin et al.
(2022),Butenweg, C. et al (2020). Specifically, the object of the state-dependent fragility analysis
was the vertical tank installed on the steel-BF industrial substructure.

4.1 Step A - Computational model description

4.1.1 FE physics-based model

We consider the FE model developed for the SPIF #2 experimental research campaign. Fig-
ure 16(a) shows the industrial substructure model tested on the shaking table. The mock-up
consists of a full-scale 3-storey steel BF structure with flexible floors. Several NSCs of the
industrial process were installed, like tanks, cabinets, bolted flange joints, and T-joints. Par-
ticularly, the complex dynamic interaction between the main steel structure and one of the
NSCs—the vertical tanks mounted on the first level—was examined. The strong displacement
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exhibited by those components deserved attention. This is because their damage can lead to
severe consequences. Figure 16(a) shows the investigated vertical tank. Figure 16(b) reports a
detail of the ad-hoc designed stick model for the tanks and its expensive reference high-fidelity
local FE model. The stick model was developed with the goal to: (i) mimic the modal properties
and (ii) catch the different effects of the participating seismic mass on the supporting girders
system. The latter is particularly delicate since the participating mass varies with the intensity
level of the seismic excitation. A thorough discussion on FE modelling and calibration of the
global SPIF #2 model of Figure 16(c) is reported in Quinci et al. (2023). The shake table

(a) (c)(b)

Figure 16: The SPIF #2 mock-up: (a) photo of the braced frame (BF) configuration on the
shake table of EUCENTRE Facilities and details of the vertical tank installed at the first level;
(b) SAP2000®high-fidelity local FE model and ad-hoc implemented stick-model for the vertical
tank; (c) global SAP2000®FE model of SPIF #2.

tests showed that the vertical tanks were one of the most critical elements among the installed
components. Therefore, we developed fragility analysis for these elements, using the bootstrap
PCE technique of the previous Section.

4.2 Step B - Input definition

The framework outlined in Section 2 is adopted. Sequences of seismic events were assigned to
the FE model of SPIF #2 to (i) simulate different damage initial configurations and (ii) cover
each transition state. A total of 100 gms sequences, consisting of chains of 5 earthquakes each,
were implemented by the same ensemble of gms generated by the GMM of Subsection 3.2. The
computational cost pro single sequential NLTHA is ∼30 min on an Intel(R) Core(TM) i9-10900K
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CPU @3.70GHz, 10 Core(s) - 128 GB RAM. Both the number of gms in a single sequence and
the total number of sequential NLTHAs were determined by a trade-off between the total time
required for analysis and a well-defined population of the transition matrix of Figure 1(a). The
transition matrix for the vertical tank was defined on two performance limit states, e.g., DS1

and DS2. Those were set according to literature recommendations, see Vathi et al. (2017), and
confirmed by the experimental campaign, see Quinci et al. (2023). The first, DS1, is the design
basis earthquake (DBE), which is linked to the operation and functionality of the process plant.
The second, DS2, is the safe shutdown earthquake (SSE) limit state, for which the fundamental
safety functions can be ensured with minor damages, although the facility is no longer operational.
Thresholds were experimentally identified by maximum acceleration values recorded at the base
of the vertical tank

max |üv.tank
base | =

10 m/s2, DBE (DS1)

16 m/s2, SSE (DS2)
(17)

for the DBE and SSE, respectively, as reported in Quinci et al. (2023).

4.3 Step C - QoI response

4.3.1 NLTHAs and experimental design generation

As illustrated in Figure 2, the results of the NLTHAs performed on the FE model were clustered
into the transition states of Figure 1(a). Specifically, D0 indicates the dataset associated with
pristine initial damage conditions, whilst D1 denotes the dataset for which the threshold associated
with the DBE limit state was exceeded. Lastly, D2 collects the results of simulations for which
the SSE limit state was attained. As Table 17 shows, almost 47% of the simulations belong to the
D0 damage state initial condition. Particularly, 13% and 7% transitioned from undamaged initial
conditions to exceeding the DBE and SSE threshold at the end of the NLTHAs, respectively.
Instead, 38% of simulations belong to D1, out of which 16% stayed in the same damage level
even after other seismic shocks. Finally, 15% of the simulations reached the absorption state.
Again, the 41 IMs of Table 1 were evaluated for each gms of the NLTHA simulations. PCA was
then applied to reduce the order of the input dimension. Specifically, 10 PCs were used to cover
99% of the variability of data.

4.3.2 PCE metamodelling

State-dependent fragilities required many more analyses than the ones performed on the expensive-
to-run FE model. Hence, two metamodels were implemented to overcome the computational
and time issues. Specifically, the first metamodel was built on the experimental design D0 of
simulations belonging to the pristine initial condition dataset. The second on the DoE D1, the
family of simulations with initial conditions attaining the DBE limit state. Resampling with
substitution was used on both the experimental design D0,1, thus generating sets of bootstrap
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Figure 17: Transition state matrices for the SPIF #2: (a) counters and (b) percentages of
simulation for each initial-final damage state level cluster, respectively.

replications to estimate confidence bounds. Specifically, bootstrap PCE was carried out with
a q-norm truncation of q = 0.50, maximum allowed interaction r = 2 and a total number of
replications B = 500. Based on the latest findings of Lüthen et al. (2021), the subspace pursuit
(SP) solver was adopted with 10 PCs. As a result, Figure 18(a) reports the histogram of the
surrogate predictor over the histogram distribution of the D0. The limit state thresholds of DBE
and SSE are also reported. A favourable performance is attained, with a final εLOO error of
4.17E-02. The estimation of bootstrap PCE coefficients converged to a polynomial degree order of
3. Moreover, Figure 18(b) shows the control YD0-YP CE plot: a good alignment is found with the
45◦ line, which represents the ideally perfect match between true and surrogate data. Similarly,

(a) (b)

Figure 18: (a) Histogram distribution of the PCE surrogate YP CE (light grey) predictor vs the
YD0 original data of the initial undamaged condition dataset; (b) control plot of the performance
of the YP CE surrogate model vs the YD0 reference experimental design samples.

bootstrap PCE was performed for the experimental design D1. Anew, a q-norm truncation
q = 0.50, maximum allowed the interaction r = 2 and a number of replications B = 500 was

27



applied. As a result, Figure 19(a) reports the histogram distribution of both the YP CE predictor
and the YD1 data of the damaged initial state condition. A generally good agreement is found,
with a few exceptions in the range between [21 − 22]m/s2. This is reflected also in the control
plot YP CE-YD1 of Figure 19(b), where the dispersion is greater in that range. The estimation
of the PCE coefficients converged at a polynomial degree of order 5 with a final εLOO error of
4.73E-02.

(a) (b)

Figure 19: (a) Histogram distribution of the PCE surrogate YP CE (light grey) predictor vs the
YD1 original data of the initial undamaged condition dataset; (b) control plot of the performance
of the YP CE surrogate model vs the YD1 reference experimental design samples.

4.4 Fragility assessment

Following Section 3, a global optimal IM descriptor for the derivation of fragility functions is
evaluated. Table 8 gathers the ranking of the first five minimum βeff,glob for the SPIF case study,
derived by Eq. 8. It emerges that IMs strictly correlated with acceleration or energy content
are the most suitable for the case study. Next, we select PGA as the optimal IM and compute
state-dependent fragilities using PCE-surrogate models as described in Section 2.

Global βeff,glob

Optimal IM index [%]

1 PGA 4.02
2 Ecum 4.35
3 IA 5.07
4 IF 5.31
5 IRG,a 7.42

Table 8: Ranking of the optimal IMs according to the global βeff,glob, defined in Eqn. 8.

Figure 20 shows the probabilistic description of state-dependent fragilities as functions of the
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PGA. The curves representing the 1%-50%-99% percentiles are displayed with black-dotted thick
lines, whilst the 10%-90% with red-dotted lines, and their area with darker to lighter red-shaded
colours. In C, we report the collection of state-dependent fragility functions based on the optimal
βeff index for each transition state in Figure C.1. Moreover, the commonly referred fragility
functions as the probability of exceedance of a certain threshold, in this case, the DS1 threshold
given DS0 initial damage condition, is reported in Figure C.2.

Figure 20: Bootstrap-PCE state-dependent fragility curves of the SPIF #2 vertical tank: black-
dotted thick lines stand for the 1%, 50%, and 99% percentiles. Red-dotted lines for the 10% and
90% percentiles, along with their area with darker to lighter red-shaded colours.

5 Conclusions and Future developments

An innovative, non-intrusive UQ-based framework for assessing state-dependent fragility functions
has been proposed. The framework builds on a stochastic representation of seismic sequences,
calibrated and validated FE models, principal component analysis (PCA) representation of
the input, and advanced polynomial chaos expansion (PCE)-based surrogate modelling. The
proposed framework provides for both vast flexibility and integration with FEM experts as
well as extreme computational efficiency. State-dependent fragility analysis requires a vast
number of NLTHAs, based on time series of stochastic seismic sequences. However, when
considering realistic computational models, the significant computing demands of an extensive
set of sequential NLTHAs generally hinder this direct derivation of state-dependent fragilities.
Hence, we propose an innovative UQ-based framework that combines a PCA representation of the
stochastic input and an advanced PCE surrogate modelling of the QoI of the system. Specifically,
we first performed a reduced number of stochastic seismic sequence NLTHAs on expensive-to-run
FEM. Next, the resulting QoIs were clustered according to predefined damage initial states. At
the same time, we performed PCA on the exhaustive vector of IM , to obtain a low-dimensional
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input representation of the time series sequences ÎM . Next, on the pairs of clustered QoIs and
the ÎM—i.e., the DoE—, we built different PCE surrogate models, one for each initial damage
state of the system. Successively, the vast number of MCS surrogate-based analyses enabled
us to derive non-parametric state-dependent fragility functions. In particular, the UQ-based
framework was applied twice. First, it was tested and validated on a simple yet realistic 2D
MDoF system endowed with Bouc-Wen hysteresis. Specifically, given the inexpensive-to-run
benchmark case study, state-dependent fragilities were evaluated both via the MCS brute-force
method and the MCS PCE-based one. Global and local efficiency βeff indeces for each transition
states were evaluated to determine the optimal IM for fragility assessment. Moreover, qualitative
and quantitative comparisons through ∆βeff and statistical measures confirmed the acceptable
performance of the developed framework. Second, the validated methodology was applied to
derive seismic state-dependent fragility functions for an industrial process component. Specifically,
the critical vertical tank of the 3-storey 3D BF industrial mock-up of project SPIF #2 was
considered. Following the previous example, a given number of sequences of synthetic ground
motions were assigned as input for NLTHAs on the refined FEM of the coupled SPIF system.
Then, clustering of the QoIs along with PCA for dimensionality reduction of the stochastic
seismic sequences of the input was performed. Next, PCE surrogate models were built for
the identified initial damage state conditions. Moreover, MCS PCE-based state-dependent
fragility functions were evaluated. Thus, the developed framework allows to unlock the possibility
of efficiently computing state-dependent fragility for a variety of problems. In addition, the
versatility of the framework allows us to extend it to a vector of IMs for fragility assessment, in
the future. The use of the framework for aftershock sequences is being considered as a second
future direction, provided with a stochastic representation of input sequences. Finally, either the
single state-dependent fragility function or the entire framework can be used to estimate seismic
risk.
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A - Histograms and distributions of the input.

Figure A.1 illustrates the correlation among the IM parameters, which varies [−1,+1]. It emerges:

• high correlations among E-ASAR,x, Sa and E-ASAR,x as the frequency drop Rx increases -
indexes from 36 to 41;

• significative correlations among IMs sensitive to acceleration EPA - idx. 30 - , ASA40 - idx.
28, and ASI - idx. 29;

• negative correlations or low correlations for the significant time duration Td - idx. 23, the
Cosenza-Manfredi intensity ICM - idx. 27 - and both the frequency-related IMs mean Fm -
idx. 33 - and rate of change mean frequencies Ḟm - idx. 34;

• linear correlations between Sa-Sv and Sv-Sd - idxs. 4-18, as expected by the definitions.
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Figure A.1: Correlation map between input IM parameters.

Table 9 and Figures A.2-A.6 gather the histograms and inferred pdf for each IM presented in
Table 1 of Section 3.2.

31



Figure A.2: Histograms and distributional models for IMs from 1 to 9.

Figure A.3: Histograms and distributional models for IMs from 10 to 18.
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Table 9: Histograms and distributional models inferred for each IM.

Index Name Type Parameters Moments

1 PGA Gumbel 2.027e+00, 6.236e-01 2.387e+00, 7.998e-01
2 PGV Gumbel 1.408e-01, 5.683e-02 1.736e-01, 7.289e-02
3 PGD Gamma 3.853e+01, 3.489e+00 9.055e-02, 4.848e-02
4 Sd(T1) Gumbel 1.447e-02, 6.679e-03 1.833e-02, 8.566e-03
5 Sd(T2) Gumbel 1.031e-02, 4.263e-03 1.277e-02, 5.468e-03
6 Sd(T3) Gumbel 7.792e-03, 2.635e-03 9.313e-03, 3.379e-03
7 Sd(T4) LogNormal -5.551e+00, 3.517e-01 4.133e-03, 1.500e-03
8 Sv(T5) LogNormal -6.831e+00, 3.239e-01 1.137e-03, 3.782e-04
9 Sv(T1) Gumbel 1.814e-01, 8.370e-02 2.297e-01, 1.074e-01
10 Sv(T2) Gumbel 1.835e-01, 7.591e-02 2.274e-01, 9.736e-02
11 Sv(T3) Gumbel 1.958e-01, 6.622e-02 2.341e-01, 8.493e-02
12 Sv(T4) LogNormal -1.815e+00, 3.517e-01 1.732e-01, 6.285e-02
13 Sv(T5) LogNormal -2.690e+00, 3.239e-01 7.156e-02, 2.380e-02
14 Sa(T1) Gumbel 2.273e+00, 1.049e+00 2.878e+00, 1.345e+00
15 Sa(T2) Gumbel 3.268e+00, 1.352e+00 4.048e+00, 1.733e+00
16 Sa(T3) Gumbel 4.922e+00, 1.664e+00 5.883e+00, 2.134e+00
17 Sa(T4) LogNormal 1.920e+00, 3.517e-01 7.260e+00, 2.634e+00
18 Sa(T5) LogNormal 1.452e+00, 3.239e-01 4.502e+00, 1.497e+00
19 IA LogNormal -6.729e-01, 5.712e-01 6.006e-01, 3.730e-01
20 Ecum LogNormal 1.342e+00, 5.453e-01 4.439e+00, 2.612e+00
21 IRG,a Gumbel 4.151e+00, 1.222e+00 4.856e+00, 1.567e+00
22 IRG,v LogNormal -5.098e-01, 2.745e-01 6.237e-01, 1.745e-01
23 Td Gaussian 8.696e+00, 1.637e+00 8.696e+00, 1.637e+00
24 RMS(ü(t)) LogNormal -7.590e-01, 2.845e-01 4.875e-01, 1.415e-01
25 IC LogNormal -6.627e-02, 4.070e-01 1.017e+00, 4.315e-01
26 CAV Gamma 9.262e-03, 9.638e+00 1.041e+03, 3.352e+02
27 ICM LogNormal 2.178e+00, 4.817e-01 9.915e+00, 5.067e+00
28 ASA40 Gamma 1.122e-01, 8.580e+00 7.647e+01, 2.611e+01
29 ASI LogNormal 6.025e+00, 2.910e-01 4.315e+02, 1.283e+02
30 EPA Gamma 4.737e-02, 1.134e+01 2.393e+02, 7.108e+01
31 Iv/a Gamma 1.343e+02, 9.941e+00 7.400e-02, 2.347e-02
32 IF Gumbel 2.407e-01, 9.524e-02 2.957e-01, 1.221e-01
33 Fm Gaussian 4.649e+00, 4.801e-01 4.649e+00, 4.801e-01
34 Ḟm GumbelMin -2.667e-04, 2.347e-04 -4.022e-04, 3.011e-04
35 FASarea Exponential 3362 2.974e-01, 2.974e-01
36 E − ASAR40 LogNormal 2.371e+00, 3.504e-01 1.138e+01, 4.115e+00
37 E − ASAR67 LogNormal 3.283e+00, 3.387e-01 2.823e+01, 9.842e+00
38 E − ASAR80 LogNormal 3.561e+00, 3.325e-01 3.719e+01, 1.271e+01
39 E − ASAR100 LogNormal 3.917e+00, 3.229e-01 5.296e+01, 1.756e+01
40 E − ASAR150 LogNormal 4.495e+00, 3.110e-01 9.398e+01, 2.995e+01
41 E − ASAR200 LogNormal 4.879e+00, 3.056e-01 1.378e+02, 4.313e+01
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Figure A.4: Histograms and distributional models for IMs from 19 to 27.

Figure A.5: Histograms and distributional models for IMs from 28 to 36.
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Figure A.6: Histograms and distributional models for IMs from 37 to 41.
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B - MDoF support material

State-dependent fragility: P(DS ≥ DS1|DS0, IM).

DS DS DS0 1 2

Figure B.1: The commonly used “fragility function” evaluated as the exceedance probability, i.e.,
P(DS ≥ DS1|DS0, IM), for PGA as IM.

C - SPIF #2 support material.

C.1 Collection of the optimal state-dependent functions for each transition
state.

The optimal IMs for each transition state were determined according to the βeff index of Eq. 7.
Table 10 collects the top-five-ranked IMs for each transition state. It is possible to notice that
the Fajfar intensity IF, the equipment relative average spectral acceleration E-ASAR67, and
the cumulated energy Ecum are the optimal IMs that occur more often among the transition
states. Specifically, the Ecum and the E-ASAR67 are directly correlated with acceleration and
energy content (see how they are defined in Table 1); whilst the IF is correlated with velocity
terms. Besides, the E-ASAR67 is the only one that is repeated on all the transition states. As
deeply investigated in De Biasio et al. (2015a), this IM is particularly suited to capture the
drop and frequency shifts of equipment characterised by a significant spectral acceleration close
to the dominant frequency interval of the main structure. These observations agree with the
experimental evidence described in Nardin et al. (2022). Indeed, the shake table data revealed
a significant positive correlation between the maximum floor spectral acceleration Sa,floor(T1)
and the E-ASAR67 for the vertical tank. Thus, Figure C.1 reports the state-dependent fragility
functions for the industrial component with the optimal IM for each transition state. Dark-red
lines and the associated shaded areas highlight the 50%, 90% and 99% confidence bounds,
respectively. As the structure reaches the damage level DS2, Ecum is the optimal IM for both
pristine and damaged initial level conditions. It can be noted that given a damage limit state to
attain, i.e., (graphically) for elements of the same column, the magnitude of IM required to reach
the same exceedance probability is lower with the damaged initial conditions. For instance, the
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50% probability of exceedance DS2 given DS0 and DS1 is associated to Ecum = 9 and Ecum = 3,
respectively.

Table 10: Top five-ranked IM βeff efficiency indices for each transition state.

Frag. '0-0' βeff Frag. '0-1' βeff Frag. '0-2' βeff Frag. '1-1' βeff Frag. '1-2' βeff

Optimal IM index Optimal IM index Optimal IM index Optimal IM index Optimal IM index

IF 5.00E-04 IF 2.00E-04 Ecum 1.02E-04 IF 3.00E-04 Ecum 6.96E-04
PGA 1.24E-02 Ecum 7.00E-04 IA 9.25E-06 PGA 6.90E-03 Sv(T1) 4.46E-03
IC 3.75E-02 IA 3.80E-03 IC 6.58E-06 Ecum 4.14E-02 PGA 3.15E-03
IRG,a 5.35E-02 E-ASAR67 6.70E-03 ICM 5.82E-06 IRG,a 7.94E-02 E − ASAR67 2.58E-03
E − ASAR67 8.51E-02 PGA 1.60E-02 E-ASAR67 1.81E-06 E-ASAR67 9.55E-02 E-ASAR100 6.19E-02

Figure C.1: Bootstrap-PCE state-dependent fragility curves of the SPIF #2 vertical tank: dark-
red thick lines stand for the 50%, 90% and 99% confidence bound, along with lighter to darker
shaded areas.

C.2 State-dependent fragility: P(DS ≥ DS1|DS0, IM).

37



DS DS DS0 1 2

Figure C.2: The commonly used “fragility function” evaluated as the exceedance probability, i.e.,
P(DS ≥ DS1|DS0, IM), with PGA as IM.
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