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Numerical Fuzz: A Type System for Rounding Error Analysis

ARIEL E. KELLISON, Cornell University, USA
JUSTIN HSU, Cornell University, USA

Algorithms operating on real numbers are implemented as floating-point computations in practice, but floating-
point operations introduce roundoff errors that can degrade the accuracy of the result. We propose Λnum , a
functional programming language with a type system that can express quantitative bounds on roundoff error.
Our type system combines a sensitivity analysis, enforced through a linear typing discipline, with a novel
graded monad to track the accumulation of roundoff errors. We prove that our type system is sound by relat-
ing the denotational semantics of our language to the exact and floating-point operational semantics.

To demonstrate our system, we instantiate Λnum with error metrics proposed in the numerical analysis
literature and we show how to incorporate rounding operations that faithfully model aspects of the IEEE 754
floating-point standard. To show that Λnum can be a useful tool for automated error analysis, we develop a
prototype implementation for Λnum that infers error bounds that are competitive with existing tools, while
often running significantly faster. Finally, we consider semantic extensions of our graded monad to bound
error under more complex rounding behaviors, such as non-deterministic and randomized rounding.

CCS Concepts: •Mathematics of computing→ Numerical analysis; • General and reference→ Veri-

fication; • Software and its engineering→ Functional languages.

Additional Key Words and Phrases: Floating point, Roundoff error, Linear type systems

1 INTRODUCTION

Floating-point numbers serve as discrete, finite approximations of continuous real numbers. Since
computation on floating-point numbers is designed to approximate a computation on ideal real
numbers, a key goal is reducing the roundoff error : the difference between the floating-point and
the ideal results. To address this challenge, researchers in numerical analysis have developed tech-
niques to measure, analyze, and ultimately reduce the approximation error in floating-point com-
putations.

Prior work: formal methods for numerical software. While numerical error analysis provides a
well-established set of tools for bounding roundoff error, it requires manual effort and tedious
calculation. To automate this process, researchers have developed verification methods based on
abstract interpretation and optimization. In the first approach, the analysis approximates floating-
point numbers with roundoff error by intervals of real numbers, which are propagated through the
computation. In the second approach, the analysis approximates the floating-point program by a
more well-behaved function (e.g., a polynomial), and then uses global optimization to find the max-
imum error between the approximation and the ideal computation over all possible realizations of
the rounding error.
While these tools are effective, they share some drawbacks. First, there is the issue of limited

scalability: analyses that rely on global optimization are not compositional, and analyses based on
interval arithmetic are compositional, but when the intervals are composed naively, the analysis
produces bounds that are too large to be useful in practice. Second, existing tools largely focus on
small simple expressions, such as straight-line programs, and it is unclear how to extend existing
methods to more full-featured programming languages.
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Analyzing floating-point error: basics and challenges. To get a glimpse of the challenges in an-
alyzing roundoff error, we begin with some basics. At a high level, floating-point numbers are a
finite subset of the continuous real numbers. Arithmetic operations (e.g., addition, multiplication)
have floating-point counterparts, which are specified following a common principle: the output of
a floating-point operation applied to some arguments is the result of the ideal operation, followed
by rounding to a representable floating-point number. In symbols:

>̃? (G,~) , �>? (G,~)
where the tilde denotes the approximate operation and rounded value, respectively.

Though simple to state, this principle leads to several challenges in analyzing floating point error.
First, many properties of exact arithmetic do not hold for floating-point arithmetic. For example,
floating-point addition is not associative: (G +̃~)+̃I ≠ G +̃(~+̃I). Second, the floating point error
accumulates in complex ways through the computation. For instance, the floating point error of
a computation cannot be directly estimated from just the number of rounding operations—the
details of the specific computation are important, since some operations may amplify error, while
other operations may reduce error.

Our work: a type system for error analysis. To address these challenges, we propose Λnum, a
novel type system for error analysis. Our approach is inspired by the specification of floating-point
operations as an exact (ideal) operation, followed by a rounding step. The key idea is to separate
the error analysis into two distinct components: a sensitivity analysis, which describes how errors
propagate through the computation in the absence of rounding, and a rounding analysis, which
tracks how errors accumulate due to rounding the results of operations.
Our type system is based on Fuzz [47], a family of bounded-linear type systems for sensitivity

analysis originally developed for verifying differential privacy. To track errors due to rounding, we
extend the language with a graded monadic type"Dg . Intuitively,"Dg is the type of computations
that produce g while possibly performing rounding, and D is a real constant that upper-bounds
the rounding error. In this way, we view rounding as an effect, and model rounding computations
with a monadic type like other kinds of computational effects [42]. We interpret our monadic type
as a novel graded monad on the category of metric spaces, which may be of independent interest.
As far as we know, our work is the first type system to provide bounds on roundoff error. Our

type-based approach has several advantages compared to prior work. First, our system can be
instantiated to handle different kinds of error metrics; our leading application bounds the relative
error, using a metric due to Olver [44]. Second, Λnum is an expressive, higher-order language;
by using a primitive operation for rounding, we are able to precisely describe where rounding is
applied. Finally, the analysis in Λnum is compositional and does not require global optimization.

Outline of paper. After presenting background onfloating-point arithmetic and giving an overview
of our system (Section 2), we present our technical contributions:

• The design of Λnum, a language and type system for error analysis (Section 3).
• Adenotational semantics forΛnum, alongwithmetatheoretic properties establishing sound-
ness of the error bound. A key ingredient is the neighborhood monad, a novel monad on
the category of metric spaces (Section 4).

• A range of case studies showing how to instantiate our language for different kinds of er-
ror analyses and rounding operations described by the floating-point standard. We demon-
strate how to use our system to establish bounds for various programs through typing
(Section 5).

• A prototype implementation for Λnum, capable of inferring types capturing roundoff error
bounds. We translate a variety of floating-point benchmarks into Λnum, and show that our
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implementation infers error bounds that are competitive with error bounds produced by
other tools, while often running substantially faster (Section 6).

• Extensions of the neighborhood monad to model more complex rounding behavior, e.g.,
rounding with underflows/overflows, non-deterministic rounding, state-dependent round-
ing, and probabilistic rounding (Section 7).

Finally, we discuss related work (Section 8) and conclude with future directions (Section 9).

2 A TOUR OF Λnum

2.1 Floating-Point Arithmetic

To set the stage, we first recall some basic properties of floating-point arithmetic. For the interested
reader, we point to excellent expositions by Goldberg [26], Higham [31], and Boldo et al. [8].

Floating-Point Number Systems. A floating-point number G in a floating-point number system
F ⊆ R has the form

G = (−1)B ·< · V4−?+1, (1)

where V ∈ {1 ∈ N | 1 ≥ 2} is the base, ? ∈ {?A42 ∈ N | ?A42 ≥ 2} is the precision,< ∈ N ∩ [0, V?)
is the significand, 4 ∈ Z ∩ [emin, emax] is the exponent, and B ∈ {0, 1} is the sign of G . For IEEE
binary64 (double-precision), ? = 53 and emax = 1023; for binary32, ? = 24 and emax = 127.
Many real numbers cannot be represented exactly in a floating-point format. For example, the

number 0.1 cannot be exactly represented in binary64. Furthermore, the result of most elementary
operations on floating-point numbers cannot be represented exactly and must be rounded back to
a representable value, leading to one of the most distinctive features of floating-point arithmetic:
roundoff error.

Rounding Operators. Given a real number G and a floating point format F, a rounding operator

d : R → F is a function that takes G and returns a (nearby) floating-point number. The IEEE
standard specifies that the basic arithmetic operations (+,−, ∗,÷,√) behave as if they first computed
a correct, infinitely precise result, and then rounded the result using one of four rounding functions
(referred to as modes): round towards +∞, round towards −∞, round towards 0, and round towards
nearest (with defined tie-breaking schemes).

The Standard Model. By clearly defining floating-point formats and rounding functions, the
floating-point standard provides a mathematical model for reasoning about roundoff error: If we
write >? for an ideal, exact arithmetic operation, and >̃? for the correctly rounded, floating-point
version of >? , then then for any floating-point numbers G and ~ we have [31]

G >̃? ~ , d (G >? ~) = (G >? ~) (1 + X), |X | ≤ D, >? ∈ {+,−, ∗,÷}, (2)

where d is an IEEE rounding operator and D is the unit roundoff, which is upper bounded by 21−?

for a binary floating-point format with precision ? . Equation (2) is only valid in the absence of
underflow and overflow. We discuss how Λnum can handle underflow and overflow in in Section 7.

Absolute and Relative Error. The most common measures of the accuracy of a floating-point
approximation G̃ to an exact value G are absolute error (4A01B) and relative error (4AA4; ):

4A01B (G, G̃) = |G̃ − G | and 4AA4; (G, G̃) = | (G̃ − G)/G | if G ≠ 0. (3)

From Equation (2), we see that the relative error of the basic floating-point operations is at most
unit roundoff.
The relative and absolute error do not apply uniformly to all values: the absolute error is well-

behaved for small values, while the relative error is well-behaved for large values. Alternative error
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measures that can uniformly represent floating-point error on both large and small values are the
units in the last place (ULP) error, which measures the number of floating-point values between an
approximate and exact value, and its logarithm, bits of error [16]:

4Aulp(G, G̃) = |F ∩ [min(G, G̃),max(G, G̃)] | and 4A18CB (G, G̃) = log2 4Aulp(G, G̃). (4)

While static analysis tools that provide sound, worst-case error bound guarantees for floating-
point programs compute relative or absolute error bounds (or both), the ULP error and its logarithm
are often used in tools that optimize either the performance or accuracy of floating-point programs,
like Herbie [45] and Stoke [48].

Propagation of Rounding Errors. In addition to bounding the rounding error produced by a floating-
point computation, a comprehensive rounding error analysis must also quantify how a computa-
tion propagates rounding errors from inputs to outputs. The tools Rosa [18, 19], Fluctuat [27],
and SATIRE [20] account for the propagation of rounding errors using Taylor-approximations, ab-
stract interpretation, and automatic differentiation, respectively. In our work, we take a different
approach: our language Λnum tracks the propagation of rounding errors using a sensitivity type

system.

2.2 Sensitivity Type Systems: An Overview

The core of our type system is based on Fuzz [47], a family of linear type systems. The central idea
in Fuzz is that each type g can be viewed as a metric space with a metric 3g , a notion of distance
on values of type g . Then, function types describe functions of bounded sensitivity.

Definition 2.1. A function 5 : - → . between metric spaces is said to be 2-sensitive (or Lipschitz
continuous with constant 2) iff 3. (5 (G), 5 (~)) ≤ 2 · 3- (G,~) for all G,~ ∈ - .

In other words, a function is 2-sensitive if it can magnify distances between inputs by a factor
of at most 2 . In Fuzz, and in our system, the type g ⊸ f describes functions that are non-expansive,
or 1-sensitive functions. Intuitively, varying the input of a non-expansive function by distance X
cannot change the output bymore than distance X . Functions that are A -sensitive for some constant
A are captured by the type !Ag ⊸ f ; the type !Ag scales the metric of g by a factor of A .

To get a sense of how the type system works, we first introduce a metric on real numbers
proposed by Olver [44] to capture relative error in numerical analysis.

Definition 2.2 (The Relative Precision (RP) Metric). Let G̃ and G be nonzero real numbers of the
same sign. Then the relative precision (RP) of G̃ as an approximation to G is given by

'% (G, G̃) = |;=(G/G̃) |. (5)

While Definition 2.2 is a true metric, satisfying the usual axioms of zero-self distance, symmetry,
and the triangle inequality, the relative error (Equation (3)) and the ULP error (Equation (4)) are not.
Rewriting Definition 2.2 and the relative error as follows, and by considering the Taylor expansion
of the exponential function, we can see that the relative precision is a close approximation to the
relative error so long as X ≪ 1:

4AA4; (G, G̃) = |X |; G̃ = (1 + X)G, (6)

'% (G, G̃) = |X |; G̃ = 4XG. (7)

Moreover, if G̃ as an approximation to G of relative precision 0 ≤ U < 1, then G̃ approximates G
with relative error [cf. 44, eq 3.28 95]

n = 4U − 1 ≤ U/(1 − U). (8)
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In Λnum, we can write a function pow2 that squares its argument and assign it the following
type:

pow2 , _G. mul (G, G) : !2num ⊸ num.

The type num is the numeric type in Λnum; for now, we can think of it as just the ideal real
numbers R. The type !2num ⊸ num states that pow2 is 2-sensitive under the RP metric. More
generally, this type reflects that the sensitivity of a function to its inputs is dependent on how
many times the input is used in the function body. Now, spelling all of this out, if we have two
inputs E and E · 4X at distance X under the RP metric, then applying pow2 leads to outputs E2 and
(E · 4X )2 = E2 · 42·X , which are at distance (at most) 2 · X under the RP metric.

2.3 Roundoff Error Analysis in Λnum: A Motivating Example

So far, we have not considered roundoff error: pow2 simply squares its argument without perform-
ing any rounding. Next, we give an idea of how rounding is modeled in Λnum, and how sensitivity
interacts with roundoff error.
The purpose of a rounding error analysis is to derive an a priori bound on the effects of rounding

errors on an algorithm [31]. Suppose we are tasked with performing a rounding error analysis on
a function pow2′, which squares a real number and rounds the result. Using the standard model
for floating-point arithmetic (Equation (2)), the analysis is simple: the result of the function is

pow2′(G) = d (G ∗ G) = (G ∗ G) (1 + n), |n | ≤ D, (9)

and the relative error is bounded by the unit roundoff, D. Our insight is that a type system can be
used to perform this analysis, by modeling rounding as an error producing effectful operation.
To see how this works, the function pow2′ can be defined in Λnum as follows:

pow2′ , _G. rnd (mul (G, G)) : !2num ⊸ "Dnum.

Here, rnd is an effectful operation that applies rounding to its argument and produces values of
monadic type"nnum; intuitively, this type describes computations that produce numeric results
while performing rounding, and incurring at most n in rounding error. Thus, our type for pow2′

captures the desired error bound from Equation (9): for any input E ∈ R, pow2′ (E) approximates
its ideal, infinitely precise counterpart pow2(E) within RP distance at most D, the unit roundoff.
To formalize this guarantee, programs of type "ng can be executed in two ways: under an

ideal semantics where rounding operations act as the identity function, and under an approximate
(floating-point) semantics where rounding operations round their arguments following some pre-
scribed rounding strategy. We formalize these semantics in Section 4, and show our main sound-
ness result: for programs with monadic type "nnum, the result of the ideal computation differs
from the result of the approximate computation by at most n .

Composing Error Bounds. The type for pow2′ : !2num ⊸ "Dnum actually guarantees a bit
more than just a bound on the roundoff: it also guarantees that the function is 2-sensitive under
the ideal semantics, just like for pow2. (Under the approximate semantics, on the other hand, the
function does not necessarily enjoy this guarantee.) It turns out that this added piece of information
is crucial when analyzing how rounding errors propagate.
To see why, suppose we define a function that maps any number E to its fourth power: E4. We

can implement this function by using pow2′ twice, like so:

pow4 G , let-bind ~ = pow2′ G in pow2′ ~ : "3Dnum.
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The let-bind−in − construct sequentially composes twomonadic, effectful computations; to keep
this example readable, we have elided some of the other syntax in Λnum. Thus, pow4 first squares
its argument, rounds the result, then squares again, rounding a second time.
The bound 3D on the total roundoff error deserves some explanation. In the typing rules for

Λnum we will see in Section 3, this index is computed as the sum 2D + D, where the first term 2D
is the error D from the first rounding operation amplified by 2 since this error is fed into the second
call of pow2′, a 2-sensitive function, and the second term D is the roundoff error from the second
rounding operation. If we think of pow2′ as mapping a numeric value 0 to a pair of outputs (1, 1̃),
where1 is the result under the exact semantics and 1̃ is the result under the approximate semantics,
we can visualize the computation pow4(0) as the following composition:

(2, 2̃)

0 (1, 1̃)

(3, 3̃)

pow2′ (0)

pow2′ (1 )

pow2′ (1̃ )

From left-to-right, the ideal and approximate results of pow2′ (0) are 1 and 1̃, respectively; the
grade D on the monadic return type of pow2′ ensures that these values are at distance at most D.
The ideal result of pow4(0) is 2 , while the approximate result of pow4(0) is 3̃ . (The values 2̃ and 3
arise from mixing ideal and approximate computations, and do not fully correspond to either the
ideal or approximate semantics.) The 2-sensitivity guarantee of pow2′ ensures that the distance
between 2 and 3 is at most twice the distance between 1 and 1̃—leading to the 2D term in the
error—while the distance between 3 and 3̃ is at most D. By applying the triangle inequality, the
overall error bound is at most 2D + D = 3D.

Error Propagation. So far, we have described how to bound the rounding error of a single compu-
tation applied to a single input. In practice, it is also often useful to analyze how errors propagate
through a computation: given inputs with some roundoff error D, how does the output roundoff
error depend onD? Our system can also be used for this kind of analysis; we give detailed examples
in Section 5, but can use our running example of pow4 to illustrate the idea here
If we denote by 5 the interpretation of an infinitely precise program, and by 6 an interpretation

of a finite-precision program that approximates 5 , then we can use the triangle inequality to derive
an upper bound on the relative precision of 6 with respect to 5 on distinct inputs:

'% (6(G), 5 (~)) ≤ '% (6(G), 5 (G)) + '% (5 (G), 5 (~)). (10)

This upper bound is the sum of two terms: the first reflects the local rounding error—how much
error is produced by the approximate function, and the second reflects by how much the function
magnifies errors in the inputs—the sensitivity of the function.
Now, given that the full signature of pow4 is pow4 : !4num ⊸ "3Dnum, if we denote by 6

and 5 the approximate and ideal interpretations of pow4, from Equation (10) we expect our type
system to produce the following bound on the propagation of error in pow4. For any exact number
G and its approximation G̃ at distance at most D′ , we have:

'% (6(G̃), 5 (G)) ≤ 3D + 4D′. (11)

The term 4D′ reflects that pow4 is 4-sensitive in its argument, and that the (approximate) input
value G̃ differs from its ideal value G by at mostD′. In fact, we can use pow4 to implement a function
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Types f, g ::= unit | num | f × g | f ⊗ g | f + g | f ⊸ g | !Bf | "Dg

Values E,F ::= G | 〈〉 | : ∈ ' | 〈E,F〉 | (E,F) | inl E | inr E

| _G. 4 | [E] | rnd E | ret E | let-bind(rnd E, G .5 )
Terms 4, 5 ::= E | E F | c8 E | let (G,~) = E in 4 | case E of (inl G.4 | inr ~.5 )

| let [G] = E in 4 | let-bind(E, G .5 ) | let G = 4 in 5 | op(E) op ∈ O

Fig. 1. Types, values, and terms.

pow4′ with the following type:

pow4′ : "D′num ⊸ "3D+4D′num.

The type describes the error propagation: roundoff error at most D′ in the input leads to roundoff
error at most 3D + 4D′ in the output.

3 THE LANGUAGE Λnum

3.1 Syntax

Figure 1 presents the syntax of types and terms. Λnum is based on Fuzz [47], a linear call-by-
value _-calculus. For simplicity we do not treat recursive types, and Λnum does not have general
recursion.

Types. Some of the types in Figure 1 have already been mentioned in Section 2, including the
linear function type g ⊸ f , the metric scaled !Bf type, and the monadic "nnum type. The base
types are unit and numbers num. Following Fuzz, Λnum has sum types f + g and two product
types, g ⊗ f and g × f , which are interpreted as pairs with different metrics.

Values and Terms. Our language requires that all computations are explicitly sequenced by let-
bindings, let G = E in 4 , and term constructors and eliminators are restricted to values (including
variables). This refinement of Fuzz better supports extensions to effectful languages [15]. In order
to sequence monadic and metric scaled types, Λnum provides the eliminators let-bind(E, G .4) and
let [G] = E in 4 , respectively. The constructs rnd E and ret E lift values of plain type to monadic
type; for metric types, the construct [E] indicates scaling the metric of the type by a constant.
Λnum is parameterized by a set ' of numeric constants with type num. In Section 5, we will

instantiate ' and interpret num as a concrete set of numbers with a particular metric. Λnum is
also parameterized by a signature Σ: a set of operation symbols op ∈ O, each with a type f ⊸ g ,
and a function >? : �+ (f) → �+ (g) mapping closed values of type f to closed values of type g .
We write {op : f ⊸ g} in place of the tuple (f ⊸ g, >? : �+ (f) → �+ (g), op). For now, we make
no assumptions on the functions >? ; in Section 4 we will need further assumptions.

3.2 Static Semantics

The static semantics of Λnum is given in Figure 2. Before stepping through the details of each rule,
we require some definitions regarding typing judgments and typing environments.

Terms in Λnum are typed with judgments of the form Γ ⊢ 4 : f where Γ is a typing environment
and f is a type. Environments are defined by the syntax Γ,Δ ::= · | Γ, G :B f . We can also view a
typing environment Γ as a partial map from variables to types and sensitivities, where (f, B) = Γ(G)
when G :B f ∈ Γ. Intuitively, if the environment Γ has a binding G :B f ∈ Γ, then a term 4 typed
under Γ has sensitivity B to perturbations in the variable G ; 0-sensitivity means that the term does
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B ≥ 1 (Var)
Γ, G :B f,Δ ⊢ G : f

Γ, G :1 f ⊢ 4 : g
(⊸ I)

Γ ⊢ _G.4 : f ⊸ g
Γ ⊢ E : f ⊸ g Θ ⊢ F : f (⊸ E)

Γ + Θ ⊢ EF : g

(Unit)
Γ ⊢ 〈〉 : unit

Γ ⊢ E : f Γ ⊢ F : g (× I)
Γ ⊢ 〈E,F〉 : f × g

Γ ⊢ E : g1 × g2 (× E)
Γ ⊢ c8 E : g8

Γ ⊢ E : f Θ ⊢ F : g (⊗ I)
Γ + Θ ⊢ (E,F) : f ⊗ g

Γ ⊢ E : f ⊗ g Θ, G :B f,~ :B g ⊢ 4 : d
(⊗ E)

B ∗ Γ + Θ ⊢ let (G,~) = E in 4 : d

Γ ⊢ E : f (+ I!)
Γ ⊢ inl E : f + g

Γ ⊢ E : g (+ I')
Γ ⊢ inr E : f + g

Γ ⊢ E : !Bf Θ, G :C∗B f ⊢ 4 : g
(! E)

C ∗ Γ + Θ ⊢ let [G] = E in 4 : g

Γ ⊢ E : f + g Θ, G :B f ⊢ 4 : d Θ, ~ :B g ⊢ 5 : d B > 0
(+ E)

B ∗ Γ + Θ ⊢ case E of (inl G.4 | inr ~.5 ) : d
Γ ⊢ E : f (! I)

B ∗ Γ ⊢ [E] : !Bf

Γ ⊢ 4 : g Θ, G :B g ⊢ 5 : f B > 0
(Let)

B ∗ Γ + Θ ⊢ let G = 4 in 5 : f
: ∈ ' (Const)

Γ ⊢ : : num

Γ ⊢ 4 : "@g A ≥ @
(Subsumption)

Γ ⊢ 4 : "Ag
Γ ⊢ E : g (Ret)

Γ ⊢ ret E : "0g
Γ ⊢ E : num (Rnd)

Γ ⊢ rnd E : "@num

Γ ⊢ E : "Af Θ, G :B f ⊢ 5 : "@g
("D E)

B ∗ Γ + Θ ⊢ let-bind(E, G .5 ) : "B∗A+@g
Γ ⊢ E : f {op : f ⊸ num} ∈ Σ

(Op)
Γ ⊢ op(E) : num

Fig. 2. Typing rules for Λnum , with B, C, @, A ∈ R≥0 ∪ {∞}.

not depend on G , while infinite sensitivity means that any perturbation in G can lead to arbitrarily
large changes in 4 . Well-typed expressions of the form G :B f ⊢ 4 : g represent computations that
have permission to be B-sensitive in the variable G .
Many of the typing rules for Λnum involve summing and scaling typing environments. The

notation B ∗ Γ denotes scalar multiplication of the variable sensitivities in Γ by B , and is defined as

B ∗ · = · B ∗ (Γ, G :C f) = B ∗ Γ, G :B∗C ,

where we require that 0 · ∞ = ∞ · 0 = 0. The sum Γ + Δ of two typing environments is defined
if they assign the same types to variables that appear in both environments. All typing rules that
involve summing environments (Γ + Δ) implicitly require that Γ and Δ are summable.

Definition 3.1. The environments Γ and Δ are summable iff for any G ∈ 3><(Γ) ∩ 3><(Δ), if
(f, B) = Γ(G), then there exists an element C ∈ R≥0 ∪ {∞} such that (f, C) = Δ(G).
Under this condition, we can define the sum Γ + Δ as follows.

· + · = ·
Γ + (Δ, G :B f) = (Γ + Δ), G :B f if G ∉ Γ

(Γ, G :B f) + Δ = (Γ + Δ), G :B f if G ∉ Δ

(Γ + Δ), G :B+C f = (Γ, G :B f) + (Δ, G :C f)
We now consider the rules in Figure 2. The simplest are (Const) and (Var), which allow any

constant to be used under any environment, and allow a variable from the environment to be used
so long as its sensitivity is at least 1.
The introduction and elimination rules for the products ⊗ and × are similar to those given in

Fuzz. In (⊗ I), introducing the pair requires summing the environments in which the individual
elements were defined, while in (× I), the elements of the pair share the same environment.
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The typing rules for sequencing (Let) and case analysis (+ E) both require that the sensitivity
B is strictly positive. While the restriction in (Let) is not needed for a terminating calculus, like
ours, it is required for soundness in the presence of non-termination [15]. The restriction in (+ E)
is needed for soundness (we discuss this detail in Section 8).
The remaining interesting rules are those for metric scaling and monadic types. In the (! I) rule,

the box constructor [−] indicates scalar multiplication of an environment. The (! E) rule is similar
to (⊗ E), but includes the scaling on the let-bound variable.
The rules (Subsumption), (Ret), (Rnd), and ("D E) are the core rules for performing rounding

error analysis inΛnum. Intuitively, the monadic type"nnum describes computations that produce
numeric results while performing rounding, and incur at most n in rounding error. The subsump-
tion rule states that rounding error bounds can be loosened. The (Ret) rule states that we can lift
terms of plain type to monadic type without introducing rounding error. The (Rnd) rule types the
primitive rounding operation, which introduces roundoff errors. Here, @ is a fixed numeric con-
stant describing the roundoff error incurred by a rounding operation. The precise value of this
constant depends on the precision of the format and the specified rounding mode; we leave @

unspecified for now. In Section 5, we will illustrate how to instantiate our language to different
settings.
The monadic elimination rule ("D E) allows sequencing two rounded computations together.

This rule formalizes the interaction between sensitivities and rounding, as we illustrated in Sec-
tion 2: the rounding error of the body of the let-binding let-bind(E, G .5 ) is upper bounded by the
sum of the roundoff error of the value E scaled by the sensitivity of 5 to G , and the roundoff error
of 5 .
Our type system satisfies the usual properties of weakening and substitution.

3.3 Dynamic Semantics

We use a small-step operational semantics adapted from Fuzz [47], extended with rules for the
monadic let-binding. We show here the evaluation rules that are unique to Λnum.
If the judgment 4 ↦→ 4′ indicates that the expression 4 takes a single step, resulting in the

expression 4′, then for the let-bind construct we have the following evaluation rules.

let-bind(ret E, G .4) ↦→ 4 [E/G]
let-bind(let-bind(E, G .5 ), ~.6) ↦→ let-bind(E, G .let-bind(5 ,~.6)) G ∉ �+ (6)

Although our language does not have recursive types, the let-bind constructmakes it somewhat
less obvious that the calculus is terminating: the evaluation rules for let-bind rearrange the term
but do not reduce its size. Even so, a standard logical relations argument can be used to show that
well-typed programs are terminating.

4 DENOTATIONAL SEMANTICS AND ERROR SOUNDNESS

In this section, we show two central guarantees of Λnum: bounded sensitivity and bounded error.

4.1 Categorical Preliminaries

We provide a denotational semantics for our language based on the categorical semantics of Fuzz,
due to Azevedo de Amorim et al. [5]. Our language has many similarities to Fuzz, with some key
differences needed for our application—most notably, our language does not have recursive types
and non-termination, but it does have a novel graded monad which we will soon discuss. We
emphasize that we use category theory as a concise language for defining our semantics—we are
ultimately interested in a specific, concrete interpretation of our language. The general categorical
semantics of Fuzz-like languages has been studied in prior work [24].
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Basic concepts. To begin, we quickly review some basic concepts from category theory; the in-
terested reader should consult a textbook for a more gentle introduction [3, 37]. We will introduce
more specialized concepts as we go along. A category C consists of a collection$1 of objects, and
a collection of morphisms �><C(�, �) for every pair of objects�, � ∈ $1C. For every pair of mor-
phisms 5 ∈ �><C(�, �) and 6 ∈ �><C(�,�), the composition 6 ◦ 5 is defined to be a morphism
in �><C(�,�). There is an identity morphism 83� ∈ �><C(�,�) corresponding to object �; this
morphism acts as the identity under composition: 5 ◦ 83 = 83 ◦ 5 = 5 .
A functor � from category C to category D consists of a function on objects � : $1C → $1D,

and a function onmorphisms � : �><C(�, �) → �><D(�, �). Themapping onmorphisms should
preserve identities and composition: � (83�) = 83�, and � (6 ◦ 5 ) = � (6) ◦ � (5 ). Finally, a natural
transformation U from a functor � : C → D to a functor � : C → D consists of a family of
morphisms U� ∈ �><D(� (�),� (�)), one per object � ∈ $1C, that commutes with the functor �
and � applied to any morphism: for every 5 ∈ �><C(�, �), we have U� ◦ � (5 ) = � (5 ) ◦ U�.
The category Met. Our type system is designed to bound the distance between various kinds of

program outputs. Intuitively, types should be interpreted asmetric spaces, which are sets equipped
with a distance function satisfying several standard axioms. Azevedo deAmorim et al. [5] identified
the following slight generalization of metric spaces as a suitable category to interpret Fuzz.

Definition 4.1. An extended pseudo-metric space (�,3�) consists of a carrier set � and a distance
3� : � ×� → R≥0 ∪ {∞} satisfying (i) reflexivity: 3 (0, 0) = 0; (ii) symmetry: 3 (0, 1) = 3 (1, 0); and
(iii) triangle inequality: 3 (0, 2) ≤ 3 (0, 1) +3 (1, 2) for all 0, 1, 2, ∈ �. We write |�| for the carrier set.

A non-expansive map 5 : (�,30) → (�,3�) between extended pseudo-metric spaces consists of a
set-map 5 : � → � such that 3� (5 (0), 5 (0′)) ≤ 3� (0, 0′). The identity function is a non-expansive
map, and non-expansive maps are closed under composition. Therefore, extended pseudo-metric
spaces and non-expansive maps form a categoryMet.

Extended pseudo-metric spaces differ from standard metric spaces in two respects. First, their
distance functions can assign infinite distances (extended real numbers). Second, their distance
functions are only pseudo-metrics because they can assign distance zero to pairs of distinct points.
Since we will only be concerned with extended pseudo-metric spaces, we will refer to them as
metric spaces for short.
The category Met supports several constructions that are useful for interpreting linear type

systems. First, there are products and coproducts onMet. The Cartesian product (�,3�) × (�,3�)
has carrier � × � and distance given by the max: 3�×� ((0, 1), (0′, 1′)) = max(3� (0, 0′), 3� (1,1′)).
The tensor product (�,3�) ⊗ (�,3�) also has carrier � × �, but with distance given by the sum:
3�⊗� ((0, 1), (0′, 1′)) = 3� (0, 0′) + 3� (1,1′). Both products are useful for modeling natural metrics
on pairs and tuples. The category Met also has coproducts (�,3�) + (�,3�), where the carrier
is disjoint union � ⊎ � and the metric 3�+� assigns distance ∞ to pairs of elements in different
injections, and distance 3� or 3� to pairs of elements in � or �, respectively.
Second, non-expansive functions can be modeled inMet. The function space (�,3�) ⊸ (�,3�)

has carrier set {5 : � → � | 5 non-expansive} and distance given by the supremum norm:
3�⊸� (5 , 6) = sup0∈�3� (5 (0), 6(0)). Moreover, the functor (− ⊗ �) is left-adjoint to the functor
(� ⊸ −), so maps 5 : � ⊗ � → � can be curried to _(5 ) : � → (� ⊸ �), and uncurried. These
constructions, plus a few additional pieces of data,make (Met, � , ⊗,⊸) a symmetric monoidal closed

category (SMCC), where the unit object � is the metric space with a single element.

A graded comonad onMet. Languages like Fuzz are based on bounded linear logic [25], where the
exponential type !� is refined into a family of bounded exponential types !B�where B is drawn from
a pre-ordered semiringS. The grade B can be used to trackmore fine-grained, possibly quantitative
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aspects of well-typed terms, such as function sensitivities. These bounded exponential types can
be modeled by a categorical structure called a S-graded exponential comonad [10, 24]. Given any
metric space (�,3�) and non-negative number A , there is an evident operation that scales the
metric by A : (�, A · 3�). This operation can be extended to a graded comonad.

Definition 4.2. Let the pre-ordered semiringS be the extended non-negative real numbersR≥0∪
{∞} with the usual order, addition, and multiplication; 0 ·∞ and∞·0 are defined to be 0.We define
functors {�B : Met → Met | B ∈ S} such that �B : Met → Met takes metric spaces (�,3�) to
metric spaces (�, B · 3�), and non-expansive maps 5 : � → � to �B 5 : �B� → �B�, with the same
underlying map.
We get a graded comonad by defining associated natural transformations.

4.2 A Graded Monad onMet

The categorical structures we have seen so far are enough to interpret the non-monadic fragment
of our language, which is essentially the core of the Fuzz language [5]. As proposed by Gaboardi
et al. [24], this core language canmodel effectful computations using a gradedmonadic type, which
can be modeled categorically by (i) a graded strong monad, and (ii) a distributive law modeling the
interaction of the graded comonad and the graded monad.

The neighborhood monad. Recall the intuition behind our system: closed programs 4 of type
"nnum are computations producing outputs in num that may perform rounding operations. The
index n should bound the distance between the output under the ideal semantics, where rounding
is the identity, and the floating-point (FP) semantics, where rounding maps a real number to a
representable floating-point number following a prescribed rounding procedure. Accordingly, the
interpretation of the graded monad should track pairs of values—the ideal value, and the FP value.
This perspective points towards the following graded monad on Met, which we call the neigh-

borhood monad. While the definition appears quite natural mathematically, we are not aware of
this graded monad appearing in prior work.

Definition 4.3. Let the pre-ordered monoid R be the extended non-negative real numbers R≥0∪
{∞} with the usual order and addition. The neighborhood monad is defined by the functors {)A :
Met → Met | A ∈ R} and associated natural transformations as follows:

• The functor)A : Met → Met takes a metric space" to a metric space with underlying set:

|)A" | , {(G,~) ∈ " | 3" (G,~) ≤ A }
and the metric is: 3)A" ((G,~), (G ′,~′)) , 3" (G, G ′).

• The functor)A takes a non-expansive function 5 : � → � to )A 5 : )A� → )A� with

()A 5 ) ((G,~)) , (5 (G), 5 (~))
• For A ,@ ∈ R and @ ≤ A , the map (@ ≤ A )� : )@� → )A� is the identity.

• The unit map [� : � → )0� is defined via: [� (G) , (G, G).
• The graded multiplication map `@,A,� : )@ ()A�) → )A+@� is defined via:

`@,A,� ((G,~), (G ′, ~′)) , (G,~′).
The definitions of )A are evidently functors. The associated maps are natural transformations,

and define a graded monad [22, 33]. The neighborhood monad is a graded strong monad [42], and
the scaling comonad distributes over the neighborhood monad.

4.3 Interpreting the Language

We are now ready to interpret our language in Met.
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Interpreting types. We interpret each type g as a metric space JgK, using constructions in Met.

Definition 4.4. Define the type interpretation by induction on the type syntax:

JunitK , � = ({★}, 0) JnumK , (',3') J� ⊗ �K , J�K ⊗ J�K J� × �K , J�K × J�K

J� + �K , J�K + J�K J� ⊸ �K , J�K ⊸ J�K J!B�K , �BJ�K J"A�K , )A J�K

We do not fix the interpretation of the base type num: (',3') can be any metric space.

Interpreting judgments. We will interpret each typing derivation showing a typing judgment
Γ ⊢ 4 : g as a morphism in Met from the metric space JΓK to the metric space JgK. Since all
morphisms in this category are non-expansive, this will show (a version of) metric preservation.
We first define the metric space JΓK:

J·K , � = ({★}, 0) JΓ, G :B gK , JΓK ⊗ �BJgK

Given any binding G :A g ∈ Γ, there is a non-expansive map from JΓK to JgK projecting out the
G-th position; we sometimes use notation that treats an element W ∈ JΓK as a function, so that
W (G) ∈ JgK.

We are now ready to define our interpretation of typing judgments. Our definition is parametric
in the interpretation of three things: the numeric type JnumK = (',3'), the rounding operation
d , and the operations in the signature Σ.

Definition 4.5. Fix d : ' → ' to be a (set) function such that for every A ∈ ' we have
3' (A , d (A )) ≤ n , and for every operation {op : f ⊸ g} ∈ Σ in the signature fix an interpreta-
tion JopK : JfK → JgK such that for every closed value · ⊢ E : f , we have JopK(JEK) = J>? (E)K.
Then we can interpret each well-typed program Γ ⊢ 4 : g as a non-expansive map JΓ ⊢ 4 : gK :

JΓK → JgK, by induction on the typing derivation, via case analysis on the last rule.

Soundness of operational semantics. Now, we can show that the operational semantics from Sec-
tion 3 is sound with respect to the metric space semantics: stepping a well-typed term does not
change its denotational semantics.

Lemma 4.6 (Substitution). Let Γ,Δ, Γ′ ⊢ 4 : g be a well-typed term, and let ®E : Δ be a well-typed

substitution of closed values, i.e., we have derivations · ⊢ EG : Δ(G). Then there is a derivation of

Γ, Γ′ ⊢ 4 [®E/3><(Δ)] : g
with semantics JΓ, Γ′ ⊢ 4 [®E/3><(Δ)] : gK = (83JΓK ⊗ J· ⊢ ®E : ΔK ⊗ 83JΓ′K); JΓ,Δ, Γ′ ⊢ 4 : gK.
Lemma 4.7 (Preservation). Let · ⊢ 4 : g be a well-typed closed term, and suppose 4 ↦→ 4′. Then

there is a derivation of · ⊢ 4′ : g , and the semantics of both derivations are equal: J⊢ 4 : gK = J⊢ 4′ : gK.

4.4 Error Soundness

Themetric semantics interprets each program as a non-expansive map.We aim to show that values
of monadic type "Af are interpreted as pairs of values, where the first value is the result under
an ideal operational semantics and the second value is the result under an approximate, or finite-
precision (FP) operational semantics.
To make this connection precise, we first define the ideal and FP operational semantics of our

programs, refining our existing operational semantics so that the rounding operation steps to a
number. Then, we define two denotational semantics of our programs capturing the ideal and
FP behaviors of programs, and show that the ideal and FP operational semantics are sound with
respect to this denotation. Finally, we relate our metric semantics with our ideal and FP semantics,
showing howwell-typed programs of monadic type satisfy the error bound indicated by their type.
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Ideal and FP operational semantics. We first refine our operational semantics to capture ideal and
FP behaviors.

Definition 4.8. We define two step relations 4 ↦→83 4′ and 4 ↦→5 ? 4′ by augmenting the opera-
tional semantics with the following rules:

rnd : ↦→83 ret : and rnd : ↦→5 ? ret d (:)

Note that let-bind(rnd :, G .5 ) is no longer a value under these semantics, since rnd : can step.
Also note that these semantics are deterministic, and by a standard logical relations argument, all
well-typed terms normalize.

Ideal and FP denotational semantics. Much like our approach in Met, we next define a denota-
tional semantics of our programs so that we can abstract away from the step relation. We develop
both the ideal and approximate semantics in Set, where maps are not required to be non-expansive.

Definition 4.9. Let Γ ⊢ 4 : g be a well-typed program. We can define two semantics in Set:

LΓ ⊢ 4 : gM83 : LΓM83 → LgM83 LΓ ⊢ 4 : gM5 ? : LΓM5 ? → LgM5 ?

We take the graded comonad �B and the graded monad )A to both be the identity functor on Set:

L"D gM83 = L!B gM83 , LgM83 L"D gM5 ? = L!B gM5 ? , LgM5 ?

The ideal and floating point interpretations of well-typed programs are straightforward, by in-
duction on the derivation of the typing judgment. The only interesting case is for Round:

LΓ ⊢ rnd : : "nnumM83 , LΓ ⊢ : : numM83 LΓ ⊢ rnd : : "nnumM5 ? , LΓ ⊢ : : numM5 ? ; d

where d : ' → ' is the rounding function.

Following the same approach as in Lemma 4.7, it is straightforward to prove that these denota-
tional semantics are sound for their respective operational semantics.

Lemma 4.10 (Preservation). Let · ⊢ 4 : g be a well-typed closed term, and suppose 4 ↦→83 4′.
Then there is a derivation of · ⊢ 4′ : g and the semantics of both derivations are equal: L⊢ 4 : gM83 =

L⊢ 4′ : gM83 . The same holds for the FP denotational and operational semantics.

Establishing error soundness. Finally, we connect the metric semantics with the ideal and FP
semantics. Let* : Met → Set be the forgetful functor mapping each metric space to its underlying
set, and each morphism of metric spaces to its underlying function on sets. We have:

Lemma 4.11 (Pairing). Let · ⊢ 4 : "Anum. Then we have: * J4K = 〈L4M83 , L4M5 ?〉 in Set: the first

projection of* J4K is L4M83 , and the second projection is L4M5 ? .

As a corollary, we have soundness of the error bound for programs with monadic type.

Corollary 4.12 (Error soundness). Let · ⊢ 4 : "Anum be a well-typed program. Then 4 ↦→∗
83

ret E83 and 4 ↦→∗
5 ?

ret E 5 ? such that 3JnumK(JE83K, JE 5 ?K) ≤ A .

5 CASE STUDIES

To illustrate how Λnum can be used to bound the sensitivity and roundoff error of numerical pro-
grams, we must fix our interpretation of the numeric type JnumK using an appropriate metric
space (',3') and augment our language to include primitive arithmetic operations over the set '.
If we interpret our numeric type num as the set of strictly positive real numbers R>0 with

the relative precision (RP) metric (Definition 2.2), then we can use Λnum to perform a relative
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add : (num × num)⊸ num

mul : (num ⊗ num)⊸ num

div : (num ⊗ num)⊸ num

sqrt : ![0.5]num⊸ num

Fig. 3. Primitive operations in Λnum , typed

using the relative precision (RP) metric.

addfp : (num × num)⊸ M[eps]num

mulfp : (num ⊗ num)⊸ M[eps]num

divfp : (num ⊗ num)⊸ M[eps]num

sqrtfp : ![0.5]num⊸ M[eps]num

Fig. 4. Type signatures of defined operations that per-

form rounding inΛnum ; eps denotes the unit roundoff.

function mulfp (xy: (num, num))

: M[eps]num {

s = mul xy;

rnd s

}

function addfp (xy: <num, num>)

: M[eps]num {

s = add xy;

rnd s

}

Fig. 5. Example defined operations that perform rounding in Λnum . We denote the unit roundoff by eps.

error analysis as described by Olver [44]. Using this metric, we extend the language with the four
primitive arithmetic operations shown in Figure 3.
Recall that our metric semantics interprets each program as a non-expansive map. If we take

the semantics of the arithmetic operations as being the standard addition and multiplication of
positive real numbers, then add and mul as defined in Figure 3 are non-expansive functions [44,
Corollary 1 & Property V]; recall that the two product types have different metrics (Section 4.3).
Using the primitive operations in Figure 3 and the rnd construct, we can write functions for the

basic arithmetic operations inΛnum that perform concrete rounding when interpreted according to
the FP semantics. The type signature of these functions is shown in Figure 4, and implementations
of a multiplication and addition that perform rounding are shown in Figure 5.
The examples presented in this section use the actual syntax of an implementation of Λnum,

which is introduced in Section 6. The implementation closely follows the syntax of the language
as presented in Figure 2, with some additional syntactic sugar. For instance, we write (x = v; e)

to denote let G = E in 4 , and (let x = v; f) to denote let-bind(E, G .5 ). For top level programs, we
write (function ID args {E} e) to denote let ID = E in 4 , where E is a lambda term with arguments
args. We write pairs of type −×− and −⊗− as (|-,-|) and (-,-), respectively. Finally, for types, we
write M[u]num to represent monadic types with a numeric grade u and we write ![s] to represent
exponential types with a numeric grade s.

Choosing the RP Rounding Function. Recall that we require the rounding function d to be a
function such that for every G ∈ '>0 , we have '% (G, d (G)) ≤ n ; that is, the rounding function
must satisfy an accuracy guarantee with respect to the metric '% on the set '>0 . If we choose
d'* : '>0 → '>0 to be rounding towards +∞, then by eq. (7) we have that '% (G, d (G)) ≤ eps

where eps is the unit roundoff. Error soundness (Corollary 4.12) implies that for the functions
mulfp and addfp, the results of the ideal and approximate computations differ by at most eps.

Underflow and overflow. In the following examples, we assume that the results of computations

do not overflow or underflow. Recall from Section 2 that the standard model for floating-point arith-
metic given in eq. (2) is only valid under this assumption. In Section 7, we discuss how Λnum can
be extended to handle overflow, underflow, and exceptional values.

Example: The Fused Multiply-Add Operation. We warm up with a simple example of a multiply-

add (MA) operation: given G,~, I, we want to compute G ∗~ +I. The Λnum implementation of MA is
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function MA (x: num) (y: num) (z: num)

: M[2*eps]num {

s = mulfp (x,y);

let a = s;

addfp (|a,z|)

}

function FMA (x: num) (y: num) (z: num)

: M[eps]num {

a = mul (x,y);

b = add (|a,z|);

rnd b

}

Fig. 6. Multiply-add and fused multiply-add in Λnum .

function Horner2

(a0: num) (a1: num)

(a2: num) (x: ![2.0]num)

: M[2*eps]num {

let [x1] = x ;

s1 = FMA a2 x' a1;

let z = s1;

FMA z x1 a0

}

function Horner2_with_error

(a0: M[eps]num) (a1: M[eps]num)

(a2: M[eps]num) (x: ![2.0]M[eps]num)

: (M[7*eps]num) {

let [x1] = x ;

let a0' = a0; let a1' = a1;

let a2' = a2; let x' = x1;

s1 = FMA a2' x' a1';

let z = s1;

FMA z x' a0'

}

Fig. 7. Horner’s scheme for evaluating a second order polynomial in Λnum with (Horner2_with_error) and

without (Horner2) input error.

given in Figure 6. The index 2*eps on the return type indicates that the roundoff error is at most
twice the unit roundoff, due to the two separate rounding operations in mulfp and addfp.
Multiply-add is extremely common in numerical code, and modern architectures typically sup-

port a fused multiply-add (FMA) operation. This operation performs a multiplication followed by
an addition, G ∗~+I, as though it were a single floating-point operation. The FMA operation there-
fore incurs a single rounding error, rather than two. TheΛnum implementation of a FMA operation
is given in Figure 6. The index on the return type of the function is eps, reflecting a reduction in
the roundoff error when compared to the function MA.

Example: Evaluating Polynomials. A standard method for evaluating a polynomial is Horner’s
scheme, which rewrites an =th-degree polynomial ? (G) = 00 + 01G + · · ·0=G= as

? (G) = 00 + G (01 + G (02 + · · · G (0=−1 + 0G=) · · · )),
and computes the result using only =multiplications and = additions. Using Λnum, we can perform
an error analysis on a version of Horner’s scheme that uses a FMA operation to evaluate second-
order polynomials of the form ? ( ®0, G) = 02G

2 + 01G + 00 where G and all 08s are non-zero positive
constants. The implementation Horner2 in Λnum is given in Figure 7 and shows that the rounding
error on exact inputs is guaranteed to be bounded by 2*eps:

'% (LHorner2 0B GM83 , LHorner2 0B GM5 ?) ≤ 2 ∗ eps. (12)

Example: Error Propagation and Horner’s Scheme. As a consequence of the metric interpretation
of programs (Section 4.3), the type of Horner2 also guarantees bounded sensitivity of the ideal
semantics, which corresponds to ? ( ®0, G) = 02G

2 + 01G + 00. Thus for any 08 , 0
′
8 , G, G

′ ∈ '>0, we
can measure the sensitivity of Horner2 to rounding errors introduced by the inputs: if G ′ is an
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approximation to G of RP @, and each 08 is an approximation to its corresponding 08 of RP A , then

'% (? ( ®0, G), ? ( ®0′, G ′)) ≤
2∑

8=0

'% (08 , 0′8 ) + 2 · '% (G, G ′) ≤ 3A + 2@. (13)

The term 2@ reflects that Horner2 is 2-sensitive in the variable G . The fact that we take the sum of the
approximation distances over the 08 ’s follows from the metric on the function type (Section 4.3).
The interaction between the sensitivity of the function under its ideal semantics and the round-

ing error incurred by Horner2 over exact inputs is made clear by the function Horner2_with_error,
shown in Figure 7. From the type, we see that the total roundoff error of Horner2_with_error is
7*eps: from eq. (13) it follows that the sensitivity of the function contributes 5*eps, and rounding
error incurred by evaluating Horner2 over exact inputs contributes the remaining 2*eps.

6 IMPLEMENTATION AND EVALUATION

6.1 Prototype Implementation

Wehave developed a prototype type-checker forΛnum in OCaml, based on the sensitivity-inference
algorithm due to Azevedo de Amorim et al. [4] developed for DFuzz [23], a dependently-typed ex-
tension of Fuzz. Given an environment Γ, a term 4 , and a type f , the goal of type checking is to
determine if a derivation Γ ⊢ 4 : f exists. For sensitivity type systems, type checking and type
inference can be achieved by solving the sensitivity inference problem. The sensitivity inference
problem is defined using context skeletons Γ• which are partial maps from variables to Λnum types.
If we denote by Γ the context Γ with all sensitivity assignments removed, then the sensitivity
inference problem is defined [4, Definition 5] as follows.

Definition 6.1 (Sensitivity Inference). Given a skeleton Γ
• and a term 4 , the sensitivity inference

problem computes an environment Γ and a type f with a derivation Γ ⊢ 4 : f such that Γ• = Γ.

Given a term 4 and a skeleton environment Γ•, the algorithm produces an environment Γ• with
sensitivity information and a type f . Calls to the algorithm are written as Γ•; 4 ⇒ Δ;f . Every
step of the algorithm corresponds to a derivation in Λnum. The syntax of the algorithmic rules
differs from the syntax of Λnum (Figure 2) in two places: the argument of lambda terms require
type annotations (G : f), and the box constructor requires a sensitivity annotation ( [E{B}]). The
algorithmic rules for these constructs are as follows:

Γ
•; E ⇒ Γ;f

(! I)
Γ
•; [E{B}] ⇒ B ∗ Γ; !Bf

Γ
•, G : f ; 4 ⇒ Γ, G :B f ; g B ≥ 1

(⊸ I)
Γ
•; _(G : f).4 ⇒ Γ;f ⊸ g

Importantly, the type checking algorithm for Λnum is sound:

Theorem 6.2 (Algorithmic Soundness). If Γ
•; 4 ⇒ Γ;f then there exists a derivation Γ ⊢ 4 : f .

6.2 Evaluation

In order to serve as a practical tool, our type-checker must infer useful error bounds within a
reasonable amount of time. Our empirical evaluation therefore focuses on measuring two key
properties: tightness of the inferred error bounds and performance. To this end, our evaluation
includes a comparison in terms of relative error and performance to two popular tools that soundly
and automatically bound relative error: FPTaylor [49] and Gappa [21]. Although Daisy [17] and
Rosa [19] also compute relative error bounds, they do not compute error bounds for the directed
rounding modes, and our instantiation ofΛnum requires round towards +∞ (see Section 5). For our
comparison to Gappa and FPTaylor, we use benchmarks from FPBench [16], which is the standard
set of benchmarks used in the domain; we also include the Horner scheme discussed in Section 5.
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Table 1. Comparison of Λnum to FPTaylor and Gappa. The Bound column gives upper bounds on relative

error (smaller is be�er); the bounds for FPTaylor and Gappa assume all variables are in [0.1, 1000]. The
Ratio column gives the ratio of Λnum’s relative error bound to the tightest (best) bound of the other two

tools; values less than 1 indicate that Λnum provides a tighter bound. The Ops column gives the number of

operations in each benchmark. Benchmarks from FPBench are marked with a (*).

Benchmark Ops Bound Ratio Timing (ms)
Λnum FPTaylor Gappa Λnum FPTaylor Gappa

hypot* 4 5.55e-16 5.17e-16 3.85e-12 1.07 2 100 20
x_by_xy* 3 4.44e-16 fail 2.22e-12 1.0e-04 1 - 10
one_by_sqrtxx 3 5.55e-16 5.09e-13 3.33e-12 1.1e-03 2 30 20
sqrt_add* 5 9.99e-16 6.66e-16 5.93e+01 1.5 4 30 20
test02_sum8* 8 1.55e-15 4.66e-14 5.97e-12 3.4e-02 1 1.4e4 40
nonlin1* 2 4.44e-16 4.49e-16 2.44e-15 1 1 30 10
test05_nonlin1* 2 4.44e-16 4.46e-16 2.02e-13 1 1 20 10
verhulst* 4 8.88e-16 7.38e-16 3.67e-09 0.83 1 30 20
predatorPrey* 7 1.55e-15 1.64e-11 7.15e-02 9.5e-05 2 70 30
test06_sums4_sum1* 4 6.66e-16 6.71e-16 2.84e-12 1 1 2e3 20
test06_sums4_sum2* 4 6.66e-16 1.78e-14 2.27e-12 4e-02 1 9e3 20
i4* 4 4.44e-16 4.50e-16 1.01e-12 1 1 150 20
Horner2 4 4.44e-16 6.49e-11 9.02e+09 6.8e-06 1 9.7e3 20
Horner2_with_error 4 1.55e-15 1.61e-10 9.02e+09 9.6e-06 2 1.6e4 40
Horner5 10 1.11e-15 5.03 9.02e+18 2.2e-16 1 1.9e4 40
Horner10 20 2.22e-15 1.14e+16 9.01e+33 2.5e-49 2 3.9e4 86
Horner20 40 4.44e-15 2.65e+49 9.01e+63 1.7e-64 3 1.0e5 458

There are limitations, summarized below, to the arithmetic operations that the instantiation of
Λnum used in our type-checker can handle, so we are only able to evaluate a subset of the FPBench
benchmarks. Even so, larger examples with more than 50 floating-point operations are intractable
for most tools [20], including FPTaylor and Gappa, and are not part of FPBench. Our evaluation
therefore includes larger examples with well-known relative error bounds that we compare against.
Finally, we used our type-checker to analyze the rounding error of four floating-point conditionals.
Our experiments were performed on a MacBook with a 1.4 GHz processor and 8 GB of memory.

Relative error bounds are derived from the relative precision computed byΛnum using Equation (8).

6.2.1 Limitations of Λnum. Soundness of the error bounds inferred by our type-checker is guar-
anteed by Corollary 4.12 and the instantiation of Λnum described in Section 5. This instantiation
imposes the following limitations on the benchmarkswe can consider in our evaluation. First, only
the operations +, ∗, /, and sqrt are supported by our instantiation, so we can’t use benchmarks
with subtraction or transcendental functions. Second, all constants and variables must be strictly
positive numbers, and the rounding mode must be fixed as round towards +∞. These limitations
follow from the fact that the RP metric (Definition 2.2) is only well-defined for non-zero values of
the same sign. We leave the exploration of tradeoffs between the choice of metric and the primitive
operations that can be supported by the language to future work. Given these limitations, along
with the fact that Λnum does not currently support programs with loops, we were able to include
13 of the 129 unique (at the time of writing) benchmarks from FPBench in our evaluation.

6.2.2 Small Benchmarks. The results for benchmarkswith fewer than 50 floating-point operations
are given in Table 1. Eleven of the seventeen benchmarks are taken from the FPBench benchmarks.
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Table 2. The performance of Λnum on benchmarks with 100 or more floating-point operations. The Std.

column gives relative error bounds from the literature. Benchmarks from Satire are marked with with an

(a); the Satire subcolumn gives timings for the computation of absolute error bounds as reported in [20].

Benchmark Ops Bound (Λnum) Bound (Std.) Timing (s)
Λnum Satire

Horner500 100 1.11e-14 1.11e-14 9e-03 5
MatrixMultiply4 112 1.55e-15 8.88e-16 3e-03 -
Horner75 150 1.66e-14 1.66e-14 2e-02 -
Horner100 200 2.22e-14 2.22e-14 4e-02 -
SerialSuma 1023 2.27e-13 2.27e-13 5 5407
Poly50a 1325 2.94e-13 - 2.12 3
MatrixMultiply16 7936 6.88e-15 3.55e-15 4e-02 -
MatrixMultiply64a 520192 2.82e-14 1.42e-14 10 65
MatrixMultiply128a 4177920 5.66e-14 2.84e-14 1080 763

Both FPTaylor and Gappa require user provided interval bounds on the input variables in order
to compute the relative error; we used an interval of [0.1, 1000] for each of the benchmarks. We
used the default configuration for FPTaylor, and used Gappa without providing hints for interval
subdivision. The floating-point format of each benchmark is binary64, and the rounding mode is
set at round towards +∞; the unit roundoff in this setting is 2−52 (approximately 2.22e-16). Only
Horner2_with_error assumes error in the inputs.

6.2.3 Large Benchmarks. Table 2 shows the results for benchmarks with 100 or more floating-
point operations. Five of the nine benchmarks are taken from Satire [20], an empirically sound

static analysis tool that computes absolute error bounds. Although Satire does not statically com-
pute relative error bounds for the benchmarks listed in Table 2, most of these benchmarks have
well-knownworst case relative error bounds that we can compare against. These bounds are given
in the Std. column in Table 2; the relevant references are as follows: Horner’s scheme [cf. 31, p. 95],
summation [cf. 8, p. 260], and matrix multiply [cf. 31, p. 63]. For matrix multiplication, we report
the max element-wise relative error bound produced byΛnum. When available, the Timing column
in Table 2 lists the time reported for Satire to compute absolute error bounds [cf. 20, Table III].

6.2.4 Conditional Benchmarks. Table 3 shows the results for conditional benchmarks. Two of
the four benchmarks are taken from FPBench and the remaining benchmarks are examples from
Dahlquist and Björck [cf. 14, p. 119]. We were unable to compare the performance and computed
relative error bounds shown in Table 3 against other tools. While Daisy, FPTaylor, and Gappa
compute relative error bounds, they don’t handle conditionals. And, while PRECiSA can handle
conditionals, it doesn’t compute relative error bounds. Only Rosa computes relative error bounds
for floating-point conditionals, but Rosa doesn’t compute bounds for the directed rounding modes.

6.2.5 Evaluation Summary. We draw three main conclusions from our evaluation.
Roundoff error analysis via type checking is fast. On small and conditional benchmarks,

Λnum infers an error bound in the order of milliseconds. This is at least an order of magnitude
faster than either Gappa or FPTaylor. On larger benchmarks, Λnum’s performance surpasses that
of comparable tools by computing bounds for problems with up to 520k operations in under a
minute.
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Table 3. The performance of Λnum on conditional benchmarks. Benchmarks from FPBench are marked with

with a (∗). Benchmarks from Dahlquist and Björck [cf. 14, p. 119] are marked with with a (b).

Benchmark Bound Timing (ms)
PythagoreanSumb 8.88e-16 2
HammarlingDistanceb 1.11e-15 2
squareRoot3∗ 4.44e-16 2
squareRoot3Invalid∗ 4.44e-16 2

Roundoff error bounds derived via type checking are useful. On most small benchmarks
Λnum produces a tighter relative error bound than either FPTaylor or Gappa. On the few bench-
marks where FPTaylor computes a tighter bound, Λnum’s results are still well within an order of
magnitude. For benchmarkswhere rounding errors are composed andmagnified, such as Horner2_with_error,
and on somewhat larger benchmarks like Horner2-Horner20, our type-based approach performs par-
ticularly well. On larger benchmarks that are intractable for the other tools,Λnum produces bounds
that are nearly optimal in comparison to those from the literature. Λnum is also able to provide
non-trivial relative error bounds for floating-point conditionals.

Roundoff error bounds derived via type checking are strong. The relative error bounds
produced by Λnum hold for all positive real inputs, assuming the absence of overflow and under-
flow. In comparison, the relative error bounds derived by FPTaylor and Gappa only hold for the
user provided interval bounds on the input variables, which we took to be [0.1, 1000]. Increas-
ing this interval range allows FPTaylor and Gappa to give stronger bounds, but can also lead to
slower analysis. Furthermore, given that relative error is poorly behaved for values near zero, some
tools are sensitive to the choice of interval. We see this in the results for the benchmark x_by_xy

in Table 1, where we are tasked with calculating the roundoff error produced by the expression
G/(G +~), where G and ~ are binary64 floating-point numbers in the interval [0.1, 1000]. For these
parameters, the expression lies in the interval [5.0e-05, 1.0] and the relative error should still be
well defined. However, FPTaylor (used with its default configuration) fails to provide a bound, and
issues a warning due to the value of the expression being too close to zero.

Remark (User specified Input Ranges). Allowing users to specify input ranges is a feature of

many tools used for floating-point error analysis, including FPTaylor and Gappa. In some cases, a

useful bound can’t be computed for an unbounded range, but can be computed given a well-chosen

bounded range for the inputs. Input ranges are also required for computing absolute error bounds.

Extending Λnum with bounded range inputs is left to future work; we note that this feature could be

supported by adding a new type to the language, and by adjusting the types of primitive operations.

7 EXTENDING THE NEIGHBORHOOD MONAD

So far, we have seen how the graded neighborhood monad can model rounding error when the
rounding operation follows a standard rounding rule (round towards +∞) and assuming that un-
derflow and overflow do not occur. In this section, we propose variations of this monad to support
error analysis for rounding operations with more complex behavior.

7.1 Extension: Non-Normal Numbers

In practice, rounding the result of a floating-point operation might result in a non-normal value:
numbers that are not too small (underflow) or too large (overflow) for the size of floating-point
representation. For amore realistic model of rounding, we can adjust the semantics of our language
to accurately model non-normal values.
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Extending the graded monad. First, we extend the neighborhoodmonad with exceptional values.

Definition 7.1. Let the pre-ordered monoid R be the extended non-negative real numbers R≥0∪
{∞} with the usual order and addition, and let ⋄ be a special element representing an exceptional
value. The exceptional neighborhood monad is defined by the functors {) ∗

A : Met → Met | A ∈ R}:
• ) ∗

A : Met → Met maps a metric space" to the metric space with underlying set

|) ∗
A " | , {(G,~) ∈ " × (" ∪ {⋄}) | 3" (G,~) ≤ A or ~ = ⋄}

and metric {
3) ∗

A
" ((G,~), (G ′,~′)) , 3" (G, G ′)

3) ∗
A
" ((G,~),⋄) , 0

• ) ∗
A takes a non-expansive function 5 : � → � to a function ) ∗

A 5 : ) ∗
A � → ) ∗

A � defined via:

() ∗
A 5 ) ((G,~)) ,

{
(5 (G), 5 (~)) : ~ ∈ �

(5 (G),⋄) : ~ = ⋄

) ∗
A are evidently functors, and the associated maps are natural transformations.

Extending theMet semantics. Wecan define the exceptionalmetric semantics JΓ ⊢ 4 : gK∗ : JΓK →
JgK as before (Definition 4.5), using the monad) ∗

A instead of )A . The only change is that rounding
operations can now produce exceptional values. We assume that rounding is interpreted by a func-
tion d∗ : ' → (' ∪ {⋄}) where ⋄ represents any exceptional value (e.g., underflow or overflow).
We continue to assume that the numeric type is interpreted by a metric space JnumK = (',3').
For all numbers A ∈ ', we require that d∗ satisfy 3' (A , d∗(A )) ≤ n whenever d∗(A ) is not the value
⋄.

Letting 5 = JΓ ⊢ : : numK∗, we then define JΓ ⊢ rnd : : "nnumK∗ , 5 ; 〈83, d∗〉

Extending the FP semantics. To account for the floating point operational semantics possibly
producing exception values, we introduce a new error value with a new typing rule:

E,F ::= · · · | err
Err

Γ ⊢ err : "Dg

We only consider this value for the floating-point semantics—programs under the metric and real
semantics cannot use err, and never step to err.
To interpret the monadic type in the floating-point semantics, we use the Maybe monad:

L"DgM
∗
5 ? , LgM∗5 ? ⊎ {⋄}

The floating-point semantics remains the same as before (Definition 4.8) except for two changes.
First, we interpret the rule Err by letting LΓ ⊢ err : "DgM

∗
5 ?

be the constant function producing

⋄. Second, given 5 = LΓ ⊢ : : numM∗
5 ?
, we define LΓ ⊢ rnd : : "nnumM∗

5 ?
, 5 ; d∗. Note that the

function d∗ may produce the exceptional value ⋄.
On the operational side, we modify the evaluation rule for round:

rnd : ↦→5 ?

{
A : d∗(:) = A ∈ '

err : d∗(:) = ⋄

And add a new step rule for propagating exceptional values: let-bind(err, G .5 ) ↦→5 ? err.



Numerical Fuzz: A Type System for Rounding Error Analysis 21

Establishing error soundness. The following analogue of Corollary 4.12 follows from the analogue
to the paired soundness theorem (Lemma 4.11).

Corollary 7.2. Let · ⊢ 4 : "Anum be well-typed. Under the exceptional semantics, either: 4 ↦→83

ret E83 and 4 ↦→5 ? ret E 5 ? , and 3JnumK(JE83K∗, JE∗5 ?K) ≤ A , or 4 ↦→5 ? err.

Thus, the error bound holds assuming floating point evaluation does not hit an exceptional
value.

7.2 Further Extension

The exceptional neighborhoodmonad can be viewed as the composition of two monads: the neigh-
borhood monad on Met models distance bounds, while the Maybe monad on Set models excep-
tional behavior. By replacing the Maybe monad with monads for other effects, we can define vari-
ants of the neighborhood monad modeling non-deterministic and probabilistic rounding.

8 RELATED WORK

Type systems for floating-point error. A type system due to Martel [40] uses dependent types
to track the occurrence and propagation of representation errors; i.e., error due to the fact that
floating-point numbers do not exactly represent real numbers. In Λnum, both representation error
and roundoff error—the error due to rounding the results of operations—are accounted for by the
type system. A significant difference between Λnum and the type system proposed by Martel is
error soundness. In Martel’s system, the soundness result says that a semantic relation capturing
the notion of accuracy between a floating-point expression and its ideal counterpart is preserved
by a reduction relation. This is weaker than a standard type soundness guarantee. In particular, it is
not shown that well-typed terms satisfy the semantic relation. In Λnum, the central novel property
guaranteed by our type system is much stronger: well-typed programs of monadic type satisfy the
error bound indicated by their type.

Program analysis for roundoff error. Many verification methods have been developed to automat-
ically bound roundoff error. The earliest tools, like Fluctuat [27] and Gappa [21], employ abstract
interpretation with interval arithmetic or polyhedra [11] to overapproximate the range of roundoff
errors. This method is flexible and applies to general programs with conditionals and loops, but it
can significantly overestimate roundoff error, and it is difficult to model cancellation of errors.
To provide more precise bounds, recent work relies on optimization. Conceptually, these meth-

ods bound the roundoff error by representing the error symbolically as a function of the program
inputs and the error variables introduced during the computation, and then perform global opti-
mization over all settings of the errors. Since the error expressions are typically complex, verifi-
cation methods use approximations to simplify the error expression to make optimization more
tractable, and mostly focus on straight-line programs. For instance, Real2Float [39] separates the
error expression into a linear term and a non-linear term; the linear term is bounded using semidef-
inite programming, while the non-linear term is bounded using interval arithmetic. FPTaylor [49]
was the first tool to use Taylor approximations of error expressions. Abbasi and Darulova [1] de-
scribe a modular method for bounding the propagation of errors using Taylor approximations, and
Rosa [18, 19] uses Taylor series to approximate the propagation of errors in possibly non-linear
terms.
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In contrast, our type system does not rely on global optimization, can naturally accommodate
both relative and absolute error, and can be instantiated to different models of floating-point arith-
metic with minimal changes. Our language supports a variety of datatypes and higher-order func-
tions. While our language does not support recursive types and general recursion, similar lan-
guages support these features [5, 15, 47] and we expect they should be possible in Λnum; however,
the precision of the error bounds for programs using general recursion might be poor. Another lim-
itation of our method is in typing conditionals: while Λnum can only derive error bounds when the
ideal and floating-point executions follow the same branch, tools that use general-purpose solvers
(e.g., PRECiSA and Rosa) can produce error bounds for programswhere the ideal and floating-point
executions take different branches.

Verification and synthesis for numerical computations. Formal verification has a long history in
the area of numerical computations, starting with the pioneering work of Harrison [28–30]. For-
malized specifications of floating-point arithmetic have been developed in the Coq [9], Isabelle [52],
and PVS [41] proof assistants. These specifications have been used to develop sound tools for
floating-point error analysis that generate proof certificates, such as VCFloat [2, 46] and PRE-
CiSA [51]. They have also been used to mechanize proofs of error bounds for specific numerical
programs (e.g., [7, 34, 35, 43, 50]). Work by Cousot et al. [13] has applied abstract interpretation
to verify the absence of floating-point faults in flight-control software, which have caused real-
world accidents. Finally, recentwork uses program synthesis: Herbie [45] automatically rewrites nu-
merical programs to reduce numerical error, while RLibm [38] automatically generates correctly-
rounded math libraries.

Type systems for sensitivity analysis. Λnum belongs to a line of work on linear type systems for
sensitivity analysis, starting with Fuzz [47]. We point out a few especially relevant works. Our syn-
tax and typing rules are inspired by Dal Lago and Gavazzo [15], who propose a family of Fuzz-like
languages and define various notions of operational equivalence; we are inspired by their syntax,
but our case elimination rule (+ E) is different: we require B to be strictly positive when scaling the
conclusion. This change is due to a subtle difference in how sums are treated. Azevedo de Amorim
et al. [6] added a graded monadic type to Fuzz to handle more complex variants of differential
privacy; in their application, the grade does not interact with the sensitivity language.

Other approaches to error analysis. The numerical analysis literature has explored other concep-
tual tools for static error analysis, such as stochastic error analysis [12]. Techniques for dynamic

error analysis, which estimate the rounding error at runtime, have also been proposed [31].

9 CONCLUSION AND FUTURE DIRECTIONS

We have presented a type system for bounding roundoff error, combining two elements: a sensi-
tivity analysis through a linear type system, and error tracking through a novel graded monad.
Our work demonstrates that type systems can reason about quantitative roundoff error. There is
a long history of research in error analysis, and we believe that we are just scratching the surface
of what is possible with type-based approaches.
We briefly comment on two promising directions. First, numerical analysts have studied prob-

abilistic models of roundoff errors, which can give better bounds on error in practice [32]. Com-
bining our system with a probabilistic language might enable a similar analysis. Second, the error
bounds we establish are forward error bounds, because they bound the error in the output. In
practice, numerical analysts often consider backward error bounds, which describe how much the
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input needs to be perturbed in order to realize the approximate output. Such bounds can help clar-
ify whether the source of the error is due to the computation, or inherent in the problem instance.
Tackling this kind of property is an interesting direction for future work.

ARTIFACT

The artifact for the implementation of Λnum described in Section 6 is available online [36]. It
includes instructions on how to reproduce the results reported in Tables 1 to 3.
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