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Abstract—We investigate a new mode-locking regime

in the singly-resonant OPO employing simultaneous

amplitude- and frequency-modulation of the intracav-

ity field. This OPO exhibits deterministic, “turn-

key” formation of a stable, broadband, chirped fre-

quency comb with high conversion efficiency. Comb-

forming dynamics follow a simple phase-space dynam-

ical model, governed by cavity dispersion and modu-

lator chirp, which agrees closely with full numerical

simulations. The comb exhibits fast, mode-hop-free

tuning over the full gain window of the OPA crystal,

controlled by the modulator frequency. Conditions

for comb stability, and techniques to enhance comb

bandwidth through intentional phase-mismatch and

chirping, are investigated.

1 Introduction

The optical frequency comb is a cornerstone of precision
science [1], with applications in metrology [2], communi-
cations [3, 4], spectroscopy [5], and laser ranging [6, 7].
Recent advances in photonic fabrication, together with
the desire for compact, low-cost, mass-produced comb
sources, has made miniaturized, on-chip “micro-combs”
an imminent possibility [8, 9]—with the most prominent
approaches based on either Kerr nonlinearity [10, 11],
electro-optic modulation (EOM) [12–15], or mode-locking
of lasers (MLL) [16, 17]. The main approaches to micro-
combs all suffer from various limitations—for example,
MLL combs have limited free-spectral range (FSR) and
gain-limited bandwidth [9], while Kerr and EOM combs
usually suffer from low efficiency [18] (but see [19, 20]),
require high cavity Q ∼ 106, and involve precise locking
of the pump to a cavity resonance. Kerr combs also ex-
hibit complex, chaotic comb-forming dynamics [21], while
EOM combs may have simpler dynamics but require high
radio-frequency (RF) power consumption [12]. Because
of this, there is no ideal comb source, and micro-comb
users must navigate the harsh tradeoff between the ben-
efits and drawbacks of each platform.

These challenges has fueled continued interest in combs

based on parametric (χ(2)) nonlinearities [22, 23], specif-
ically in the context of optical parametric oscillators
(OPOs) [24]. The inherently broadband χ(2) gain in
OPOs, combined with chirped poling [25] and/or dis-
persion engineering [26], allows for efficient, versatile,
broadly tunable light generation [27, 28], including at
wavelengths where we lack good laser gain media. Syn-
chronous pumping is the most common method to gener-
ate an OPO comb [29–33], but requires that the pump it-
self be a comb source. Diddams et al. demonstrated comb
generation from a continuous-wave (CW)-pumped OPO
[34] by intracavity frequency-modulated (FM) mode-
locking [35], a technique that has attracted follow-on work
and recent on-chip implementations [36–39]. However,
the doubly-resonant nature of this device is a major limi-
tation: to date the FM-OPO has only been demonstrated
near degeneracy, with limited tuning range. Moreover,
the pump must be accurately locked to the second-
harmonic of the cavity resonance, making the OPO very
sensitive to wavelength drift. Despite its promise, FM
mode-locking alone does not unlock the full range of ca-
pabilities one would expect from an OPO comb.

In this article, we propose a new comb-generation mech-
anism for singly-resonant OPOs based on simultane-
ous amplitude-modulated (AM) and FM mode locking.
This hybrid AM/FM mode-locked OPO, which we call
the quadrature-amplitude modulated OPO (QAM-OPO),
shares the main advantages of the FM-OPO: broad comb
bandwidth, high efficiency, CW (as opposed to frequency
comb) pump, and deterministic “turn-key” operation [39].
However, the singly-resonant condition provides addi-
tional benefits not present in the FM-OPO: it has a much
flatter power spectrum, it can work away from degeneracy
without sacrificing comb bandwidth, it is broadly tunable,
and it is insensitive to pump phase noise or frequency
drift, with pump phase fluctuations imparted onto the
non-resonant idler. Moreover, the presence of an idler fur-
ther extends the bandwidth of the comb. Taken together,
these attributes make the QAM-OPO a promising source
for stable, broadband, widely tunable frequency combs,
fully harnessing the strengths of the χ(2) nonlinearity.

This paper is structured as follows. Sec. 2 presents the
basic theory of the QAM-OPO: starting with the nonlin-
ear field equations and invoking a frequency-modulated
continuous-wave (FMCW) ansatz, we obtain a reduced
phase-space dynamical model that accurately predicts the
dynamics and steady-state behavior when the OPO is in
a stable operating regime. In general, this model pre-

1

ar
X

iv
:2

40
5.

04
59

4v
1 

 [
ph

ys
ic

s.
op

tic
s]

  7
 M

ay
 2

02
4



dicts a highly-chirped, O(1) duty-cycle pulse train with a
very flat optical power spectrum, and by analogy to the
inverted pendulum, we derive an analytic expression for
the comb bandwidth (as an illustrative example, we sim-
ulate FMCW mode-locking in a bulk cavity, comprising
discrete modulators and fiber feedback sections, although
the models developed here are readily extended to in-
tegrated realizations, such as in thin-film lithium niobate
[40]). Sec. 3 analyzes the stability of this comb source and
highlights three phenomena—wraparound, loopback, and
mode-hopping—that can destabilize the comb. This anal-
ysis provides analytic guideposts to ensure stable comb
generation, as well as bounds on important properties
including bandwidth, FSR, and number of comb lines.
Finally, Sec. 4 explores the tunability of the QAM-OPO,
where we show that the comb center frequency can be di-
rectly controlled through the EOM’s RF detuning. More-
over, this tuning range can be increased if we have control
over the pump wavelength. Sec. 5 states our conclusions.

Three Appendices cover supplementary topics that may
be helpful to the reader. Appendix A covers the basic
theory of OPOs and notation used in this paper. Ap-
pendix. B covers techniques to maximize the χ(2) phase-
matching bandwidth. Finally, Appendix C considers the
degenerate or near-degenerate case (where an OPO can
be made singly-resonant with a periodic filter).

2 Basic Model of QAM-OPO

2.1 EO Comb vs. OPO Comb

At a high level, we can motivate the QAM-OPO by com-
parison to a resonant electro-optic (EO) comb. A conven-
tional EO comb consists of a ring cavity with an intra-
cavity phase modulator (PM), driven at the cavity FSR
(or a harmonic thereof), which induces coupling between
neighboring cavity modes, and converting the CW pump
into a frequency comb (Fig. 1(a)). Consider a cavity with
round-trip loss α, PM modulation frequency Ω and am-
plitude ϕp (i.e. modulation eiϕp cos(Ωt)). Under a simple
dispersionless coupled-mode model, the power of the mth

(m ̸= 0) comb line is given by Pm = Pin(α/ϕp)e
−|m|α/ϕp

[15, 41]. Both the 3-dB bandwidthN3dB (defined in terms
of number of comb lines) and conversion efficiency ηcomb

both depend on the figure of merit ϕ/α:

N3dB = 2 log(2)ϕp/α, ηcomb = 2α/ϕp (1)

Eq. (1) highlights two limitations of EO combs. (1) First,
the comb generation efficiency is very poor and inversely
related to bandwidth ηcomb ∝ N−1

3dB (Kerr combs follow
the same scaling law [18]). This can be circumvented us-
ing coupled-cavity designs [20, 41], but such systems pose
unique locking challenges, particularly for materials like
LiNbO3 that suffer from photorefractive drift. (2) Sec-
ond, broad combs require very low cavity loss. Rewrit-
ing in terms of drive voltage Vpp (see Appendix A.1 for

derivation), we find N3dB ≈ Vpp/(VπLα), i.e. a broad
comb requires a very low modulator loss figure-of-merit
VπLα, or a large Vpp requiring high RF power.

The OPO comb (Fig. 1(b)) operates by a very different
mechanism. Here, in addition to the EOM, the cavity
contains a χ(2) gain element, which in the presence of a
CW pump, facilitates gain, i.e. optical parametric ampli-
fication (OPA), via parametric down conversion (PDC) of
pump photons to signal and idler photons. As in the EO
comb, the EOM induces coupling between cavity modes,
producing the comb. However, the OPO gain medium
counteracts the cavity loss, allowing one to circumvent the
VπLα-derived limits for conventional EO combs. More-
over, the conversion efficiency of the OPO comb is derived
from the CW OPO, is of order unity and not subject to
an efficiency-bandwidth tradeoff.

2.2 Ikeda Map

The field evolution of the OPO comb is governed by three
forcing terms: (1) gain and loss, (2) modulator chirp,
and (3) group-delay dispersion (GDD). We model these
dynamics using the Ikeda map, where the state of the
cavity is encoded in the propagating signal field a(n)(τ),
a T -periodic function where τ is the “fast” time variable
and n is the round-trip number, and T is the cavity rep-
etition rate [42]. A round trip can be decomposed into a
sequence of discrete operations as shown in Fig. 1(c):

EOM

Input

Comb

PDC

EOM

Pump Signal Idler

PumpCW Signal

Idler

EOM

χ (2)

RF

EO Comb OPO Comb

a(τ)
b(τ)
c(τ)

Signal

Idler

Pump
OPA

cout bout aout

(next
layer)EOM GDD

(a) (b)

(c)

Figure 1: Comb Generation Mechanism. (a) Conventional
resonant EO comb and (b) singly-resonant OPO comb. (c)
Ikeda map round-trip model of OPO comb.
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1. OPA. In the χ(2) crystal, the signal a, idler b, and
pump c (at carrier frequencies ωa, ωb, and ωc = ωa+
ωb) mix in a three-wave interaction. Dispersion must
also be accounted for, and the equations are solved
in the propagative picture [24]

∂za = iβa(i∂τ )a+ iκ cb∗ (2a)

∂zb = iβb(i∂τ )b+ iκ ca∗ (2b)

∂zc = iβc(i∂τ )c︸ ︷︷ ︸
Dispersion

+ iκ ab︸︷︷︸
OPA

(2c)

over the domain z ∈ [0, L], with initial conditions
b(τ) = 0, c(τ) = cin. Here L is the OPA crys-
tal length, κ is the nonlinear coefficient, cin(τ) is
the pump (a constant for CW pumping), and βu(ω)
(u ∈ {a, b, c}) are the dispersion relations for the
three waves. In general, Eqs. (2) must be solved nu-
merically. A full treatment is given in Appendix A,
but for a CW signal field, the OPA crystal is modeled
as a nonlinear gain element a(τ) → eig(a,ω)/2a(τ),
where the gain g(a, ω) is a function of the signal am-
plitude and its frequency.

In the high-finesse limit, g(a, ω) has an analytic ex-
pression (see Eq. A23):

g = p2α sinc2
(√

|κa|2 + (∆β/2)2 L
)

(3)

which depends on the pump normalized to threshold
p = cin/cth, the round-trip loss α, and the phase-
mismatch ∆β, which itself depends on ω ≡ ωa:

∆β = βc − βa − βb

= β(ωc)− β(ω)− β(ωc − ω) (4)

In the linear, phase-matched regime (a = 0,∆β = 0),
the OPO is at threshold, i.e. g = α. Both phase
mismatch and pump depletion add in quadrature to
reduce the gain from its optimal value.

GVD

Gain

Loss
Chirp

‒ω +ω

EOM PMIM
φ+

φ–

φa φp

=

Figure 2: (a) Simultaneous amplitude- and phase-modulation
in QAM-OPO. (b) Competition between gain, chirp, GVD,
and loss, that stabilizes the comb output.

2. EOM. An OPO comb requires modulation—which
in the QAM-OPO cascades an intensity- and phase-
modulator (IM and PM, Fig. 2(a)):

a(τ) → cos(ρ(τ))︸ ︷︷ ︸
IM

eiϕ(τ)︸ ︷︷ ︸
PM

(5)

where the EOM inputs ρ(τ), ϕ(τ) are sinusoidal fields
with frequency Ω and amplitude ϕa, ϕp, with the IM
bias set to maximize the transmission at the point of
zero chirp (ρ(0) = 0):

ρ(τ) =
(
cos(Ωτ)−1)ϕa, ϕ(τ) = (cos(Ωτ)−1)ϕp (6)

One could also use a dual-drive Mach-Zehnder modu-
lator (MZM), where a(τ) → 1

2 (e
iψ+(τ)+eiψ−(τ))a(τ),

to achieve QAM modulation. Here, up to an over-
all phase constant, the inputs on the MZM arms are
ψ±(τ) = ρ(τ) ± ϕ(τ), corresponding to modulation
amplitudes of ϕ± = ϕa ± ϕp. This modulator is
shorter than the IM/PM cascade, but will require
more phase and therefore higher drive voltage.

3. GDD. Dispersion is modeled with as a frequency-
dependent phase. The OPA and EOM are also
dispersive, and in the high-finesse regime, we can
treat all these dispersions as one lumped element,
a(ω) → eiδ(ω)a(ω), where δ(ω) is the total cavity
round-trip dispersion.

4. Out-coupling. The field is attenuated a→ e−α0/2a.

Taken together, these effects give us a qualitative model
that explains comb formation in the QAM-OPO, sketched
in Fig. 2(b): (1) the IM creates a localized region of net
gain, which seeds the comb, (2) the PM chirp red- and
blue-shifts the tails of the pulse, and (3) dispersion (pre-
dominantly GDD) pushes power from these tails from the
net gain region into the net-loss region.

2.3 FMCW Ansatz and Phase-Space Model

Here, we propose an ansatz describing the signal field
in terms of a frequency-modulated continuous-wave
(FMCW) function, i.e. a function a(τ) with amplitude
A(τ) and carrier frequency ω(τ) varying slowly in time:

a(n)(τ) = A(n)(τ) exp
[
−i

(
ϕ0 +

∫ t

0

ω(n)(τ ′)dτ ′
)]

(7)

where we have explicitly denoted the round-trip index n,
which will be important when deriving dynamical equa-
tions. However, except when necessary, we drop this in-
dex in the results below.

The FMCW ansatz is motivated by our empirical obser-
vation that, in CW-pumped OPO combs, the amplitude
|a(τ)| is a slowly-varying quantity, making the waveform
quasi-CW. This is a unique property of these combs that
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stands in contrast with the bright solitons [43, 44], non-
soliton pulses [15], dark solitons [45], and simultons [32]
observed in conventional frequency-comb platforms, and
arises because the comb is stabilized by balancing GDD
with modulator chirp, rather than Kerr nonlinearity as in
a conventional soliton comb.

Using the Ikeda map, we wish to obtain a field equa-
tion for A(n, τ) ≡ A(n)(τ), ω(n, τ) = ω(n)(τ), where the
round-trip index n is converted into a continuous variable,
and related to the “slow” time in the sense of Lugiato-
Lefever by t = nT [46]. This equation will be accu-
rate when field is slowly-varying, so that we may replace
f (n+1) − f (n) → ∂f/∂n, arriving at the following field
equations for A and ω:

∂A

∂n
= −δ′(ω)∂A

∂τ︸ ︷︷ ︸
GDD

+
1

2

[
g(A,ω)− α(τ)

]
A︸ ︷︷ ︸

gain, loss

(8a)

∂ω

∂n
= −δ′(ω)∂ω

∂τ︸ ︷︷ ︸
GDD

−ϕ′(τ)︸ ︷︷ ︸
chirp

(8b)

Here δ(ω) = β(ω)L + δext(ω) is the total GDD, which
is a sum of OPA dispersion and other intracavity con-
tributions, and ϕ(τ) is the round-trip EOM phase shift.
The QAM-OPO also includes a round-trip intensity mod-
ulation, so the total loss (out-coupling plus modulation)

Property Default
OPA Length L 1 cm
EOM Length Leo 1 cm
OC Loss α0 0.2
Pump / Threshold p 1.65
IM, PM Phase ϕa, ϕp –
EOM Frequency frep –
Disp. Comp. Factor DCF 1
OPA/EOM Material LiNbO3

Disp. Comp. Material SMF28 fiber

Table 1: Default settings for QAM-OPO used for simulations
in this paper.

C-Band O-Band
λa 1.550 1.300 µm
λb 2.362 2.802 µm
λc 0.936 0.888 µm

ng,a, ng,b 2.174 2.184
ng,c 2.222 2.231
∆β1 0.158 0.159 ps/mm
Λ 27.68 25.73 µm

Table 2: Group-velocity matched pumping conditions for bulk
LiNbO3 dispersion relation. λa/λb/λc: signal/idler/pump.
ng = c β′(ω): group index, ∆β1 = β′(ωc) − β′(ωa): pump-
signal GV mismatch, Λ: quasi phase-match (QPM) period.

α(τ) = α0 + 2 log[sec(ρ(τ))] is time-dependent as well.

Eqs. (8) can be reduced to a system of ordinary differ-
ential equations (ODEs) using the method of character-
istics, where (A,ω) are integrated along characteristic
curves (n, τ(n)) as follows:

dτ

dn
= δ′(ω),

dω

dn
= −ϕ′(τ), dA

dn
= [g(A,ω)− α(τ)]A

(9)

These equations provide quantitative foundation for the
dynamical phase-space model of Fig. 2(b), where en-
ergy flow is governed by gain/loss (dA/dn), group delay
(dτ/dn), EOM chirp (dω/dn), and the steady-state comb
is the solution that balances these effects.

To study the QAM-OPO in more detail, consider the
specific benchmark configuration of Table 1, designed to
have realistic experimental parameters, and which we will
revisit over the course of this paper. The parameters
considered here correspond to a cavity containing both
guided-wave and free-space sections. The discrete OPA
and EOM segments (1-cm each) are assumed to be either
bulk of weakly-guiding LiNbO3, where the material dis-
persion dominates over geometric (waveguide) dispersion.
The frameworks and dynamical regimes studied here are
readily extended to integrated platforms, such as thin-
film lithium niobate [40], where the dispersion relations of
each section may be drastically altered by the waveguide
geometry [47]. The out-coupling loss is 20%, correspond-
ing to a round-trip loss of 1 dB. We also include the option
of dispersion compensation factor (DCF, default unity),
modeled as an auxiliary dispersion element that reduces
the GDD δ2 ≡ δ′′(ωa) by the factor δ2 → δ2/DCF. The
default dispersion compensation material is SMF28 fiber
unless otherwise specified. The EOM frequency frep and
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Figure 3: Phase-space dynamics dτ/dn, dω/dn (streamlines)
and net gain g−α (contours) for QAM-OPO. Parameters: C-
band GV-matched, DCF = 2, ϕa = 0.4, ϕp = 1.6.
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Figure 4: Simulation of comb formation. (a) Transient and (b) steady-state pulse shape a(t) and spectrum a(ω). (c) Evolution
of spectrogram of a(τ), showing stabilization of FMCW waveform. Settings: frep = 50 GHz, ϕa = 0.4, ϕp = 1.6, DCF = 2.

driving phases ϕa, ϕp have no default values. The OPA
bandwidth also depends on the pumping condition; for
the broadest combs (see Sec. B), we primarily consider
the case of signal-idler group-velocity (GV)-matching, Ta-
ble 2. These defaults in mind, Fig. 3 provides an illustra-
tion of the phase-space model Eq. (9), with the dynamics
of τ and ω (plotted as λ = 2πc/ω) plotted as streamlines,
and the dynamics of A plotted as a contour map.

Fig. 4 illustrates the dynamics of pulse formation in this
QAM-OPO. Here we assume instantaneous pump turn-on
at round trip n = t/T = 0, where the field initially resem-
bles parametrically amplified vacuum noise. This leads
to an irregular pulse intensity P (τ) = |a(τ)|2 and power
spectrum P (ω) = |a(ω)|2. However, over the course of the
several hundred round-trips in Fig. 4(a), these “glitches”
are pushed away from the center of the pulse, where they
are eventually suppressed by the intracavity IM, leaving
behind a smooth waveform and spectrum. The steady-
state, plotted in Fig. 4(b), is a rapidly oscillatory wave-
form with a slowly-varying amplitude, consistent with the
FMCW ansatz of Eq. (7). In the frequency domain, this
corresponds to a flat spectrum that covers (in this case)
the entire gain bandwidth of the OPA crystal, which for
C-Band GV matching is around 200 nm (approximately
500 comb lines at frep = 50 GHz). It is also instruc-
tive to look at the spectrogram of the QAM-OPO signal,
plotted in Fig. 4(c), which highlights the utility of the

phase-space model of Eqs. (9) in understanding the pulse
dynamics, namely, that an initial noisy distribution of
power is amplified and then “sheared” by the EOM chirp
and GDD, following the phase portrait of Fig. 3, leav-
ing a steady-state pulse centered at the saddle point and
emanating out to the edges of the gain window. This evo-
lution is deterministic and “turn-key”, so the same comb
would be formed with a gradual pump turn-on, in con-
trast to bright-soliton Kerr combs [44] or doubly-resonant
/ pump-resonant OPOs [48, 49], where dynamical effects
(and often thermal locking [50]) are key to achieving the
desired end state.

2.4 Steady-State Solution

Integrating Eqs. (9) for (ω, τ), we observe that the charac-
teristic curves follow a conservative dynamical flow, with
the round-trip phase being a constant:

δ(ω) + ϕ(τ) = C (10)

Intuitively, for a signal to be stable from one round trip
to the next, the total phase accumulated (GDD phase
plus EOM phase) must the same everywhere in the pulse.
This “constant-phase” model allows us to quickly find
good analytic approximations for the comb bandwidth
and spectrum, without solving any dynamical models.

Stable operation of the QAM-OPO is obtained when
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the gain maximum overlaps with a saddle point on the
phase portrait as in Fig. 3, and the steady-state solu-
tion branches out from that point along the separatrix,
the constant-phase curve that crosses the saddle point
(dashed lines in Fig. 4(c)). Like any fixed point, this sad-
dle point is located at:

ϕ′(τ) = 0, δ′(ω) = 0 (11)

The first condition places the saddle at the maximum (or
minimum) of the EOM phase, while the second condition
physically corresponds to matching the cavity FSR to the
EOM frequency, FSR = frep. Since the FSR is a function
of ω through cavity dispersion, this sets the value of ω at
the saddle point.

Since these dynamics are not affected by a global phase
shift, we can shift ϕ(τ) and δ(ω) so that ϕ = δ = 0 at
the saddle point, in which case Eq. (10) gives C = 0 for
the separatrix. Using Eq. (10), we can solve for the pulse
chirp ω(τ) and amplitude A(τ):

ω(τ) = δ−1(−ϕ(τ)) (12)

δ′(ω(τ))
dA

dτ
=

1

2

[
g(A,ω(τ))− α(τ)

]
A (13)

Here, it is instructive to consider the quasi-static
limit, where the left-hand side can be ignored and the
quasi-static field, denoted A0 is obtained by solving
g(A0, ω(τ)) = α(τ). This is solved using Eq. (3):

A0 =
1

κL

√
sinc−1

(√α(t)/α0

p

)2

−
(∆β[ω(t)]L

2

)2

(14)

This has a sharp cutoff when sinc2
(
1
2∆β[ω(t)]L

)
=

α(t)/(α0p
2); beyond this point, net gain is not possible

as the OPO is locally below threshold, and A0 = 0.

2.5 Inverted Pendulum Model

A useful simplification is to (i) truncate dispersion at sec-
ond order, δ(ω) = 1

2δ2ω
2, and (ii) assume that the EOM is

driven by a single frequency, i.e. that Eq. (6) holds, equiv-
alent to ϕ(τ) = −2ϕp sin

2(Ωτ/2). In this case, Eqs. (9)
takes the form:

dτ

dn
= δ2ω,

dω

dn
= ϕpΩsin(Ωτ) (15)

Note the resemblance of the (τ, ω) equations to the in-
verted pendulum ẋ = p/m, ṗ = mg sin(x/ℓ) (for a pen-
dulum of mass m, length ℓ, in gravitational field g). The
phase portrait of the pendulum is sketched in Fig. 5. The
time-frequency chirp, computed with Eq. (12), is:

ω(t) = 2
√
ϕp/δ2 sin(Ωt/2) (16)

which gives an upper bound on the comb bandwidth

∆ωBW = 4
√
ϕp/δ2, ∆λBW =

2λ2
√
ϕp/δ2
πc

(17)

/2 0 /2
Time 
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1
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2

3

Fr
eq

ue
nc

y 

T = 2 /

=
4

p/
2

Figure 5: Phase portrait of the inverted pendulum in normal-
ized coordinates.

which is twice the maximum excursion of ω(t) from the
separatrix. For the example in Figs. 3-4, δ2 ≈ 1000 fs2

(2-cm LiNbO3 with 2× DCF) and ϕp = 1.6, so Eq. (17)
predicts a 200-nm comb. The actual bandwidth is slightly
larger due to higher-order dispersion, which deviates from
the pendulum model.

Finally, we can normalize the pendulum model by con-
verting to dimensionless coordinates:

τ = Ω−1τ̄ , ω =
√
ϕp/δ2︸ ︷︷ ︸
ξω

ω̄, n = (Ω
√
δ2ϕp)

−1︸ ︷︷ ︸
ξn

n̄ (18)

This normalization indicates the relevant frequency- and
time-scale of the OPO: to order of magnitude, 1/Ω gov-
erns the pulse size, ξω the comb bandwidth, and ξn the
number of round trips required to build up a stable comb.
For the parameters used above, ξω/2π = 6.4 THz (50 nm)
and ξn = 80. In normalized variables, Eqs. (15) become:

dτ̄

dn̄
= ω̄,

dω̄

dn̄
= sin(τ̄),

dA

dn̄
=
ξn
2

[
g(A,ω)− α(τ̄)

]
A

(19)
which is the inverted pendulum model. The general so-
lutions are elliptic functions, which trace out constant-
phase curves ω̄2 − (2 sin(τ̄ /2))2 = C, with the separatrix
(C = 0) having the simple expression ω̄ = ±2 sin(τ̄ /2)
(compare Eq. (16)), giving a bandwidth bound of ∆ω̄ = 4
in dimensionless units (compare Eq. (17)).

3 Stability Analysis and Limitations

Operating the QAM-OPO involves the careful art of nav-
igating a landscape of potential instabilities. As shown
in the previous section, stable comb formation is robust
and deterministic under the right conditions; however, in
certain regimes, instabilities can disrupt the FMCW solu-
tion and lead to unstable, noisy combs that are not useful
in most applications. The three most important instabil-
ities, depicted in Fig. 6, are (1) the wraparound insta-
bility, (2) the loopback instability, and (3) the mode-hop
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Figure 6: QAM-OPO instabilities. Comparison of stable dynamics, wraparound instability, loopback instability, and mode-
hopping instability. (a) Pulse spectrogram. (b) Power P (τ) = |a(τ)|2. (c) Power spectrum P (ω) = |ã(ω)|2. Conditions for
the simulations are as follows: (Stable) frep = 50 GHz, DCF = 2, ϕp = 1.6 rad, ϕa = 0.4 rad; (Wraparound) DCF = 1,
ϕa = 0.3 rad; (Loopback) DCF = 2.7; (Mode-hop) λc = 0.912 µm, Λ = 26.66 µm, compare Table 2.
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Figure 7: Wraparound Instability. (a) Oscillations in power P (t) and comb-line RIN noise σP /⟨P ⟩ as a function of IM phase
ϕa. (b) Pulse waveform, spectrum, and spectrogram for a range of ϕa. Parameters: f0 = 50 GHz, ϕp = 1.6 rad.

instability. This section studies these instabilities and the
conditions that give rise to them.

3.1 Wraparound Instability

Dividing the A and τ̄ equations in Eq. (19), we obtain
an equation for A(τ), which we wish to evaluate at the
separatrix:

dA

dτ̄
=
ξn
2ω̄

(g − α)A
sep−→ ξn

4 sin(τ̄ /2)
(g − α)A (20)

A first-approximation to Eq. (20) is to set the right-side
term (g − α)A to zero, since ξn ≫ 1 and dA/dτ̄ ∼ O(1)
in realistic regimes. This leads to the solution:{

g(A,ω) = α(τ) (above threshold)

A = 0 (below threshold)
(21)

The intracavity IM divides phase space into a “gain”
region centered around τ̄ = 0 and a “loss” region cen-
tered around τ̄ = π (Fig. 3). This is designed to clip
the tails of the pulse and prevent wraparound instabil-
ity. Wraparound is suppressed completely in the limit
ξn → ∞, where Eq. (21) is exact. However, in realistic
situations, the GVD term cannot be completely ignored;
and the tails of the pulse will still leak into the below-
threshold region with an amplitude that scale as

A(τ̄) ∝ exp
(
ξt

∫ τ̄

τ̄0

1

4 sin(τ̄ /2)

[
g − α(τ̄)

]
dτ̄

)
(22)

where τ̄± are the boundaries of the loss region (g−α ≤ 0
for τ̄ ∈ [τ̄−, τ̄+] (mod 2π)). Since g < α in the loss region,
Eq. (22) predicts A(τ̄) will be exponentially attenuated.

Wraparound still occurs, but only at a controllably small
amplitude.

To estimate analytically the magnitude of any residual
wraparound, we make two approximations: (1) assume
the comb is well within the OPA’s phase-matching band-
width, so that the gain given by Eq. (3) reduces to
g → p2α0, which independent of ω, and (2) assume the
amplitude modulation is sufficiently weak that the ex-
pression α(τ) = α0 + 2 log[sec(ρ(τ))] can be expanded to
leading order in ϕa. Thus we have

(g − α) → (p2 − 1)α0 − 4ϕ2a sin
4(τ̄ /2) (23)

τ− = 2 sin−1
[( (p2 − 1)α0

4ϕ2a

)1/4]
, τ+ = 2π − τ− (24)

The wrapped-around field has the amplitude:

Awrap ∝ exp
(
ξt

∫ τ̄+

τ̄−

(p2 − 1)α0 − ϕ2a sin
4(τ̄ /2)

4 sin(τ̄ /2)
dτ̄

)
≈ exp

(
−

√
2

3
ξt(p

2 − 1)α0

[ 4ϕ2a
(p2 − 1)α0

− 1
]3/2

︸ ︷︷ ︸
γ

)
(25)

where the second line of Eq. (25) is taken by expanding
the integral to leading order in ϕ2a around ϕ

2
a = (p2−1)α0.

Fig. 7 illustrates the onset of wraparound stability and the
importance of IM in maintaining a stable comb. Here,
we slowly reduce the IM phase in an QAM-OPO that
initially shows stable comb formation (Fig. 7(b), left col-
umn). As ϕa is reduced, the loss region narrows and the
field begins to wrap around, interfering with itself and
producing the fringes in P (t) as observed in the middle
columns of Fig. 7(b). The amplitude of these oscillations
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~160 nm

Figure 8: Loopback instability. (a) TOD causes the dispersive phase curve δ(ω) to bend over, so the PM drive phase and
comb bandwidth are limited. (b) Calculated ϕmax and ∆λmax as a function of dispersion compensation, as compared to the
analytic result Rq. (27). (c) Simulation of onset of instability. Phase drive is ramped from ϕp = 0 to 2 over 2000 round trips.
Parameters: f0 = 50 GHz, ϕa = 0.4 rad, DCF = 3×.

can be quantified by high-pass filtering P (t) → F ⊗ P
and comparing the norm to that of the unfiltered func-
tion; the resulting ratio

∫
|F ⊗ P |2dt/

∫
|P |2dt is plotted

in Fig. 7(a). We observe a steady increase in the oscil-
lations, which correlate closely with the tunneling e−γ ,
where γ is the tunneling amplitude obtained in Eq. (25).

Small amounts of wraparound lead to oscillations, but the
waveform is still stable. However, at around ϕa = 0.3, an
abrupt transition occurs and the comb becomes chaotic.
This happens because the wraparound amplitude is so
large that nonlinear effects destabilize the comb at its
saddle point. This transition is evident in the relative
intensity noise (RIN) of individual comb lines, plotted in
Fig. 7(a), which shows a sharp jump at ϕa = 0.3 and
plateaus near O(1).

3.2 Loopback Instability

In any model with dispersion truncated to second order,
one can always increase the comb bandwidth by scaling
the relevant parameters – in this case phase ϕp and GDD
δ2. In practice, just like in Kerr combs, third-order dis-
persion (TOD) limits the bandwidth that can be practi-
cally achieved. In the presence of TOD, the bandwidth
of a comb is limited by a change in the sign of β2 at the

zero-dispersion wavelength λzdw. This leads to dispersive-
wave emission (also referred to as Cherenkov rediation)
in both solitons [51, 52] and Kerr combs [53, 54], and for
the QAM-OPO, gives rise to loopback instability, where
the separatrix loops back on itself, so that ω(τ) loses its
monotonicity. In this case, the FMCW assumption no
longer holds, since in the region of the loop the field is
the sum of two frequencies, which beat against each other.
Loopback instability is problematic for two reasons: (1)
thanks to the loop, a fraction of the gain medium goes
undepleted, which leads to uncontrolled amplification of
vacuum fluctuations, and (2) if a significant fraction of
the field traverses the loop, it can re-emerge at the saddle
point and destabilize the comb.

Recall that the separatrices are curves of constant phase:
δ(ω) + ϕ(τ) = 0. If our EOM phase spans the range
[0,−2ϕp], then to maintain the constant phase, the sep-
aratrices compensatingly span the range δ ∈ [0,+2ϕp].
This can be visualized by plotting the δ(ω) as a potential
well (Fig. 8(a)): the comb forms in the region δ(ω) < 2ϕp.

In the quadratic case (Sec. 2.5), this yields |ω| < 2
√
ϕp/δ2

for a total bandwidth of ∆ωBW = 4
√
ϕp/δ2.

However, in the presence of higher-order dispersion, the
potential well in Fig. 8(a) bends over. As a result, there is
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a maximum drive phase ϕmax, which supports a comb of
maximum bandwidth ∆ωmax = |ωB − ωA| between point
B (the local maximum of δ(ω)) and its equipotential A.
Since B is a maximum of δ(ω), τ̇ ∝ δ′(ωB) = 0, meaning
that τ̇ changes sign and the characteristic “loops back”
on itself. This is the origin of the loopback instability.

To good approximation, we can truncate dispersion at
third order, so that the dispersive phase takes the form
δ(ω) = 1

2δ2ω
2 + 1

6ω
3. We find:

ωA = δ2/δ3, ωB = −2δ2/δ3, ωC = −3δ2/δ3 (26)

The resulting maximum bandwidth and EOM phase are:

ϕmax =
δ32
3δ23

, ∆ωmax =
3δ2
δ3

= 3
(3ϕmax

δ3

)1/3

(27)

Loopback instability will become problematic if signifi-
cant amounts of dispersion compensation are used, since
usually dispersion is only compensated to leading order.
In the quadratic model, dispersion compensation should
improve the bandwidth of the comb due to the scaling
∆ω ∝ 1/

√
δ2. However, since ϕmax ∝ δ32 per Eq. (27),

the overall effect will be detrimental unless ϕmax is large
compared to the modulator drive voltage.

To give a sense of perspective, Fig. 8(b) plots ϕmax and
∆λmax = (λ2/2πc)∆ωmax for EO Comb OPOs with
various degrees of dispersion compensation (parameters
from Table 1 used, uncompensated δ2 = 2000 fs2, δ3 =
6500 fs3). Dispersion compensation is performed us-
ing standard SMF28 fiber (β2 = −20 fs2/mm, β3 =
122 fs3/mm) to reduce the GVD by the desired factor.
We see that without dispersion compensation, ϕmax ∼ 50,
which is much larger than the drive phase of realistic mod-
ulators; however, even a modest 2–3× GVD reduction re-
duces ϕmax to around unity, so loopback instability can-
not be ignored. The small drive phases and correspond-
ingly narrow bandwidths suggest that large amounts of
compensation DCF > 10× will be unhelpful in this case.

Fig. 8(c) numerically investigates the onset of instability
by adiabatically sweeping the EOM phase from ϕp = 0 to
4. Here, we have used DCF = 3, so that δ2 = 650 fs2 and
δ3 = 14000 fs3; from Eq. (27), the corresponding phase
and bandwidth limits are ∆ϕmax = 0.9, ∆λmax = 170 nm.
This is roughly in line with the numerical results, where
we observe stable comb formation up until about ϕ = 1.5,
after which the spectrograms show significant loopback
and spontaneous amplification of vacuum noise.

3.3 Mode-Hop Instability

Finally, the pulse can be disrupted by mode-hopping phe-
nomena. To understand this instability, recall that the
QAM-OPO outputs FMCW pulses, and the dynamics are
governed by quasi-CW physics. As a result, CW OPO
phenomena shed important insight into the stability of

the QAM-OPO pulse. In particular, CW OPO physics is
a classic case of multimode gain with a common pump,
where a large number of (longitudinal) modes compete for
limited pump gain, and the one with the largest gain (i.e.
phase-matched) wins out and oscillates [55]. Therefore, if
the OPO oscillates at a sub-optimal (phase-mismatched)
wavelength, this state is at best metastable, and the sys-
tem may “mode hop” to a higher-gain signal mode.

Mode hopping is a problem for the QAM-OPO because,
for finite phase-matching bandwidth, it is not possible for
all comb lines to experience the same gain. The tails of
the FMCW pulse are necessarily detuned from the center
wavelength, so if the center of the comb is phase-matched,
the tails will be phase-mismatched and experience less
gain, and are thus subject to mode-hopping. If the quasi-
CW picture were exact, this would stabilize any comb.
Fortunately, the phase-space dynamics of Sec. 2.3 only
allow this instability to act for a limited time before be-
ing pushed away from the gain region and damped, and
this saves the QAM-OPO. But we still need to study the
instability and understand when it occurs.

To begin, we analyze mode-hopping in a CWOPO by per-
turbing the field equations Eqs. (2) (written in frequency
basis, see Eqs. (A12)) about a steady-state solution:

δȧm = iβa,mδam + iκ
∑
n

(δcm+nb
∗
n + cm+nδb

∗
n) (28a)

δḃm = iβb,mδbm + iκ
∑
n

(δcm+na
∗
n + cm+nδa

∗
n) (28b)

δċm = iβc,mδcm + iκ
∑
n

(δanbm−n + anδbm−n) (28c)

Mode-hopping begins as a modulation instability on top
of a CW background (seed) field (Fig. 9(a)). This
background is obtained by solving for the steady-state
equations (numerically or analytically) in Appendix A.3.
Without loss of generality, we center the frequency win-
dow so that the CW background lies in the m = 0 mode
(a0, b0, c0). Eqs. (28) then reduce to:

δȧm = iβa,mδam + iκ(b∗0δcm + c0δb
∗
−m) (29a)

δḃm = iβb,mδbm + iκ(a∗0δcm + c0δa
∗
−m) (29b)

δċm = iβc,mδcm + iκ(b∗0δam + a0δb
∗
m) (29c)

For each m ̸= 0, which corresponds to a modulation fre-
quency mΩ, Eqs. (29) are a linear system of six ODEs
for the variables (δa±m, δb±m, δc±m). By solving these
ODEs numerically over a single OPO round-trip, one can
calculate the transition matrix and determine whether
the perturbations will grow. The dynamics simplify when
the pump and signal have significant group-velocity mis-
match (which is usually the case, since we would rather
dispersion-engineer the OPO to match signal and idler
group velocities, and matching three group velocities is
very difficult). In this case, the pump-mode perturbation
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Figure 9: Mode hopping of a CW field. (a) Illustration of modulation instability when an OPO is oscillating at a non-optimal
signal wavelength. (b) MI gain gMI for an OPO phase-matched to 1.55 µm and seeded at different signal wavelengths. Colored
dots are full numerical simulations; dashed line is the reduced model Eq. (30). (c) Numerical evolution of a CW OPO initialized
to a 1.51 µm signal, showing the growth of MI modes that disrupt the original CW field. Simulation: Table 1 parameters with
frep = 50 GHz and no modulation, ϕa = ϕc = 0.

δcm is highly phase-mismatched due to a large βc,m, and
therefore it can be removed from the dynamics, yielding
a 2× 2 system for the variables (δam, δbm):

d

dz

[
δam
δb∗−m

]
=

[
iβa,m κc0(z)
κc0(z)

∗ −iβb,−m

] [
δam
δb∗−m

]
(30)

Solving Eq. (30) gives the modulation instability (MI)
gain gMI(mΩ) = 2 log |am(L)/am,(0)|. In Fig. 9(b), we
calculate the MI gain for seed fields of different detun-
ings from the optimal phase-matching signal (1.55 µm),
using both Eq. (30) and full numerical simulations. We
see that Eq. (30) is accurate for all frequencies except
a narrow “dip” around the seed frequency, consistent
with the phase-mismatch argument used to discard δcm
in Eqs. (29).1

Fig. 9(c) shows an example of mode-hopping in action:
over the course of 200 round trips, the original CW seed
(at 1.51 µm) is disrupted by amplified vacuum fluctu-
ations, leading to a chaotic state; over long timescales
(Nrt ≳ 105), these states tend to stabilize to a CW oscil-
lation at the mode with highest gain. Interestingly, the
MI gain spectrum is not maximized at the phase-matched

1The term δcm is strongly phase-mismatched when |βc,m −
βa,m|L ≳ π. To first order, this depends on the group-velocity
(or index) mismatch ∆β1 = |β′(ωc) − β′(ωa)| ≡ ∆ng/c and the
detuning: ∆f ≳ 1/(2∆β1L). For example, for the parameters used
in Fig. 9, the narrow dip where Eq. (30) fails to hold has a band-
width of BW = 2∆f = 1/(∆β1L) = 600 GHz (about 5 nm), much
narrower than the overall gain window.

wavelength, but is slightly offset at around 1.57 µm; the
phase-mismatch of the seed mode causes the MI gain
spectrum to be slightly offset from the undepleted gain
spectrum.

Next, we need to connect the theory of CW modula-
tion instability to the phase-space dynamics of Sec. 2.3
to understand mode-hopping in QAM-OPO pulses. Re-
call that comb-forming is a competition between gain
Ȧ = 1

2 (g(A,ω) − α(τ))A, dispersion τ̇ = δ′(ω)/T , and
chirp ω̇ = ϕ′(τ)/T , which trace out streamlines on (τ, ω)
phase space, leading to a stable FMCW pulse along
the separatrix of the phase portrait (Fig. 10(a)). Sim-
ilarly, once this pulse is formed, we can study the dy-
namics of the perturbations δam using the same phase
portrait, but with the amplitude governed by MI gain
δȦ = 1

2 (gMI(τ, ω)− α(τ))δA instead (Fig. 10(b)).

Note that, consistent with Fig. 9(b), the MI gain is maxi-
mized near the phase-matched wavelength (here 1.55 µm)
at the tails of the FMCW pulse, where the oscillating
signal is detuned from phase-matching and pump deple-
tion is weak. However, these gain regions (red lobes in
Fig. 10(b)) are centered away from any dynamical fixed
points, so the phase-space dynamics sweep away any per-
turbation before it has time to build up. This is the
key effect that allows the QAM-OPO to sustain broad
combs that push the limits of the phase-matching enve-
lope without being destabilized by mode-hopping. As we
see from the plots of the intensity |a(τ)| and spectrum
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Figure 10: Mode-hop instability mechanism. (a) Phase portrait showing the phase-space dynamics τ̇(t), ˙ω(t) and the OPA
gain, which governs pulse formation. (b) Once a pulse is formed, its stability to perturbations is governed by MI gain, and
perturbations follow the same phase-space dynamics. Here, we also plot the power |a(τ)| and spectrum |a(λ)| of a representative
FMCW pulse at the brink of mode-hopping instability. (c) Spectrogram P (τ, ω) plotted on a linear (left) and logarithmic
(right) scale. (d) Slices of P (τ, ω) along four representative streamlines, showing close correspondence between the numerically
computed fluctuations and the predictions of Eq. (31). Parameters: frep = 35 GHz, ϕp = 3 rad, ϕa = 0.3 rad.

|a(λ)|, the pulse in Fig. 10(b) is on the verge of instability
due to mode hopping, with amplified vacuum fluctuations
already starting to disturb its tails. This amplification is
observed in Fig. 10(c), where we plot the spectrogram on
a linear scale (left) and log scale (right). The log-scale
plot shows clear exponential gain as we traverse stream-
lines of the phase-space dynamics, starting from vacuum
fluctuations (yellow) and growing to be comparable to the
background pulse amplitude. Likewise, after leaving the
gain region, the fluctuations decay back to vacuum due
to negative net MI gain.

The most important metric governing mode-hop instabil-
ity is the integrated gain

Gint =

∫ (
gMI(ω, τ)− α(τ)

)
dn (31)

where the integral in Eq. (31) is taken over any streamline
(τ(t), ω(t)), starting from the point where it enters the MI
gain region. As Fig. 10(d) shows tracing four representa-
tive streamlines, Gint is fairly accurate at capturing the
amplification of vacuum noise (as well as subsequent at-
tenuation outside the gain region). Net gain Gint > 0
by itself does not destabilize the pulse, but there are two
case where it can be disruptive:

1. If gain is large enough that vacuum fluctuations be-
come comparable to the pulse amplitude. This de-
pends on the OPO threshold but is roughly Gint ≳
20–30.

2. If net gain Gloop = T−1
∮ (
gMI(ω, τ)− α(τ))dt, inte-

grated over the entire streamline is positive. Since
the streamlines form loops, net gain over a loop will
lead to runaway amplification of a vacuum signal.

Armed with Eq. (31), we see that there are two factors
that can contribute to the onset of mode-hop instabil-
ity: if the MI gain gMI(ω, τ) is too large, or if the “dwell
time” in the gain region, i.e. the number of round trips
when traversing a streamline, is too long. Both factors
are influenced by a number of experimental parameters,
and studying how these parameters lead to mode-hopping
will help us devise strategies to prevent it.

Fig. 11(a) shows the onset of mode-hopping as a function
of four parameters in the QAM-OPO. From top to bot-
tom, these are: (i) EOM frequency frep, (ii) gain band-
width (via adjusting Lqpm), (iii) round-trip dispersion,
and (iv) round-trip loss. As each parameter is varied, the
smooth FMCW spectrogram shows the growth of modes
away from the separatrix at the tails of the pulse, indica-
tive of mode-hopping to the higher-gain center frequen-
cies; this in turn leads to chaotic interference patters in
both the temporal amplitude |a(τ)| and spectrum |a(λ)|
(shown at the bottom and left of each subplot):

i. The EOM frequency is directly related to the
round-trip frequency chirp ϕ′(t) = ϕpΩsin(Ωt) =
2πϕpfrep sin(2πfrept). The number of round-trips
needed to traverse the gain region will be approx-
imately ∆ω/frep, so the integrated gain scales as
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Figure 11: (a) Onset of modulation instability when a parameter is varied. Top to bottom: repetition rate frep, QPM period
(which controls signal-idler GVM and thus phase-matching bandwidth), dispersion compensation, and round-trip loss. (b)
Comb-line RIN as a function of integrated gain Gint for the highest-gain streamline. (c) RIN as a function of MI figure of
merit FMI, showing that mode-hopping can be avoided when FMI ≤ 25.

Gint ∝ 1/frep. Therefore, mode-hopping will be es-
pecially relevant when generating frequency combs
of narrow spacing, where frep is small.

ii. The OPA gain bandwidth affects mode hopping,
since MI only occurs when the OPO oscillates away
from the frequency with maximum gain. By varying
the QPM period of the χ(2) crystal, we can adjust the
signal-idler group-velocity mismatch and thus shrink
the gain bandwidth. The second row of Fig. 11(a)
shows QAM-OPO for four separate crystals, show-
ing how shrinking the gain window leads to mode-
hopping even when all other parameters are equal.

iii. Dispersion compensation is a great way reduce RF
power without sacrificing bandwidth, but it can also
trigger mode-hopping (in addition to the loopback
instability, Sec. 3.2). In the third row of Fig. 11(a),
we reduce β2 → β2/DCF by a constant factor by
adding a fixed length of SMF28 fiber to the cavity;
at the same time, to maintain the comb bandwidth,
we reduce the PM phase ϕp → ϕp/DCF. Dispersion
compensation (at fixed bandwidth) reduces the chirp

rate by the same factor, correspondingly increasing
GMI ∝ DCF.

iv. Finally, high round-trip loss can lead to increased
mode-hopping because gain and loss are always of
the same order of magnitude: gMI ∼ g ∼ α. On
the other hand, the phase-space dynamics that set
the gain-region dwell time (chirp and dispersion) are
independent of loss. Therefore, we expect Gint ∝
α, and increasing loss can destabilize the comb, as
shown in the lower column of Fig. 11(a).

To make this discussion more quantitative, we can calcu-
late the comb-line relative intensity noise (RIN) σP /⟨P ⟩,
which should increase to O(1) when the comb becomes
unstable. Fig. 11(b) plots the RIN as a function of the
integrated gain Gint (Eq. (31)) calculated for the four
cases discussed above. Vacuum fluctuations, which grow
to an amplitude δa ∝ eGint/2 (recall Gint is power gain),
interfere with the FMCW background to create a RIN
that scales as σP /⟨P ⟩ ∝ eGint/2. This is consistent across
all four scenarios, despite the very different mechanisms
used to trigger mode-hop instability.
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Figure 12: Loop-gain instability. (a) Reducing the IM phase ϕa leads to the sudden onset of fluctuations. The spectrograms
reveal these fluctuations center around the loop streamline with maximum gain (dashed red line). (b) Comb-line RIN as a
function of loop gain. Parameters: frep = 25 GHz, ϕp = 3 rad, DCF = 0.5.

Using the pendulum model of Sec. 2.5, we can derive a
surprisingly good heuristic formula for Gint, and conse-
quently the onset of mode-hopping. Recall that the dy-
namical timescale was found to be ξn = (Ω

√
δ2ϕp)

−1 =
∆ωmaxT/8πϕp round trips (combining Eqs. (18) and
(17)). Assume that (i) the gain-region dwell time is com-
parable to this timescale, and (ii) the MI gain is approxi-
mately the difference gMI → ∆g ≡ gmax−gmin between its
maximum (at the phase-matched center frequency, g(0))
and minimum (at the antipodes, g(±∆Ω/2)) values on
the separatrix. Eq. (31) then simplifies to:

Gint =

∫ (
gMI(ω, τ)− α(τ)

)
dn

≈ (gmax − gmin)ξt =
∆g∆ωmaxT

8πϕp︸ ︷︷ ︸
FMI

(32)

We call this quantity FMI, the MI / mode-hopping figure
of merit. This figure is very easy to calculate, since ∆ωmax

and ∆g both have analytic expressions (see Eqs. (3, 17),
with ∆βmax = ∆β(±∆ωmax/2) below):

∆ωmax = 4
√
ϕp/δ2

∆g = p2α
[
1− sinc2

(
1
2∆βmaxL

)]
∼

{
p2α(∆βmaxL)

2/12 (∆βmaxL≪ 1)

p2α (∆βmaxL ≳ 2π)
(33)

Fig. 11(c) plots the comb-line RIN against FMI, where we
consistently see the onset of instability when FMI ≳ 20–
30.

Since the number of comb lines in the FMCW model is
bounded by the separatricesNcomb < ∆ωmaxT/2π, mode-
hopping instability limits the number of comb lines in

the QAM-OPO. Requiring FMI < 25 based on what we
empirically see from Fig. 11(c), one finds:

Ncomb =
2FMIϕp
∆g

<
100

p2(1− sinc2(∆βmaxL/2))

ϕp
α

(34)

The ϕp/α dependence should ring a bell: the 3-dB band-
width of the EO comb is given by Neo = 2 log(2)ϕp/α
(Eq. (1), see also [15]). Alas, the number of comb lines
for both frequency combs is limited RF power and cavity
finesse, with a scaling N ∼ ϕp/α. However, the constant
factor in Eq. (34) is large, so that even in the worst-
case scenario where the tails of the comb are significantly
phase-mismatched (and the sinc term in the denominator
goes to zero), the QAM-OPO can still support at least
30× more comb lines:

Nopo

Neo
=

100

p2(1− sinc2(∆βmaxL/2))

ϕp
α

/
2 log(2)ϕp

α

=
50

log(2)p2
1

1− sinc2(∆βmaxL/2)
≳ 30 (35)

where we have assumed p ∼ 1.57, which is the pump
power that maximizes conversion efficiency in a CW-OPO
(see Appendix A.3). If the phase-matching bandwidth is
broad compared to the comb bandwidth, or if the QAM-
OPO is pumped closer to threshold, it can support even
more comb lines.

Finally, as mentioned earlier, the comb can experience an
instability if there is net gain over any closed streamline
in phase space, i.e. Gloop > 0. The result is analogous
to wraparound instability, although it arises from closed
characteristics rather than the wrapping around of the
separatrix. To illustrate an example, consider the OPO
in Fig. 12, where we slowly reduce the amplitude mod-
ulation ϕa. Here, at about ϕa = 0.3, the net gain of
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the loop goes positive, leading to a chaotic structure cen-
tered around the fixed point at τ = ±T/2 (Fig. 12(a)).
Note that, in this case, the onset of oscillations is sudden
(Fig. 12(b)) and occurs exactly when Gloop = 0. This
sharp turn-on is in contrast to the gradual emergence of
fluctuations in Fig. 11, and indicates that the instability
is a true bifurcation (as opposed to merely exponential
amplification of vacuum noise).

3.4 Conditions for Stable Comb Generation

To conclude this section, Table 3 lists the three condi-
tions that must roughly be satisfied in order to achieve
stable comb generation in the QAM-OPO. Each condi-
tion is associated with a separate instability, and has its
own figure of merit. For wraparound instability, it is the
field attenuation over the loss region, e−γ (Eq. (25)); for
loopback instability, the phase relative to its TOD-limited
maximum value ϕp/ϕmax (Eq. (27)); and for mode-hop
instability, the integrated MI gain FMI (Eq. (32)).

Instability FoM and Condition

Wraparound γ =
√
2(p2−1)α0

6πfrep
√
δ2ϕp

[
4ϕ2

a

(p2−1)α0
− 1

]3/2
> 3

Loopback ϕp/ϕmax =
ϕpδ

3
2

3δ23
< 1

Mode-Hop FMI =
∆g∆ωmax

8πϕpfrep
< 20

Table 3: Wraparound, loopback, and mode-hop instability fig-
ures of merit and requirements for stable operation.

4 Dynamical Tuning

A big advantage of OPOs is that they are broadband
and highly tunable, as they rely on virtual transitions for
gain, which typically have greater bandwidth than real
transitions. Indeed, the gain of an OPO is almost never
set by the bandwidth of the intrinsic χ(2) interaction, but
by phase-matching, and with appropriate dispersion en-
gineering, this phase-matched bandwidth can be large,
even approaching or exceeding an octave [47, 56]. This
raises the question as to whether the QAM-OPO is also
tunable. In this section, we explore two ways to tune the
QAM-OPO: varying the EOM RF frequency, which is
fast but limited by fixed OPA phase-matching (Sec. 4.1),
and varying the pump wavelength, which is slower but
gives a wider tuning range (Sec. 4.2). Tuning is a re-
peatable, mode-hop-free process that enhances the flexi-
bility of the QAM-OPO over conventional comb sources,
whose center frequency is typically fixed by either the
pump laser[15, 44] or the laser gain maximum [16].

4.1 Tuning by RF Frequency

Recall that the QAM-OPO forms an FMCW pulse shaped
by the phase-space dynamical equations dτ/dn = δ′(ω),

dω/dn = −ϕ′(τ), where δ(ω) is the cavity round-trip
dispersion and ϕ(τ) is the EOM phase (Eqs. (9)); these
lead to group delay and chirp, respectively. The QAM-
OPO pulse centers around the saddle point where δ′(ω) =
ϕ′(τ) = 0, which we engineer to be near the maximum of
the gain spectrum in order to suppress competing pro-
cesses (Fig. 13(a)). Now let us detune the EOM’s RF
frequency frep relative to the cavity FSR. This detun-
ing ∆frep is equivalent (up to some change in the carrier
offset) to an added cavity group delay ∆T = ∆frep/f

2
rep,

which adds a linear term to the cavity dispersion: δ(ω) →
δ(ω) + ω∆T . Expanding δ(ω) to second order, we find
that the frequency center shifts by:

∆ω = −∆T/δ2 (36)

Therefore, increasing the RF frequency redshifts the
comb, while decreasing the frequency blueshifts it. To
first order, this relation is linear, and the RF-to-optical
frequency-shift multiplier ∆ω/∆Ω (here Ω = 2πfrep) is:

∆ω

∆Ω
= − 2π

δ2Ω2
= − 1

2πδ2f2rep
(37)

The system studied in Fig. 13 is designed to have par-
ticularly high gain bandwidth, using the techniques of
group-velocity matching and intentional phase-mismatch
discussed in Appendix B. This leads to an OPO whose
gain window, at an EOM drive of ϕp = 1.5, is much
broader than the actual frequency comb produced, i.e. a
system that could make use of frequency tuning. It has
δ2 = 2000 fs2 (Table 1 parameters) and frep = 50 GHz,
so Eq. (37) gives a multiplier of 30000×. Having a large
multiplier is convenient, as even small shifts in the EOM
frequency lead to significant shifts in the comb center
frequency, although an excessively large multiplier may
make the comb overly sensitive. We can recast Eq. (37)
into a more intuitive form by replacing the GVD with the
comb bandwidth and EOM phase, through the pendulum-
model formula ∆ωBW = 4

√
ϕp/δ2. The result depends on

the phase and the number of comb lines:

∆ω

∆Ω
=

π

8ϕp

(∆ωBW

Ω

)2

=
πN2

comb

8ϕp
(38)

In Fig. 13(b-c), we vary the RF detuning to tune the
comb. The spectrograms are plotted in Fig. 13(b). Here,
an RF tuning range of 1 GHz (2% of frep) is sufficient
to sweep the signal frequency from 1.4 µm to just below
the degeneracy point (around 1.8 µm). When considering
both signal and idler spectra (Fig. 13(c)), this provides
for a full tuning range of just over an octave. Of course,
getting an octave of tuning range is unremarkable for an
OPO; what makes this unique is that we are tuning a
frequency comb, not just a CW signal, over such a wide
range.

Another advantage of RF tuning is that it can be fast,
since it doesn’t rely on any slow thermal dynamics or
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Figure 13: RF tuning of the QAM-OPO. (a) Gain spectrum and streamlines for a QAM-OPO optimized for broadband gain
around 1.55 µm (λc = 929 nm, Lqpm = 27.4 µm, frep = 50 GHz, ϕp = 1.5, ϕa = 0.38, see Appendix B). Changing frep adds a
group delay that shifts the saddle-point frequency. (b) Spectrogram of the OPO output as ∆frep is tuned from −500 MHz to
+500 MHz. The spectrum follows the separatrix, which shifts in frequency to following Eq. (36). (c) Signal and idler spectra
(linear scale), showing full tuning of the signal and idler combs over the octave λ ∈ [1.4, 2.8] µm (excluding degeneracy).

laser wavelength tuning, only on the frequency of the
RF source. But even with a perfectly frequency-agile RF
source, how fast can comb tuning occur? Fig. 14(a) gives
and example of rapid QAM-OPO tuning using the same
RF-tuned OPO. Here, we vary frep by ±0.4 GHz (which
corresponds to a group delay variation of ±160 fs), which
through the relation δ′(ω) = ∆T leads to a center fre-
quency tuning range of λ ∈ [1.45 µm, 1.65 µm].

Note the dynamical lag in frequency tuning: While the
pulse spectrum |a(λ)| largely follows the predicted steady-
state tuning curve, there is a delay of about 100 round-
trips (2 ns at 50 GHz). In addition to this lag in fre-
quency response, the spectrograms show that the pulse
is shifted in time relative to the center. Consulting the
waveform |a(τ)| plots, it appears that the pulse is shift-
ing left (τ < 0) when the ECPO is redshifting, and right
(τ > 0) when blueshifting. This would be consistent with
the chirp dω/dn = −ϕ′(τ), plotted on the bottom, which
is positive for τ > 0 and negative for τ < 0. When red-
shifting, the pulse shifts to the left and experiences an
average negative EOM chirp, while the opposite happens
when blueshifting.

In fact, the EOM chirp

dω

dn
= −ϕ′(τ) = 2πfrepϕp sin(Ωτ) (39)

gives an approximate bound on the maximum tuning
sweep rate of the QAM-OPO. At a high level, if we ex-

pect the chirp to be the dominant mechanism shifting the
OPO’s center frequency (in reality it is a more complex
nonlinear process involving gain and loss), then the max-
imum sweep rate should be:

dω

dn

∣∣∣
max

= 2πfrepϕp (40)

In simulations, it appears we can go a bit faster, but
Eq. (40) gives a good understanding of the dependence of
sweep rate on OPO parameters. In Fig. 14(b), we slowly
ramp the frequency sweep rate for three ECPOs with dif-
ferent PM phase shifts ϕp = 1.5, ϕp = 1.0, and ϕp = 0.5.
Predictably, when the wavelength sweep is too fast, the
comb dynamics cannot keep up, and the pulse goes unsta-
ble. This instability sets in at different sweep rates, and
the scaling follows the dependence (dω/dn)max ∝ ϕp ex-
pected from Eq. (40). However, the actual OPO can tol-
erate about 2× faster wavelength sweeps than the equa-
tion would predict: for the ϕp = 1.5 case as an exam-
ple, with frep = 50 GHz as before, Eq. (40) predicts
a maximum sweep rate of ω̇max/2π = 75 GHz/round-
trip (0.6 nm/round-trip), whereas the QAM-OPO ap-
pears to tolerate up to 1.2 nm/round-trip (yellow region
in Fig. 14(b)). The discrepancy is likely due to the other
nonlinear dynamics, e.g. gain and pump depletion, that
have not been considered in the simple chirp-based fre-
quency sweep model leading to Eq. (40).
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Figure 14: Rapid RF wavelength tuning of the QAM-OPO from Fig. 13. (a) Waveform and spectrum of the OPO signal
output when the RF frequency is tuned over a range of frep±0.4 GHz, which corresponds to an effective group delay tuning of
±160 fs, with a period of 1000 round-trips. (b) Spectra |a(λ)| for three EO-OPOs with different PM modulation amplitudes
ϕa = 1.5, 1.0, and 0.5. The tuning rate is linearly ramped, showing the onset of instabilities when the frequency sweep is
too fast. The bottom curve shows the sweep rate and bounds ±4πfrepϕp (2× the result of Eq. (40)) for the three ϕa values,
showing that the maximum sweep rate scales linearly with ϕa.

4.2 Tuning by Pump Wavelength, Temperature

While RF tuning is fast, it will always be limited by the
phase-matching bandwidth of the OPA crystal. This is
not a big problem as long as one operates close enough to
the gain medium’s zero-dispersion wavelength, where the
bandwidth is very large (as described in Appendix B),
but far from that wavelength, there will be relatively lim-
ited tuning range. For example, with a bulk LiNbO3 gain
medium, it is difficult to find conditions (at a fixed pump
wavelength) where the QAM-OPO is continuously tun-
able through all the major telecom bands (O-, E-, S-, C-,
L-, and U-bands, 1260-1675 nm), due to phase-matching
constraints.

However, by supplementing RF tuning with pump wave-
length tuning, we can reach all these bands. While stan-
dard RD tuning constrains us to fixed phase-matching
window (fixed pump λc), by varying λc, we can ex-
plore phase-matching over a much wider range of condi-
tions. Practically speaking, this allows reasonably broad-
band combs all the way from the GV-matching wave-
length (where β1(λa) = β1(λb)) to the degeneracy point
λa = λb = 2λc, with relatively limited tuning of the pump
laser. For a fixed-wavelength pump, the same effect can

also be achieved by temperature tuning the crystal, which
shifts the phase-matching curve due to the wavelength-
dependent thermo-refractive coefficient dn(λ)/dT [57].
Note that pump- and temperature-tuning do not replace
RF-tuning in the QAM-OPO; one still needs to move the
saddle point by adjusting ∆frep (either through the RF
frequency or cavity FSR, Fig. 13(a)) to keep the saddle
within the gain region and maintain a stable comb. How-
ever, the wavelength range increases over standard RF
tuning.

Fig. 15(a) shows comb formation in a QAM-OPO un-
der pump-wavelength tuning for three QPM periods:
23.2 µm, 24.6 µm, and 25.7 µm, showing tuning ranges
significantly wider than what we achieved in Fig. 13, es-
pecially for shorter wavelengths. In Fig. 15(b-c), we show
the phase-matching curves for these three QPM periods.
Let us take the full tuning range to be between the group-
velocity matching (∆β1 = 0, black in figure) and degener-
acy; technically, one can tune outside this range as well,
but the bandwidth of the comb falls off rapidly due to
dispersion. We can derive a formula relating the pump
tuning range ∆λc to the signal/idler tuning range ∆λa,b
(shown in Fig. 15(c)) by Taylor-expanding the phase mis-
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Figure 15: Pump-wavelength tuning of the QAM-OPO. (a) Signal and idler comb spectra for three QAM-OPOs with different
QPM lengths. Parameters: ϕp = ϕa = 0.4, frep = 100 GHz. QPM lengths, top to bottom: Lqpm = 23.2 µm, 24.6 µm, 25.7 µm.
(b-c) Phase-matching curves for these OPOs. (d) Relation between pump and signal/idler tuning range, following the quartic
∆λc ∝ ∆λ4

a,b (Eq. (44)).

match ∆β about the degeneracy point ω + ω ↔ 2ω,
namely ωc = 2ω + δωc, ωa,b = ωc/2± δωa, and assuming
phase-matching at degeneracy:

∆β(δωc, δωa) = β(2ω + δωc)− β(ω + 1
2δωc + δωa)

− β(ω + 1
2δωc − δωa)− 2π/Lqpm

= (β1(2ω)− β1(ω))δωc − β2(ω)δω
2
a

− β4(ω)

12
δω4

a +O(δω2
c , δω

2
aδωc, δω

6
a)

(41)

The phase-matching curves (dashed in Fig. 15(b-c)) cor-
respond to ∆β = 0; solving for the pump shift δωc, we
find to leading order in the Taylor series,

δωc =
1

β1(2ω)− β1(ω)

[
β2(ω)δω

2
a +

β4(ω)

12
δω4

a

]
(42)

This is a quartic, and β2 and β4 have opposite signs in the
curves studied in Fig. 15 (when they have the same sign,

tuning is significantly less broadband away from degen-
eracy). As a result, there is a maximum pump frequency
shift δωc, corresponding to the signal/idler group-velocity
matched case. This maximum occurs when:

δωa =
√

−6β2(ω)/β4(ω) (43a)

δωc =
−3(β2(ω))

2

(β1(2ω)− β1(ω))β4(ω)
=

−β4(ω)
12(β1(2ω)− β1(ω))

δω4
a

(43b)

Converting this to wavelength perturbations via δω =
−(2πc/λ2)δλ, and noting that ∆λa,b is defined as twice
the signal perturbation (since the range is [−δωa,+δωa],
covering both signal and idler), we get:

∆λc =
π3c3β4(ω)

96λ6a(β1(2ω)− β1(ω))
∆λ4a,b (44)

This evaluates to 2 nm/µm4 for a signal at the zero-
dispersion wavelength ω = ωzdw, where the approxima-
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DKS EO Comb MLL OPO Comb
Bright Dark EO RE-EO FM QAM

Efficiency Low Mid O(1) Low O(1) O(1) O(1)
Bandwidth Good OK Limited OK Limited Good Good
λ tuning Locked to Pump Locked to Pump Limited Pump RF-Tuned

Spectral Flatness sech sech-like Bessel sech sech Bessel Flat
RF power None High Mid Varies Low Low
Turn-on Sensitive Turn-key Varies Turn-key Turn-key

Cavity locking Yes Yes No Yes No Yes (DR) No (SR)
[44] [45] [12] [15] [16] [39] this work

Table 4: Comparison of the QAM-OPO and leading optical frequency comb platforms. DKS: dissipative Kerr soliton; MLL:
mode-locked laser; RE-EO: resonator-enhanced electro-optic; DR: doubly-resonant; SR: singly-resonant.

tion is most appropriate. In Fig. 15(d), we plot the actual
∆λa,b vs. ∆λc curve against this quartic, showing good
agreement (20-30% error in ∆λa,b) despite the coarse as-
sumptions made for such broadband tuning.

5 Conclusion

This paper has proposed a new type of frequency comb
source, the QAM-OPO, based on hybrid AM/FM mode-
locking of a parametric oscillator. The QAM-OPO allows
for stable, broadband, high-efficiency, turnkey comb gen-
eration in an OPO with moderate RF power. The comb
spectrum displays a high degree of flatness over the whole
bandwidth, with a steady-state waveform that can be ac-
curately described using an FMCW pulse ansatz. We
numerically simulated the QAM-OPO in a wide range of
conditions and found that the dynamics are accurately
understood in terms of a phase-space model, where comb
formation is a balancing act involving gain and loss, am-
plitude modulation, chirp, and dispersion. This picture
is profoundly different from the soliton picture govern-
ing Kerr [44, 45] or MLL combs [16], as the waveform
is chirped and quasi-CW, simultaneously broadband and
delocalized in time. The comb chirp can be cancelled with
dispersion compensation, leading to a near transform-
limited pulse. Comb formation is stable under a wide
range of conditions, but the phase-space model provides
us with quantitative insights into the instabilities that
can occur, whose onset can be quantified using three sta-
bility figures of merit γ, ϕp/ϕmax, and FMI. The comb
is rapidly tunable by adjusting the repetition-rate mis-
match ∆frep between the RF drive and cavity FSR, and
the tuning range, set by the gain bandwidth of the OPA
crystal, and be increased by also wavelength-tuning the
pump, consistent with the well-known behavior of CW
OPOs [27, 28].

Since its inception, the optical frequency comb has
evolved as the underlying photonic technology progresses.
Originally restricted to tabletop or fiber-optic laser se-
tups, the field saw a revolution with the introduction of

compact, high-Q microresonators [58, 59], enabling a new
generation of broadband, low-power, compact dissipative
Kerr soliton (DKS) combs. Similarly, emerging integrated
χ(2) platforms (most notably LiNbO3 [40] but also GaAs
[60] and nitrides [61–63]) will enable entirely new inte-
grated comb sources, such as OPO combs [39]. In this
context, it is useful to compare the QAM-OPO to exist-
ing comb sources, both based on χ(3) and χ(2) effects,
as well as EOM and laser mode-locking. Table 4 gives a
high-level comparison of the QAM-OPO and seven pop-
ular comb types, with respect to seven important proper-
ties for comb generation. The frequency comb literature
is very diverse so this table is far from exhaustive; e.g.
it oversimplifies the diverse MLL physics (passive mode-
locking, FM mode-locking, hybrid mode-locking [9]) into
a single category, omits many less well-known schemes
(Pockels comb [22], parametrically-driven DKS [23]), and
does not include a number of other important comb prop-
erties (FSR, phase noise). But it provides enough infor-
mation to give a general sense of the state of the field and
cases where the QAM-OPO offers an advantage:

• Efficiency. Both bright DKS [18] and resonator-
enhanced EO (RE-EO) [15] combs suffer from an
efficiency-bandwidth tradeoff η ∝ 1/Ncomb, and
broadband combs usually have efficiencies of at most
a few percent. Solutions include the use of auxiliary
pump-storage resonators [20, 41] or soliton crystals
[64] to boost the efficiency, at the cost of added sys-
tem complexity. Dark solitons also enjoy higher con-
version efficiency [19, 45], but at the cost of narrower
bandwidth. OPO-based combs enjoy O(1) efficiency,
derived from the quantum efficiency of the CW OPO
and the FMCW pulse shape (Sec. 2.3).

• Bandwidth. Both Kerr and OPO combs can be very
broadband due to the virtual transitions that drive
the χ(3) and χ(2) nonlinearities, although careful dis-
persion engineering is required for DKS. In contrast,
RE-EO combs are limited by the VπLα of the modu-
lator, while MLL combs are limited by the laser gain
medium.
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• Wavelength tuning. DKS and EO combs are locked
to the pump, so a broadly tunable source is required
for comb tuning. The FM-OPO can be tuned by
finely adjusting the pump detuning (in the manner
of a CW-OPO), but the bandwidth decreases as the
comb is tuned away from degeneracy [34, 39]. The
QAM-OPO enjoys rapid, RF-tunability of the comb
that is independent of the pump wavelength (Sec. 4).

• Spectral flatness. Soliton-based combs have a
hyberbolic-secant (sech) spectrum that decays expo-
nentially with frequency. FM combs, i.e. the nonres-
onant EO-comb and FM-OPO, boast a “flat” spec-
trum, but in reality it is a Bessel function that has
significant O(1) ripples from line to line [12, 39]. The
QAM-OPO spectrum does not have these ripples.
However, it is also possible to amplitude-modulate
an FM comb to smooth out the ripples in the Bessel
spectrum [12].

• RF power. Conventional RE-EO combs must drive
the EOM hard enough to compensate for cavity loss.
In the OPO comb, this loss is compensated by OPO
gain allowing for weaker drive fields.

• Turn-on dynamics. The Kerr soliton is stabilized by
thermal locking [65], and accessing the soliton state
is a chaotic, dynamical process that depends on the
laser power, tuning rate, and thermal timescale [44]
(similarly, passive MLLs often also require careful
turn-on dynamics). Recent efforts to create robust
“turn-key” solitons through cavity-laser feedback are
promising [19, 21]. EO and OPO combs exhibit turn-
key operation by default.

• Cavity locking. With the exception of the singly-
resonant QAM-OPO, all optically-pumped resonant
combs in Table 4 require locking the detuning be-
tween the pump laser and cavity mode. This locking
is not necessary in the QAM-OPO. As a corollary,
in the QAM-OPO, pump phase noise is not trans-
ferred to the signal comb, allowing low noise combs to
be generated from (less expensive) high-noise pump
lasers.

In conclusion, the QAM-OPO offers a promising new set
of capabilities for χ(2)-based optical frequency combs. Al-
though the intracavity IM makes it more complex than
the standard FM-OPO, the field of χ(2) nanophotonics
is rapidly moving in the direction of high-yield, hetero-
geneous circuits [40], where such devices can be fabri-
cated reliably. This added complexity comes with many
benefits, including efficiency, bandwidth, tunability, flat-
ness, low RF power, turnkey operation, and robustness
to pump frequency drift, making it a promising source
to tackle next-generation scientific [1, 2], and engineering
[3–7] applications of microcombs.

Appendix

A Notation and Basic OPO Theory

This Appendix contains a derivation of the RE-EO comb
spectrum and bandwidth-efficiency tradeoff (App. A.1),
the origin of OPA field equations Eqs. (2) (App. A.2), and
calculation of the gain, threshold, bandwidth, and effi-
ciency of a high-finesse, singly-resonant OPO (App. A.3).

A.1 Resonant EO Comb

In the absence of dispersion, the EO comb is easy to model
in the time domain: let α be the out-coupling efficiency
(ignoring other losses) and ϕ cos(Ωt) be the round-trip
phase. With a CW pump ain(t) → ain, the steady-state
output field is:

aout(t) =
[
1− α

1−
√
1− α eiϕ cos(Ωt)

]
ain (A1)

We compute the comb spectrum by taking Fourier series
integrals of Eq. (A1). The result, calculated using the
contour integrals and the residue theorem, is:

am,out =

{
δm,0 −

i|m| α exp
[
|m| sinh−1

(
log(1−α)

2ϕ

)]
√
ϕ2 +

(
1
2 log(1− α)

)2
}
ain

(A2)
For efficient comb generation, the cavity finesse must be
large, so the round-trip loss α is small. Expanding the
relevant terms with α≪ 1, we get:

am,out =

{
δm,0 −

i|m| α exp
[
−|m| sinh−1(α/2ϕ)

]√
ϕ2 + (α/2)2

}
ain

(A3)
This expression makes clear that the number of comb
lines is related to α/ϕ. Large combs require ϕ ≫ α.
Taking this limit gives our final expression for the comb
spectrum:

am,out =
(
δm,0 −

i|m|α

ϕ
e−(α/2ϕ)|m|

)
ain (A4)

The 3-dB bandwidth N3dB (defined in terms of number
of comb lines) and comb efficiency ηcomb (defined as comb
power divided by input power) are:

N3dB =
f3dB
Ω/2π

= 2 log(2)ϕ/α (A5a)

ηcomb = 2α/ϕ (A5b)

which is reported at the beginning of the paper in Eq. (1).

Therefore, standard EOM combs suffer from a sad
bandwidth-efficiency tradeoff: N3dBηcomb = 4 log(2).
This tradeoff is common among “bright combs” with
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pulsed waveforms (although |aout(t)| = const, the non-
CW part is a short pulse) in media with time-local non-
linearities, which includes Kerr combs as well [66]. How-
ever, by engineering an avoided mode crossing (either to
higher-order modes in the ring or with an auxiliary cavity
in Vernier configuration [41]), one can recycle the pump
and break this tradeoff.

Waveguide loss and modulator half-wave voltage set a
fundamental limit to the bandwidth. A phase modula-
tor’s voltage response is given by ϕ = (π/2)V/Vπ (the
factor of two is a custom arising from the push-pull def-
inition Vπ), so ϕp = ϕpp/2 = (π/4)Vpp/Vπ. The loss is
proportional to waveguide length as α = αwgL. Making
these substitutions, we find:

N3dB =
π log(2)

2

Vpp
VπLαwg

= 5π log10(2)︸ ︷︷ ︸
≈ 5

Vpp [V]

VπLαwg [V dB]

(A6)

A.2 Field Equations in OPA

In this paper, we consider only single-transverse-mode dy-
namics in the OPA element. This is appropriate in most
situations, particularly if a waveguide is used. In waveg-
uide nonlinear optics, the electric field can be decomposed
into power-normalized modes as follows

E =
∑
i

ei
(
Ai(z)Ei(x, y)e

i(βiz−ωt) + c.c.
)

(A7a)

H =
∑
i

hi
(
Ai(z)Hi(x, y)e

i(βiz−ωt) + c.c.
)

(A7b)

where we choose ei =
√
Z0ng,i/2, hi =

√
ng,i/2Z0 to

enforce the standard normalization
∫
nng|Ei|2dA = 1,

while ensuring that power goes as P =
∑
i |Ai|2.

In this paper, we will instead express the Ai in terms of
flux-normalized terms ai, i.e. where the photon flux goes
as Jph =

∑
i |ai|2. The two are related by factors of

√
ℏω:

Ai =
√
ℏωi ai (A8)

An OPA induces a parametric interaction between three
fields: pump, signal, and idler. To begin, consider the
CW case, where by convention, these are denoted C, A,
and B (resp. c, a, and b), with wavelengths ωc, ωa, and
ωb. The field equations are given by:

dA

dz
= iβaA+ i

ω1

ω3
K∗B∗C,

da

dz
= iβaa+ iκ∗b∗c,

dB

dz
= iβbB + i

ω2

ω3
K∗A∗C, ⇔ db

dz
= iβbb+ iκ∗a∗c,

dC

dz
= iβcC︸ ︷︷ ︸

linear

+ iKAB︸ ︷︷ ︸
NLO

dc

dz
= iβcc+ iκab

(A9)

where βa,b,c are the propagation constants, and the non-
linear coefficients K and κ are respectively given by:

K =
ω3

c

√
Z0ng1ng2ng3

2
χ(2)

∫
NL

E∗
3E1E2dA

κ =
√

ℏω1ω2/ω3K (A10)

where the integral
∫
NL

(. . .)dA is taken over the nonlinear
region. The contraction the vector indices in the inte-
grand E∗

3,iE1,jE2,k are contracted with the elements of

the χ(2) tensor.

To handle ultrashort pulses or frequency combs, we pro-
mote the fields to time-dependent quantities, i.e. a(z) →
a(z, τ), giving the familiar propagative field equations
(Eqs. (2)):

∂za = iβa(i∂τ )a+ iκ cb∗ (A11a)

∂zb = iβb(i∂τ )b+ iκ ca∗ (A11b)

∂zc = iβc(i∂τ )c︸ ︷︷ ︸
Dispersion

+ iκ ab︸︷︷︸
χ(2)

(A11c)

We can obtain a related set of equations in Fourier space,
where the time-dependent fields are a discrete sum of
Fourier modes, i.e. a(τ) =

∑
m ame

−iωτ :

dam
dz

= iβa(mΩ)am + iκ
∑
n

cm+nb
∗
n (A12a)

dbm
dz

= iβb(mΩ)bm + iκ
∑
n

cm+na
∗
n (A12b)

dcm
dz

= iβc(mΩ)cm + iκ
∑
n

anbm−n (A12c)

Here βu(s) is the wavenumber at ω = ωu + s. For conve-
nience, we choose to work in the co-propagating rotating-
wave basis βu(s) → βu(s)−βa(0)−β′

a(0), in which βa(s)
has only quadratic and higher-order terms.

Since c0 is pumped at CW, most of the relevant processes
are of the form c0 ↔ am + b−m. For simplicity, when
studying CW OPOs in the following section, we will de-
note a→ am, b→ b−m, c→ c0, as well as βa → βa(mΩ),
βb → βb(−mΩ), βc → βc(0).

A.3 High-Finesse OPO

For simplicity, here we study the QAM-OPO in the high-
finesse limit, which is likely applicable in potential on-
chip implementations. In this limit, |a| ≫ |b|, |c|, so on
a given round trip, the nonlinear effect on a is merely
perturbative. The phase-matched CW solution (βa =
βb = βc = 0) is:

a(z) = ain + κ(|cin|2/2ain) sin2(κainz) (A13a)

b(z) = −icin sin(κainz) (A13b)

c(z) = cin cos(κainz) (A13c)
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Figure A1: CW efficiency of nondegenerate OPO. (a) Pump p and efficiency η as a function of steady-state power ain,
Eqs. (A19, A22). (b) Efficiency vs. pump, showing approximate first maximum at p = π/2 ≈ 1.57.
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Figure A2: (a) OPA gain as a function of signal amplitude and phase mismatch for three values of p = 1.05, π/2, 2, Eq. (A23).
(b) Conversion efficiency η at steady-state, Eq. (A25). (c) Dependence of ηmax and ∆βmax on pump amplitude p, Eq. (A26).

For the phase-mismatched case, the answer is more com-
plicated, and involves applying the substitutions a =
eiβazã, b = ei(−βa+βb+βc)z/2b̃, c = ei(βa+βb+βc)z/2c̃, which
leads to the following equations:

dã

dz
= iκc̃b̃∗,

d

dz

[
b̃
c̃

]
=

[
− 1

2 i∆β iκã∗

iκã 1
2 i∆β

] [
b̃
c̃

]
(A14)

where ∆β = βc−βa−βb is the phase mismatch. Defining

γ =
√
(∆β/2)2 + (κain)2 (A15)

the solution is:

b(z) = −iκaincin
sin(γz)

γ
ei(βb+∆β)z/2 (A16a)

c(z) = cin

(
cos(γz) + i

∆β sin(γz)

2γ

)
(A16b)

The resulting perturbation to a gives:

aout = eiβaL

[
1 +

(κ|cin|L)2

2

(
sinc2(γL)

+ i
∆β

2γ

1− sinc(2γL)

γL

)]
ain (A17)
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The single-pass gain g = |aout/ain|2 − 1 = |bout/ain|2 and
efficiency η = |bout/cin|2 are:

g = (κ|cin|L)2sinc2(γL) (A18)

η = (κ|ain|L)2sinc2(γL) (A19)

Dividing these expressions, we find the ratio between
pump and signal to be:

|ain|
|cin|

=
√
η/g (A20)

This validates the main assumption made at the begin-
ning of Sec. A.3: in steady-state (when gain equals loss,
α = g) in the high-finesse limit α≪ 1, the signal is much
stronger than the pump provided that the efficiency is
O(1).

To calculate the OPO pump threshold cth, we set g = α
in the limit ain → 0, obtaining:

|cth(∆β)| =
√
α/(κL sinc(∆βL/2)) (A21)

This threshold is lowest at phase-matching: |cth(0)| =√
α/κL. The pump field relative to threshold is therefore:

p ≡ |cin|
|cth(0)|

=
1

sinc(γL)
, p̃ ≡ |cin|

|cth(∆β)|
=

sinc(∆βL/2)

sinc(γL)
(A22)

Here, the normalized pump can be defined in two ways:
relative to the lowest (phase-matched) threshold p and
relative to the threshold for the given ∆β, p̃.

Note that Eqs. (A19, A22) (plotted in Fig. A1(a)) relate
the η to pump p (or p̃) through γ, and this relation is
independent of g. The form of η(p) (and η(p̃)) is plotted
in Fig. A1(b). Usually, one wishes to operate the OPO
at maximum efficiency, which for the phase-matched case
∆β = 0 corresponds to 100% at p̃ = π/2. As one can
see from the figure, the efficiency has multiple peaks, and
η → 1 is always possible by taking κainL (and likewise p)
large enough. But this is not realistic in most situations,
so considering only the first peak, p̃ = π/2 is a good
approximate (though not exact) optimum for reasonable
values of ∆β ̸= 0.

Recasting the Eq. (A18) in terms of p, we have (Eq. 3)):

g = p2α sinc2(γL) (A23)

In steady-state g = α, this yields:

γL = sinc−1(1/p) ∼

{
π/2 (p = π/2)√
6(p− 1) (p ≈ 1)

(A24)

Combining Eqs. (A15, A20, A24) and thinking very care-
fully about the math, one derives a formula for the effi-
ciency:

η = ηmax

[
1− (∆β/∆βmax)

2
]

(A25)

where

ηmax =
( sinc−1(1/p)

p

)2

→

{
1 (p = π/2)

6(p− 1) (p ≈ 1)

(A26a)

βmaxL = 2 sinc−1(1/p) →

{
π (p = π/2)

2
√
6(p− 1) (p ≈ 1)

(A26b)

Eqs. (A23-A26) are plotted in Fig. A2. This shows the
net gain as a function of both resonant signal and phase
mismatch, as well as the relation between phase mismatch
and efficiency. Maximum efficiency is achieved at p =
π/2, and the bandwidth ∆βmax increases for larger pump
amplitudes, though not significantly.

B Bandwidth Optimization

Recall that the undepleted gain p2α sinc2(∆β(ω)L/2) in
an OPO (Eq. (A23)) is governed by both the pump power
and phase matching, the latter given by:

∆β(ω) = β(ωc)− β(ω)− β(ωc − ω)− 2π

ΛQPM
(A27)

Here p = c/cth is the normalized pump, α is the round-
trip loss, ωc and ω are the pump and signal wavelengths,
and ∆β(ω) is the phase-mismatch term for the process
ωc → (ω, ωc − ω), with gain maximized when ∆β = 0.
Let ωa be the target center frequency. Expanding about
ωa, i.e. ω = ωa +∆ω, we find:

∆β = ∆β(ωa) + (β1,a − β1,b)︸ ︷︷ ︸
∆β1

∆ω

+ 1
2 (β2,a + β2,b)︸ ︷︷ ︸

β̄2

∆ω2 +O(∆ω3) (A28)

The goal of bandwidth optimization is to keep the gain
g(ω) large (equivalently, keep ∆β(ω) small) over as wide
a frequency window as possible. Examining Eqs. (A27-
A28), we arrive at the following operation guidelines for
the OPO:

• The target frequency ωa should either be a zero or
a minimum of ∆β(ω), in order for the gain to be
maximized at ωa.

• The signal-idler GV mismatch ∆β1 = β1,a − β1,b
should be minimized or set to zero in order to maxi-
mize the phase-matching bandwidth.

• In addition, the mean signal-idler GVD β̄2 =
1
2 (β2,a + β2,b) should be minimized if this is possi-
ble. However, by Taylor expanding β(ω) about the
center frequency ω̄ = 1

2 (ωa + ωb), we find:

β̄2 =
∆β1

ωa − ωb
+

1

12
β4(ω̄)(ωa − ωb)

2 +O
(
(ωa − ωb)

4
)

(A29)
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Figure A3: Effect of phase mismatch ∆β0L on the OPA gain and signal spectrum for OPOs operating in the O- and C-
band. (a) O-band OPO, Lqpm = 25.7 µm, λc = 888 nm, 3× DCF with pure group-delay dispersion. (b) C-band OPO,
Lqpm = 27.4 µm, λc = 929 nm, 2× DCF with SMF28 fiber. Both OPOs use frep = 50 GHz, ϕp = 6 rad.
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Plugging this into Eq. (A28), we find the following
approximation for ∆β:

∆β = ∆β(ωa) + ∆β1∆ω

+
[ ∆β1
ωa − ωb

+
β4(ω̄)

12
(ωa − ωb)

2
]
∆ω2 + . . .

(A30)

The 3-dB gain bandwidth is obtained by solving
Eq. (A30) for ∆β(∆ωmax) = ∆βmax, where ∆βmax =
(2/L)sinc−1(1/

√
2) ≈ 2.8/L per Eq. (A27). This is

limited by the leading order in the Taylor expansion
Eq. (A30), i.e. ∆β1 in the case of group-velocity mis-
match, and β4(ω̄) in the case that the group velocities
match. Moreover, when the group velocities match, it is
because the signal and idler are approximately on oppo-
site sides of the zero-(group)-dispersion wavelength, so we
have ω̄ ≈ ωzdw. Assuming perfect phase-matching at ωa,
the bandwidth limits are as follows:

BWgain =


2∆βmax

|∆β1|
∆β1 ̸= 0

4
√

3∆βmax/|β4(ωzdw)|
ωa − ωb

∆β1 = 0

(A31)

Re-expressing in terms of wavelengths, this is:

∆λgain =


λa
πc

∆βmax

|∆β1|
∆β1 ̸= 0

λ3aλb
λb − λa

√
3∆βmax/|β4(ωzdw)|

(πc)2
∆β1 = 0

(A32)
For bulk LiNbO3 with λzdw = 1.92 µm, we find that an
OPO with group-velocity matching will have a bandwidth
of ∆λgain = 100 nm and 270 nm for signals at the O-band
(1.3 µm) and C-band (1.5 µm), respectively.

We can actually do a little better than this by slightly
phase-mismatching the nonlinear interaction, in order
to create a double-peaked gain spectrum as shown
in Fig. A3. In particular, if we set ∆β(ωa) =
−sign(β4)∆βmax, then we can expand the gain window
by a factor of

√
2, i.e. to 140 nm and 380 nm for the O-

and C-band OPOs, respectively. We see this agrees pretty
well for the O-band OPO (Fig. A3(a)), although it comes
at the cost of a double-peaked spectrum with a dip at
1.3 µm (spectra are shown on a linear scale). Further in-
creasing the phase mismatch causes the two gain regions
to completely decouple, with the saddle point falling out
of the gain region. The OPO becomes chaotic in this
regime, since there is no optical power at the saddle point
to connect the two gain lobes; instead, the two gain re-
gions independently amplify vacuum noise without any
stable phase relation.

A similar picture plays out for the C-band OPO, where
a slight phase mismatch increases the comb bandwidth.

In this case, however, with a 340 nm comb, power al-
ready extends all the way to the degeneracy point (about
1.85 µm). Moreover, loopback instability also comes into
play for such broad combs, so higher-order dispersion
compensation will be critical to exploiting this broad gain
bandwidth if a reasonable modulation phase is to be used.

Fig. A4 helps guide our thought process for picking condi-
tions that maximize OPO bandwidth. Given a particular
gain material (using bulk LiNbO3 as an example), we can
find the signal-idler group-velocity matching condition as
a function of pump and signal (solid curve in Fig. A4(a)).
In order to match these, the signal and idler must be
on opposite sides of the zero-dispersion wavelength λzdw,
and this constrains GVM-free operation to OPOs pumped
below 0.96 µm. We also plot the phase-matching band-
width, assuming group-velocity matching, confirming the
trend of Eqs. (A31-A32) that the bandwidth is broader
when the signal and idler wavelengths are closer.

Of course, we are not restricted to using the crystal at the
group-velocity matched condition. Fig. A4(b) shows the
gain conditions for a set of different crystal QPM periods,
where we are free to vary the pump wavelength. Operat-
ing on the ∆β1 = 0 line gives the maximum bandwidth,
but in many cases, we can still get moderately broad-
band gain when deviating slightly, at least when pump-
ing to the blue of λzdw/2. Note that, in this case, there
are also two signal-idler pairs that can oscillate. These
pairs both satisfy phase-matching, so theoretically have
the same gain and can compete with each other for power.
When forming an OPO comb, usually only one of these
gain peaks will contain the separatrix and saddle point,
and this is where the comb originates. The phase-space
dynamics, specifically group-delay mismatch, will usually
(but not always) lead to suppression of any signals am-
plified by the competing gain peak.

C QAM-OPO in Degenerate Operation

The QAM-OPO requires singly-resonant operation, with
a resonant signal and non-resonant idler band. The most
common way to make an OPO singly-resonant is to pump
it nondegenerately, so the signal and idler are at separate
frequencies. A degenerate OPO with type II phase match-
ing (with signal and idler in orthogonal polarizations) can
also be used, since in this case one can filter out the idler
with a polarizer. However, for both of these cases, the
phase-matching bandwidth is usually relatively narrow
unless the system is engineered to match group velocities
(e.g. Fig. A4(a)), which often leads to inconvenient pump
and idler wavelengths.

Another strategy enforce singly-resonant operation at de-
generacy, shown in Fig. A5(a), is to add a periodic fil-
ter (with period 2 × FSR) in the cavity. This filter
(illustrated as a delay line, but an etalon would also
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Figure A5: Degenerate operation of an EO Comb OPO. Effective SROPO at the degeneracy point is enabled using (a) a delay-
line filter, and (b) pumping in the π-phase condition, which is equivalent to (c) the signal and idler bands occupying orthogonal
temporal modes. (d) Simulated comb spectra for a degenerate ECPO with signal centered at 1.55 µm. (e) Corresponding
spectrogram. (f) Gain-bandwidth and loopback conditions limit the bandwidth of the generated combs. Five example spectra
centered at λa = 1.3 µm, 1.55 µm, 1.8 µm, 2.128 µm, and 2.4 µm. ECPO parameters: frep = 50 GHz, ϕp = 6.0, p = 1.8,
α = 0.2. ∆T , ∆β0, ϕa, and auxiliary GDD tuned to optimize each spectrum individually.

work) splits the spectrum into two interleaved mode pairs
(signal and idler), transmitting one and dumping the
other. We pump the OPO in the π-phase condition
(Fig. A5(b)), which means that the pump half-harmonic
ωp/2 is halfway between two adjacent cavity resonances.
This causes the degenerate OPA crystal to effectively
implement a nondegenerate interaction between the sig-
nal and idler modes, which in the time domain have
the phase relation traced in Fig. A5(c) between adjacent
round trips. The nonlinear dynamics are the same as for
a nondegenerate QAM-OPO—the only difference is that
we now have ωa = ωb in the phase-matching condition.

Degeneracy is a very effective way to for broaden the
phase-matching bandwidth (a property exploited by FM-
OPO combs [34, 39]), since it zeroes out the group-
velocity mismatch ∆β1 (Eq. (A28)), removing the leading
term in the phase mismatch (as well as any higher-order
odd terms):

∆β = ∆β0 + β2,a∆ω
2 +

β4,a
12

∆ω4 +O(∆ω6) (A33)

Thus, the phase-matching bandwidth is ∆ωBW =
2
√
∆βmax/β2,a in the phase-matched case (∆β0 = 0),

and by introducing a small initial phase mismatch ∆β0 =

−sign(β2,a)∆βmax (see Appendix B above), we can in-
crease this by a factor of

√
2:

∆ωBW ≤

{
2
√

∆βmax/β2,a (∆β0 = 0)

2
√
2∆βmax/β2,a (∆β0 = −sign(β2,a)∆βmax)

(A34)
Further increasing ∆β0 leads to nondegenerate operation.

Fig. A5(d) shows representative QAM-OPO spectra when
operated at degeneracy (with signal λa = 1.55 µm) with
various values of ∆β0, showing the expected broaden-
ing, followed by a transition to nondegeneracy and un-
stable operation. The flat-top comb has a bandwidth
of 200 nm, in agreement with the predicted value from
Eq. (A34). This comb shows a typical FMCW spectro-
gram (Fig. A5(e)), where the separatrices trace out clean
sinusoids showing that the inverted pendulum model is
valid here.

What about other wavelengths? In Fig. A5(f), we plot
the gain region (defined as the 3-dB window of the gain
spectrum, i.e. where g(ω) > 1

2gmax) as a function of
pump and signal wavelength, assuming degeneracy with
a slight phase mismatch ∆β0L = −sign(β2,a) to improve
the bandwidth. The bandwidth is broadest near the
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zero-dispersion wavelength, where Eq. (A34) formally di-
verges. However, we are unable to exploit the full band-
width in this region due to loopback instability, which
limits the bandwidth to (Eq. (27)):

∆ωBW ≤ 3
(3ϕp
δ3

)1/3

(A35)

assuming tunable GVD while the TOD of the system is
fixed. (Note that compensating both GVD and TOD will
lead to a larger bound, eventually limited by 4th and
higher-order dispersion terms, depending on how much
dispersion engineering we want to do). To show that we
can saturate this gain window for realistic systems, in
Fig. A5(f), we overlay degenerate QAM-OPO signal spec-
tra for five representative wavelengths: 1.3 µm, 1.55 µm,
1.8 µm, 2.128 = 2× 1.064 µm, and 2.4µm (on a log-scale,
so the signals look flatter than in Fig. A5(d)).

Finally, the periodicity of the filter will limit the useful
bandwidth of this degenerate QAM-OPO, since we re-
quire a filter whose transmission maxima and minima are
evenly spaced over the full comb bandwidth. A delay-
line filter like that in Fig. A5 will have a transmission
spectrum that goes as

T (ω) =
1 + eiβ(ω)L

2
= eiβ(ω)L/2 cos

(
β(ω)L/2

)
(A36)

where L is the length of the delay line and β(ω) is the dis-
persion relation of the waveguide. The transfer function
amplitude will be perfectly periodic for a linear dispersion
relation, with a period Ω = 2π/β1L = 2πc/ngL. This
periodicity is broken by GVD and higher-order disper-
sion terms, which impart an additional delay-line phase
∆ϕ = ( 12β2∆ω

2+ 1
6β3∆ω

3+. . .)L. This phase shift affects
the filter’s behavior away from the center of the comb: a
fraction sin2(∆ϕ/2) of the idler is recycled through the
cavity (rather than being dumped on each round trip),
and the signal is attenuated by a factor of cos2(∆ϕ/2)
per round-trip. Given a maximum phase-error tolerance
∆ϕmax, the comb bandwidth is bounded by:

∆ωBW ≤

{
2
√
β1Ω∆ϕmax/πβ2 (β2 ̸= 0)

2(3β1Ω∆ϕmax/πβ3)
1/3 (β2 = 0)

(A37)

For example, for the 1.55 µm QAM-OPO studied in
Fig. A5(d), assuming a delay line with the same dispersive
properties as SMF28 fiber (ng = 1.47, β2 = −20 fs2/mm)
and a maximum phase error of π/2, Eq. (A37) imposes a
bandwidth limit of ∆ωBW ≤ 60 THz, about 500 nm. The
generated QAM-OPO spectrum is well within this limit.
Note, however, that using a more dispersive waveguide for
the filter could significantly reduce ∆ωBW, so the delay-
line filter is one of the components that must be carefully
dispersion engineered for a broadband system.

While degenerate operation does not yield spectra that
are intrinsically more broadband than those studied pre-

viously in Appendix B, it offers several practical advan-
tages:

• It operates with a different (and perhaps more con-
venient) pump wavelength. Broadband nondegener-
ate phase-matching relies on group-velocity match-
ing, ideally with a signal and idler close to the
zero-dispersion wavelength. We find in practice
(see Fig. A4) that these conditions constrain the
pump to a really inconvenient wavelength range λc ∈
[0.85, 0.95] µm. If one does not wish to pump at this
wavelength for some reason, it may be better to op-
erate at degeneracy.

• No separate idler band. As a result, the devices only
need to be designed with two frequency bands in
mind, not three. Note also that the group-velocity
matching condition in Fig. A4(a) requires very long
idler wavelengths if the signal wavelength is short; in
LiNbO3, this can lead to absorption in the core or
the oxide cladding.

• You get double the number of comb lines. Recall
from the mode-hop stability analysis (Sec. 3.3) that
the number of comb lines is limited by mode-hopping
effects, and scales as Ncomb ∝ ϕp/α. This analysis
only counts signal comb lines, but here the signal and
idler combs are interleaved, so the total number of
lines is doubled.

• Higher conversion efficiency, since both the signal
and idler combs are at the same desired wavelength
(these combs can be re-interleaved with a delay-line
lattice filter like that used in Fig. A5(a)).
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