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We propose a scheme to generate large amount of mechanical squeezing, far beyond the 3dB limit, which is
based on synthetic magnetism in optomechanical system that hosts a Backward Stimulated Brillouin Scattering
(BSBS) process. Our benckmark system consists of an acoustic mode coupled to two optical modes through the
BSBS process, and a Duffing mechanical oscillator that couples to the same optical modes through the standard
optomechanical radiation pressure. The synthetic magnetism comes from the modulation of the mechanical cou-
pling between the acoustic and the mechanical modes. When there is no synthetic magnetism, a given amount
of mechanical squeezing is generated in the system. This squeezing is mainly dependent on the BSBS process,
and it is fragile against thermal noise. By switching on the synthetic magnetism, the degree of the generated
squeezing is greatly enhanced and goes far beyond the limit of the 3dB. This large magnetism induced squeezing
persists even when there is no BSBS process in the system. Moreover, this generated squeezing is robust enough
against thermal noise in comparison to the one induced when the synthetic magnetism is off. Furthermore, both
the mechanical variance squeezing and effective phonon number exhibit series of peaks and dips depending on
the phase modulation of the mechanical coupling. This oscillatory feature is reminscent of a sudden death and
revival of squeezing phenomenon, which can be used to maintain a desired magnitude of squeezing by tuning
this phase. Our proposal provides a path toward a flexible scheme that generates large amount of squeezing, far
beyond the 3dB limit. Such a generated squeezed states can be use for quantum applications including quantum
information processing, quantum sensing and metrology, and quantum computing.
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I. INTRODUCTION

Nonclassical states such as squeezed and entangled states
are crucial ingredients required to improve a range of quan-
tum applications including quantum information processing
[1–3], quantum sensing/metrology [4–7], quantum comput-
ing [8], and quantum supremacy [9–11]. For instance, en-
tangled states have been widely generated in optomechanical
systems [12, 13] by exploring diverse techniques [14–18], and
they were recently proposed as resources to enhance sensing
[19, 20]. Beside that, large intracavity squeezed field have
been generated [21, 22], which can be used for mechanical
cooling [23, 24], gravitational wave detection [25, 26], and to
further generate nonclassical states [27]. Similarly, strong me-
chanical squeezed states [28] were equally generated, which
can be useful to enhance mass-sensing [29–31], phonon in-
formation processing [32, 33], and for phononic state trans-
port/transfer [34]. Despite these interesting applications re-
lated to squeezed states, their generation is often limited by
quantum noise that resists any measurement below the Zero
Point Fluctuation (ZPF), i.e., beyond the 3dB limit. The exist-
ing systems in which mechanical squeezing beyond 3dB has
been achieved have explored reservoir engineering technique
or two-tone driving [35–37].
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Recently, technique based on synthetic magnetism (engi-
neered via a modulation of the photon/phonon hopping rate)
have been used in optomechanical structures for specific pur-
poses. For instance, an artificial magnetic field for photons
was engineered to achieve photon transport in [38, 39]. Sim-
ilarly, synthetic magnetic field for phonon/acoustic has been
created in [40–42] for phononic transport at nanoscale. More
recently, synthetic magnetism has been engineered in optome-
chanical systems to enhance entangled states generation [43].
Owing to these interesting physics fostered by synthetic mag-
netism in optomechanics, here we use it to enhance mechani-
cal squeezing in optomechanical system involving Backward
Stimulated Brillouin Scattering (BSBS) process which has
been recently proposed [44].

The underligned system consists of an acoustic (mechan-
ical) mode coupled to two optical modes through the BSBS
process (radiation pressure coupling). The merit of our pro-
posal is to connect the acoustic and the mechanic modes
through a mechanical coupling having a strengh Jm that is
modulated via a phase θ . Such a phase modulation of the cou-
pling induces a synthetic magnetism in our benckmark system
[43, 45]. When the synthetic magnetism is off, a given amount
of mechanical squeezing is generated in the system and this
squeezing is mainly dependent on the BSBS process, and it is
fragile against thermal noise [44]. By switching on the syn-
thetic magnetism, we found that i) the degree of the generated
squeezing is greatly enhanced and goes far beyond the limit
of the 3dB, ii) this squeezing persists even when there is no
BSBS process in the system, and iii) this generated squeez-
ing is robust enough against thermal noise in comparison to
the case when the synthetic magnetism is off. Furthermore,
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both the mechanical squeezing and effective phonon number
exhibit series of peaks and dips depending on the phase mod-
ulation of the mechanical coupling. This oscillatory feature
induces a sudden death and revival of squeezing, which can be
used to maintain a desired magnitude of squeezing by tuning
this phase. Our proposal pave a way toward a flexible scheme
that can be used to generate arbitrary amount of squeezing.
Such a generated squeezed states can be used for quantum ap-
plications including quantum information processing, quan-
tum sensing and metrology, and quantum computing.

The rest of our work is organized as follow. section II pro-
vides the dynamical equations and derives the analytical ex-
pressions involved in our investigation. The squeezing en-
hancement, together with the important results are presented
throughout section III. Our work in concluded in section IV.

II. MODEL AND DYNAMICAL EQUATIONS

Our system consists of an acoustic mode (ba) that couples to
two optical modes through the BSBS process, and a nonlinear
mechanical oscillator (bm) that couples also to the two opti-
cal modes. In order to enhance the squeezing of the mechan-
ical oscillator, we assume that the acoustic and mechanical
modes are mechanically coupled through a coupling strengh
Jm, which is modulated through a phase θ that induces a syn-
thetic jauge into the dynamics. The Hamiltonian of such a
system is given by (h̄ = 1):

H = H0 +HOM +HBSBS +Hint +Hdrive, (1)

where

H0 := ∑
j=1,2

ωc j a
†
ja j +ωab†

aba +ωmb†
mbm, (2)

HOM := gm ∑
j=1,2

a†
ja j(bm +b†

m)+
η

2
(bm +b†

m)
4, (3)

HBSBS := −ga(a
†
1a2ba +a1a†

2b†
a), (4)

Hint := Jm(eiθ b†
abm + e−iθ bab†

m) (5)

Hdrive := ∑
j=1,2

iE j(a
†
je

−iωp j t −a je
iωp j t). (6)

In the above Hamiltonian, the first term H0 is the free Hamil-
tonian of the optical modes a j, the acoustic and for the me-
chanical mode. The first term in HOM capures the optome-
chanical interaction between the optical and the mechanical
modes, while the second one acconts for nonlinear effect on
the mechanical resonator through the Duffing coefficient η .
The third term HBSBS stands for the triply resonant phonon-
photon interaction striggered via the BSBS process, and Hint
depicts the mechanical coupling between the acoustic (ba)
and the mechanical (bm) modes. The single-photon optome-
chanical (Brillouin) coupling is captured by gm (ga), which
comes from the radiation pressure (electrostrictive) force. The
drivings fields are captured by the last term Hdrive, where
E j and ωp j are the amplitude and frequency of the jth field.
In what follow, we will assume the same frequency field,

ωp1,2 ≡ ωp. The optical cavity frequency are ωc j and the me-
chanical (acoustic) frequency is ωm (ωa). In the frame rotating
at ωp

2 a†
1a1 +ωpa†

2a2 +
ωp
2 b†

aba, the Hamiltonian in Equation 1
becomes

H =−∆a†
1a1 +∆ab†

aba +ωmb†
mbm −gma†

1a1(bm +b†
m)

+Jm(eiθ b†
abm + e−iθ bab†

m)+ iEl1(a
†
1 −a1)

+η

2 (bm +b†
m)

4 −Ga(a
†
1ba +a1b†

a), (7)

where we have defined ∆=ωl1 −ωc1 , ∆a =ωa−ωl1 and Ga =
gaα2. Here α2 is the steady-state of the control optical mode
a2, which has been treated classically as it is assumed strong
compared to the weak strengh of the Brillouin acoustic mode
ba.

FIG. 1: Sketch of our linearized three mode optomechanical system.
The mode a1 is coupled to the acoustic (mechanical) mode ba (bm)
the Brillouin (optomechanical) coupling Ga (Ga), which are induced
from electrostrictive (radiation pressure) force. The phonon-phonon
hopping rate Jm is modulated by the phase θ .

By following the standard linearization process of optome-
chanical process, the Hamiltonian in Equation 7 can be lin-
earized, and that reduces our proposal to a three modes op-
tomechanical system sketched as in Figure 1. To investigate
on the squeezing of the target mechanical resonator bm, we
introduce the following Bogoliubov transformation,

bm = bs
m cosh(r)−bs†

m sinh(r), (8)

with the defined squeezing parameter r = 1
4 ln(1+ 2Λ

ωm
) and the

squeezed mechanical mode bs
m. This transformation leads to

the new linearized Hamiltonian,

Hs
lin =−∆̃δa†

1δa1 +∆aδb†
aδba +ω ′

mδbs†
m δbs

m

−(G′
mδa†

1 +G
′∗
mδa1)(δbs†

m +δbs
m)+ J′m(e

iθ δb†
aδbs

m

+e−iθ δbaδbs†
m )−Ga(δa†

1δba +δa1δb†
a), (9)

with the effective parameters ω ′
m =

√
ωm(ωm +2Λ), G′

m =
Gme−r and J′m = Jm cosh(r), and the effective mechanical cou-
pling is Gm = gmα1, where Λ = 24ηℜ(βm)

2 by keeping in
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mind that βm (α1) is the steady-state of the mechanical (opti-
cal) mode. By taking into account the optical (κ), mechanical
(γm) and acoustic (γa) dissipations, one can write the dynamics
of the fluctuations operators as,

δ ȧ1 =
(
i∆̃− κ

2

)
δa1 + iG′

c(δbs†
m +δbs

m)+ iGbδba

+
√

κain
1

δ ḃa =−( γa
2 + i∆a)δba − iJ′meiθ δbs

m + iGaδa1

+
√

γabin
a

δ ḃs
m =−( γm

2 + iω ′
m)δbs

m − iJ′me−iθ δba + i(G
′∗
mδa1

+G′
mδa†

1)+
√

γmbsin
m ,

(10)

where ∆̃ = ∆−2gmRe(βm) is the effective detuning. In the set
of Equation 10, ain

1 , bin
a and bsin

m are zero-mean noise operators
characterized by the following auto-correlation functions,

⟨ain
1 (t)a

in†
1 (t ′)⟩= δ (t − t ′), ⟨ain†

1 (t)ain
1 (t

′)⟩= 0,

⟨bin
a (t)b

in†
a (t ′)⟩= δ (t − t ′), ⟨bin†

a (t)bin
a (t

′)⟩= 0,

⟨bsin
m (t)bsin†

m (t ′)⟩= (nth cosh(2r)+ sinh2(r))δ (t − t ′),
⟨bin

m(t)b
in
m(t

′)⟩= (nth +
1
2 )sinh(2r)δ (t − t ′),

(11)

where nth is the equilibrium phonon occupation of the me-
chanical resonator defined as nth = [exp( h̄ωm

kbT )− 1]−1, where
kb is the Boltzmann constant. Owing to the high-frequency
Brillouin mode ba compared to the mechanical one (ωm ≪ωa)
the thermal acoustic occupancy has been neglected. In or-
der to figure out the effect of the mechanical coupling Jm
and its phase modulation θ on the squeezing degree of the
targeted mechanical resonator, we start by defined the fol-
lowing amplitude (position) and phase (momentum) quadra-
ture operators, δXI,qa,m = δO†+δO√

2
, δYφ ,pa,m = i δO†−δO√

2
, with

O ≡ a1,ba,bs
m. Similarly, the related noise quadratures read,

δX in
I,qa,m

= δO†in+δO in
√

2
, δY in

φ ,pa,m
= i δO†in−δO in

√
2

. Therefore, one
derives the set of equations describing the quadrature dynam-
ics of our system as,

u̇ = Mu+ zin, (12)

where u = (δ I,δφ ,δqa,δ pa,δqm,δ pm)
T , zin =

(
√

κIin,
√

κφ in,
√

γaqin
a ,

√
γa pin

a ,
√

γmqin
m ,

√
γm pin

m ,)
T and

the matrix M is given by,

M=



−κ1
2 −∆̃ 0 −Ga 0 0

∆̃ −κ1
2 Ga 0 2G

′
m 0

0 −Ga − γa
2 ∆

′
a J′m sinθ J′m cosθ

Ga 0 −∆
′
a − γa

2 −J′m cosθ J′m sinθ

0 0 −J′m sinθ J′m cosθ − γm
2 ω

′
m

2G
′
m 0 −J′m cosθ −J′m sinθ −ω

′
m − γm

2


,

(13)
where the effective couplings G

′
m and Ga have been assumed

real for simplicity.

III. SYNTHETIC MAGNETISM ENHANCED
MECHANICAL SQUEEZING

To point out the enhancement of the mechanical squeezing
in our proposed system, we need to derive the position vari-
ance of the nonlinear mechanical resonator. For this purpose,
we must evaluate the covariance matrix whose elements Vi j

fulfill Vi j =
⟨uiu j+u jui⟩

2 . These matrix elements also satisfy the
motional equation,

V̇ = MV +V MT +D, (14)

with the diagonal diffusion matrix D = Diag[κ

2 ,
κ

2 ,
γa
2 ,

γa
2 ,

γm
2 e2r(2nth + 1), γm

2 e−2r(2nth + 1)], and the matrix M must
meet the Routh-Huritz stability criterion where all its eigen-
values should have negative real parts. We have checked that
our used parameters satisfy this stability criterion. As we aim
to study the steady-state behavior of the mechanical squeez-
ing, we use the long time limit of Equation 14 which is known
as Lyaponuv equation,

MV +V MT =−D. (15)

FIG. 2: Mechanical position variance from Equation 17 versus Ga
and ∆a. The mechanical coupling strengh is Jm = 0 for (a) and
Jm = 0.1ωm for (b). The parameters used are ωm/2π = 1MHz, gm =
10−4ωm, κ = 0.02ωm, γa = 0.4ωm, γm = 10−4ωm, η = 10−4ωm,
nth = 100, Gm = 0.15ωm, ∆̃ =−ω ′

m, and θ = π/2.

From the Vi j elements, we can express the position variance
(⟨δq2

m⟩) and the phonon number (nm
e f f ) of the mechanical res-

onator as,

⟨δq2
m⟩=V55e−2r, (16)

which can be expressed in dB units as,

⟨δq2
m⟩(dB) =−10log10

⟨δq2
m⟩

⟨δq2
ZPF⟩

, (17)
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where ⟨δq2
ZPF⟩ = 1

2 is the zero-point fluctuations of the me-
chanical resonator. Before pointing out the effect of the me-
chanical coupling Jm and its phase θ on the variance squeez-
ing derived in Equation 17, we need to check the optimal
acoustic resonance ∆

opt
a corresponding to an efficient supres-

sion of the heating term G
′
m(δa†

1δbs†
m +δa1δbs

m). For this pur-
pose, we work at the red-sideband detuning (∆̃ = −ω

′
m), and

plot the variance by simultaneously sweepping the acoustic
effective coupling Ga and detuning ∆a as shown in Figure 2.
It can be seen that the largest squeezing is generated at the
acoustic resonance ∆

opt
a ≈ 3.5ωm as in [44]. From now on, we

fix ∆a = ∆
opt
a from now on, and keep the red-sideband detun-

ing resonance condition. In Figure 2(a), there is no squeez-
ing generated near Ga ∼ 0, or it is very weak. However, Fig-
ure 2(b) shows a large degree of squeezing generated even for
Ga = 0 around the optimal acoustic resonance ∆

opt
a . This fea-

ture reveals how the synthetic jauge induces the squeezing in
our proposal even if the BSBS effect is not supported in the
system. Moreover, the colorbars in these two figures display
how the squeezed generated for Jm ̸= 0 is stronger compared
to when there is no mechanical coupling Jm = 0. To further
get inslight into the enhancement of the squeezing through the
synthetic jauge, we represent the mechanical position variance
together with its effective phonon number, both versus Jm and
θ , as displayed in Figure 3. The corresponding mechanical ef-
fective phonon number nm

e f f can be equally expressed in term
of the Vi j elements and it yields,

nm
e f f =

1
2
(
V55e−2r +V66e2r −1

)
. (18)

It can be seen from Figure 3(a,b) that both variance and
phonon number are modulated along the θ direction. For
Jm ≤ 5×10−2ωm, the effect of the phase θ is not pronounced
in these figures. For Jm > 5×10−2ωm, however, the variance
(Figure 3a) exhibits sort of peaks at θ ≡ (n+ 1

2 )π and dips
for θ ≡ nπ , with n being an interger. This feature shows that
significant squeezing is generated at θ ≡ (n+ 1

2 )π , which re-
versely corresponds to an effective minimum phonon number
as expected in Figure 3b (see near Jm ∼ 0.1ωm for instance).
By paying attention to the colorbars of these figures, it can
be figured out that the more the mechanical coupling Jm in-
creases, the better we cool down the mechanical resonator and
that results to a stronger degree of squeezing. These figures
point out the crucial role played by both Jm and θ regarding
the squeezing enhancement in our proposal. To further reveal
the oscillatory feature of the squeezing above discussed, we
have extracted the variance and phonon number from Figure 3
at Jm ∼ 0.1ωm, and that is displayed in Appendix A.

In what follow, we aim to figure out the magnitude of
the position variance in order to appreciate the degree of the
squeezing enhancement induced by the synthetic jauge. By
doing so, it can be easy to analyze the behavior of the vari-
ance over some parameters instead of just observing its re-
lated colorbar as in Figure 2 and Figure 3. Therefore, we pick
up specific parameters in the (Gm,Ga) space, and represent
the variance over some interesting variables as displayed in
Figure 4. The left and right columns in Figure 4 depict the
mechanical position variance plotted over the same variable

FIG. 3: (a) Mechanical position variance (Equation 17) and (b)
mechanical effective phonon number (Equation 18) versus Jm and
θ . Optimal squeezing parameters deduced from Figure 2 are used,
Gm = 0.15ωm, Ga = 0.124ωm, and ∆

opt
a . The others parameters are

those in Figure 2.

for Jm = 0 and Jm = 0.1ωm, respectively. The first interest-
ing parameter considered here is the Brillouin acoustic decay
rate γa. The BSBS process involved in our proposal relies on
the fact that γa ≫ κ(≫ γm). Therefore, it is crucial to point
out the impact of this condition on the squeezing generation
as shown in Figure 4(a,b). Without the mechanical coupling
(Jm = 0), Figure 4a shows how the variance grows up rapidly
and reaches a saturation limit above γa ≫ κ = 2× 10−2ωm
as expected. Above this BSBS condition, the position vari-
ance settles on a sort of plateau, where the acoustic decay rate
does no longer affect the behavior of the generated squeezing.
This regime could be of great interests for quantum technolo-
gies involving squeezing such as quantum information pro-
cessing, quantum sensing/metrology, and quantum comput-
ing. By considering the synthetic jauge (Jm ̸= 0), Figure 4b
shows a great enhancement of the degree of squeezing (from 0
to near 5dB) compared to when Jm = 0 (compare Figure 4a to
Figure 4b). Despite the fact that the position variance behaves
with almost the same shape in both Figure 4(a,b), it is worth
to highlight that the merit of the synthetic jauge has been to
push the limit of the generated squeezing beyond the 3dB.
Furthermore, these figures show that the more the couplings
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FIG. 4: Left and right column depicts the same quantities, which are plotted for Jm = 0 and Jm = 0.1ωm, respectively. (a,b) display the position
variance of the mechanical resonator over the Brillouin acoustic decay rate γa for three specific couples of points (Ga,Gm): (0.05ωm,0.08ωm),
(0.15ωm,0.124ωm), and (0.25ωm,0.154ωm). (c,d) analyze the robustness of the mechanical position variance versus the thermal noise nth.
(e,f) figure out the behavior of the mechanical position variance versus the Duffing coefficient η . The rest of the parameters are the same as in
Figure 2.

(Gm,Ga) are enhanced, better is the degree of the squeezing
(see Appendix A for a large view).

In Figure 4c, we have plotted the position variance over
the thermal phonon mechanical excitation. The shadow erea
depicts the region below the 3dB. It can be seen that when
Ga = 0, there is only a short window where the squeezing is
above the 3dB (full line) compared to when Ga ̸= 0 (dashed
line). This feature reveals the key role played by the BSBS
effect, which supresses heating processes in the system [44].
This BSBS effect is further reinforced through the gap be-
tween the two lines in Figure 4c, showing how Ga ̸= 0 has im-
proved the degree of squeezing compared to the case Ga = 0.
By taking into account the synthetic jauge, the first observa-
tion in Figure 4d is the gap between the cases Ga = 0 and
Ga ̸= 0 that has been efficiently reduced. Indeed, the squeez-
ing generated for Ga = 0 follows almost the one generated
for Ga ̸= 0, and they stay longer beyond the 3dB compared
to what is shown in Figure 4d. This confirms that the syn-
thetic jauge contributes to suppress heating channels, inducing
strong squeezing even for Ga = 0, as ealier discussed in Fig-
ure 2. Furthermore, it can be observed that the squeezing re-
sists more to the mechanical thermal noise when the synthetic
jauge is accounted. In Figure 4(e,f), we display the mechani-
cal position variance versus the Duffing nonlinear coefficient

η . These figures show how the variance sharply grows for
weak values of η , and settles quickly to a plateau like a sat-
uration limit. However, it can be observed that the synthetic
jauge brigdes the gap between the cases Ga = 0 and Ga ̸= 0 as
previouly discussed. Moreover, Figure 4e shows how the de-
gree of the generated squeezing for Ga = 0 is below the 3dB,
while it exceeds this limit for Jm ̸= 0 as depicted in Figure 4f.
Once again, this reveals the merit of the synthetic jauge that
induces a strong squeezing even for Ga = 0 in our proposal as
shown in Figure 2.

In order to have a concise representation of these squeezed
states generated in our proposal, we move to the phase space
where we provide Wigner function distribution for specific pa-
rameters. Owing to the Gaussian nature of the quantum noise,
our linearized system can be captured through a single Gaus-
sian Wigner function in the steady state defined as [28]

W (um) =
1

2π
√

det[Vm]
exp

[
− uT

mV−1
m um

2
]
, (19)

where um = (δqm,δ pm)
T is the column vector of the mechan-

ical fluctuations and Vm stands for the covariance matrix for
the mechanical mode. The left column in Figure 5 depicts
the Wigner function distribution of the mechanical resonator
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FIG. 5: Wigner function distributions and dynamic of mechanical
variances. Left column depicts Wigner function (a), position vari-
ance (b) and the momentum variance (c) at Jm = 0.1ωm, and θ = 0.
Right column depicts Wigner function (d), position variance (e) and
the momentum variance (f) at Jm = 0.1ωm, and θ = π/2. These fig-
ures are extracted from the feature displayed in Figure 3. The other
parameters are the same as in Figure 2.

(Figure 5a), the mechanical position variance (Figure 5b) and
the mechanical momentum variance (Figure 5c) for the syn-
thetic modulation phase of θ = 0. Similarly, the right col-
umn displays the same quantities at θ = π

2 i.e., the Wigner
function distribution (Figure 5d), the position variance (Fig-
ure 5e) and the momentum variance (Figure 5f). These figures
have been captured for a long time enough that the system
has reached its steady state dynamic. Moreover, these figures
have been extracted from Figure 3a for the mechanical cou-
pling strengh fixed at Jm = 0.1ωm. In Figure 5(a,d), the con-
tour represented by a dark circle depicts the related coherent
state, while the shrunken and expanded shape bounded by the
white ellipsis features the corresponding generated squeezed
state. As predicted from Figure 3a, the wigner function at
θ = 0 (Figure 5a) shows less squeezing as compared to when
θ = π/2 (Figure 5d). Moreover, these Wigner function dis-
tributions confirm the squeezing along the position direction,
while the quantum fluctuation is transfered to the momentum
direction which is amplified. To further analyze these obser-
vations, we have plotted the dyanmical time-evolution of the
involved variances. As expected, both position and momen-
tum dynamical evolution at θ = 0 clearly show no squeezing
(Figure 5(b,c)), which is revealed by an oscillatory behavior

above the Standard Quantum Limit (SQL). However, we can
qualitatively observe that there is less amount of noise along
the position direction compared to the momentum direction
as predicted by the corresponding Wigner distribution (Fig-
ure 5a). For θ = π/2, however, Figure 5e shows squeezing de-
gree below the SQL, while its corresponding momentum is far
above the SQL, revealing that quantum fluctuation has been
amplified along this direction as predicted from Figure 5d.
From the above analysis, it can be seen that our Wigner func-
tion distribution together with the dynamical evolution of the
variances agree well with the synthetic magnetism squeezing
enhancement pointed out in Figure 3. This work provides an
efficient scheme toward squeezing enhancement beyond 3dB
in optomechanical system that is based on backward stimu-
lated Brillouin scattering effect. The generated squeezing un-
der this scheme is robust enough against thermal noise com-
pared to the case without the synthetic magnetism. This inves-
tigation can be extended to electromechanical systems, hybrid
opto-electromechanical system and to connexe fields.

IV. CONCLUSION

We have investigated on a synthetic magnetism effect in-
ducing mechanical squeezing enhancement in an optome-
chanical system, which hosts a backward stimulated Brillouin
scattering process. Our benckmark system consists of an
acoustic mode that couples to two optical modes through the
BSBS process, and a nonlinear mechanical oscillator that cou-
ples to the two optical modes through the standard optome-
chanical radiation pressure. A mechanical coupling, with a
strengh Jm that is modulated through a phase θ , is connect-
ing the acoustic and mechanical modes, which induces a syn-
thetic magnetism in our proposal. Without this synthetic mag-
netism, there is a given amount of squeezing that is generated
in the system. This squeezing is mainly induced by the BSBS
process, and is fragile against thermal noise. When the syn-
thetic magnetism is accounted, the degree of the generated
squeezing is greatly enhanced and goes far beyond the 3dB.
Moreover, this large induced squeezing persists even when
the system is free from the BSBS process. Furthermore, this
generated squeezing is robust enough against thermal noise
compared to the case without synthetic magnetism. Another
merit of the synthetic magnetism in our proposal is revealed
through the peaks and dips of both squeezing magnitude and
mechanical effective phonon number depending on the modu-
lation phase of the mechanical coupling. This oscillatory fea-
ture is reminscent of a sudden death and revival of squeezing
phenomenon, which can be used to maintain a desired mag-
nitude of squeezing by tuning the phase θ . Our work sheds
light on a flexible scheme that can be used to generate a large
amount of mechanical squeezing, far beyond the 3dB limit.
Our scheme can be implemented in optical and microwaves
cavities, as well as in hybrid optomechanical systems. Such a
generated squeezed states can be useful for range of quantum
applications including quantum information processing, quan-
tum sensing/metrology, and the recent development in quan-
tum computing.
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