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Machine learning offers a largely unexplored avenue for improving noisy disordered devices in
physics using automated algorithms. Through simulations that include disorder in physical de-
vices, particularly quantum devices, there is potential to learn about disordered landscapes and
subsequently tune devices based on those insights. In this work, we introduce a novel methodology
that employs machine learning, specifically convolutional neural networks (CNNs), to discern the
disorder landscape in the parameters of the disordered extended Hubbard model underlying the
semiconductor quantum dot spin qubit architectures. This technique takes advantage of experimen-
tally obtainable charge stability diagrams from neighboring quantum dot pairs, enabling the CNN
to accurately identify disorder in each parameter of the extended Hubbard model. Remarkably,
our CNN can process site-specific disorder in Hubbard parameters, including variations in hopping
constants, on-site potentials (gate voltages), and both intra-site and inter-site Coulomb terms. This
advancement facilitates the prediction of spatially dependent disorder across all parameters simul-
taneously with high accuracy (R2 > 0.994) and fewer parameter constraints, marking a significant
improvement over previous methods that were focused only on analyzing on-site potentials at low
coupling. Furthermore, our approach allows for the tuning of five or more quantum dots at a time,
effectively addressing the often-overlooked issue of crosstalk. Not only does our method streamline
the tuning process, potentially enabling fully automated adjustments, but it also introduces a "no
trust" verification method to rigorously validate the neural network’s predictions. Ultimately, this
work aims to lay the groundwork for generalizing our method to tackle a broad spectrum of physical
problems. In particular, our work establishes that the microscopic parameters controlling the semi-
conductor quantum dot quantum computing platforms can be uniquely determined in an automated
manner by using a CNN based machine learning technique using only the measured charge stability
diagrams as the input.

Two current areas of high scientific and technological
(in fact, even public) interest are neural networks and
quantum computation. While neural networks (or more
generally, machine learning) have progressed much more
rapidly recently, quantum computation has also been
making significant progress. Machine learning provides a
tool that could potentially speed up advances in the de-
velopment of quantum information hardware. The issue
of interest to us is the inevitable presence of unknown and
unintentional random disorder in the quantum devices,
which necessitates repeated finetuning and re-calibration
of the devices in order to obtain meaningful and repro-
ducible experimental results. We propose that neural
network based machine learning could provide consider-
able help in this tuning problem in an unknown disor-
der landscape. In particular, for a large class of physi-
cal problems, there exists a sufficiently accurate physical
model that is disordered in an unknown but potentially
predictable manner. For this class of problems, it may
be possible through theoretical simulations to generate
enough training data that allows a neural network to de-
termine the disorder landscape of the problem and then
feasibly correct it.

One case we will examine here is the disorder within
quantum dots as occurring in the important (because it
is scalable) semiconductor quantum dot based spin qubit
platforms [1–6]. Quantum dots serve as a promising plat-
form for qubits [1–6]. Extensive work has gone into inves-
tigating quantum dots for quantum computation, both

experimentally and theoretically [1–15]. Quantum dots
in semiconductors, used as spin qubits have many advan-
tages, such as their long coherence times [11], especially
when isotopically purified [12], electric field controllabil-
ity [16], and their fast and easy readout [17]. But these
quantum dots invariably have unknown disorder (arising
from random impurities and defects in the system) in the
environment, which complicate qubit operations. Our
work has the ambitious goal of using machine learning
to figure out the disorder landscape so that automated
control of qubit operations may become feasible in the
future.

The semiconductor microelectronics industry is ma-
ture, because of its key role in all modern technologies,
thereby enabling the integration of quantum dot tech-
nology into the pre-existing infrastructure. Additionally,
quantum dots can be created sufficiently small in size
consistent with the existing microelectronics industry, al-
lowing for scalability to large number of qubits required
to perform advanced quantum algorithms [18]. This is a
huge potential scalability and manufacturing advantage
driving quantum computing research in the quantum dot
based qubit platforms. In fact, recently Si quantum dot
qubits have been fabricated in advanced manufacturing
fabs where industrial semiconductor wafers are made, es-
tablishing the microelectronic manufacturing compatibil-
ity and potential of quantum dot architectures [19, 20].
Semiconductor quantum dots in their quantum comput-
ing architecture, where the two-qubit gates are operated
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by inter-dot exchange coupling, are naturally described
by the Hubbard model in the low-temperature, strong-
interaction regime, which facilitates their numerical sim-
ulation [14, 21–24]. This is typically set up as a Hubbard
model in the form of a chain (or plaquette) of sites (with
each quantum dot being a site) of some length. Disorder
significantly impedes the use of quantum dots for com-
putational purposes, making the control of disorder one
of the most important challenges to overcome in utilizing
quantum dots as a platform for quantum computation.
The disorder within quantum dots often manifests as er-
rors in each Hubbard model parameter, which are gener-
ally unknown, vary between sites, and must be corrected
before utilizing the dots for computation. Automating
the control of such disordered quantum dot structures
in order to carry out precise gate operations is a serious
practical problem since manual control can only work for
a system of a few dots [25, 26]. Scaling up to a many-dot
quantum computing platform requires a decisive resolu-
tion of the tuning problem in the form of an automated
procedure.

In previous work [14], a method was developed to de-
termine site-dependent disorder in the gate voltage for
three quantum dots, using a essentially a by-hand trial
and error algorithm to correct the disorder in the gate
voltages of the dot chain. This methodology has been in-
valuable for experimentalists aiming to employ quantum
dots for quantum computational purposes. Specifically,
this approach utilizes charge stability diagrams, which
are easily produced and serve as the primary means for
understanding the properties of these devices. For quan-
tum dots to be viable for quantum computation, it is cru-
cial that their Hubbard parameters are tuned to specific
values so that the Hamiltonian is precisely defined (which
is an essential condition for error-free initialization and
gate operations). However, this becomes a challenging
task as these parameters are prone to natural drift over
time due to environmental factors, noise and disorder,
necessitating periodic re-tuning through human interven-
tion. The laborious process of re-tuning quantum dots is
both unwelcome and time-consuming, typically requiring
the examination of numerous charge stability diagrams
by-hand to identify the optimal corrections for parameter
drift. Current methodologies [27] also limit adjustments
to only two quantum dots at a time, since attempting to
calibrate all the Hubbard model parameters simultane-
ously for a sequence of quantum dots is impractical for
an individual. Clearly, a much better automatic control
must be developed for scaling up the quantum dot struc-
tures since calibration and re-tuning individually is out
of question for more than 2-3 dots.

Machine learning presents an opportunity for improve-
ment. Neural networks, through the use of large amounts
of data, have been able to make connections and thus
predictions rapidly for tasks that would require impos-
sibly extensive human effort (e.g. image processing).
In physics, machine learning techniques have been uti-
lized to provide valuable insights into disordered prob-

lems, including potentially determining the entire disor-
der landscape [28]. When a sufficiently accurate theoret-
ical model exists (i.e. a precise Hamiltonian such as the
Hubbard model for quantum dot qubits)- even if it cannot
be directly applied due to disorder within its parameters,
which take an understandable (i.e. not arbitrary) but
unknown (and random) form in the Hamiltonian—it is
possible to generate large amounts of training data from
simulations. This training data can often enable a deep
neural network to find the disordered parameters in a way
that is applicable to experimental devices. Furthermore,
if the device can be modeled accurately, one can conduct
verification tests beyond the neural network’s input to
validate its predictions.

In the current work, we present a neural network based
machine learning method that, through a series of ex-
perimentally achievable measurements, is able to accu-
rately identify disordered deviations in the parameters of
the extended Hubbard model with no prior information
about the random disorder incorporated in the theory
implicitly or explicitly. It is crucial to emphasize that we
are addressing a many-body disordered strong correlation
problem, namely the disordered Hubbard model, solely
through machine learning. Specifically, we demonstrate
that by inputting as the training data a series of charge
stability diagrams from nearest neighbor pairs of quan-
tum dots into a convolutional neural network (CNN), it
is possible to pinpoint the disorder deviations in each
parameter of the extended Hubbard model. The fact
that this can be done is prima facie non-obvious, and
our results are validated aposteriori (which is of course
true for all machine learning and artificial intelligence
algorithm– the proof of its efficacy is based on the success
of its results). Our CNN is capable of handling not only
fixed sets of Hubbard model parameters but also site-
specific parameters, where each quantum dot may exhibit
unique values for coupling constants, intra and inter site
Coulomb repulsions, and single particle energies. We ex-
plore the prediction of single-parameter per site disorder
as well as simultaneous disorder across all parameters.
This method marks a significant advance from prior ap-
proaches that focused solely on on-site (ϵi) disorders [14].
Additionally, unlike previous studies focusing only on two
dots, we investigate tuning three, four, and five quan-
tum dots concurrently, thereby accounting for crosstalk
effects typically overlooked when only two quantum dots
are tuned at a time. To our knowledge, this is the first
successful attempt to determine site-specific disordered
extended Hubbard model parameters for more than two
quantum dots including all the coupling constants and
intra/inter-site Coulomb repulsions. It is also the first
to address site-specific disordered gate voltages/on-site
potential for more than three quantum dots. Our CNN
enables the possibility for effectively fully automated tun-
ing of quantum dot based systems removing the time con-
suming manual tuning process currently performed every
time the parameters drift due to disorder noise.

Beyond this, we also introduce a "no trust" method
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for verifying the output of our neural network, which
offers a significant advantage over other neural network
approaches by preventing the possibility of hallucination
and enabling conclusive experimental empirical confirma-
tion of the model’s predictions. Finally, we conclude by
generalizing our approach, discussing how our method
can be applied to solve disorder in a broad range of
physics problems while utilizing the "no trust" confir-
mation scheme we have implemented in this work and
previously. The paper is organized as follows:

I. Methods

A. Model: Describes the physical model, its
Hamiltonian, disorder implementation, and
simulation methods.

B. Current Tuning Process: Briefly describes the
process for tuning quantum dots using charge
stability diagrams.

C. Training Data: Explains training data gener-
ation and setting up the disorder for the ma-
chine learning problem.

D. Machine Learning: Discusses the deep learn-
ing CNN architecture and training process.

II. Results

A. Single Parameter Learning: Demonstrates the
neural network’s ability to accurately identify
disorder in each Hubbard parameter individ-
ually with high precision.

B. Many Parameter Learning: Demonstrates the
ability to accurately identify Hubbard devia-
tions when disorder affects all parameters.

C. No Trust Verification: Details a method to
verify machine learning results without relying
on the neural network output, addressing the
issue of hallucination.

D. Costs: discusses the computational costs of
our method.

E. Generalization: Presents a framework gener-
alization that allows its use for solving broader
disorder problems in physics.

III. Conclusion

I. METHODS

A. Model

We consider a ring of quantum dots within semiconduc-
tor platforms such as silicon or GaAs heterostructures,
which have been accurately modeled by the generic Hub-
bard model [8, 14, 29]. The generic extended Hubbard

model is expressed as follows:

H = −
∑

<i,j>,σ

tij

(
c†iσcjσ + h.c.

)
−

∑
i

ϵini

+
∑
<i,j>

Vijninj +
∑
i

Ui

2
ni(ni − 1) (1)

Here, ni = ni↑+ni↓ is the number operator, and ciσ is
the fermion annihilation operator, with i enumerating the
site locations and σ the spin degree of freedom (up/down
spins). The parameter tij represents the hopping ampli-
tude between sites, ϵi is the single-particle energy, Vij

denotes the inter-site Coulomb repulsion (where i.j indi-
cate different sites), and Ui stands for the on-site repul-
sion (essentially the diagonal Vii component of Vij). We
treat the disorder in our model as an additive unknown
random deviation from some expected nominal value in
these Hubbard model parameters. The parameters with
disorder-induced deviations are labeled as t̃ij = tij+δtij ,
Ṽij = Vij+δVij , Ũi = Ui+δUi, and ϵ̃i = ϵi+δϵi. For each
parameter χ, χ̃ is the new (disordered) Hubbard model
parameter incorporating the disorder deviation δχ. (This
separation only implies that the desired configuration is
without the disorder deviations whereas the quantities
with deviations are what the sample has to deal with
and the tuning process must bring the system back to
the undeviated parameters.) These deviations can be
considered specific detunings for each parameter. Only
nearest neighbor interactions (on a ring) will be consid-
ered such that Ṽij = t̃ij = 0 for j ̸= i + 1. This is a
non-essential approximation and is made only because it
applies very well to semiconductor quantum dot qubit
platforms– it is straightforward to relax this approxima-
tion if necessary. Similarly, the ring configuration with
periodic boundary conditions is not a limitation or an
approximation, the corresponding linear chain with pe-
riodic boundary conditions should manifest very similar
behavior and is numerically easier to handle.

Incorporating the disorder into our model leads to the
disordered quantum dot Hamiltonian as follows:

H = −
∑

⟨i,j⟩,σ

t̃ij

(
c†iσcjσ + h.c.

)
−

∑
i

ϵ̃ini

+
∑
<i,j>

Ṽijninj +
∑
i

Ũi

2
ni(ni − 1) (2)

The objective is to ascertain the deviations in each
Hubbard model parameter, which effectively determines
the parameters of the disordered Hamiltonian. The sys-
tem is considered at a finite (low) temperature kB

β =

0.005⟨U⟩ (with ⟨U⟩ being the average U value over the
sites), with site-dependent chemical potentials µi being
variable. Our measurements are based on expectation
values ⟨ni⟩ = Tr(ρni), where ρ = e−β(H−µini), and are
taken across an array of different µi values. Experi-
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mentally, these measurements are facilitated by apply-
ing a site-dependent gate voltage. All sites are mea-
sured simultaneously, resulting in an occupation vector
n⃗ = (⟨n1⟩, · · · , ⟨nN ⟩). Numerically, the simulation was
carried out through exact diagonalization using the Qus-
pin package [30]. To account for thermal effects, the bot-
tom 10 lowest energy states were retained for generating
ρ, an amount that is more than adequate (for describing
the typical experimental situation) given the low exper-
imental temperature setting. Note that as long as the
temperature is low, its precise value is irrelevant.

B. Current Tuning Process

The current method for determining the Hubbard
model parameters for quantum dots involves assessing
the parameters for each pair of dots by examining their
charge stability diagrams. This approach requires assum-
ing that the effects of other dots can be either removed
or rendered negligible. Charge stability diagrams depict
the stable electronic configurations (or expected occupa-
tion numbers) across different sites as a function of the
chemical potentials (or experimentally, gate voltages). In
the scenario of two quantum dots, the Hubbard param-
eters’ influence on the stability diagrams behaves in a
predictable manner, making it possible to deduce these
parameters. For example, the parameter t visually curves
the boundaries within the charge stability diagram. The
value of t between two quantum dots can be inferred
from the boundary between the (0,0) occupation phase
and the (0,1) or (1,0) occupation phases. The boundary
is represented by the equation µ1 ∗ µ2 = t2, leading to
the triple point labeled A, where µ1(A) = µ2(A) = −t
[31]. Assuming t is sufficiently small (which is the generic
situation), Ui can initially be approximated within the
stability diagram, based on the energy needed to add
a single electron to the i-th dot. If it is known that
U1 = U2 = U , then V12 for two quantum dots can be
determined from the position of a triple point within the
charge stability diagram [32]. Triple points are intersec-
tions of three distinct phases. The necessary triple point,
labeled B, involves [(1,0),(0,1),(1,1)] occupations and oc-

curs at µ1(B) = µ2(B) = t+ (U+V12)
2 −

√
4t2 + (U−V12)2

4 .
In situations where U1 ̸= U2, or when t is not small
enough to simplify the Ui determination, numerical fit-
ting should be done manually to determine V12, high-
lighting a primary limitation in current methodologies
[23]. For more details on this background, we refer the
reader to Refs. [14, 23, 32].

The site-dependent disorder, ϵ̃i, has been investigated
for tuning three quantum dots in a previous work [14],
where a method of least squares with phase diagram tran-
sition lines (identified using an edge-finding algorithm) is
employed to fit the parameters. This method proves ef-
fective but is limited to small t/U < 0.15, as it fails at
larger coupling values because the phase transition lines

cease to be sufficiently straight. In summary, the current
method for determining the Hubbard model parameters
relies heavily on manual fitting beyond a certain point,
using two or at most three quantum dots, which is no-
tably inefficient.

C. Training Data

The training data for the machine learning model con-
sists of performing occupation expectation n⃗ measure-
ments across various measurement configurations. Each
configuration specifies a list of µi for every site. How-
ever, for practical purposes, within each nearest neigh-
bor pair of quantum dots i and i + 1, we assign the pa-
rameters as follows: µi = µi, µi+1 = −µi, and for any
µj ̸=i = µ. We then independently vary µ and µi for all
sites in our model and across every pair of nearest neigh-
bor sites i and i+1, using periodic boundary conditions.
(Using open boundary conditions makes the machine
learning procedure somewhat easier numerically, with
similar results– the periodic/open boundary conditions
physically correspond to 2D/1D qubit configurations.)
Specifically, µ is adjusted between [−0.5W, 2.5W ] with
50 steps, and µi is varied between [−0.6⟨U⟩,+0.6⟨U⟩]
with 20 steps, where W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) acts as
the normalization factor. These normalization factors are
based on their deviation-free values, consistent across all
disorder realizations, although this adjustment is merely
a linear factor and not essential. The various measure-
ment configurations are recorded in a matrix K, where
each row records a specific setup of experimentally tun-
able parameters, labeled as j. The structure of the K
matrix is presented below:

Kj = [µj , µj
i , i

j
site] (3)

For each measurement configuration (or row Kj), the
expected occupation number of each quantum dot is used
to form an input matrix X. This X matrix, formed from
experimental measurements, will be utilized by the neu-
ral network to determine the Hubbard parameters. In
our case, of course, these ’experimental measurements’
producing the data are generated by the actual simula-
tions of the disordered Hubbard model.

Xj = [nj
1, n

j
2, n

j
3, · · · ] (4)

The output vector of the machine learning scheme,
which in this case also serves as the input vector to the
quantum simulation, will be denoted as the vector Y .
The vector Y comprises a list of all the disorder devi-
ations in the Hubbard model parameters. This can be
written as follows:
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Y =


δ⃗ϵ

δ⃗V

δ⃗t

δ⃗U

 (5)

Through exact diagonalization, it is possible to accu-
rately simulate, for a limited number of dots (perhaps
up to 10-20 in principle limited by the computational
resources underlying the exact diagonalization ), the oc-
cupation expectations matrix X for the different mea-
surement configurations included in our K matrix and
a given set of Hubbard model parameters Y . We can
express this as a function as follows:

fGen(Y ;K) = X (6)

This function serves as our generator, responsible for
creating our training data. To produce a large volume
of data for neural network training, we input numerous
randomly generated realizations of Y and generate their
respective X. It is important to note that all different
realizations of Y share the same K matrix. Therefore,
our goal is to find a function capable of taking X and K,
and returning Y . In other words, we aim to invert our
generator function to achieve the following:

f−1
ML(X;K) = Y (7)

Putting everything together for clarity, our input X is a
series of a version of charge stability diagrams. The neu-
ral network takes in a series of nearest neighbor charge
stability diagrams to determine the Hubbard model pa-
rameters for a ring of quantum dots.

D. Machine Learning

The neural network we use utilizes a particularly sim-
ple convolutional neural network (CNN), based on a
greatly simplified version of AlexNet [33]. CNNs have
proven especially effective in solving problems where the
input is akin to a vision problem, with some locality in
the data. In our case, the input is a series of charge sta-
bility diagrams, which are presently individually visually
inspected to determine parameters, making the applica-
tion of a CNN to this problem quite natural since a CNN
is an extremely efficient technique for implementing ’vi-
sion’.

Two different but very similar architectures were em-
ployed in the current work: one with 2D convolutional
layers and another with 3D convolutional layers. These
setups, depicted in Fig. 2, will be referred to as the 3D
type and the 2D type, respectively. In both types, the
neural network consists of two sets of convolutional lay-
ers, each containing two layers. In the 2D (3D) type,

(a)

(b)

FIG. 1: (a) Disorder free example of training data. The
chemical potentials µ1 = −µ3 (rescaled by ⟨U⟩ and

shifted by µ) vs. µk ̸=1,3 = µ (rescaled by
W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩)) (b) Disorder free example
of standard charge stability diagram. Both (a-b) are for
the 3 quantum dot pristine system with t=0.1, 0.5, 1.0.

The Hubbard Parameters were fixed U = 4,
Vi,i+1 = 0.2, ϵi = 0. The color bar represents the most
probable state at the chemical potential configuration

labelled by the plot.

the first set includes two 2D (3D) convolutional layers
with 64 filters and a kernel size of 3x3 (3x3x3), while the
second set is identical but with 128 filters. A 2D (3D)
max pooling layer with a size of 2x2 (2x2x2) is placed be-
tween each set. Following the convolutional sets in both
types are two dense layers with 1000 nodes each and a
final dense layer equal to the output size. This relatively
simple neural network configuration is notably efficient
in predicting the Hubbard parameters. For the 2D type,
the input was in the form of charge stability diagrams,
as previously mentioned, but these were reshaped into a
2D grid based on the µ and µj

i values, where the chan-
nels represent the expected occupation values of different
quantum dots. However, this setup does not include the
site number isite in the input. To incorporate this param-
eter, the 2D grid for each different site pair was appended
sequentially to the 2D grid, resulting in input data that
took the form of a grid of occupation numbers based on
the µ and µj

i values, where i = 1, 2 · · · , all appended to-
gether along the µj axis. This peculiar setup was chosen
for the 2D type to facilitate the use of a 2D CNN and to
make the input more symmetrical. In the 3D type, this
appending was unnecessary as the convolution spanned
all three axes: µ, µj

i , and isite. The 2D type architec-
ture was utilized for predictions involving deviations in a
single parameter, whereas the 3D type architecture was
applied to predict deviations in multiple parameters. For
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(a)

(b)

FIG. 2: Diagrams of the two different neural networks
used. Both machine learning models consist of a

convolutional neural network (CNN) portion followed
by two dense layers. The CNN is composed of two sets
of convolutional layers: the first set has two layers with
64 filters, followed by a second set with two layers of
128 filters. Each set of convolutional layers, consisting
of either (a) two 2D convolutional layers with a 3x3

kernel or (b) two 3D convolutional layers with a 3x3x3
kernel, is followed by either (a) a 2D max pooling layer
of size 2x2 or (b) a 3D max pooling layer of size 2x2x2.

The networks conclude with two dense layers of size
1000 and one dense layer equal to the size of the

output. In all cases, the network employs a RELU
function to introduce non-linearity.

both types, 90% of the generated disorder realizations
were used for training, and the remaining 10% were re-
served for testing and validation. The validity of our
model was assessed by calculating the R2 (coefficient of
determination) and the root mean squared (RMS) error
for our predictions on the validation data. The training
(90%) and testing (10%) data were selected randomly
with no bias.

II. RESULTS

A. Single Parameter Learning

To start, let us examine the simpler scenario where
there is an error in only one Hubbard model parameter.
Specifically, we will look at the case of three quantum
dots with an error or deviation only in δϵ. The scenarios

involving one and two quantum dots were not considered,
as these situations are well understood, and the use of
machine learning would be trivial and an overkill. For
the scenario where only δϵi ̸= 0, we assume δVi,i+1 =
δti,i+1 = δUi = 0. In this model, δϵi ∈ [−0.5, 0.5] is
chosen from either a Gaussian or a normal distribution
with an equal probability. The remaining parameters
are kept constant at Vi,i+1 = 0.2, ti,i+1 = 1, and Ui = 4.
(Unless otherwise stated specifically, we use the nearest
neighbor hopping t as the energy unit.)

To further assess the validity of our method, we test
whether our predictions for the Hubbard deviations can
be used to regenerate the stability diagrams. This is cru-
cial because it is not immediately clear if the collection
of charge stability diagrams we feed in can uniquely de-
termine the Hubbard parameters in the first place since
there is no ’inverse scattering’ theorem proven for such
a scenario. Nonetheless, a match of the charge stabil-
ity diagrams would indicate how well our predictions
capture the physics. Solving for 2 or 3 quantum dots
is how this issue is currently addressed experimentally,
requiring manual effort and certain restrictions on the
parameters. Considerable time is spent periodically to
re-tune the dots by determining and then correcting for
δϵi. With our machine learning model, we find we can
solve this problem efficiently with high accuracy. Our
model, in the case of three quantum dots with only δϵi
errors, achieves an R2 = 0.99996 with an RMS error of
RMS(δϵ) = 0.00183 at each site. We are not just find-
ing δϵi for individual sites but for the entire position-
based function. The results, shown in Fig. 3, illustrate
that deviations in gate voltages primarily result in shifts
in the phase boundaries, making δϵ seemingly the easi-
est parameter to determine. This suggests that, at least
for site-specific ϵ errors within our parameter range, the
convolutional neural network can uniquely identify the
δϵ disorder by using merely a series of nearest neigh-
bor charge stability diagrams. This outcome is signif-
icant (and utterly non-obvious) as it could enable the
automation of re-tuning this single parameter, removing
the need for manual intervention, which is not signifi-
cantly restricted by the smallness of t as mentioned in
[14].

However, solving δϵi for 3 quantum dots beyond the t
range, while beneficial for automation and possibly the
speed of determination, does not address a problem that
is not already regularly solved manually in the experi-
mental setting. The real machine learning advantage lies
in its ability to solve for other unknown parameters and
the fact that it can do so with larger numbers of quan-
tum dots at once. Currently, quantum dots are experi-
mentally tuned two or three at a time, with this aggre-
gate tuning deemed sufficient for the whole device [14].
Our method, however, allows many more quantum dots
to be tuned at once, providing more accurate and much
faster automated tuning, and enabling more parameters
to be adjusted. In the case of four quantum dots with
errors only in δϵi using the same parameter setup, we
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achieved an R2 = 0.99995 and an average prediction er-
ror of RMS(δϵ) = 0.0029. This is an impressive result
that, unlike previous work, allows four or more quantum
dots to be tuned simultaneously. A latter section will
demonstrate that this approach is effective for five quan-
tum dots as well, with minimal impact on fidelity. Yet,
the capability to tune more dots simultaneously is not the
only significant advantage of our method; it also enables
tuning of parameters beyond δϵ that are more challenging
(and typically not done manually in the laboratory).

Next, we examine the case of determining site-
dependent values of δVij , δtij , and δUi, where we assume
errors in only one parameter at a time and presume ac-
curate estimations can be achieved for the other param-
eters. This approach is taken to determine whether our
CNN scheme can predict all these parameters or just ϵi
errors. In a single parameter error scenario with four
quantum dots and approximately 40,000 training real-
izations, we find that δVij can be predicted very accu-
rately with an R2 = 0.99995 and RMS(δVij) = 0.0009

and is shown in Fig. 15. Ṽij is assumed to be within
a range of [0, 0.4], for which we use both Gaussian and
uniform distributions at random. This demonstrates the
CNN’s ability to accurately predict this parameter for
each bond uniquely. In the case of single parameter er-
ror δtij at each bond, the CNN predicts the deviation
with an R2 = 0.99995 and RMS(δtij) = 0.0243, and is
shown in Fig. 16. t̃ij is assumed to be within a range
of [0.1, 10], selected using a uniform distribution. For
single error δUi, the CNN predicts the deviation with
an R2 = 0.9988 and RMS(δUi) = 0.101, and is shown
in Fig. 17. Ũi is assumed to be approximately within
[0, 8], where we alternate between Gaussian or uniform
distribution at random, ensuring that the correct sign is
maintained. In all cases, and thus for all our Hubbard
parameters, the neural network accurately predicts the
deviation errors from just a series of charge stability di-
agrams. This is an important (and rather surprising as
well as useful) finding since charge stability diagrams are
routinely measured experimentally in quantum dot qubit
devices.
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(a)

(b)

FIG. 3: 3 quantum dot charge stability diagrams for input and expected measurement outcomes from Hubbard
model parameters for the prediction of only δϵi. The root mean squared error in the Hubbard model ϵi parameter
was RMS(δϵ) = 0.00183 with an R2 = 0.99998. In both plots the first row is the input charge stability diagrams,
namely the most probable state for a chemical potential configuration, and the second row is the expected charge
stability diagram given the prediction of the Hubbard model parameters. The error-free model parameters were set
to U = 4, t = 1 and Vi,i+1 = 0.2. The 2D type CNN was used for this model. The columns of these two subplots
correspond to the same representative samples. (a) Most probable state for input Hubbard parameters (1st row) and
predicted Hubbard parameters (2nd row) where µ1 and µ3 are independently varied. (b) Most probable state for
input Hubbard parameters (1st row) and predicted Hubbard parameters (2nd row) where the chemical potential at
each site is µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ
(rescaled by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the disorder free values respectively),
this is similar to the stability diagrams fed into the neural network.
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(a)

(b)

FIG. 4: Differences in charge stability diagrams for 3 quantum dots, comparing input with expected outcomes from
Hubbard model parameters for the prediction of only δϵi. In particular nerror = ||⟨n⃗input⟩ − ⟨n⃗predicted⟩|| is plotted
in both plots where ⟨n⃗input⟩ is the occupation expectation vector for all sites of the input data and ⟨n⃗predicted⟩ is
the expected occupation expectation vector given the prediction of the Hubbard model parameters. The 2D type
CNN was used for this model. The columns of both plots correspond to the charge stability diagrams in Fig. 3. The
error-free model parameters were set to U = 4, t = 1 and Vi,i+1 = 0.2. (a) nerror between input Hubbard parameters
and predicted Hubbard parameters where µ1 and µ3 are independently varied. (b) nerror between input Hubbard
parameters and predicted Hubbard parameters where the chemical potential at each site is µ⃗ = [µ1, · · · , µn] with our
plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ (rescaled by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩)
where ⟨Ui⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the disorder free values respectively).
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(a)

(b)

FIG. 5: 4 quantum dot charge stability diagrams for input and expected measurement outcomes from Hubbard
model parameters for the prediction of only δϵi. The root mean squared error in the Hubbard model parameter was
RMS(δϵ) = 0.0029 with an R2 = 0.99995. In both plots the first row is the input charge stability diagrams, namely
the most probable state for a chemical potential configuration, and the second row is the expected charge stability
diagram given the prediction of the Hubbard model parameters. The 2D type CNN was used for this model. The
error-free model parameters were set to U = 4, t = 1 and Vi,i+1 = 0.2. (a) Most probable state for input Hubbard
parameters (1st row) and predicted Hubbard parameters (2nd row) where µ1 and µ3 are independently varied. (b)
Most probable state for input Hubbard parameters (1st row) and predicted Hubbard parameters (2nd row) where the
chemical potential at each site is µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by
µ) vs. µk ̸=1,3 = µ (rescaled by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free
values respectively), this is similar to the stability diagrams fed into the neural network except the neural network
only receives µi = −µj between nearest neighbors i = j + 1.
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B. Many Parameter Learning

In the last section, it was shown that high-fidelity
predictions of individual Hubbard parameters can be
achieved using just a few stability diagrams, assuming
that deviations for all but one Hubbard parameter are
small. This approach allows for accurate predictions of
the deviation in the remaining parameter. However, in
practical experiments, all parameters typically exhibit
errors that need to be addressed simultaneously. To
meet this challenge, we introduce deviations from the ex-
pected values for all our Hubbard parameters. Our ma-
chine learning method, leveraging nearest neighbor sta-
bility diagrams, is capable of determining all the Hub-
bard parameters at once, without any initial knowledge
of any specific parameter (or no knowledge except a rea-
sonable range). In our investigations involving multiple
parameters, we train our neural network with 10,000 to
20,000 training realizations. This is a reduction from
the 40,000 realizations used in single-parameter scenar-
ios, motivated by our findings that so many realizations
are not necessary for achieving high fidelity and by the
increased numerical demand of the simulations when all
parameters exhibit disorder. Nonetheless, it is apparent
that including more training realizations could further
enhance the (already pretty high) fidelity.

To begin, consider the 3 quantum dot case, with a more
limited parameter range of ϵ̃i ∈ [−0.5, 0.5], Ṽij ∈ [0, 0.4],
t̃ij ∈ [0.01, 0.25], and Ũi ∈ [3, 5]. To set a scale for the
system, t12 = 0.125 is fixed. We find that the system can
predict the Hubbard deviations with an R2 = 0.9987 and
RMS errors of RMS(δϵi) = 0.0128, RMS(δVi,j) = 0.0190,
RMS(δti,j) = 0.0119, and RMS(δUi) = 0.0358. Although
this prediction is not as precise as in the single parameter
regime, it remains very accurate. This outcome strongly
suggests that the CNN, when fed with charge stability
diagrams, can predict all the Hubbard model parame-
ters simultaneously. The figure for this can be viewed
in Fig. 6. An assessment of the actual error within
the stability diagrams due to inaccuracies in the pre-
dictions was also performed. This assessment is crucial
because our plots only display the most probable state,
and it is possible that the differences between the pre-
dicted and input stability diagrams are not as significant
as they appear, potentially being an artifact of this selec-
tion process. To explore this, we plot the magnitude of
the error in the occupation expectation vectors between
the input and predicted Hubbard model parameters as
||⟨n⃗input⟩ − ⟨n⃗predicted⟩|| in Fig. 9. It was found that the
errors are concentrated at the boundaries, which could
be due to the low resolution of the stability diagrams
inputted into the neural network. This may also result
from the majority of information about the Hubbard pa-
rameters in the charge stability diagram being concen-
trated within the phase boundaries. This suggests that
our grid scheme of generating the charge stability dia-
grams is sub-optimal, and utilizing a more sophisticated
edge-finding method to extrapolate the diagrams to a

higher resolution could lead to significant improvements.
The specific impact of increasing the resolution will be
discussed later. Nonetheless, these errors are relatively
minor, with the stability diagrams being well reproduced
from the predicted Hubbard model parameters.

Transitioning to the main many parameter regime,
we expand t̃ij ∈ [0.1, 2] and establish a scale for the
system by fixing t12 = 1. It is crucial to recognize
that this main many parameter regime is still more con-
strained than the single-parameter predictions for δUi

and δtij . Despite a decrease in fidelity within this ex-
panded range, the system still achieves an R2 = 0.9977
with errors of RMS(δϵi) = 0.0239, RMS(δVi,j) = 0.0164,
RMS(δti,j) = 0.0121, and RMS(δUi) = 0.0373. This
shows that increasing our t range, which significantly in-
creases the complexity of the problem, is still able to be
handled within some sufficiently small (but still relative
to experiment large) range.

Expanding to a larger number of quantum dots, we
first examine the case involving 4 coupled quantum dots
with deviations in all parameters. We achieved an R2 =
0.9961 with errors of RMS(δϵi) = 0.0280, RMS(δVi,j) =
0.0205, RMS(δti,j) = 0.0193, and RMS(δUi) = 0.0512.
This represents only a slight reduction in the fidelity of
our predictions, indicating that the tuning approach re-
mains effective for a larger number of quantum dots. The
charge stability diagrams are illustrated in Fig. 10, with
the corresponding stability diagram errors depicted in
Fig. 12.

Our method also performs well in the case of 5 quan-
tum dots with deviations across all parameters. We man-
aged to achieve an R2 = 0.995 with errors of RMS(δϵi) =
0.0321, RMS(δVi,j) = 0.0231, RMS(δti,j) = 0.0254, and
RMS(δUi) = 0.0574. Once again, this shows only a minor
decrease in prediction fidelity, underscoring that the tun-
ing method is viable for an increasing number of quantum
dots. The charge stability diagrams for this scenario are
presented in Fig. 11, with the respective errors shown in
Fig. 13. These results suggest that the machine learning
scheme can automatically tune as many quantum dots as
one has computational resources for training data gener-
ation, and it can be accomplished with a relatively sim-
ple neural network. Given that the Hubbard model is
a strongly interacting system, the generation of training
data is the primary bottleneck by a wide margin, while
machine learning resources, by comparison, do not sig-
nificantly scale with the number of dots. Ideally, the
number of quantum dots one needs to tune simultane-
ously depends on the effect neighboring quantum dots
have on the local state of the system. Bearing this in
mind, it is not seemingly necessary when tuning a large
system to arbitrarily scale up the number of dots tuned
simultaneously. In fact, the 5-dot system achieved in
our work should describe well all current and near-future
quantum dot qubit platforms. When used on actual ex-
periments, the effective Hubbard model parameters will
have to be generated first by initially fitting to the exper-
imental data. The machine learning procedure outlined
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in our work then can be effectively applied to the exper-
iments.

Our neural network faces its greatest challenge in ac-
curately predicting the Hubbard model parameters over
a very broad t̃ij range. The curvature induced by t in the
charge stability diagrams might complicate the network’s
task of discerning other parameters, likely necessitating
more training data due to the system’s increased com-
plexity. When t̃ ranges from t̃ ∈ [0.1, 10], significant er-
rors are found in the predictions of parameters other than
t̃. However, this issue remains solvable, as even when
predictions for other parameters "fail," the disordered t̃
can still be predicted with high accuracy. For scenarios
requiring a large t range, we recommend a sequential pro-
cedure, initially generating a prediction for t̃i using the
full range, then creating training data and training a new
neural network within a narrower t range centered around
the initial prediction. This approach reduces the domi-
nance of t by focusing the training data within a proba-
ble range. Alternatively, generating a significantly larger
volume of training data from the outset is an option,
though it may be less efficient. Additionally, employing
a standard scaling operation, such as those available in
the scikit-learn package [34], proves useful when dealing
with output parameters of substantially different scales.
This technique ensures that the neural network does not
prioritize only predicting t̃ by mapping all parameters in
an invertible manner to a Gaussian distribution with a
standard deviation of 1 and a mean of 0, facilitating a
more balanced and accurate prediction process across all
parameters. We note that the hopping amplitude t repre-
sents the quantum fluctuation (and consequently also the
2-qubit exchange coupling J = t2/U), and it is interest-
ing that the machine learning procedure becomes more
demanding with increasing quantum fluctuations in the
strong-coupling quantum dot qubit problem.

This consideration is largely moot on a practical level,
though, since experimentally, a smaller value of t is more
realistic [14]. With this context, another investigation
focuses on the impact on our method when t is small,
necessitating high precision in prediction. We previously
discussed the 3-dot case, but we also explore the 4 quan-
tum dot scenario with t ∈ [0.01, 0.25], fixing t12 = 0.125
for scale. In this case, an R2 = 0.998 with errors of
RMS(δϵi) = 0.0158, RMS(δVi,j) = 0.0183, RMS(δti,j) =
0.0155, and RMS(δUi) = 0.0442 was achieved. This
demonstrates that even when t̃ij is small, it can still
be predicted accurately for a larger number of quantum
dots, and assuming a smaller t increases our method’s
effectiveness for the other parameters. Interestingly, as
we suggested, the ability to predict t̃ is partially limited
by the resolution of the charge stability diagrams input
into the machine learning scheme, given a fixed amount
of training data. This is not surprising, as even without
disorder, the ability to determine a fixed t between two
quantum dots is limited by the resolution in the charge
stability diagram [32]. t affects the diagrams by curving
the phase transitions, and discerning smaller values of t

requires higher resolution. If a very small t is relevant,
utilizing higher resolution charge stability diagrams may
be necessary. Moreover, when the range of t is very small,
a standard scaling operation can again be applied to the
input to prevent the neural network from overlooking the
prediction of t.

To demonstrate the effects of resolution, we apply our
method to a 3 quantum dot system within the restricted
t range (t̃ij ∈ [0.01, 0.25]), but with double the resolu-
tion—and therefore the number of steps—in the µ and
µj
i parameters. This approach yielded an R2 = 0.9984

with errors of RMS(δϵi) = 0.0109, RMS(δVi,j) = 0.0160,
RMS(δti,j) = 0.0089, and RMS(δUi) = 0.0423. These
results mark an improvement in the RMS errors com-
pared to the case with lower resolution. Addition-
ally, employing standard scaling further enhances per-
formance, leading to an R2 = 0.9972 and RMS(δϵi) =
0.0110, RMS(δVi,j) = 0.0113, RMS(δti,j) = 0.0045, and
RMS(δUi) = 0.0347. Notably, the error RMS(δti,j) is
about half that of the lower resolution case without stan-
dard scaling. It is is also worth noting that since R2 is
affected by standard scaling, it is not directly comparable
with the previous results.

A series of tables (I, II, III) with a summary of results
for different quantum dot configuration and parameter
regimes are given below:

Model 3δϵ 4δϵ 4δVij 4δUi 4δtij

#Dots 3 4 4 4 4
R2 0.99998 0.99995 0.99996 0.99997 0.99876

Training Data 45000 45808 41416 41096 55672
RMS(δϵi) 0.0018 0.0029 0 0 0
RMS(δVi,j) 0 0 0.000904 0 0
RMS(δti,j) 0 0 0 0.02429 0
RMS(δUi) 0 0 0 0 0.10051

TABLE I: Results from single parameter disorder for dif-
ferent parameters and numbers of quantum dots. The
parameter regimes can be found within the main text.

Model 3All 4All 5All

#Dots 3 4 5
R2 0.9977 0.9961 0.9949

Training Data 13504 13504 17475
RMS(δϵi) 0.0239 0.0280 0.0321
RMS(δVi,j) 0.0164 0.0205 0.0231
RMS(δti,j) 0.0121 0.0193 0.0254
RMS(δUi) 0.0373 0.0512 0.0574

TABLE II: Results for disorder in all parameters with dif-
ferent numbers of quantum dots. The parameter regimes
can be found within the main text.
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Model 3(t < 0.25) 4(t < 0.25) 3HR (t<0.25) 3HR(SS)

#Dots 3 4 3 3
R2 0.9987 0.9980 0.9984 0.9972

Training Data 11488 15672 13662 13662
RMS(δϵi) 0.0128 0.0158 0.0109 0.0110
RMS(δVi,j) 0.0190 0.0183 0.0160 0.0113
RMS(δti,j) 0.0119 0.0155 0.0089 0.0045
RMS(δUi) 0.0358 0.0442 0.0423 0.0347

TABLE III: Results for disorder in all parameters with
a reduced, small magnitude t ∈ [0.01, 0.25] range.
3(t<0.25) and 4(t<0.25) refer to standard resolution
training data, while 3HR(t<0.25) and 3HR(SS) refer to
the high resolution training data. 3HR(SS) has the addi-
tional aspect of being standard scaled as outlined within
the paper. Additional details about the parameter regime
can be found in the main text.
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(a)

(b)

FIG. 6: 3 quantum dot charge stability diagrams for input and expected measurement outcomes from Hubbard model
parameters for the prediction of disorder in all parameters with a reduced t ∈ [0.1, 0.25] range. The root mean
squared error in the Hubbard model parameters was RMS(δϵi) = 0.0128, RMS(δVi,j) = 0.0190, RMS(δti,j) = 0.0119,
RMS(δUi) = 0.0358 with an R2 = 0.9987. In both plots the first row is the input charge stability diagrams, namely the
most probable state for a chemical potential configuration, and the second row is the expected charge stability diagram
given the prediction of the Hubbard model parameters. (a) Most probable state for input Hubbard parameters (1st
row) and predicted Hubbard parameters (2nd row) where µ1 and µ3 are independently varied. (b) Most probable state
for input Hubbard parameters (1st row) and predicted Hubbard parameters (2nd row) where the chemical potential
at each site is µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ
(rescaled by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively
), this is the data input into the machine learning model.
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(a)

(b)

FIG. 7: 3 quantum dot charge stability diagrams for input and expected measurement outcomes from Hubbard
model parameters for the prediction of disorder in all parameters. The root mean squared error in the Hubbard
model parameters was RMS(δϵi) = 0.0239, RMS(δVi,j) = 0.0164, RMS(δti,j) = 0.0121, RMS(δUi) = 0.0373 with
an R2 = 0.9977. In both plots the first row is the input charge stability diagrams, namely the most probable
state for a chemical potential configuration, and the second row is the expected charge stability diagram given the
prediction of the Hubbard model parameters. (a) Most probable state for input Hubbard parameters (1st row) and
predicted Hubbard parameters (2nd row) where µ1 and µ3 are independently varied. (b) Most probable state for input
Hubbard parameters (1st row) and predicted Hubbard parameters (2nd row) where the chemical potential at each site
is µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ (rescaled
by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively), this
is the data input into the machine learning model.
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(a)

(b)

FIG. 8: Difference in 3 quantum dot in charge stability diagrams for input and expected measurement outcomes from
Hubbard model parameters for the prediction of disorder in all parameters with a reduced t ∈ [0.1, 0.25] range. In
particular nerror = ||⟨n⃗input⟩−⟨n⃗predicted⟩|| is plotted in both plots where ⟨n⃗input⟩ is the occupation expectation vector
for all sites of the input data and ⟨n⃗predicted⟩ is the expected occupation expectation vector given the prediction of
the Hubbard model parameters. The columns of both plots correspond to the charge stability diagrams in Fig. 6 with
the same column. The error-free model parameters were set to U = 4, t = 0.125 and Vi,i+1 = 0.2. (a) nerror between
input Hubbard parameters and predicted Hubbard parameters where µ1 and µ3 are independently varied. (b) nerror

between input Hubbard parameters and predicted Hubbard parameters where the chemical potential at each site is
µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ (rescaled by
W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively).

(a)

(b)

FIG. 9: Difference in 3 quantum dot in charge stability diagrams for input and expected measurement outcomes
from Hubbard model parameters for the prediction of disorder in all parameters. In particular nerror = ||⟨n⃗input⟩ −
⟨n⃗predicted⟩|| is plotted in both plots where ⟨n⃗input⟩ is the occupation expectation vector for all sites of the input data
and ⟨n⃗predicted⟩ is the expected occupation expectation vector given the prediction of the Hubbard model parameters.
The columns of both plots correspond to the charge stability diagrams in Fig. 7 with the same column. The error-
free model parameters were set to U = 4, t = 1 and Vi,i+1 = 0.2. (a) nerror between input Hubbard parameters
and predicted Hubbard parameters where µ1 and µ3 are independently varied. (b) nerror between input Hubbard
parameters and predicted Hubbard parameters where the chemical potential at each site is µ⃗ = [µ1, · · · , µn] with our
plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ (rescaled by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩)
where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively).
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(a)

(b)

FIG. 10: 4 quantum dot charge stability diagrams for input and expected measurement outcomes from Hubbard
model parameters for the prediction of disorder in all parameters. The root mean squared error in the Hubbard
model parameters was RMS(δϵi) = 0.0280, RMS(δVi,j) = 0.0205, RMS(δti,j) = 0.0193, RMS(δUi) = 0.0512 with
an R2 = 0.9961. In both plots the first row is the input charge stability diagrams, namely the most probable
state for a chemical potential configuration, and the second row is the expected charge stability diagram given the
prediction of the Hubbard model parameters. (a) Most probable state for input Hubbard parameters (1st row) and
predicted Hubbard parameters (2nd row) where µ1 and µ3 are independently varied. (b) Most probable state for input
Hubbard parameters (1st row) and predicted Hubbard parameters (2nd row) where the chemical potential at each site
is µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ (rescaled
by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively ), this
is similar to the stability diagrams fed into the neural network except the neural network only receives µi = −µj

between nearest neighbors i = j + 1.
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(a)

(b)

FIG. 11: 5 quantum dot charge stability diagrams for input and expected measurement outcomes from Hubbard
model parameters for the prediction of disorder in all parameters. The root mean squared error in the Hubbard
model parameter deviations was RMS(δϵi) = 0.0321, RMS(δVi,j) = 0.0231, RMS(δti,j) = 0.0254, RMS(δUi) = 0.0574
with an R2 = 0.995. In both plots the first row is the input charge stability diagrams, namely the most probable
state for a chemical potential configuration, and the second row is the expected charge stability diagram given the
prediction of the Hubbard model parameters. (a) Most probable state for input Hubbard parameters (1st row) and
predicted Hubbard parameters (2nd row) where µ1 and µ3 are independently varied. (b) Most probable state for input
Hubbard parameters (1st row) and predicted Hubbard parameters (2nd row) where the chemical potential at each site
is µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ = 4 and shifted by µ) vs. µk ̸=1,3 = µ (rescaled
by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively ), this
is similar to the stability diagrams fed into the neural network except the neural network only receives µi = −µj

between nearest neighbors i = j + 1.
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(a)

(b)

FIG. 12: Difference in 4 quantum dot in charge stability diagrams for input and expected measurement out-
comes from Hubbard model parameters for the prediction of disorder in all parameters. In particular nerror =
||⟨n⃗input⟩ − ⟨n⃗predicted⟩|| is plotted in both plots where ⟨n⃗input⟩ is the occupation expectation vector for all sites of
the input data and ⟨n⃗predicted⟩ is the expected occupation expectation vector given the prediction of the Hubbard
model parameters. The columns of both plots correspond to the charge stability diagrams in Fig. 10 with the same
column. The error-free model parameters were set to U = 4, t = 1 and Vi,i+1 = 0.2. (a) nerror between input
Hubbard parameters and predicted Hubbard parameters where µ1 and µ3 are independently varied. (b) nerror be-
tween input Hubbard parameters and predicted Hubbard parameters where the chemical potential at each site is
µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ = 4 and shifted by µ) vs. µk ̸=1,3 = µ (rescaled
by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively)

(a)

(b)

FIG. 13: Difference in 5 quantum dot in charge stability diagrams between input and expected measurement out-
comes from Hubbard model parameters for the prediction of disorder in all parameters. In particular nerror =
||⟨n⃗input⟩ − ⟨n⃗predicted⟩|| is plotted in both plots where ⟨n⃗input⟩ is the occupation expectation vector for all sites of
the input data and ⟨n⃗predicted⟩ is the expected occupation expectation vector given the prediction of the Hubbard
model parameters. The columns of both plots correspond to the charge stability diagrams in Fig. 11 with the same
column. The error-free model parameters were set to U = 4, t = 1 and Vi,i+1 = 0.2. (a) nerror between input
Hubbard parameters and predicted Hubbard parameters where µ1 and µ3 are independently varied. (b) nerror be-
tween input Hubbard parameters and predicted Hubbard parameters where the chemical potential at each site is
µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ = 4 and shifted by µ) vs. µk ̸=1,3 = µ (rescaled
by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively).
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C. No Trust Verification

One of the strengths of this method is that if one
can accurately determine the Hubbard model parame-
ters, then almost any measurement one can perform on
the quantum dot qubits could also be simulated. This
implies (as will be discussed) that one does not need to
blindly trust the machine learning algorithm at all to be
confident in the results it provides. In this regard, one
could create a new K ′ with a completely different config-
uration of experimental parameters such as:

K ′ = [µj
1, · · ·µ

j
N , T j ]

This particular configuration of experimental param-
eters could allow the site-dependent chemical potentials
to be set to any value within a reasonable range and even
incorporate variation of the temperature (T ). One could
even add new measurement types. The Hubbard model,
and thus a generator function, is capable of simulating
any of these possible K ′ configurations. Inserting the
new K ′ into our generator function along with the pre-
diction of the Hubbard model parameters from the CNN,
Y , would yield a new measurement matrix, X ′.

fgen(Y,K
′) = X ′

Here, we simulate performing measurements in these
different configurations (including new measurements be-
yond occupation numbers) to generate a new X ′. Since
one could then carry out those measurements experimen-
tally for the K ′ measurement configurations and compare
their outcomes to that of X ′, a match would serve as
strong evidence of the validity of the disorder (or, more
specifically, Hubbard model parameter) predictions. One
could generate an arbitrarily large set of new measure-
ment configurations, K ′, to test the predictions, and all
reasonable K matrices should still match in both simu-
lated and experimental results if the Y prediction is accu-
rate. Since this new K ′ never enters the machine learning
scheme, the neural network would be incapable of gen-
erating Hubbard parameters that "hallucinate" a match
with these measurements. Thus, without any trust of
the machine learning scheme, one could perform as many
measurements as necessary to ensure that the Hubbard
model parameters predicted by the algorithm are correct.

D. Costs

Let us consider how this method would be applied to
a large number of quantum dots. It is important to
note that our method cannot be scaled up indefinitely,
as eventually, the exponential scaling of the Hubbard
model simulations will render it unfeasible. (This has
nothing whatsoever to do with any limitation in our ma-
chine learning method or algorithm, it is simply that gen-
erating Hubbard model exact diagonalization solutions is

an exponentially hard problem, which becomes unfeasible
for more than 10-20 quantum dots because of the expo-
nential growth of the Hilbert space.) However, it does
permit simultaneous tuning of many more dots in aggre-
gate at once than manual tuning allows. It is crucial to
emphasize that the machine learning aspect is not the
limiting factor; in fact, we find that the neural network
and the amount of training data required do not seem
to scale significantly with the addition of more quantum
dots. The primary limitation is the exponential scaling of
the Hubbard model used in generating the training data,
which restricts our method’s scalability to an arbitrary
number of quantum dots. The fact that the machine
learning numerics itself do not scale with the number of
dots indicates that perhaps our technique may be useful
in quantum computing platforms with hundreds of quan-
tum dot qubits since automating the control may involve
only 2-5 dots at a time, as discussed below.

(a)

FIG. 14: Diagram of the shifting local tuning process:
For large systems, a local window, illustrated by the blue
rectangle, is shifted from site to site to tune the dot
within the center. The neural network would be trained
only once on the local system equal to the size of the win-
dow and used to determine Hubbard deviations between
the center dot and its local neighbors.

The notion of scaling up to tune an arbitrary number
of quantum dots simultaneously is, to begin with, exces-
sive and unnecessary. The necessity for tuning quantum
dots simultaneously is not dictated by the total number
of dots within the system but by the locality of the sys-
tem. For a large system with, say, 100s or more quantum
dots, the envisioned tuning process involves adjusting a
quantum dot within a locality that includes a certain
number of nearest and next-nearest neighbors dependent
on the interaction range. In this localized window within
the bulk, one would determine the parameters of the cen-
tral quantum dot(s) and then shift the window through
the system, tuning a limited number of quantum dots
at a time while considering the effects of a broader lo-
cality on the charge stability diagram. It is worth men-
tioning that as the window shifts, a new neural network
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would not need to be trained; one could simply reuse the
charge stability diagrams measured from the initial lo-
cality for subsequent tunings. Thus, our technique may
provide the pathway for the automated control of Hub-
bard model based quantum dot platforms of the future
containing arbitrarily large number of qubits.

The ability of our method to tune more quantum dots
simultaneously becomes particularly crucial when con-
sidering 2D geometries. In a 2D grid of quantum dots,
current methods that tune two or three quantum dots
at the same time are likely to face challenges, as each
dot would have four nearest neighbors, even if we only
consider nearest neighbors as relevant. In such a case
even these nearest neighbors would significantly influence
the charge stability diagram between any two dots. Our
method, in principle, could be adapted to tackle such
scenarios, enabling the tuning of much more complex
geometries through the use of a specified locality win-
dow. Moreover, since current systems utilize quantum
dot chains, it appears that tuning up to 5 quantum dots
at a time, as we currently achieve, would be sufficient for
a system with any number of dots since the interactions
are likely to be local and limited to a few (<5) dots only.

The scalability of our approach is not bottlenecked by
the CNN, but hinges on our ability to generate training
data, specifically how many quantum dots can be sim-
ulated at once. The Hubbard model operates within a
strongly interacting regime, setting a limit on the num-
ber of dots that can be simulated. For us, it takes 30
minutes for one core to generate a single training re-
alization for 5 quantum dots (within the t̃ ∈ [0.1, 2.0]
regime); however, our training data generation is highly
inefficient, as it does not utilize any symmetries and relies
solely on direct exact diagonalization. Adopting more ad-
vanced methods [35] would enable the simulation of sig-
nificantly more quantum dots simultaneously (perhaps
up to 20-30). Moreover, since the generation process is
parallelizable for each row of the K matrix, the resources
required effectively comes down to the number of cores
one has access to. We do not observe significant scal-
ing in the number of training data realizations required
for tuning quantum dots; hence, for 5 quantum dots and
15,000 training realizations, about 7.5 kilo-core hours are
needed. A significant speedup is achievable if thermal ef-
fects are disregarded and only the ground state is consid-
ered (which seems reasonable at very low temperatures
within the parameter range [14]), reducing the time for a
single training realization for 5 quantum dots to about 5
minutes. Assuming the inefficient case of O(4N ) scaling,
our resources and (even our inefficient diagonalization)
method would necessitate a large but feasible 1920 kilo-
core hours for tuning 9 quantum dots. If focusing solely
on the ground state, even with our inefficient methods,
computing 9 quantum dots would require only about 320
kilo-core hours. In the scenario of a 2D square grid, ac-
counting for nearest and next-nearest neighbor interac-
tions would involve 3x3=9 quantum dots. Given these
considerations, we see no reason why this could not be

achieved using our method. This becomes even more fea-
sible when targeting only the ground state or a few ex-
cited states, as such an approach would enable the use of
tensor network methods such as DMRG or PEPS, which
have been used to find the ground state of much larger
(up to 8x8) and similar Hubbard model systems [36, 37].

E. Generalizing to Other Problems

Our proposed method of addressing aggregate invert-
ible disorder problems through machine learning can be
and has been extended to other problems. In our pre-
vious work, we demonstrated the feasibility of inverting
the aggregate conductances of a Majorana nanowire [28]
to determine its disorder, providing two distinct cases
where this scheme was utilized to determine the disorder.
In contrast to the current Hubbard model problem, the
Majorana problem is essentially a single-particle problem
and can therefore be exactly diagonalized for very large
systems.

In both cases, by performing an aggregation of mea-
surements from a physical system, one can determine
an unknown disorder within the system. This aspect of
aggregation is quite important because machine learn-
ing can uniquely solve for the unknown disorder, some-
times even in cases where individual measurement are
not invertible. For instance, in the case of the Majorana
nanowire, the scattering problem is not in general known
to be invertible; yet, despite this, the aggregate of many
scattering problems seems to be invertible [28]. Simi-
larly, it is clear that a single measurement of occupation
expectations is not sufficient in the current quantum dot
system to determine the deviation in Hubbard parame-
ters; however, a sequence of such measurements, in the
form of many charge stability diagrams, does seem to
be uniquely invertible. By restricting one’s range of pa-
rameters to those that are experimentally relevant and
performing an aggregation of measurements of such de-
vices, it is possible to uniquely determine those disorder
parameters. Furthermore, it seems that neural networks
are able to do so efficiently.

The "no trust" component can also be generalized
to many problems, provided there is a usable generator
function. This represents a significant improvement over
previous results because neural networks are prone to
hallucination, and without this sanity check, one cannot
generally trust that a neural network’s output is valid in
experimental cases. However, with this sanity check, one
can confirm the machine learning results with arbitrary
confidence, thereby making this method an extremely vi-
able tool for future research.

III. CONCLUSION

In conclusion, we provide a method of solving disorder
landscapes though a series of aggregate measurements
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that could be generalized to many physical models. In
this work we also provide a novel "no trust" verification
method that virtually eliminates the risk of "hallucina-
tion" predictions by the neural network. This provides
a method of conclusively verifying the predictions of the
neural network such that even without any trust of the
neural network one can be confident about the results.

This work successfully demonstrates a method, which
by employing machine learning techniques, specifically
through the use of a CNN, is able to accurately determine
disordered deviations in the parameters of the extended
Hubbard model as appied to quantum dot qubits. By
analyzing a series of charge stability diagrams from near-
est neighbor pairs of quantum dots, our CNN is adept
at identifying spatially dependent disorder across each
parameter of the model. This approach shows remark-
able proficiency in predicting with high accuracy the spa-
tially dependent variations in coupling constants, both
Coulomb intra and inter-site terms, as well as site-specific
gate voltage errors. These results are of particular ex-
perimental interest due to the natural description of cou-
pled semiconductor quantum dots through the Hubbard
model and the readily experimental availability of charge
stability diagram measurements. Although we discuss
our results in terms of disorder, our technique in fact is
a method to obtain the extended Hubbard model Hamil-
tonian parameters themselves using just the stability di-
agrams as the input. Even if all the parameters under-
lying the quantum dot qubit platform are unknown, our
technique, in principle, can provide an accurate estimate
for all the parameters of the underlying Hamiltonian as
long as sufficient amount of input charge stability dia-
grams are available. Thus, the technique developed in
this work is not only applicable to semiconductor quan-
tum dot qubit platforms, but also to the strongly corre-
lated Hubbard model emulations.

Extending beyond previous studies, our investigation
includes the prediction of disorder not only in individ-
ual parameters per site but also across all parameters
simultaneously. This provides a comprehensive under-
standing of disorder within the system, marking a notable
enhancement over earlier methods that focused primar-
ily on single parameter deviations, such as gate voltages
[14]. Additionally, our research broadens the scope of
conventional quantum dot tuning practices by consider-
ing the interactions among 3, 4, and 5 quantum dots
simultaneously, thereby integrating crosstalk effects that
are typically disregarded in the standard methodology of
tuning quantum dot pairs.

This study is the first to solve site-specific disordered
parameters within the extended Hubbard model for con-
figurations exceeding two quantum dots, covering aspects
such as coupling constants, on-site potentials, and inter-
site repulsions, and extending to site-specific disordered
gate voltages for more than three quantum dots. The
introduction of our CNN not only paves the way for po-
tentially fully automated tuning of quantum dot-based
systems, eliminating the laborious manual adjustment

process when parameters drift, but also ensures the reli-
ability of the tuning process through a "no trust" verifi-
cation method.

We mention that in quantum dot qubits (and in fact,
in all quantum computing platforms), the background
disorder (which is the topic of the current work) drifts in
the sample changing the disorder landscape slowly over
time, creating a charge noise. Typically, these drifts are
slow and the noise is quasistatic, which is what our model
for disorder assumes. But such a drift of course causes
the practical problem that an already perfectly tuned
experimental quantum dot system drifts out of its tuned
parameter regime over time, and must be retuned. This
is the key problem. Our machine learning technique de-
veloped in this work, when embedded into the system,
would enable the retuning in an automated way without
manual human intervention since all that is needed is
a measurement of the charge stability diagram allowing
the system to be retuned, which can be incorporated into
the measurement and tuning electronics. The only nec-
essary ingredient is the training of the algorithm using
a sufficient amount of input stability diagrams obtained
from measurements on the quantum dot circuits, as es-
tablished in the current work using our simulations with
different background disorder (which simulates the effec-
tive drift and noise).

Further, though the use of higher resolution charge sta-
bility diagram input, our investigation seems to show that
for smaller coupling constants the accuracy in predictions
of the disorder can be increased as as much as necessary
to fit the needs of experimentalists. We also show that a
smaller tij tends to increase the fidelity of the results in
the other parameters. Additionally, our results show that
the method continues to work as the number of quan-
tum dots increases with little to no decrease in fidelity.
While we do not envision using our method for a whole
computational device (due to the scaling of computation
in generating the training data), our technique could be
scaled up to match the locality of a device to tune many
quantum dots at once.

Looking to the future, while our method is currently
able to apply directly to experiment and significantly
improve the present tuning process of quantum dot de-
vices, it should be possible to extend it to start from a
microscopic Hamiltonian to determine directly the semi-
conductor quantum dot parameters. In fact, there is no
reason to think that the technique itself is limited only
to the Hubbard model, and in principle, it can be used
to study other models of quantum dot qubits effectively.
Our current use of the extended Hubbard model is based
only on the fact that such a model seems to describe the
semiconductor quantum dot based qubit platforms rea-
sonably well.
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(a)

(b)

FIG. 15: 4 quantum dot charge stability diagrams for input and expected from Hubbard model parameters for the
prediction of only δVij . The root mean squared error in the Hubbard model δVij parameter was RMS(δVij) = with
an R2 = 0.99995. In both plots the first row is the input charge stability diagrams, namely the most probable state

for a chemical potential configuration, and the second row is the expected charge stability diagram given the
prediction of the Hubbard model parameters. The error-free model parameters were set to U = 4, t = 1 and

Vi,i+1 = 0.2. The columns of these two subplots correspond to the same representative samples. (a) Most probable
state for input Hubbard parameters (1st row) and predicted Hubbard parameters (2nd row) where µ1 and µ3 are
independently varied. (b) Most probable state for input Hubbard parameters (1st row) and predicted Hubbard
parameters (2nd row) where the chemical potential at each site is µ⃗ = [µ1, · · · , µn] with our plot having axis µ
(rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ (rescaled by W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and
⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively), this is similar to the stability diagrams fed into the

neural network except the neural network only receives µi = −µj between nearest neighbors i = j + 1.
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(a)

(b)

FIG. 16: 4 quantum dot charge stability diagrams for input and expected from Hubbard model parameters for the
prediction of only δtij . The root mean squared error in the Hubbard model parameter was RMS(δtij) = 0.0243 with
an R2 = 0.99997. In both plots the first row is the input charge stability diagrams, namely the most probable state

for a chemical potential configuration, and the second row is the expected charge stability diagram given the
prediction of the Hubbard model parameters. The error-free model parameters were set to U = 4, t = 1 and

Vi,i+1 = 0.2. The columns of these two subplots correspond to the same representative samples. (a) Most probable
state for input Hubbard parameters (1st row) and predicted Hubbard parameters (2nd row) where µ1 and µ3 are
independently varied. (b) Most probable state for input Hubbard parameters (1st row) and predicted Hubbard
parameters (2nd row) where the chemical potential at each site is µ⃗ = [µ1, · · · , µn] with our plot having axis

µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ (rescaled by W = 1
L (

∑
i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4

and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively ), this is similar to the stability diagrams fed into
the neural network except the neural network only receives µi = −µj between nearest neighbors i = j + 1.
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(a)

(b)

FIG. 17: 4 quantum dot charge stability diagrams for input and expected from Hubbard model parameters for the
prediction of only δUi. The root mean squared error in the Hubbard model δUi parameter was RMS(δUi) = 0.1005
with an R2 = 0.9987. In both plots the first row is the input charge stability diagrams, namely the most probable
state for a chemical potential configuration, and the second row is the expected charge stability diagram given the

prediction of the Hubbard model parameters. The error-free model parameters were set to U = 4, t = 1 and
Vi,i+1 = 0.2. The columns of these two subplots correspond to the same representative samples. (a) Most probable
state for input Hubbard parameters (1st row) and predicted Hubbard parameters (2nd row) where µ1 and µ3 are
independently varied. (b) Most probable state for input Hubbard parameters (1st row) and predicted Hubbard
parameters (2nd row) where the chemical potential at each site is µ⃗ = [µ1, · · · , µn] with our plot having axis

µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ (rescaled by W = 1
L (

∑
i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4

and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively), this is similar to the stability diagrams fed into the
neural network except the neural network only receives µi = −µj between nearest neighbors i = j + 1.
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(a)

(b)

FIG. 18: 3 quantum dot charge stability diagrams for input and expected measurement outcomes from Hubbard
model parameters for the prediction of disorder in all parameters with higher resolution, standard scaled, and

reduced range t̃ ∈ [0.01, 0.25]. The root mean squared error in the Hubbard model parameters was
RMS(δϵi) = 0.0110, RMS(δVi,j) = 0.0113, RMS(δti,j) = 0.0045, RMS(δUi) = 0.0347 with an R2 = 0.9972. In both
plots the first row is the input charge stability diagrams, namely the most probable state for a chemical potential
configuration, and the second row is the expected charge stability diagram given the prediction of the Hubbard

model parameters. (a) Most probable state for input Hubbard parameters (1st row) and predicted Hubbard
parameters (2nd row) where µ1 and µ3 are independently varied. (b) Most probable state for input Hubbard

parameters (1st row) and predicted Hubbard parameters (2nd row) where the chemical potential at each site is
µ⃗ = [µ1, · · · , µn] with our plot having axis µ1 = −µ3 (rescaled by ⟨U⟩ and shifted by µ) vs. µk ̸=1,3 = µ (rescaled by
W = 1

L (
∑

i⟨Ui⟩+ ⟨Vi,i+1⟩) where ⟨U⟩ = 4 and ⟨Vi,i+1⟩ = 0.2 are the their disorder free values respectively), this is
the data input into the machine learning model.
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