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Disorder free many-body localization (MBL) can occur in interacting systems that can dynami-
cally generate their own disorder. We address the thermal-MBL phase transition of two isotropic
Heisenberg spin chains that are quasi-periodically coupled to each other. The spin chains are in-
commensurate and are coupled through a short range exchange interaction of the XXZ type that
decays exponentially with the distance. Using exact diagonalization, matrix product states and
density matrix renormalization group, we calculate the time evolution of the entanglement entropy
at long times and extract the inverse participation ratio in the thermodynamic limit. We show that
this system has a robust MBL phase. We establish the phase diagram with the onset of MBL as a
function of the interchain exchange coupling and of the incommensuration between the spin chains.
The Ising limit of the interchain interaction optimizes the stability of the MBL phase over a broad
range of incommensurations above a given critical exchange coupling. Incorporation of interchain
spin flips significantly enhances entanglement between the spin chains and produces delocalization,
favoring a pre-thermal phase whose entanglement entropy grows logarithmically with time.

I. INTRODUCTION

Many-body localization (MBL) describes a dynamical
phase of an interacting quantum system that can not
reach thermal equilibrium in the thermodynamic limit
[1–10]. The growth of entanglement with time within
an isolated system is inhibited in the MBL phase, re-
sulting in nonergodic time evolution and area law scaling
of the entanglement entropy. A thermal phase in con-
trast follows ergordic time evolution, developing full en-
tanglement in the Hilbert space and volume law scaling
of entanglement entropy. Thus, a hallmark of the MBL
phase is the onset of very slow dynamics that preserves
information of the initial quantum state [11–15]. MBL
states have been experimentally observed in optical lat-
tices with cold atoms systems [15, 16], where the entan-
glement entropy can be directly measured [17], and also
in circuits with superconducting qubits [18, 19]. Those
states are of technological importance in the develop-
ment of quantum memory [20–23] and also of fundamen-
tal interest to subjects ranging from quantum informa-
tion, time crystals and quantum thermalization in closed
systems [24–28].

Disorder and interactions are identified as key control-
ling parameters driving a thermal system towards a MBL
phase. In the absence of interactions, a quantum system
subjected to arbitrarily weak disorder potential would be
Anderson localized [1, 29, 30] in 1D. Many-body local-
ization occurs in one dimensional interacting systems in
the presence of externally applied random disorder fields
[10–14, 31–35]. A system can exhibit thermal-MBL phase
transition when the magnitude of the disorder strength
(h) is greater than a critical value, h > hc. Usually, this
transition occurs through a marginally localized inter-
mediate regime, which may depend on the system size,

disorder strength and the interactions [14, 35, 36].

MBL has been theoretically proposed in the presence
of quasiperiodic static potentials described by the Aubry-
Andre model in 1D [15, 37–40]. The onset of thermal-
MBL phase transition in this model has been found to
be at the critical value hc = 2 (in units of the “kinetic”
energy) and followed by a broad marginally localized pre-
cursor to the MBL regime [35, 37, 38]. Recent numerical
studies of two-leg ladder model provide signatures of the
thermal-MBL transition for both random disorder and
the Aubry-Andre model under an externally applied crit-
ical field strength in the range 8 < hc < 10 [40, 41].

Disorder free MBL arises in systems that can dynami-
cally generate their own disorder in the absence of exter-
nally applied fields. Proposals in 1D lattices include of
out-of-equilibrium bosons [42] or spins [43], or families of
models with fermions effectively coupled to spins [44, 45].
A two-leg ladder compass model, with discrete transla-
tional symmetry and imposed topological constraints on
the Hilbert space due to conservation laws, identified a
pre-thermal phase with logarithmic growth of the entan-
glement entropy in time [46]. It has been shown that
the presence of a linearly varying potential in spin chains
may disentangle the Hilbert space in discrete sectors, re-
sulting in non-ergordic MBL-like dynamics [21, 47–52].
In another proposal, two coupled fermionic chains with
full translational symmetry, each chain having a dif-
ferent species with either heavy or light masses, were
found to have early time evolution indications of MBL
[53–57]. Translationally invariant systems, nevertheless,
show strong finite-size effects and are expected to delo-
calize in the thermodynamic limit at long times [56, 57].
Moreover, implementation of some of the other proposals
requires the preparation of specifically ordered states in
finely tuned Hamiltonians.
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Figure 1. Schematic of the two isotropic Heisenberg spin
chains having lattice parameters a and b. The isotropic spin
interaction within each chain is described by JA and JB . The
short range NN exchange coupling between chains at direction
ν, Uν

⟨nm⟩, is guided by the black dashed line. The dotted curvy
line represents a bipartite cut employed to calculate the time
evolution of the entanglement entropy between left and right
parts of the system.

In this work we address the question of whether the
quasiperiodic coupling between two isotropic spin chains,
each one with discrete translational symmetry, can pro-
duce a robust MBL phase. We show that the answer is af-
firmative. We propose a model consisting of two isotropic
spin chains coupled to each other by an anisotropic short-
range exchange interaction of the XXZ type that de-
cays exponentially with distance. The two spin chains
have different incommensurate lattice parameters a and
b. The ratio between lattice parameters is irrational,

b− a

a
≡ γδ, (1)

where δ > 0 is a real number and γ is some irrational
number whose value is chosen to be γ = (1−π2/10), with
0 ≤ γδ < 1. This construction results in two coupled spin
chains with incommensurate lattice constants. Because
their exchange coupling decays exponentially with the
distance between spin sites, the two chains are quasi-
periodically coupled to each other, as indicated Fig. 1.

In the Ising limit of the XXZ exchange between the
chains, we show that this system enters a MBL phase
above a critical value of the quasiperiodic interchain ex-
change coupling. Such critical value is strongly depen-
dent on the incommensuration. We provide numerical
evidence that the MBL phase is optimized for 0.176 <
γδ < 0.712 and is suppressed in the commensurate limit
γδ → 0. In the optimal regime, the MBL phase emerges
when the interchain exchange coupling in the z spin axis
Uz

0 /J > 9, with J the isotropic intrachain Heisenberg
exchange coupling, while a pre-thermal phase appears
between 6 < Uz

0 /J < 9. In the latter, the entangle-
ment entropy grows logarithmically with time. Below
Uz

0 /J < 6 the system is in the thermal phase for most
incommensuration values.

We find that restoration of the interchain exchange
coupling in the x and y spin directions, Uxy

0 , signifi-
cantly enhances entanglement between the chains and

produces delocalization. In the isotropic limit Uxy
0 = Uz

0 ,
the system is always in the thermal phase. For strong
but finite anisotropy, the MBL phase is stabilized at
Uz

0 /J > 30 for Ux,y
0 /J = 1 near the optimal incom-

mensuration γδ ≈ 0.391. In this regime thermalization
occurs at Uz

0 /J < 9, with a broad pre-thermal region in
between.

The structure of the paper is as follows: in section II
we describe the Hamiltonian of the system and proceed
to calculate the time evolution of the bipartite entangle-
ment entropy S in section III. In the Ising limit of the
XXZ interchain exchange, we show that the entangle-
ment entropy follows a transition from volume law to
area law scaling at finite incommensuration, as the ex-
change coupling between the chains is increased. Next,
using exact diagonalization at zero magnetization, we cal-
culate the averaged inverse participation ratio (IPR) for
finite system sizes as a function of the incommensuration
and the exchange coupling. We extrapolate the IPR to
the thermodynamic limit and construct the phase dia-
gram separating the thermal and MBL phases. To check
for the stability of the MBL phase in the Ising limit of
the XXZ exchange between the chains, we restore the
interchain exchange interaction along the x and y spin
directions. We examine the time evolution of the entan-
glement entropy to show that the MBL phase remains
stable, although at a much larger interchain critical cou-
pling Uz

0 . We also calculate the IPR of the ground state
for very large system sizes using density matrix renormal-
ization group (DMRG) to gain insight in the behavior of
the system in the γδ → 0 limit. Finally, in section IV we
present our conclusions.

II. COUPLED SPIN CHAINS MODEL

We consider two isotropic spin- 1
2 Heisenberg chains

with Hamiltonian

Hα = Jα

Nα∑
i=1

Si · Si+1, (2)

where α = A,B labels each chain, and Jα > 0 is the in-
trachain nearest neighbors (NN) exchange coupling. Nα

is the number of spins on chain α and S = (Sx, Sy, Sz) is
the spin operator Sν = ℏ

2σ
ν , with ν = x, y, z labeling the

standard Pauli matrices. The spin chains are coupled to
each other through the XXZ exchange

HAB =
∑

ν=x,y,z

∑
n∈A,m∈B

Uν
nmS

ν
nS

ν
m, (3)

where Ux
nm = Uy

nm ≡ Uxy
nm and Uz

nm are the interchain
exchange couplings for spins oriented in the x, y, z di-
rections. The interchain exchange decays exponentially
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Figure 2. Evolution of the inter-chain interaction profile for NN sites, Uν
⟨nm⟩/J versus the site position n in the spin ladder

for different values of incommensuration γδ, with γ = (1 − π2/10) an irrational number. n sites below to chain A and m sites
to chain B. The legends represent the approximate value of γδ for each potential profile. δ = e0.2, e1.2, e2.6, e3.4, e3.6, and e4

for γδ ≈ 0.016, 0.043, 0.176, 0.391, 0.477 and 0.712, respectively.

with the distance between sites,

Uν
nm = Uν

0 eρ
(

1−
√

1+r2
nm

)
, (4)

where rnm = |RA
n − RB

m|/d is the horizontal distance
between sites normalized by the distance between the
two chains d, and ρ sets the range of the interaction. Rν

n

is the position of the spins along the chains,

RA
n = an− rA

0 , RB
m = bm− rB

0 . (5)

with a and b the lattice parameters of spin chains A and
B respectively, and rα

0 is the origin of each chain.
The primary focus of this work is to investigate the

effect of interchain exchange coupling in the onset of the
MBL transition. We finely tune JA = JB = J so that in
the limit Uν

0 → 0 the system decouples into two identi-
cal isotropic Heisenberg spin chains, which are ergodic.
The exchange coupling between chains Uν

⟨nm⟩ given in
Eq. (3) is truncated to the two NN spin sites, as shown
in Fig. 1. The solid lines connecting spin sites in each
chain represent the isotropic interactions between spins
in each chain. The dashed line running between spin
sites is a guide to the eye representing the short range
exchange coupling between chains. Thus, each spin in a
chain couples through J with two NNs in the same chain
and through Uν

⟨nm⟩ with upto two nearest spins in the
opposite chain. We set ρ = 10 in Eq. (4). Our conclu-
sions do not depend on the choice of ρ, which will at most
rescale the localization length at finite system sizes, but
not in the thermodynamic limit.

We consider the regime where the incommensuration is
in the range 0 ≤ γδ < 1, in which the lattice parameters
satisfy b ∈ [a, 2a]. For large incommensurations γδ ≫ 1,
the linear bond density between chains is reduced, as
spin chain B becomes sparse, and the two spin chains
effectively decouple. The evolution of the profile of the
interchain interaction between NN spins Uν

⟨nm⟩ with the
incommensuration is shown in Fig. 2.

III. METHODS AND RESULTS

The many-body quantum states of the total Hamilto-
nian

H = HA + HB + HAB (6)

can be described using 2N basis vectors spanning the
Hilbert space, with N = NA + NB the total number of
sites in the spin ladder. The basis vectors are constructed
with product states |s1⟩⊗· · ·⊗|sN ⟩, where |si⟩ = | ↑⟩, | ↓⟩
are the eigenstates of Sz

i on site i. By convention, the
product states are arranged from left to right in ascending
order as guided by the dashed line in Fig. 1. We use the
above ordered set of basis vectors to calculate the matrix
elements of H and construct the matrix product state
(MPS) in our numerical calculations.

We numerically calculate the time evolution of an ini-
tial product state following a global quantum quench us-
ing the unitary transformation, |ψ(t)⟩ = e−iHt|ψ0⟩. The
initial state is chosen so that the spins in each chain are
arranged in a Neel state. For instance, at low incom-
mensuration (γδ ≈ 0) the initial product state is given
by |ψ0⟩ = | ↑, ↑, ↓, ↓, · · · , ↑, ↑⟩. We use MPS to represent
the quantum many body system and study the dynam-
ics following the time-evolving block decimation (TEBD)
method. In TEBD method, the time evolution operator
e−iHτ is decomposed into the product of locally interact-
ing pair of spins using a second order trotter decomposi-
tion and contracted with the MPS to obtain the updated
quantum state after time τ (see Appendix A). This pro-
cess is repeated t/τ time steps to obtain the quantum
state of the system after time t. The maximum time
step used is τ = 0.05J−1. The internal bond dimension
of the MPS can be truncated in low entangled systems to
improve computational efficiency. In this work, we use a
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Figure 3. Time evolution of the bipartite entanglement entropy S(t) following a quantum quench from an initial product state
for different system sizes. (a) Thermal phase at δ = 1.0 (γδ ∼ 0.013), Uz

0 /J = 1 and Uxy
0 = 0 for N = 6,10, 14, 18 and 22. The

entropy saturates due to the finite size effects. The saturated entropy follows the volume law of entanglement. Inset: Plot of
the saturated entropy S(∞) vs. number of ladder spins N in the thermal phase. The slope of the straight line is 0.3305. MBL
phase at δ = 15.0 (γδ ∼ 0.196), Uz

0 /J = 25 and Uxy
0 = 0 for (b) rA

0 = Na/2 + 0.5 and rB
0 = Nb/2 + 0.6 and (c) rA

0 = Na/2 and
rB

0 = Nb/2 + 0.3. Different curves correspond to different system sizes. The relative placement of the two chains is adjusted to
keep bond strength at the bipartite cut independent of the system size. In either case, the curves collapse on top of each other,
consistently with area law entanglement (see text).

weight cutoff of 10−7 in the MPS of the thermal phase.
In the MBL phase, we used a MPS bond dimension of
50.

A. Entanglement Entropy

The spin ladder is bipartitioned with a vertical cut into
two spin ladders with N/2 of spins, as shown in Fig. 1.
We study the development of entanglement between the
left and the right half of the system with time. The re-
duced density matrix of the left half of the system (ρL) is
calculated by tracing out the quantum degrees of freedom
of right half. This quantity is a probabilistic measure of
the entanglement developed through 2N/2 bonds between
the left and the right halves of the system. Thus, the Von-
Neumann bipartite entanglement entropy is calculated as
S = −trL [ρL ln(ρL)].

Volume law versus area law. We investigate the
role of the exchange coupling between chains and the
amount of incommensuration in the MBL transition. We
first turnoff the spin flip exchange interaction between
two chains by setting Uxy

0 = 0. Choosing the relative
position of the two spin chains to be rA

0 = rB
0 = 0, we

show in Fig. 3 that the bipartite entanglement entropy
S follows a transition from volume law entanglement to
area law as a function of Uz

0 and γδ. Fig. 3a shows
the time evolution of S for δ = 1.0 (γδ ≈ 0.013) and
Uz

0 /J = 1 at different system sizes. As time elapses,
S initially grows quickly and eventually saturates close
to the maximum possible value of entanglement entropy
for half system, N ln(2)/2 ≈ 0.3466N . The saturated

entropy S(∞) scales linearly with the size of the system
N (see inset of Fig. 3a) with a slope of 0.3305. Thus,
the system is in the thermal phase and follows a volume
law of entanglement. Those results are independent of
the choices of rA

0 and rB
0 .

At higher values of Uz
0 and incommensuration the sys-

tem has area law entanglement across the left and right
partitions. In Fig. 3b and c, we plot the time evolu-
tion of S for δ = 15.0 (γδ ≈ 0.196) and Uz

0 /J = 25 in
four different system sizes: N = 14, 18, 22 and 30. We
adjust the relative placement of the chains through rA

0
and rB

0 to ensure that the bond strength Uz
⟨n̄m̄⟩ at the

bipartite cut (n̄ = N/2) is independent of the chain size.
Fig. 3b depicts the time evolution of the S(t) curves
for rA

0 = Na/2 + 0.5 and rB
0 = Nb/2 + 0.6, where the

bond strength at the partition is Uz
⟨n̄m̄⟩ = 0.46 for all

N . Fig. 3c depicts the behavior of S(t) for a different
choice of relative placement of the chains, rA

0 = Na/2
and rB

0 = Nb/2 + 0.3, where the bond strength at the
bipartite cut is Uz

⟨n̄,m̄⟩ = 1.2. In both cases, S(t) is in-
dependent of N . The different curves for several chain
sizes collapse into a single curve. The system has thus
area law entanglement and is many-body localized up to
the longest time scales t ∼ 103J−1 observed in our sim-
ulations.
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Figure 4. Numerical phase diagram between thermal and MBL phases. Left panel: color plot of the mean inverse participation
ratio extrapolated to the thermodynamic limit ⟨I⟩∞ versus incommensuration γδ and strength of exchange coupling between
the chains Uz

0 /J . Right panel: Color plot of the exponent α extracted in the extrapolation of ⟨I⟩ to the thermodynamic limit
versus γδ and Uz

0 /J . The onset of the thermal-MBL phase separation (black solid line) is drawn at ⟨I⟩∞ = 0.1. The thermal
region (dark red) to the left of the line corresponds approximately to the region where scaling exponent α < −1.0 in the right
panel. The black dashed line is drawn at ⟨I⟩∞ = 0.5. The solid while line is at ⟨I⟩∞ = 0.9 and the region to its right in
bright yellow is in the MBL phase. This region approximately matches the light blue region on the right panel, where α > 0.5.
The intermediate region between the solid black and solid white lines is marginally localized (0.1 < ⟨I⟩∞ < 0.9). This region
corresponds to the range of scaling exponents −1 < α < 0.5 in the panel on the right.

B. MBL phase diagram

To quantify the MBL transition over a broader range
of parameters and extract the thermal-MBL phase dia-
gram, we calculate the mean inverse participation ratio
(IPR) of the full energy spectrum at infinite temperature
using exact diagonalization. We impose that the system
has zero net magnetization and restrict the size of the
Hilbert space by picking only the N !/ (N/2)!)2 basis vec-
tors that have the same total number of | ↑⟩ and | ↓⟩
states. The Hamiltonian matrix of Eq.(6) is diagonalized
to obtain the full eigenspectrum of the system. The IPR
is calculated through the average

⟨I⟩ = 1
D

D∑
λ=1

4
N

N∑
i

⟨ϕλ|Sz
i |ϕλ⟩2, (7)

where |ϕλ⟩ is the λ-th eigenvector and D is the number
of eigenvectors in the system. For a maximally localized
(thermalized) phase, ⟨ϕλ|Sz

i |ϕλ⟩ = ± 1
2 (0) at each spin

site and hence ⟨I⟩ takes the value 1 (0). We calculate
the IPR for each value of Uz

0 /J and incommensuration
γδ in five system sizes, N = 8, 10, 12, 14, 16, and then
extrapolate to the thermodynamic limit (N → ∞), ⟨I⟩∞.
Following the procedure described in ref. [35], we adopt

the ansatz
⟨I⟩

1 − ⟨I⟩
∝ Nα, (8)

from which we extract the scaling exponent α. In ide-
ally thermalized states, where the system is entirely de-
localized and ergodic, α < −1 with ⟨I⟩∞ ∼ 0. On the
other hand, in the MBL phase, one expects α > 0 with
⟨I⟩∞ ∼ 1.

Phase diagram. The thermal-MBL phase diagram is
drawn in the left panel of Fig. (4), where we plot ⟨I⟩∞
against the interchain coupling Uz

0 and the incommensu-
ration γδ. The black solid line, drawn at ⟨I⟩∞ = 0.1 sep-
arates the thermal phase (dark red) from the marginally
localized and MBL phases (light red and bright yellow,
respectively). The system is in the thermal phase for all
values of Uz

0 /J below the the critical exchange coupling
at the phase separation line (solid black). This phase
separation approximately corresponds to the boundary
of the region in the right panel of Fig. 4 where the scal-
ing exponent α < −1. The system is in the thermal phase
when Uz

0 /J ≲ 6 for all values of γδ < 0.8.
The region where Uz

0 /J is larger than the critical value
set by the solid white line is identified as fully many-body
localized (yellow region), where ⟨I⟩∞ > 0.9. It corre-
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lates with the region shown in light blue in the right
panel, where α > 0.5. The black dashed line is drawn
at ⟨I⟩∞ = 0.5 and approximates the boundary where
α = 0 in the right panel. It is clear that the onset of the
MBL phase has a strong dependence on the incommen-
suration. In both the analysis of ⟨I⟩∞ and the scaling
exponent α, the optimal incommensuration for the on-
set of MBL is in the range 0.176 < γδ < 0.712, where
the critical exchange coupling is Uz

0 /J ∼ 10. At low in-
commensurations, γδ ≲ 0.1, the MBL phase is strongly
suppressed. In particular, in the limit γδ → 0, where the
coupling between the spin chains becomes periodic, we
observe no MBL. In the opposite limit, γδ → 1, the bond
density between the chains decreases as the lattice con-
stant of one chain becomes nearly twice as the constant
of the other chain. In this regime the critical coupling
needed for MBL increases.

The light red region in the left panel of Fig. (4) corre-
sponds to an intermediate phase with 0.1 < ⟨I⟩∞ < 0.5
where the states are marginally localized. This region ap-
proximately matches the mid region in the right panel,
where −1 < α < 0. The width of this region is very
broad at low incommensuration, reflecting the suppres-
sion of MBL, but narrows down at γδ ≥ 0.176. This
appears to be due to the development of rapid oscilla-
tions in the profile of the exchange interaction between
the chains Uz

⟨nm⟩ at γδ ≈ 0.176, as shown in Fig. 2.
The extrapolation of ⟨I⟩ to the thermodynamic limit in

small system sizes is meaningful for interaction potentials
that oscillate rapidly compared to the system size. The
extrapolated results appear to be fairly accurate in the
region γδ > 0.2. The extrapolation becomes less accu-
rate in the opposite regime, at low incommensuration. In
any case, we note that this procedure correctly captures
the expected suppression of MBL in the low incommen-
suration limit γδ → 0.

C. Delocalization due to spin flips between chains

We now turn on the exchange interaction between the
spin chains Uxy

0 , which produces spin flips. Spin flips be-
tween chains map through the standard Jordan-Wigner
transformation into interchain hopping in the fermionic
language, which could lead to delocalization. We nu-
merically observe that this term drastically lowers ⟨I⟩ in
the finite size systems we simulated (N ≤ 18). Obser-
vation of MBL through IPR over the whole energy spec-
trum would hence require much larger system sizes in
order to properly extrapolate the data to the thermody-
namic limit. This can be challenging given the exponen-
tial growth in computational cost in exact diagonaliza-
tion methods. To gain insight, we resort to calculate the
time evolution of the entanglement entropy S(t) through

Figure 5. Time evolution of the bipartite entanglement en-
tropy S at Uxy

0 /J = 1 for different incommensurations: (a)
γδ ≈ 0.176, (b) γδ ≈ 0.391, (c) γδ ≈ 0.712 and (d) γδ ≈ 0.870.
Top to bottom curves in each panel correspond to ascending
values of Uz

0 /J indicated on the left of the curves. (e) Slope of
the entanglement entropy C extracted from the logarithmic
fit of the curves in panels (a) to (d). The system enters in the
MBL phase when C = 0.

MPS. Even though MPS is relatively efficient, interchain
spin flip processes considerably increase the entanglement
of the states, requiring a much larger bond dimension for
the MPS compared to the Uxy

0 = 0 case.
In the panels a−d of Fig. 5 we show the time evolution

of the bipartite entanglement entropy calculated from the
initial state | ↑, ↓, ↑, ↓ . . . ⟩ for Uxy

0 /J = 1 at four different
incommensurations, δ = e2.6 for N = 18 and e3.4, e4.0,
and e4.2 for N = 14 (γδ ≈ 0.176, 0.391, 0.712 and 0.870,
respectively). Each panel shows six curves ordered from
top to bottom with increasing values of Uz

0 /J ranging
from 7 to 36. We observe logarithmic growth of S at
long times before reaching the saturation, a character-
istic signature of a precursor to the MBL phase in the
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Figure 6. DMRG calculation of the ground state inverse
participation ratio IG for Uz

0 /J = 7.39 and Uxy
0 /J = 0, (blue

curves) Uxy
0 /J = 1, (purple) and Uxy

0 = Uz
0 (green). (a) IG

versus inverse of the system size 1/L for γδ ≈ 0.016 (squares)
and γδ ≈ 0.26 (circles). (b) Thermodynamic limit of the
ground state inverse participation ratio IG(∞) for L → ∞
versus incommensuration γδ.

parameter space. At sufficiently long times, this phase is
expected to thermalize.

In order to characterize the MBL transition, we fit the
curves with the form S(t) = Clog(Jt) + D and extract
the slope C. In panel 5e we plot the slope of the curves
as a function of Uz

0 . We average over two different ini-
tial product states, | ↑, ↓, ↑, ↓ . . . ⟩ and | ↑, ↑, ↓, ↓ . . . ⟩,
and different initial times. The values of C for differ-
ent system sizes are scaled to N = 14. The behavior
of C with Uz

0 shows a broad peak followed by a mono-
tonic decrease with increasing Uz

0 starting at Uz
0 /J = 9.2

for all incommensurations inside the previously identified
optimal range 0.176 < γδ < 0.712. The broad peak cor-
responds to a thermal phase that saturates early due to
finite size effects. The point at which the slope starts to
decrease monotonically with increasing Uz

0 can be iden-
tified as the onset of the thermal-MBL transition, with
marginally localized states. The rate of decrease of the
slope C varies with the incommensuration. The system
enters in the MBL phase only when C → 0. We note
that this is the case at γδ ≈ 0.391 for Uz

0 /J ≈ 30 where
C = 0.001. The slope nevertheless decreases much slower
for other incommensuration values, indicating the broad-
ening in size of the marginally localized region as the
boundary to the MBL phase retreats. This picture is
qualitatively consistent with an overall shift of the MBL
phase separation line (white) to the right in Fig. 4, com-
bined with the emergence of a narrower range of optimal
incommensuration for the MBL phase that is centered
around γδ ≈ 0.391.

To develop more insight on the effect of delocalization
in the limit of γδ → 0, we use DMRG to calculate the
inverse participation ratio of the ground state IG [59].
This quantity is calculated for system sizes ranging from
N = 24 to 1100, with L ∼ N

2 . DMRG results are useful

predictors for thermal phases. Even though the presence
of localization in the ground state does not inform about
the behavior of the system at infinite temperature, where
it can delocalize, delocalization in the ground state can
conclusively rule out the emergence of MBL in the ther-
modynamic limit.

The plot in the left panel of Fig. 6 shows the varia-
tion of IG with the inverse of the size of the chains 1/L
at Uz

0 /J = 7.39 for Uxy
0 /J = 0, 1 and Uxy

0 = Uz
0 (blue,

purple and green curves respectively). The thermody-
namic limit of IG at L → ∞ [IG(∞)] for Uxy

0 /J = 0
(blue curves) indicates localization of the ground state
irrespective of the incommensuration (γδ ≈ 0.016 and
0.26). This behavior is consistent with the fact that the
ground state of the isotropic antiferromagnetic Heisen-
berg model for a single spin chain has gapped spinon
excitations [60, 61]. Those gapped excitations remain
stable in the presence of an Ising exchange coupling with
another chain (Uxy

0 = 0) in the γδ → 0 limit. This is
confirmed on the right panel of Fig. 6, where we plot
IG(∞) as a function of the incommensuration γδ. The
blue curve shows that IG(∞) ≈ 0.79 at γδ ≈ 0. For
the chosen set of couplings, the phase diagram in Fig. 4
reveals that the system will eventually delocalize in the
infinite temperature regime through a pre-thermal phase.

For finite anisotropy in the XXZ exchange between
the chains, we observe a significant reduction of IG(0)
with increasing Uxy

0 /J . For Uz
0 /J = 7.39 and Uxy

0 /J = 1
(purple solid line) IG(∞) peaks at γδ ≈ 0.391, where it
has a kink. This is qualitatively consistent with MPS
results for the time evolution of the entanglement en-
tropy shown in Fig. 5, which optimizes MBL at the same
incommensuration. At smaller values of γδ, IG(∞) de-
creases rapidly and goes to zero in the γδ → 0 limit.
This suggests that the whole energy spectrum is delocal-
ized in the commensurate limit. In the isotropic limit
of the XXZ exchange between the chains, Uxy

0 = Uz
0 ,

IG(∞) ≪ 1 for all incommensurations (green curves in
Fig. 6), consistently with a thermal phase.

IV. CONCLUSION

We showed that robust MBL emerges from two
quasiperiodically coupled Heisenberg spin chains. Us-
ing a combination of different numerical methods, we de-
rived the thermal-MBL phase diagram of this problem
as a function of the interchain exchange coupling and
the incommensuration. We show that the MBL phase
is optimal in the Ising limit of the XXZ interchain ex-
change interaction, over a whole range of incommensu-
rations 0.176 < γδ < 0.712. Spin flip processes between
chains produce a significant amount of entanglement and
favor a pre-thermal phase. MBL is generically present at
finite incommensuration above a critical exchange cou-
pling Uz

0 in the anisotropic regime Uxy
0 /Uz

0 ≪ 1, and is
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entirely suppressed in the isotropic limit of the XXZ ex-
change interaction. This proposal does not require finely
tuned Hamiltonians and could be implemented in spin
chains constructed in the absence of externally applied
potentials.

We thank J. Knolle and A. Auerbach for insightful dis-
cussions. BU was supported by NSF (US) DMR-2024864.
KGSH acknowledges UOR for support.

Appendix A: Numerical calculation of the time
evolution of state |ψ⟩

In this appendix, we provide numerical details of the
time evolving block decimation (TEBD) method adopted
to describe the time evolution of states according to
Hamiltonian (6). We provide a comparison of the nu-
merical results of the bipartite entanglement entropy S(t)
against exact diagonalization.

A many-body quantum state can be described by the
linear superposition of 2N basis vectors

|ψ⟩ =
∑
si

cs1s2...sN
|s1s2 . . . sN ⟩, (A1)

where |si⟩ are the eigenstates of Sz
i with | ↑⟩ or | ↓⟩ spin

states. The quantum state A1 can be represented in the
form of a matrix product state (MPS) as

|ψ⟩ =
∑

si
u1

s1l1
u2

l1s2l2
u3

l2s3l3
. . . uN−1

lN−1sN−1lN
uN

lN sN

×|s1s2 . . . sN ⟩, (A2)

where up
ijl are tensors of rank-3 at spin site p. These are

associated with the basis vectors generated by the tensor
product |s1⟩ ⊗ · · · ⊗ |sN ⟩ and can be represented by the
diagrammatic notation shown in Fig.7.

The time evolution of a quantum state |ψ⟩ is described
by the unitary operator, U(τ) = e−iHτ , where H is the
time independent Hamiltonian. The state at time τ + t0,
|ψ(τ + t0)⟩ can be given by applying the time evolution
operator U(τ) to the initial state |ψ(t0)⟩

|ψ(τ + t0)⟩ = e−iHτ |ψ(t0)⟩. (A3)

Figure 7. Diagrammatic notation of the Matrix Product
State(MPS) tensor train.

Figure 8. Diagrammatic notation of the time evolution al-
gorithm (for time step τ) following the second order Trotter
decomposition. The algorithm is shown only for a system of
N = 6. The two rectangles connected by a thin horizontal
line represent the operators hij and gnm. The solid circles
represent the MPS at initial time t0, |ψ(t0)⟩.

Hamiltonian (6) can be written as the sum of locally
interacting pairs of spins. We decompose the Hamilto-
nian into two parts: interactions within isotropic chains
H0 = HA + HB ≡

∑
i,j hij , where the pairs i, j are in-

teracting NN spins in the same chain; and inter-chain
interactions HAB ≡

∑
n,m gnm, with the pairs n,m de-

noting interacting NN spins in opposite chains. The lo-

Figure 9. Plot of time evolution of the entanglement entropy
of the system shown in Fig. 1 for γδ = 0.013, Uz

0 /J = 1 and
Uxy

0 /J = 0. The solid lines represent the results of numerical
calculation using the algorithm shown in Fig. 8. The time
step used is τ = 0.05J−1. A weight cutoff 10−7 is employed in
Julia code truncating the MPS. The open symbols represent
the results from exact diagonalization (ED) for N = 10 and
N = 14.
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cally interacting pairs of spins hij and gmn are called
gates. The basis states are arranged in ascending order
as shown in Fig. 1. Thus, at low values of incommensu-
ration (γδ ≪ 1), j = i+ 2 and m = n+ 1.

The time evolution operator can be written as

U(τ) = e−i(H0+HAB)τ . (A4)

We now write Eq. (A4) as a product of gates hij and
gnm, so that the operator U(τ) can be contracted with
the MPS in eq. (A2) to numerically evaluate |ψ(τ + t0)⟩.
Since [H0,HAB ] ̸= 0, we adopt a second order Trotter
decomposition

e−i(H0+HAB)τ ≈ e−iHABτ/2e−iH0τ/2e−iH0τ/2e−iHABτ/2

+O
(
τ3)

.

(A5)

Similarly, we can expand the decomposition to individual
gates. Equation (A3) can be implemented numerically as
shown in the diagrammatic notation in Fig. 8.

We calculate the time evolution of the bipartite en-
tanglement entropy with the numerical time evolution of
the quantum state calculated using the algorithm repre-
sented in Fig. 8. We compare the time evolution of the
entanglement entropy (S) calculated using the above nu-
merical time integration procedure with the results from
exact diagonalization (ED) in Fig. 9 for N = 10 and
N = 14. The two methods agree and give the same nu-
merical results.
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