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Abstract

A new gradient-based adaptive sampling method is proposed for design of experiments applications

which balances space filling, local refinement, and error minimization objectives while reducing reliance on

delicate tuning parameters. High order local maximum entropy approximants are used for metamodelling,

which take advantage of boundary-corrected kernel density estimation to increase accuracy and robustness

on highly clumped datasets, as well as conferring the resulting metamodel with some robustness against

data noise in the common case of unreplicated experiments. Two-dimensional test cases are analyzed

against full factorial and latin hypercube designs and compare favourably. The proposed method is then

applied in a unique manner to the problem of adaptive spatial resolution in time-varying non-linear

functions, opening up the possibility to adapt the method to solve partial differential equations.

Keywords: adaptive sampling, radial basis functions, kernel density estimation, interpolation, max-ent,
response surface modelling, sequential sampling, HOLMES, design of experiments, leave-one-out error

1. Introduction

Practical design problems often involve adjusting multiple parameters and understanding how each

parameter influences quantities of interest. These quantities essentially are functions of multiple variables

and often display complicated behaviour. Generally, it is not realistic to model such functions analytically,

so numerous experiments, often numerical, are conducted to collect data and construct a simplified

metamodel, from which further design decisions can be made.

Design of experiments (DoE) techniques have been developed to create an optimal metamodel from

affordable data points and are broadly categorized into adaptive and non-adaptive techniques. Non-

adaptive methods seek to increase the accuracy of the metamodel by placing samples in a statistically

optimal manner throughout the parameter space [1] without using any additional information gained

from previous sample points [2]. Once all desired points in the design space have been selected the

data may be fit with any appropriate metamodel. Common examples include full factorial designs (FF),

latin hypercube (LH) sampling [3], and orthogonal arrays [4]. A large family of non-adaptive methods

treat data point selection as a large-scale optimization problem with an objective function chosen to

maximize information entropy [5, 6, 7]. The maximum-entropy (max-ent) approach has gained popularity

because it minimally biases the metamodel, and provides greater resistance to measurement error, but

∗Corresponding author

ar
X

iv
:2

40
5.

04
62

4v
1 

 [
st

at
.M

E
] 

 7
 M

ay
 2

02
4



suffers computationally from being combinatorial in nature. Thus, the many gradual advances in this

approach have seen the non-deterministic polynomial-time-hard combinatorial optimization problem,

which is generally not solvable in polynomial time, steadily become tractable for larger problems [8, 1, 9].

Other modern advances include features such as Bayesian frameworks for increased performance on

highly nonlinear functions [10], handling of missing feature data [11], and the incorporation of sparsity-

promoting heuristics, such as found in compressed sensing [12, 13, 14]. Nonetheless, the vast majority of

non-adaptive methods essentially result in a space-filling distribution of data points through the design

space.

Previous works have elucidated some potential benefits of non-space-filling designs from a statistical

perspective [15], validating the intuition that some areas may need more refinement than others. Adaptive

DoE methods utilize information from previous data points to recommend future test points, theoretically

allowing targeted refinement in areas where the metamodel poorly approximates the underlying function.

Early efforts were not met with consistent success [2], but that situation has been steadily improving.

While some effort has been made to reconcile the maximum-entropy family with fully adaptive design [16],

many recent efforts use common engineering heuristics instead of a rigid statistical approach, and have

shown impressive performance compared to space-filling methods on test problems [17, 18, 19]. Recent

developments have further extended and improved these techniques by incorporating data-dependent

smoothing parameters, which improved results over noisy experimental data [19]. Those adaptive methods

which remain dominantly statistical will generally use some approximation of metamodel error in the

adaptivity scheme [20]. Recent works have particularly affirmed the usefulness of leave-one-out (LOO)

cross-validation error in adaptive DoE [21, 22]. At this point adaptive approaches have progressed

to demonstrate success on both analytical test problems and practical applications, such as chemical

engineering [23] and aerodynamics [24].

Unlike non-adaptive methods, in adaptive DoE methods the metamodel is an important component

of the technique itself. Nearly all modern DoE techniques must create metamodels over unstructured

multidimensional data. The number of unstructured multidimensional interpolation techniques available

is relatively small despite active research in the field for many years [25, 26]. Nearest-neighbor interpola-

tion and inverse distance weighting are easy to implement but have obvious and well-known drawbacks.

Mesh generation difficulties limit popular engineering techniques such as finite element shape functions

even in three dimensions [27], let alone arbitrary dimensions. Moving least squares and Radial Basis

Functions (RBF) require solving a costly system of equations and are relatively parameter-sensitive [28].

Gaussian process regression, also known as Kriging, is extremely popular among statistically-based adap-

tive DoE methods [29, 23, 20], but has similar parameter sensitivity. The local maximum-entropy (LME)

functions [30] are a relatively new class of approximants designed specifically for solving PDEs with an

unstructured multidimensional discretization [31, 32], and using only a single easily tuned parameter.

While they have seen much attention in the realm of meshfree PDE simulation [33, 34, 35], little notice

has been taken outside of that field. Extensions of the basic LME formulation have resulted in a family

of related approximants [36, 37] of which the Higher-Order LME Scheme (HOLMES) [38] is used in this
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work.

The accuracy of the metamodel, and thus any adaptive DoE technique, depends on the reliability

of the data provided to it. Multiple data points at the same position in the design space can help

alleviate this concern by providing some statistical bounds on the data values which can generate data-

dependent smoothing parameters for the metamodel [19]. Unfortunately, even as sampling techniques

and efficiency increase, practical constraints frequently require the use of unreplicated data points from

which no statistical features may be inferred [39]. The experimentalist is then forced to retreat to the

delicate task of manually tuning metamodel smoothing parameters or forego them entirely and use an

exact interpolant.

This paper aims to take advantage of the natural error resistance of HOLMES approximants to

create an adaptive DoE method that provides error resistance without depending on multiple sensitive

smoothing parameters. The manuscript is organized as follows: The adaptive DoE algorithm is described

in section 2. Construction and use of HOLMES approximants in the metamodel is addressed in section 3,

and a simple kernel density estimation algorithm is proposed for automatically determining the local

node spacing. The influence of the metamodel kernel parameter on the novel DoE method is evaluated

in section 4, and the performance of the completed DoE algorithm is evaluated on a variety of analytical

solutions. Finally, subsection 4.4 sees the DoE method applied beyond the realm of experimental design,

and used to dynamically increase resolution of time-evolving functions.

2. Adaptive Design of Experiments Scheme

Most DoE algorithms maximize or minimize some objective function when selecting new data points.

Adaptive methods differ from non-adaptive by utilizing the metamodel within the objective function,

allowing the model to become iterative. This section details a specific choice of objective function (sub-

section 2.1) and associated iterative DoE algorithm (subsection 2.2). Details about the metamodel are

left to section 3.

2.1. Objective Function

Assume a design space Ω ⊆ Rd, and an unknown function, u : Ω → R, which may be evaluated

through either computer or physical experiments. Furthermore, assume u(x) has already been evaluated

at some points xa ∈ Ω called nodes, or data points. These values have been used to create a metamodel,

uI(x;xa) : Ω→ R which approximates u.

A scalar objective function, S(x) : Ω → R, is desired which can be maximized to find the next data

point for experimental evaluation via

xa+1 = argmax
x∈Ω

S(x). (1)

Several heuristics and practical constraints are here used to determine the form of S(x). Assuming

other factors are equal, one such heuristic stipulates that proposed points should be placed in a space-

filling manner throughout the domain. The associated constraint prevents duplicate selection of data

points. Similarly, areas of low metamodel accuracy – where uI approximates u poorly – should garner
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more attention, while those with perfect accuracy should not be suggested. A final heuristic follows the

common intuition that areas of a domain where u is highly nonlinear require more data points to be

well captured by uI and deserve more attention. Therefore, we propose the following heuristic objective

function in a simple separable form,

S(x) = QLQSQE . (2)

Figure 1: Schematic representation of the adaptive design of experiment objective function proposed in this work. Three
fundamental parts, namely, nonlinearity, spacing and error are key descriptors used in the heuristic approach.

Figure 1 shows schematically the three different heuristics taken in our work. The objective function

in (2) is composed of three multiplicative factors: QL representing the contribution of nonlinearities,

QS the point spacing heuristic, and QE the metamodel error. Each factor is normalized onto the range

[ϵ, 1], where ϵ = 10−4 to prevent difficulties when one of the factors becomes zero, or very close to zero,

throughout the parameter space. In that case the resulting point placements would become dominated

by numerical error, rather than the remaining factors. In this case S(x) : Ω→ [ϵ3, 1].

The product form of S(x) is chosen to satisfy constraints associated with each heuristic by making

S(x) small when the constraint is violated. For instance, if no metamodel error is observed in some

area of the domain there is very little reason to place points in that region, so the the objective function

should assume a low value regardless of the other factors. Similar arguments can be made for the linearity

and spacing components of the objective function. If a component of the objective function needs to be

weighted more than the others, its exponent can be altered, though the effects of this were not heavily

investigated in this work, and instead each component is treated as equally important. The objective

function proposed here is similar to other works [17, 18, 19] in that a set of intuitive engineering heuristics

are used to select future data points. This form additionally avoids the combinatorially large optimization

problem involved with compressed sensing [40], or non-adaptive max-ent DoE methods [41]. Each of the

three factors is now expanded upon in detail.
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2.1.1. Nonlinearity, QL

The nonlinearity of the function, u, is emphasized in the objective function, S, based on the assumption

that highly nonlinear areas will be approximated more poorly than linear areas (see Figure 1, left panel).

The contribution is quantified by the magnitude of the Laplacian of the metamodel,

s = |∇2uI(x)|, (3)

which is a convenient choice as an invariant of the Hessian matrix. This choice consciously prioritizes

maxima and minima of functions, and would not be ideal in the case of a perfect saddle point. If such

a scenario was expected from the preliminary data, it would be simple to adjust this criterion to use

the sum of the magnitudes of the diagonal components of the Hessian, or some other simple metric. No

significant changes were found in this work with the examples selected, so the magnitude of the Laplacian

is used through the remainder of this work.

To achieve consistent results with various functions, the Laplacian is normalized onto the range [ϵ, 1]

via

sn(x) =
s(x)−minx∈Ω s(x)

maxx∈Ω s(x)−minx∈Ω s(x)
(1− ϵ) + ϵ. (4)

Any quantity similarly normalized will be denoted (·)n throughout the remainder of this work. Since

(4) only works when the optimization is performed via an exhaustive search over Ω, providing explicit

values of minx∈Ω and maxx∈Ω. Other optimization techniques for S(x) must slightly alter this approach.

Normalizations such as (4) are performed using maximum and minimum values from a previous iteration

of the metamodel, and are observed to achieve similar results in the examples investigated here. Values of

sn(x) approaching computer precision are automatically rounded to zero to enforce consistent behavior

of the algorithm.

The linearity factor, QL, requires an interpolation method to approximate second-order derivatives

over scattered data. QL must be updated along with the metamodel and is selected to simply be the

normalized Laplacian,

QL = sn. (5)

2.1.2. Spacing, QS

The spacing factor discourages clumping and prevents duplication of data points (see Figure 1, central

panel). The creation of a suitable spacing factor was investigated thoroughly before [17] and the form

QS = (1−H(x))
2

(6)

was decided upon after several tests.

Here, the spacing function H(x) takes values of one at known data points and zero far away from

data points. Mackman et al. [17] created a smooth H(x) custom to the data set using Gaussian RBF

interpolation with no appended polynomial constraints. The custom spacing function is then a simple

interpolation function using Gaussian functions centered at each node, as in

H(x) =

Na∑
a=1

νae
−ξ∥x−xa∥2

. (7)
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Weights for each data point are obtained by solving the linear system

Na∑
j=1

Φijνj = 1,

in which Na is the number of nodes, ν is the unknown vector of weights, and the matrix is defined as

Φij = e−ξ∥x−xa∥2

for i, j = 1, 2, · · · , Na.

Note that QS must be updated after each point is proposed in order to prevent point duplication.

The use of Gaussian RBFs requires the user to select a kernel parameter, ξ. This ad-hoc selection

has a significant influence on the resulting points distribution and efficacy of the approach. The kernel

parameter is selected based on a desired support radius, Rsupp, and numerical tolerance, tol,

ξ = − log (tol) /R2
supp. (8)

Previous works [17, 19] achieved consistent results by selecting the desired support radius as a multiple

of the fill distance, dfill, which is the largest nearest-neighbor distance:

Rsupp = R0

(
1

2
dfill

)
. (9)

Here R0 is the scalar parameter and dfill is the fill distance given by

dfill = sup
x∈Ω

min
xa∈X

∥x− xa∥. (10)

where X is the set of all nodes. The sensitivity of the algorithm to the parameter R0 and suggestions for

selection are detailed in subsection 4.2.

2.1.3. Error Quantification, QE

Leave-one-out cross-validation error (LOO) is well known within the statistical community for its

superior error estimation abilities [42]. Its inclusion has significantly increased the performance of adaptive

DoE methods in the past [22]. LOO quantifies how much the addition of a data point to the model has

increased the model’s accuracy by comparing metamodel performance without the data to the known

value. To evaluate LOO at the known data point x∗, where u(x∗) is known, a metamodel is constructed

excluding this point, u∗
I(x). The LOO error is then given by comparison of u∗

I(x) with u(x) at x∗:

ϵLOO(x
∗) = |u(x∗)− u∗

I(x
∗)|. (11)

A point whose additional significantly influences the metamodel will garner a large LOO value. Addi-

tional sampling is likely needed in that vicinity, since the metamodel is now known to have been capturing

it poorly. This idea is schematically illustrated in Figure 1, right panel. The red point adds little improve-

ment to the metamodel while the green one critically improves the metamodel. Therefore, the adaptive

DoE technique should be biased to further explore the area around the green point.

In our implementation, LOO errors at every data point are evaluated and subsequently normalized

to the range [ϵ, 1], with values approaching computer precision receiving a value of zero automatically.

While LOO error can only be evaluated at known data points, QE must be evaluated at any location

in the design space, which is accomplished by interpolation of LOO values. Here, the same interpolation
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method used for the metamodel is used for LOO error, with the implied assumption that ϵ(x)LOO,n :

Ω→ [ϵ, 1] is a smooth function in space. Under this assumption, then we can evaluate QE as

QE(x) = ϵLOO,n(x) =

Na∑
i=1

wa(x)ϵLOO,n(xa), (12)

where wa are the shape functions associated with the nodes xa. Since QE relies on explicit interpolation

of known data points, it is updated with the metamodel.

Evaluating LOO error requires reconstructing the metamodel at each node location for the evaluation

of u∗
I(x

∗). If the metamodel is challenging to construct or the dataset is large, this step can become

costly. The metamodel described in section 3 performs single point evaluations quite quickly, so it is not

significantly penalized by using LOO. The RBF metamodel used by others [17] is not a reasonable choice

as a metamodel in this scenario because of the high computational cost of metamodel construction which

would be required with each u∗
I(x

∗) evaluation.

Like with the linearity factor, QL, the LOO criterion, QE , cannot be reevaluated until new experi-

mental data is collected. This allows multiple points to be suggested at once by the algorithm without

the computational cost of LOO evaluation. Furthermore, additional data points only require LOO to

be reevaluated in the area immediately surrounding them, rather than for the entire domain. This is

described further in 2.2 below.

2.2. Point Selection Algorithm

A single data point may be found through equation (1); however, most experimentalists will prefer

receiving multiple data point recommendations simultaneously to take advantage of batch processing. The

proposed DoE algorithm can recommend multiple distinct data points to the experimentalist, provided

QS is updated appropriately.

Suppose an experimentalist can gather Np data points per day, and would like to use the DoE

algorithm to propose the next data points to gather within the design space. There are Niter days

allotted for collecting data, and a starting data set of x0 data points and the corresponding results of

u0 = u(x0). The resulting DoE and experimental workflow would look as in algorithm 1. Each day the

new data points would be used to construct a new metamodel, from which QL and QE are derived. From

there Np unique points are proposed by alternately evaluating (1) and updating QS to include the point

already suggested. After all Np points have been recommended, the experimentalist can add them to the

dataset.

The described algorithm is necessary to recommend multiple points at once because QS must be

updated to prevent the same point being recommended every time. Because QS is not dependent on

the experimental results, but only the position of previous points within the design space, it is perfectly

acceptable to update it without new experimental results. Similarly, neither QL nor QE can be adjusted

until new experimental data is available. There is no need to recompute them, and some computational

power can be saved.

QL and QE cannot be updated when multiple points are proposed, but only whenever new experi-

mental values are learned and the metamodel is updated. This suggests a two-tiered update mechanism
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for the DoE algorithm. An inner loop will propose Np new data points by updating QS at every iteration.

An outer loop takes the proposed points, evaluates them through experiements, updates the metamodel

and associated QL and QE values, and finally passes everything back to inner loop to get more points.

The outer loop operates for a specified amount of iterations, Niter, while would usually correlate to a

predetermined number of data points or metamodel accuracy.

Algorithm 1 Adaptive DoE Procedure

1: Create initial data points, x0.
2: Evaluate u0 = u(x0).
3: for i = 1, . . . , Niter do
4: Create interpolation scheme, uI(x) =

∑
a wa(x)u0,a.

5: Evaluate and normalize LOO error at data points, ϵLOO,n.
6: Interpolate QL and QE onto test points in domain.
7: for j = 1...Np do
8: Create spacing function, H(x0, xnew).
9: Interpolate QS onto test points in domain.

10: Select new optimum, xnew,j = argmaxS(x), through any optimization method.
11: end for
12: Evaluate unew = u(xnew).
13: Concatenate Data, x0 ← [x0;xnew], u0 ← [u0;unew].
14: end for

The solution of equation (1) required for each iteration of the inner loop could be done in any conve-

nient method. Every example in this work has performed an exhaustive search over a finely discretized

domain. More advanced methods will require small modifications to the normalizations used in QL and

QE , as discussed in 2.1.1.

3. HOLMES Metamodel

Evaluating the nonlinearity parameter (5) requires a metamodel capable of approximating the Hessian

of u(x). The HOLMES approximants developed by Bompadre et al. [38] are used here rather than the

more common RBF, or polyharmonic spline (PHS) interpolation methods. HOLMES is based on the

LME shape functions [30] and ultimately the max-ent functions previously introduced by Sukumar [43].

HOLMES is known to function in any dimension without alteration to its original formulation, and does

not require structured input data. It also does not require the solution of a large system of equations

during its evaluation. This section outlines the construction of HOLMES and modifications necessary for

use in the adaptive DoE method.

3.1. Basic Implementation

The HOLMES consists in a set of shape, or basis, functions, wa(x), centered around a corresponding

set of nodes, or data points, xa, situated in the design space Ω ⊆ Rd. If the values of the unknown

function, u(x), are known at the nodes, HOLMES may be used to construct a metamodel in the same

manner as any interpolation scheme,

uI(x) =
∑

xa∈Na(x)

wa(x)u(xa). (13)
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Here, Na(x) denotes the set of nodes within a neighborhood of the query point x.

The HOLMES shape functions are formulated by solving a nonlinear multi-objective optimization

problem which seeks to maximize both information entropy and minimize shape function width. Addi-

tional constraints are added in the form of Lagrange multipliers to ensure nth order polynomial consis-

tency. Details of the derivation may be found in the original work [38].

The resulting functions are the sum of negative and positive exponential components,

wa(x) = w+
a (x)− w−

a (x) (14)

w±
a (x) = exp

−1− h−pγ∥x− xa∥pp ∓

 ∑
α∈Ad,n

h−|α|λα(x− xa)
α

 . (15)

The exponents are each composed of a simple decay term and an additional term which utilizes a Lagrange

multiplier, λ, to explicitly enforce polynomial consistency of order n on the interpolant. The decay term,

−h−pγ∥x− xa∥pp uses a non-dimensional parameter, γ, the p−norm of distance, ∥ · ∥p, and a measure of

the nodal spacing, h, to determine the width of the shape function.

The third term in the argument of (15) is centered on the Lagrange multiplier, λα. This term uses the

same h value as in the decay term to scale the Lagrange multiplier to roughly O(1) for faster convergence.

Multi-index notation is used to concisely write out the polynomial component terms. In this notation,

α ∈ Nd is a multi-index used to represent each monomial component of an nth order polynomial in Rd. For

instance, in three dimensions if x =
[
µ1 µ2 µ3

]
and α =

[
1 2 1

]
, then the notation xα = µ1µ

2
2µ3.

Ad,n is then the set of all valid multi-indexes combinations of dimension d and order less than or equal

to n. The Lagrange multiplier, λ, is a vector whose length corresponds to the number of monomial

components in a polynomial of the specified order and dimension, which can be easily found with the

binomial coefficient function, Dd,n =

(
d+ n
n

)
.

3.1.1. Regularized Newton Iterations

The Lagrange multipliers must be found implicitly as the solution to a nonlinear convex minimization

problem, i.e.,

λ∗(x) = argmin
λ∈RDd,n

Z(x, λ), (16)

Z(x, λ) = λ0 +

Na∑
a=1

[
w+

a (x, λ) + w−
a (x, λ)

]
. (17)

The problem given by (16) can be solved through Newton-Raphson iterations with explicit formulas

provided by Bompadre et al. [38] and summarized in (18) through (20). Here the vector r is the gradient

of Z with respect to λ, and the matrix J is the Hessian with respect to λ. The multiindices α, β ∈ Ad,n
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correspond to specific components of the Lagrange multiplier vector, which is indexed by them.

r0(x, λ) =
∂Z(x, λ)

∂λ0
= 1−

Na∑
a=1

(
w+

a (x, λ)− w−
a (x, λ)

)
, (18)

rα(x, λ) =
∂Z(x, λ)

∂λα
= −h−|α|

Na∑
a=1

(
w+

a (x, λ)− w−
a (x, λ)

)
(x− xa)

α
, (19)

Jαβ =
∂2Z(x, λ)

∂λα∂λβ
= h−(|α|+|β|)

Na∑
a=1

(
w+

a (x, λ) + w−
a (x, λ)

)
(x− xa)

α+β
. (20)

In practice, the Hessian matrix, J, is often poorly conditioned – an effect which becomes worse as n

or d increase. This issue imposes a practical limit to the order and dimension of HOLMES evaluations.

For the purposes of the present work, a regularization proposed by Polyak [44] suitably resolves this

issue. It is implemented via a modification of the partition function, Z(x, λ), into Ẑ(x, λ,Λ), as seen in

(21) to (24). This is a convenient modification because when the partition function and its derivatives

are evaluated at Λ = λ it returns the original partition function and gradient. The only values effected

are the diagonal elements of the Hessian, to which the norm of the gradient is added.

Ẑ(x, λ,Λ) = Z(x,Λ) +
1

2
∥∇Z(x, λ)∥∥Λ− λ∥2, (21)

Ẑ(x, λ,Λ)|Λ=λ = Z(x, λ), (22)

∂Ẑ(x, λ,Λ)

∂Λ
|Λ=λ = r(x, λ), (23)

∂2Ẑ(x, λ,Λ)

∂Λα∂Λβ
|Λ=λ = J(x, λ) + ∥r(x, λ)∥I. (24)

The regularization above proved robust in all examples, but convergence issues appear again as d and

n increase. Combining Newton’s method with an alternate optimization algorithm, such as Nelder-Mead

or preconditioned conjugate gradient has been used to overcome similar difficulties with the related LME

shape functions [45, 46] but were not pursued here. Instead, effort was placed in adjusting the kernel

width to better suit the local node distribution and increase both robustness and accuracy. This is

detailed in the next section.

3.2. Adjusting the Kernel Width

Any kernel-based interpolation scheme may face practical computational issues on real data sets.

One such issue occurs when the data distribution is extremely uneven. Clumps of high density data

occur in some places, while others are left relatively sparse. In theory, such clumped datasets would

not cause an issue for HOLMES, but in reality it may lead to difficulty solving the convex optimization

problem required for evaluating the Lagrange multipliers. Since any adaptive DoE approach will result

in unevenly spaced datasets and potential clumping, it is worth investigating the effects an adjustable

kernel parameter may have on HOLMES in terms of robustness and accuracy.

3.2.1. Nodal Spacing Parameter

Before any method of adjusting the kernel parameter can be introduced or evaluated, HOLMES must

first be implemented in a manner that accepts variable kernel parameters. A similar operation has been
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performed by for the related LME shape functions [47]. Though this is a small step, it is extremely

important when considering situations where very large differences in spacing may be desirable. A

constant kernel width is simply not feasible in such cases. Section 4 below will explore applications which

could potentially result in such situations.

In equation (15) the kernel parameter is expressed by the term γh−p, where γ is non-dimensional

and h is a measure of the nodal spacing. Näıvely, h could be adjusted dynamically as a function of the

query point location, h(x), but this introduces additional terms into the HOLMES derivatives which are

difficult to evaluate without an explicit formula for h(x). Instead, the approach developed by Ref. [47] is

taken. Instead of a single h value being used for all nodes, each node, xa, is associated with its own ha

value. These ha values must either be constant or determined in some other way which does not depend

on the query point location in order to avoid generating more complicated derivative formulations for

HOLMES.

This approach can be used with HOLMES provided one crucial observation: Lagrange multipliers must

only be a function of x. The scaling term h−|α|λα only exists to speed convergence of Newton’s method

and scale the elements of λ approximately onto the range [0, 1]. In this role, h has no actual influence

on the final shape function. Allowing h to be a nodal parameter does not make sense inside this term

and will ruin HOLMES convergence. The related LME literature never encountered such issues because,

with the exception presented in Ref. [33] where adjustable ha was not used, λ was never normalized by

h. The nodal spacing parameter used for this scaling must now be distinct from the one used within the

kernel parameter, and will be denoted hg. It can be selected as the global average node spacing or as a

function of position with a little care, but can never be a nodal parameter.

To further differentiate the node-dependent h value used in the kernel parameter, γh−p
a , from the h

value use to scale the Lagrange multipliers, hg, the substitution βa = γh−p
a is made within the HOLMES

shape functions. βa represents the scaled, dimensional kernel parameter of node xa, just as in the previous

LME literature [47]. The new flavor of HOLMES is given by equation (25),

w±
a (x) = exp

−1− βa∥x− xa∥pp ∓

 ∑
α∈Ad,n

h−|α|
g λα(x− xa)

α

 . (25)

Unlike the method used in Ref. [47], our modification does not substantially change the original

derivative formulations, making the substitution quite convenient. Determination of the local average

spacing is the subject of the next section.

3.2.2. Kernel Density Estimation

The spacing parameter ha can now be chosen to reflect the local nodal spacing around a given point,

rather than the global average. The approach we take is to approximate the local node density, ρ(x) at

a node, and deduce the local average spacing through

h(x) =
1

ρ(x)1/d
, (26)

since a density value is more intuitive than an average spacing value.
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Kernel density estimation (KDE) has been used by the statistical community for many years to recon-

struct an approximate probability density function from binned data [48]. KDE is a kernel convolution

method with straightforward implementation and extensive literature [49]. To see how it is applied to

non-binned point data in the form of nodal positions, consider convolving some density function, ρ(x)

with some kernel, K(x), in order to obtain a smoothed approximation of the density function, ρ̂(x),

ρ̂(x) =

∫ ∞

−∞
ρ(x) ·K(x− y)dy. (27)

If the kernel, K(x), is chosen appropriately, it is known that this approximation becomes exact as the

kernel width decreases to zero [49, 50]. However, the function ρ(x) is not known beforehand except for

at selected nodal points. Approximate the number density at each node by the global density over the

domain, ρ(xa) ≈ ρavg = Na/VΩ, and approximate the integral as

ρ̂(x) ≈ ρavg

Na∑
a=1

K(x− xa)∆Va, (28)

where, like the density at the nodes, the volume associated with each node is taken as the global average,

∆Va = VΩ/Na. Since ρavg∆V = 1, the density estimate becomes a simple sum of kernel functions,

ρ̂(x) ≈
Na∑
a=1

K(x− xa). (29)

Thus, an estimate of node density can be evaluated at a point by a simple summation of kernel functions

centered around adjacent nodes.

The simplicity and extensive history of KDE makes it an obvious choice for node density estimation.

In fact, some LME works used a local average method to find h(xa),

ha =

(
Vk,a

k

)1/d

, (30)

which can be viewed as KDE with a rectangular window kernel whose size adjusts to encompass k

neighbours. Here Vk,a is the volume of hypersphere encompassing k nodes around point xa, and d is the

spatial dimension.

A rectangular kernel will work well when the point density is nearly constant or changes slowly through

the domain as shown in the left illustration in Figure 2, but will be poor when clustering exists, as in

the right illustration in Figure 2. Instead, a more suitable choice of the kernel is to weight points in a

smooth and monotonically decreasing manner from the node. Using a Gaussian function to approximate

nodal density seems like the most obvious choice,

ρ̂(x) ≈ A
∑

xa∈Na(x)

exp

[
− (xa − x)Σ(xa − x)

2

]
, (31)

A =
1√

(2π)d|Σ|
. (32)

Here Σ is a matrix of decay parameters, which in this case is chosen to be diagonal such that Σii = σ2
i for

some vector σ ∈ Rd. The constant A is chosen to normalize the integral. The Gaussian is a good choice
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Figure 2: Smoothly changing point density vs. clustered data distribution. The points in the left figure are homogeneously
distributed near the orange data point where as the green points shown in the right image are clustered around the orange
ones. Moreover, the light blue points are placed further away from the orange point clearly indicating a change in the
spatial resolution.

because it offers well-studied properties and takes few parameters, while also sporting much faster tail

decay than simpler alternatives such as constant or linear kernels. Rapid tail decay is especially important

for effective KDE estimation in higher dimensions [49]. It is also smoother than other popular options

such as the Epanechnikov kernel [51]. Finally, while more specialized kernels often require a rapidly

increasing number of parameters as the dimension increases, making them cumbersome for unsupervised

tasks, the Gaussian kernel is trivial to apply to arbitrary dimensions.

The accuracy of KDE for this application is here assessed by comparison to a set of points placed at

a known constant spacing. Let Ω = [0, 1] and an even nodal spacing of ha = 0.01 be used to create a

node-set within Ω. Figure 3a demonstrates the poor performance of the local averaging method (k = 75)

when quantified in this manner, and better performance from the Gaussian convolution. The boundary

bias is extreme in both cases as the kernels attempt to retrieve information where none should exist. The

effect is stronger for the local averaging method because its zeroth-order kernel does not decay at the

tails. The nodes in the middle of the domain do not suffer to the same extent because the individual

kernels have decayed sufficiently prior to reaching the boundary.

Three steps are applied to correct the boundary errors: k-nearest neighbour (knn) windowing, volume

correction, and automatic adaptivity of the Gaussian kernel parameter. The knn window function trun-

cates the kernel to a boundary defined by the kth nearest neighbour. The volume correction compensates

for a kernel that is truncated at the edge of the convex hull of points. The kernel parameter adaptivity

adjusts the kernel parameter according to how centered the query point is within its group of neighbours.

The final effect of the boundary corrections is pictured in Figure 3b, where each of the analyzed kernels

shown positioned on the domain boundary. While both the rectangular kernel and uncorrected Gaussian

attempt to take information from outside the domain – information which does not exist – the corrected

kernel is truncated at the boundary and changes its volume and width in a corresponding manner.

Limiting the integral approximation to only the nearest k neighbours means xa need not be centered

in Ω anymore, as long as it is near the center of the hypercube enclosing itself and its neighbours, Ωa,k. It
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(a) Error in ha approximation.

K(x)

x

domain
boundaries

→ ←

Volume
Correction

Correction
knn + kernel

Local Average
Gaussian Kernel
Corrected Gaussian

(b) Schematic representation of the different level of corrections used
for estimating h(x).

Figure 3: Behaviour of several boundary-corrected kernel density estimation method on 1D line with constant nodal spacing
ha = 0.01 using k = 75 nearest neighbours to estimate h(x). (a) Error in ha vs. x for local average (26), Gaussian (31) and
three-step boundary correction procedure. (b) Schematic representation of the different approaches used for comparison.
It is evident that the local average and Gaussian kernel try to retrieve information outside of the domain boundary were
there is no data (the local average and Gaussian extend beyond the left boundary placed at x = 0. The corrected Gaussian
approach rescales the Gaussian to avoid retrieving information outside the boundaries and thus, the Gaussian is rescaled.

also saves the computational cost of operating over the entire dataset. Since neighbouring is a practical

necessity when operating over unstructured data, finding the first k neighbours should not be a significant

additional computational burden.

A volume correction factor can then be applied,

ρ̂′a = ρ̂a
VRd

VΩ
, (33)

where

VΩ

VRd

=

(
1

2

)d d∏
k=1

(
erf

(
min |xa,d − ∂Ωa,k,d|

σd/
√
2

)
+ 1

)
. (34)

This recognizes that the convolution does not truly extend over Rd, but Ωa,k. The previous normalization

factor (32) is no longer appropriate. The volume correction factor approximately scales the density

estimate to the correct value. The argument to the error function in (34) is the minimum distance

from xa to the boundary along each dimension d, ∂Ωa,k,d, scaled by σd. Truncation is only performed

on the nearest boundary in each dimension in equation (34) because numerical results indicate a slight

underestimate in point density is more beneficial than an overestimate. The total effect is to essentially

rescale the convolution so it would integrate to unity on the reduced domain.

The final correction is to vary σ based on the proximity of xa to ∂Ωa,k. It is optimal for the Gaussian

kernel to decay sufficiently by the time it reaches the truncated portion of the domain, but without

becoming so highly localized that the nodes chosen to be included do not contribute significantly to the

estimate. Using

σi = max |xa,i − ∂Ωa,i|/Nσ, (35)

with Nσ ≈ 3 achieves an appropriate amount of decay. An interesting alternative to this approach would

be to determine principal directions of the node distribution via PCA or SVD and select σ along those
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directions in the manner of equation (35). The resulting Σ would generally not be diagonal after rotation.

This option has not been considered here.

Finally, the nodal spacing may be approximated by inserting ρ̂′ in place of ρ(x) in equation (26),

ha =
1

ρ̂′(xa)1/d

The result of each successive correction is seen in Figure 3b by comparison to nodes on [0, 1] with spacing

of ha = 0.01. After all corrections are applied, the maximum error in this example is less than 1.5% on

the boundary of the domain. Locations 10 nodes from the boundary are accurate to within 0.1% of the

true value.

The final algorithm for ha is given by Algorithm 2.

Algorithm 2 Adaptive nodal spacing parameter, ha

1: for xa, a = 1, . . . , Na do
2: Find k nearest neighbours and determine the volume and boundaries of Ωa,k

3: Solve for components of Σ using equation (35).
4: Evaluate ρ̂(xa) with equation (29).
5: Evaluate ρ̂′ with equation (33).
6: Evaluate ha using equation (26).
7: end for

It should be noted that this approach to correcting boundary bias does not align perfectly with the

standard KDE methodology. While using a window function to truncate the Gaussian kernel is common,

the other two steps are variations chosen to operate sufficiently and conveniently without supervision.

The volume correction factor resembles a folded distribution which is common in KDE [52, 53, 54].

Experiments using the same error quantification as Figure 3 revealed the folded normal distribution to

perform similarly or slightly worse than the volume corrected normal distribution for this application

(Figure 4). Since there is extra complexity involved in using a folded distribution in multiple dimensions

[55], the simple volume correction is used instead. Similarly, algorithms have been developed for choosing

kernel parameters – a variety of which are described in [49] – but these are often unnecessarily involved

for a KDE scheme meant to opperate cleanly as a background task. A similar argument can be made for

using skewed distributions. They would likely be effective, but the extra difficulties involved in setting

their parameters is unnecessary for this application. The simple boundary corrections proposed here are

suitable for the context of this work.

3.2.3. HOLMES Accuracy with Adaptive ha

Equipped with an adjusted HOLMES formulation and a method for varying the nodal spacing accu-

rately, the effect of an adjustable kernel width on HOLMES interpolation accuracy can now be assessed.

Rastrigin’s function (Appendix A) is used for this analysis. The error in a HOLMES interpolation is

quantified via the discrete ℓ2 norm,

ℓ2 =

 Np∑
p=1

(u(xp)− uI(xp))
2
/Np

1/2

. (36)
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Figure 4: Error in the estimation of ha in the interval [0, 1] for a homogeneous distribution of size ha = 0.01 as shown in
Figure 3a. Proposed correction method vs. folded Gaussian [52, 53, 54] kernel density estimation obtained with k = 50
nearest neighbors and using a σ scaling factor of Nσ = 2.9 in the example.

In these tests xp is a grid of 100×100 grid points covering the domain [0, 1]2, which was found to produce

consistent results. HOLMES functions were evaluated with parameters p = 3, order 3, and γ = 0.12.

Tests compared the performance of HOLMES when the kernel width was adapted in three separate

ways: the KDE method proposed here using a modified Gaussian kernel, a simple KDE method using

a rectangular kernel (an average of local values), and a non-adapted kernel where the global average of

node spacing is used for all nodes. In all cases HOLMES was confirmed to converge at the appropriate

rate as determined by its order of polynomial consistency.

To assess the performance of HOLMES and the h-approximation schemes on unevenly distributed, or

clumped data the ℓ2 error can be calculated over datasets with varying degrees of clumping. Clumping

is quantified here by specifying a number of clumping centres around which data points are normally

distributed. The standard deviation of the distribution is 1/4 the distance between clumping centers.

Figure 5a visualizes this. The accuracy of HOLMES can be plotted against the number of clumping

centers, as seen in figure 5b.

The results of Figure 5b demonstrate a few things. Notably, the proposed adaptive method achieves

better accuracy than either of the alternative approaches, and is more robust. When using a constant

value for ha HOLMES performs well if the nodes are more evenly distributed; however, accuracy drops

below other approaches as the data becomes more uneven.

More concerning is the difficulty evaluating HOLMES in the highly clumped region using a constant

global value for ha. If the convex optimization problem required to determine the Lagrange multipliers

can be solved within a reasonable number of Newton algorithm iterations – generally less than 20 – it is

termed robust. If Newton’s method fails to converge, or takes an exceedingly long time to do so, such as

more than 1000 iterations, it is not robust (and termed poor).

The rectangular kernel approach to adapting ha is interesting in that it produces a less accurate

HOLMES interpolation in general compared to both the proposed KDE method and the constant h

method; however, it does generally remain fairly robust in the highly clumped tests, as desired.

The proposed KDE approach seems to perform the best with both even and uneven datasets, offering
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a good balance of robustness and accuracy compared to the others. No method was able to be completely

robust at the extremes of clumping with the parameters used in this test, as seen on the far left side of

Figure 5b, where all methods have a dotted line, representing poor HOLMES robustness.

Global Average
Local Average
Corrected Gaussian

Node
Evaluation Point

HOLMES Robustness
Poor
Robust

Global Average
Local Average
Corrected Gaussian

Global Average
Local Average
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(a) Node distribution with four clumping centers.
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(b) ℓ2 error of Rastrigin’s Function using HOLMES.

Figure 5: Performance comparison of the global average, local average (rectangular kernel) (26), and boundary corrected
Gaussian (31) methods for assigning the spacing parameter, h(xa). (a) Spacing parameter estimated at different locations
(indicated by a + marker) for a four cluster clumped data. (b) ℓ2 norm error evolution as a function of the clumping centers
for Rastrigin’s function evaluated with the three different spacing parameter methods on a 100 × 100 grid points covering
the domain [0, 1]2. Continuous and dashed lines indicate robust and poor performance of the HOLMES metamodel using
p = 3, order 3, and γ = 0.12.

3.3. Noise Resistance

A probability distribution which maximizes information entropy will have the greater resistance to

errors caused by Gaussian white noise, which itself is the highest entropy form of noise [56]. HOLMES

shape functions cannot be viewed as probability distributions because they lack a non-negativity con-

straint – a constraint necessarily lost in order to achieve higher orders of polynomial consistency [38, 36];

however, their formulation still depends on maximization of entropy, so they should exhibit resistance to

Gaussian noise compared to most other shape functions.

Radial basis function interpolation is chosen to contrast HOLMES interpolation because of its huge

popularity and use in other DoE applications. It is one of a few other methods which are effective

at interpolating Hessian information over unstructured multidimensional data; however, in the forms

analyzed, RBF interpolation performs worse than HOLMES when the data contains noise.

fN (x) = f(x) (1 + ζG) (37)

fN (x) = f(x) + ζ max
x∈[0,1]2

(f(x))G (38)

HOLMES and RBF interpolation are compared in two related, but distinct scenarios which an exper-

imentalist may encounter: pure white Gaussian noise, which injects normally distributed noise into the
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data, and proportional Gaussian noise, which depends on the amplitude of the underlying signal. These

are represented by (37) and (38) respectively. Here G is a Gaussian noise generator with a mean of 0 and

standard deviation of 1, and ζ scales the amplitude of the noise. The first case of constant variance noise

could occur when measurements are limited purely by the accuracy of the experimental apparatus. The

second case could arise when experimental physics incite additional errors.

In both scenarios a standard convergence analysis on a regular grid can be carried out using a known

function – Branin’s function is used here (Appendix A) – and the convergence of HOLMES and RBF

interpolations compared as the noise magnitude is adjusted. In all tests the ℓ2 error is plotted as a

function of grid size. The ℓ2 norm is evaluated using a 100 × 100 grid evenly spaced over the function

domain Ω = [0, 1]2.
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(a) Stationary white noise (37).
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(b) Proportional noise (38).

Figure 6: ℓ2 error for a Gaussian hill function with varying noise amplitude as given by (37) and (38) using RBF-Gaussian
interpolation (dotted lines) and the HOLMES approximants (solid lines). O(h4) scaling shown with dot-dashed line. ζ
correspond to the white noise amplitude used. HOLMES approximants computed using γ ≈ 0.8 for a distance norm of
p = 2.

Possibly the most popular RBF kernel is the Gaussian. Figure 6 compares the influence of noise on

both RBF-Gaussian and HOLMES interpolation schemes, represented by dotted and solid lines respec-

tively. The Gaussian RBF significantly outperforms HOLMES in the noiseless case of ζ = 0 due to it

being an exact interpolant rather than an approximant. Despite this, the addition of even 1% noise can

have devastating effects on RBF accuracy. The convergence plots do not plateau at some level propor-

tional to the noise magnitude, but explode and entirely ruin the interpolation. RBF-Gaussian is known

to be highly sensitive to its kernel parameter [25], but even extensive manual manipulation could not

achieve better results than HOLMES for this case, making it a poor choice for an interpolation scheme

in the presence of noise.

An analysis of RBF performance would be amiss to neglect the popular family of Wendland ker-

nels [26], whose compact support make them more computationally practical than the Gaussian ker-

nel. Figure 7 summarizes this analysis, where vastly superior noise resistance is found compared to the

RBF-Gaussian interpolation, but accuracy is still inferior to HOLMES interpolation. HOLMES and
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(a) Stationary white noise (37).
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(b) Proportional noise (38).

Figure 7: ℓ2 error for a Gaussian hill function with varying noise amplitude as given by (37) and (38) using RBF-Wendland
Interpolations (dotted lines) and the HOLMES approximants (solid lines). O(h4) scaling shown with dot-dashed line. σ
correspond to the white noise amplitude used. HOLMES approximants computed using γ ≈ 0.8 for a distance norm of
p = 2.

RBF-Wendland are using identical cutoff radii in this analysis to make a more equal comparison, but the

behaviour with noise is similar regardless of how large a cutoff radius RBF-Wendland is allowed. RBF-

Wendland consistently plateaued at around 150% the error of HOLMES once noise was introduced. It

should be noted that RBF-Wendland again performs better than HOLMES in the noiseless case because

it is an exact interpolant, but this is the very reason it performs poorly with noise. RBF interpolation

risks overfitting as it attempts to exactly replicate the known data points, whereas HOLMES relaxes this

constraint in favour of maximizing entropy.

On the other hand, HOLMES is relatively insensitive to its locality parameter γ, which can generally

be left at γ ≈ 0.8 for a distance norm of p = 2 [38]. Since higher order distance norms cause faster

shape function decay, and thus, fewer neighbours, this work has adjusted γ to maintain the same number

regardless of norm used through γ(p) = γ
p/p0

0 (−1− log(ϵ))1−p/p0 , with γ0 = 0.8, p0 = 2, ϵ = 2e–16. This

scales γ to maintain the same neighbourhood, and takes γ = 0.8 and p0 = 2 as a good standard.

RBF interpolants can be made more resistant to data noise making them approximants like HOLMES

[19]. This approach is effective in many situations, but requires some indication of how to choose smooth-

ing parameters. For the common case of unreplicated experiments this paper is concerned with, where

few if any of the statistical features of the data are known, there is no reliable approach for parameter

selection. If any approach is to be applied without manual intervention to increase resolution of computer

simulations it becomes clear manual smoothing parameters will be ad hoc and unreliable.

4. Examples

This section deals with a variety of examples to demonstrate the basic functionality of the proposed

DoE method and investigate its parameters. A comparison is made in subsection 4.3 to a comparable
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method which demonstrates the increased resistance to noise of the entire DoE scheme. Section 4.4 then

investigates a simple approach to apply the DoE technique to time dependent problems, which could

have interesting future applications to the numerical solution of PDEs.

It should be noted that all investigations in this work use a coarse FF grid as the starting point for

the adaptive DoE method to work from. In general, any spacing filling approach would be appropriate

for the initial seeding of data points, with the the user ultimately selecting the method most appropriate

to their specific problem. While it is evident that the initial seed will influence the result of the DoE

method, the immense number of different seeding methods coupled with their performance on different

types of problems makes a thorough investigation outside the scope of this work. A FF seed is chosen

for these experiments because of its simplicity, not because it achieves the best results on any particular

problem.

4.1. Canonical Functions

A successful DoE method should reproduce certain results on simple canonical functions. Specifically,

the sampling of a radially symmetric function should be radially symmetric, and that of a plane function

should be space filling. Initially, the proposed method could not achieve this because of non-existant

HOLMES derivatives along the domain boundary [38], and large numerical errors in derivative evaluations

very close to the boundary. A potential solution could use L’Hôpital’s rule to evaluate the derivatives

along the boundary [57], but would be non-trivial to implement in multiple dimensions. An easily

implmemented practical solution is to recognize that derivatives only suffer significant distortion very

close to the boundary, and restrict the DoE method from considering points within this region. This

could be problematic when the region of interest lies along a boundary, but otherwise does not severely

handicap the technique.

Figure 8 demonstrates the approach after suitably restricting the sample point domain. The method

now replicates the expected space-filling and radially symmetric results within the limit of the 41 × 41

evaluation grid.

(a) Plane (b) Gaussian Hill

Figure 8: Adaptive DoE nodal distribution for two test functions (a) plane and (b) Gaussian Hill (see Appendix A).
Initially, 25 points were selected using space filling distribution (red points). Additional 16 points (blue) were placed in the
domain according to the DoE. The space filling and radial distribution location of points for the respective test functions
are as expected. HOLMES approximants computed using p = 3, order 3, and γ = 0.12.
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Performance of the adaptive method can be compared to the popular non-adaptive methods of LHS

and full factorial design by constructing a separate HOLMES approximation with each distinct set of data

points and comparing ℓ2 errors over the domain [−1, 1]2. The Gaussian hill is used and the underlying

function in this test case, since the plane is perfectly approximated by HOLMES. In this case a 100×100

evaluation grid was used to calculate ℓ2 error, all methods began with a 5 × 5 grid of data points, and

HOLMES parameters of p = 3 and γ = 0.12 were used. Figure 9 shows the results. Error is seen to drop

rapidly with a few targeted data point additions by the adaptive method, while the error of non-adaptive

methods decreases in a slow, but steady manner. The initial samples are especially impressive, as they

reduce the error by a factor of 5 with the addition of only 8 points to the starting set. Evidently, the

main source of error occurs at the peak of the Gaussian, and once that is eliminated the smaller errors

distributed throughout the domain will take longer to deal with. This concept is demonstrated on the

right side of Figure 9, where the strategic addition of two points can massively improve a HOLMES

interpolation in 1D. This example is particularly striking because the errors are concentrated in a small

area, and thus quickly eliminated. The benefits of an adaptive DoE technique would not appear as

striking for a function with a less concentrated error profile – nor would they be expected to be.

It should be noted that throughout this work, ℓ2 error results provided by LHS are considered as

the average of 100 tests to offset the intrinsic randomization of the technique. This number of samples

provides a reasonable indication of the trajectory of the ℓ2 error.
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Figure 9: Comparison of the ℓ2 error evolution with the number of data points between the proposed adaptive DoE (dot-
dashed line), LH (solid line), and FF (dotted line) methods on a Gaussian hill test function (see Appendix A). The test
function was evaluated using the metamodels on an evenly distributed 100× 100 grid over the domain [−1, 1]2. HOLMES
approximants computed using p = 3, order 3, and γ = 0.12.
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4.2. Influence of Kernel Parameter

The kernel parameter, ξ, used in the spacing function h(x) has a large influence on the resulting point

distribution, as mentioned in subsubsection 2.1.2. The choice of scalar, R0, which modifies ξ via (8)

and (9), has a significant influence on the DoE method. Figure 10 demonstrates this with a log-scaled

Rosenbrock function. Smaller values of R0 will allow tighter clumping of points, since QS only becomes

dominant very close to a data point. An extreme case of this can be found in figure 10a, where the

data points are clearly far too concentrated. Larger values will enforce a spacing filling distribution with

increasing severity as QS becomes dominant nearly everywhere.
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z

y
x

(b) R0 = 1.0

z

y
x

(c) R0 = 1.4

Figure 10: Log-scaled Rosenbrock function (see Appendix A) nodal distributions showing 25 initial points (blue) evenly
distributed in the domain [−1, 1]2. Additional 18 nodes were added using the adaptive DoE technique using different values
of the kernel size, R0, to show the influence in the placement of these points. HOLMES approximants computed using
p = 3, order 3, and γ = 0.12.

An investigation of this influence on accuracy is performed through comparison of the ℓ2 error of the

metamodel as a function of both the total number of samples and the value of R0. Figure 11 demonstrates

the influence of this parameter when interpolating the Rosenbrock function above. The comparison was

repeated for multiple test functions of varying linearity, all of which may be found in Appendix A.

Table 1 shows the ℓ2 error after adding 0, 8 and 80 points to a 5× 5 full factorial design through the

DoE algorithm. The functions used are provided in Appendix A. Data for R0 = 0.5 and R0 = 1.4 are

shown as a sample, though data on the range R0 = [0.25, 1.75] was collected.

In general, smaller values of R0 work well when the underlying function has more localized extrema,

but quickly result in a clumped samples which perform poorly in general. A larger value of R0 naturally

emphasizes more of the space-filling criteria, and thus, performs more consistently than small R0 tests,

but with fewer benefits over using a non-adaptive approach. This is why, for the functions in table 1, the

R0 = 1.4 designs generally, but not always perform better than the R0 = 0.5 ones. Values in the range

R0 = [1, 1.5] perform most consistently overall, which is consistent with the results of [17]. A value of

1.25 is used throughout the remainder of this work.

4.3. Influence of Error

Comparing the proposed method to LHS or any Monte Carlo-style simulation in the realm of ro-

bustness against noise is not especially helpful for assessing an adaptive DoE approach. Randomized

simulations with an equal chance of choosing any point within the domain will naturally be the least
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Figure 11: ℓ2 error vs. number of data points for several values of R0 = [0.25, 1.4]. The test function used in this test was
the log-scaled Rosenbrock function (see Appendix A) evaluated on an evenly distributed 100 × 100 evaluation grid over
the domain [−1, 1]2. HOLMES approximants computed using p = 3, order 3, and γ = 0.12.

Function R0 = 0.5 R0 = 1.4
0 Points 8 Points 80 Points 8 Points 80 Points

T1 Gaussian 4.66 1.56 0.30 0.76 0.01
T2 Rosenbrock 7.84 7.27 5.13 7.10 4.04

T3 9.32 8.80 1.54 6.91 0.63
T4 8.31 7.83 6.50 7.60 3.20
T5 34.93 29.77 15.42 32.79 11.71
T6 16.75 9.40 3.82 10.57 2.21

T7 Branin 1.44 1.38 0.60 1.47 0.57
T8 Himmelblau 8.78 7.615 2.70 7.48 1.95
T9 Rosenbrock 10.57 8.62 4.59 9.46 5.52

Table 1: ℓ2 error (2) at 8 and 80 points for several test functions detailed in Appendix A. Designs produced with a spacing
parameter of R0 = 0.5 and R0 = 1.4 are compared. HOLMES approximants computed using p = 3, order 3, and γ = 0.12.

statistically biased, and therefore the most robust against errors in the data. A better comparison for the

DoE method in general is to a similar adaptive sampling method designed for unreplicated experiments.

An adaptive DoE method with the objective function given by S(x) = QLQS was previously found

to yield strong results on a number of test functions [17]. This objective function uses an identical

spacing parameter, QS . The linearity criterion is also similar, but created using RBF interpolation with

C2 Wendland functions rather than HOLMES functions. There is no LOO error criteria. The linearity

criterion as originally provided was not normalized onto [ϵ, 1], but has been here to ensure more consistent

performance than the original algorithm, which was found to perform erratically on most functions.

Let us again consider a plane function, but apply proportional Gaussian error to the collected data

at each iteration. Both DoE algorithms are then run with 36 + 40× 4 data points. Since subsection 3.3

demonstrated the superiority of HOLMES in direct interpolation with noise, it is not fair to compare

the quality of data point placements using different interpolation methods for final error calculations.

Instead, after all points are collected, the solution is interpolated via a separate interpolation scheme –
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LME interpolants – and the ℓ2 error is calculated on a 100×100 grid over the domain [−1, 1]2. This ensures

the quality of the DoE point placements is compared, and not just the final interpolation method. The

results are seen in Figure 12. The difference between the two methods is insignificant for small amounts

of error, but becomes very noticeable once a moderate amount of error is achieved. higherhigher

Novel DoE
Mackman DoE

Standard Deviation of Noise 
[% of Maximum Function Value]

ℓ2
Error

Figure 12: Comparison of Novel DoE and Mackman DoE with regards to robustness in data noise and 36 + 40 × 4 data
points. ℓ2 error in plane function interpolation is calculated with 100 × 100 points with different standard deviations of
data point noise, measured as a percentage of the maximum function magnitude. HOLMES approximants computed using
p = 3, order 3, and γ = 0.12. Both algorithms use a nodal spacing parameter R0 = 1.25.

The improvement in accuracy does come at a computational cost. In the tests performed here,

HOLMES functions generally evaluate slower than an equivalent RBF interpolation; however, RBF in-

terpolation requires inverting a matrix whose size depends on the number of data points, while HOLMES

interpolation scales instead with the number of points the metamodel is evaluated at. There could exist a

situation in which this difference in scaling proves favourable for the HOLMES DoE. Nonetheless, in most

cases custom shape functions like HOLMES come at a computational cost. This cost can be minimized

or ignored if data collection is much slower than the DoE algorithm, or if computation of HOLMES

shape functions can be smoothly integrated into a computer experiment itself. For example, by choosing

HOLMES as the shape function in a scheme for solving PDEs – a topic which will be briefly considered

in the next section.

4.4. Adaptive DoE for Time Dependent Functions

Time dependent functions are not generally considered as distinct from other functions in DoE method-

ology. Time may be considered a separate dimension in the design space, and points placed according to

that. This approach makes sense in a non-adaptive method, since all points can be established prior to
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the start of testing. For an adaptive method this cannot work, since the experimentalist cannot collect

data from a time that has already passed.

The top-level approach taken here is very basic: known data points from previous times are pro-

jected to some point in the future, and the metamodel is constructed with these points. This projected

metamodel is then used in the DoE approach as described above. New points are proposed, and these

are used at the next timestep. In addition to a metamodel without any sort of projection, the ap-

proximation methods used are forward Euler (FE), where u(x, tn+1) ≈ u(x, tn) + ∂u/∂t|tn∆t, backward

Euler (BE), where u(x, tn+1) ≈ u(x, tn) + ∂u/∂t|tn+1
∆t, and explicit midpoint method (ME), where

u(x, tn+1) ≈ u(x, tn) + ∂u/∂t|tn+1/2
∆t and u(x, tn+1/2) ≈ u(x, tn) + ∂u/∂t|tn∆t/2. All derivatives with

respect to t are estimated via a second order, three-point, backwards difference approximation when

applicable, but since the recently added nodes did not necessarily exist in the past, their values are

estimated based on previous metamodels, which are stored for this purpose.

Another important detail of the approach is the presence of a set of nodes arranged in a coarse full

factorial grid which remains throughout all timesteps. In the simulations considered, a constant 5×5 grid

of nodes will exist in every timestep, with the remaining 24 nodes added according to the DoE algorithm

at each timestep. The results are compared to a full factorial design of 7× 7 nodes.

The axisymmetric 2d wave equation,

utt = c2
(
1

r
(rur)r +

1

r2
uθθ

)
, (39)

is chosen for investigating this approach. The solution will produce a smoothly time-evolving function,

and is relevant to both physical and computer experiments. Specifically, the classical problem of vibration

on an axisymmetric circular drum of radius R =
√
2 and constant c = 1 is chosen, resulting in boundary

conditions of u(R, t) = 0 and regularity in the solution at u(0, t). A Gaussian initial condition is selected

as

u(r, 0) = U
(
e−

ξ

R2 r2 − e−ξ
)
. (40)

The solution can be found via separation of variables as (41).

u(r, t) =

∞∑
n=1

An cos (cλ0nt) J0 (λ0nr) , (41)

where λ0n = z0n/R, and z0n is the nth zero of the Bessel function of the first kind, J0(z). The coefficients,

An, are determined via orthogonality. The summation requires 33 terms to match the initial condition

in (40) to computer precision.

For convenience, the resulting metamodel accuracy is evaluated on an evenly spaced 100 × 100 grid

of points covering [−1, 1]2. The nature of the problem investigated results in error norms which oscillate

in time, as in 13, so direct comparison between methods becomes difficult, other than to note the DoE

methods seem to provide modest, though visible increases in accuracy over the full factorial design

regardless of the method used to project node values through time.

A quantitative comparison is easier if the error is treated as an integrable function in time, and

integration is performed numerically. In this case, trapezoidal rule is used over a simulation time of 20s.
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Figure 13: Discrete ℓ2 error in metamodel as a function of time over [−1, 1]2 with 50 × 50 sample points. HOLMES
approximants computed using p = 3, order 3, and γ = 0.12. DoE methods used are as follows: (a). Constant full factorial
design (FF), and adaptive DoE algorithm with nodes projected into the future using (b). No projection (None), (c). Forward
Euler (FE), (d). Backward Euler (BE), and (e). Explicit Midpoint method (ME).

The results in 14 conform to expectations. Namely, some reasonable increase in accuracy is generally

achieved by the DoE methods compared to the full factorial approach. The increase is around 10− 15%

when DoE method is allowed to update the node positions frequently, but decreases as node placements

become less frequent. For long update times, the difference between DoE and full factorial performance

becomes insignificant.

The projection of DoE nodes in the metamodel does have some effect in mitigating the influence of

less frequent node placments. Un-projected nodes result in a DoE method which is most sensitive in this

regard, while all the projected methods appear to be more robust. Performance of all methods becomes

worse with decreased DoE placement frequency.

The approach described in this section is simple, and has some obvious limitations. It only makes

sense to project data points a small time into the future, and clearly the efficacy of the resulting DoE is

dependent on the accuracy of the approximation. The allowable timestep will depend on the experiment

at hand, and the experimentalist will likely require some a priori knowledge of the timescale of their

problem. In the above example, knowledge of the analytical solution was used to approximately set a

suitable timestep, and the results were satisfactory without additional effort.

The density of the initial full factorial grid could also be examined in detail. Would a larger proportion

of points added through the adaptive DoE method be beneficial, or detrimental? No attempt is made to

investigate this beyond noting that, for the arbitrary combination of full factorial and DoE points chosen,

there was some improvement without any attempt at tuning, which could hint at some robustness in the

approach.

Additionally, in a physical experiment the experimentalist must have time to both run the DoE

algorithm, and adjust any measurement devices to capture the recommended data points, within the time
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Figure 14: Discrete ℓ2 error in metamodel as measured over [−1, 1]2 with 50 × 50 sample points integrated over the time
interval [0, 20]s vs DoE update interval. HOLMES approximants computed using p = 3, order 3, and γ = 0.12. DoE
methods used are as follows: (a). Constant full factorial design (FF), and adaptive DoE algorithm with nodes projected
into the future using (b). No projection (None), (c). Forward Euler (FE), (d). Backward Euler (BE), and (e). Explicit
Midpoint method (ME).

constraints posed by the forward projection of data points. It would be unsurprising if such conditions

could not be met in the vast majority of physical experiments; however, computer experiments would

be much more likely to benefit from such an approach. A time-dependent computer experiment could

be periodically paused for the insertion of additional points, and resumed as needed – just as is done

in the above example, but where the additional points are used in the experimental calculations. This

exploration is out of scope of the current work, but it is possible that particle-based continuum mechanics

simulations, such as smoothed particle hydrodynamics, could benefit from such an approach. Errors will

accumulate through time in such simulations, so the cumulative effect of even modest increases in accuracy

can be significant by the end of a simulation.

5. Conclusion

We proposed a novel adaptive DoE method that balances curvature, space filling, and metamodel error

considerations to automatically select nodes with an optimal location in the domain and approximate non-

linear functions within the design space. HOLMES with a variable kernel size is introduced to satisfy the

adaptive nature of the proposed method. Adaptive HOLMES metamodelling provides accurate function

and derivative approximations on the interior of the domain, making it more suitable for handling data

with moderate Gaussian white noise than schemes using radial basis functions. The key parameter of the

method, R0, was investigated and can generally be set within a limited range. Additionally, we proposed

alternative ways to estimate the local nodal spacing in unstructured data using the boundary-corrected

KDE method.

Evaluation of the new method indicated better performance than simple, established, nonadaptive

methods such as LH and FF on a set of test functions. Then method outperforms a similar adaptive
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DoE method when noise is introduced into the simulation. Additionally, the approach becomes more

applicable to time-dependent experiments when the metamodels were first projected forward in time.

Future work could adapt the proposed approach to the solution of partial differential equations. Specif-

ically, this approach’s unstructured, multidimensional nature could lend itself to particle-based continuum

mechanics models, such as smoothed particle hydrodynamics, which are still developing strategies for dy-

namically and methodically increasing resolution during the simulation.
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Appendix A. Test Functions

The analytical test functions used were as follows. All were normalized onto [−1, 1] × [−1, 1]. To

compare ℓ2 norm values between functions, all functions are also scaled by a constant A such that

maxx∈[−1,1]2 |f(x)| = 1.

T0 Plane: f(x, y) = x+ y,

x, y ∈ [−1, 1].

T1 Gaussian Hill: f(x, y) = e−3(x2+y2),

x, y ∈ [−1, 1].

T2 Log-Scaled Rosenbrock: f(x, y) = log
(
1 + (100(y − x2)2 + (1− x)2

)
,

x, y ∈ [−1, 1].

T3 f(x, y) = 2 + 0.01(y − x2)2 + (1− x)2 + 2(2− y)2 + 7 sin(0.5x) sin(0.7xy),

x, y ∈ [0, 5].

T4 f(x, y) = cos(6(x− 1
2 )) + 3.1(|x− 0.7|) + 2(x− 1

2 ) + sin
(

1
|x− 1

2 |+0.31

)
+ y

2 ,

x, y ∈ [0, 1].

T5 f(x, y) = cos
(
(x2 + y2)1/2

)
,

x, y ∈ [−5, 5].

T6 f(x, y) = sin(x) sin(y), x, y ∈ [−3, 3].

T7 Branin’s Function: f(x, y) =
(
y − 5.1

(
x
2π

)2
+ 5x

π − 6
)2

+ 10
(
1− π

8

)
cos(x) + 10,

x ∈ [0, 15], y ∈ [−5, 10]

T8 Himmelblau’s Function: f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2,

x, y ∈ [−4, 4].
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T9 Rastrigin’s Function: f(x, y) = 20 + x2 + y2 − 10(cos(2πx) + cos(2πy)),

x, y ∈ [−1, 1].
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