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Abstract. Smith homomorphisms are maps between bordism groups that change both the
dimension and the tangential structure. We give a completely general account of Smith
homomorphisms, unifying the many examples in the literature. We provide three definitions
of Smith homomorphisms, including as maps of Thom spectra, and show they are equivalent.
Using this, we identify the cofiber of the spectrum-level Smith map and extend the Smith
homomorphism to a long exact sequence of bordism groups, which is a powerful computation tool.
We discuss several examples of this long exact sequence, relating them to known constructions
such as Wood’s and Wall’s sequences. Furthermore, taking Anderson duals yields a long exact
sequence of invertible field theories, which has a rich physical interpretation. We developed the
theory in this paper with applications in mind to symmetry breaking in quantum field theory,
which we study in [DDK+24].
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1. Introduction

Let M be a closed, smooth n-manifold together with a real line bundle π : L → M . For any
section s : M → L of π transverse to the zero section, standard theorems in differential topology
imply Ns := s−1(0) is a smooth, (n− 1)-dimensional submanifold of M . We would like to make
Ns into an invariant of M and L, but its diffeomorphism type depends on s: consider the trivial
line bundle over S1 with the constant section valued in 1 versus any section intersecting the zero
section. However, all choices of Ns are bordant: given two sections s1, s2 : M → L, there is a
compact n-manifold X whose boundary is diffeomorphic to Ns1 ⨿Ns2 . Thus the image of Ns in
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the bordism group ΩO
n−1, the set of bordism equivalence classes with group structure given by

disjoint union, is a well-defined invariant of M and L.
More is true: one can refine the bordism equivalence relation to extend the line bundle

L|Ns1
⨿L|Ns2

across X, obtaining an invariant valued in the larger group ΩO
n−1(BO(1)) of bordism

classes of the data of a closed (n− 1)-manifold and a real line bundle. The value of this invariant
also only depends on the bordism class of M and L and is additive in disjoint unions, re-expressing
our invariant as a homomorphism of abelian groups

(1.1) smσ : ΩO
n (BO(1)) −→ ΩO

n−1(BO(1)).

This map was first studied by Conner-Floyd [CF64, Theorem 26.1], who called it the Smith
homomorphism after P. A. Smith. Subsequently, many authors studied similarly-defined maps
between other bordism groups, focusing on two methods of generalization:1

(1) Generalize from real line bundles to real or complex vector bundles of other ranks.
(2) Keep track of other topological data on M , and how it is affected by passing to M .

For example, suppose we give M an orientation structure. The submanifold Ns does not inherit
an induced orientation, and can be unorientable. However, since TM |Ns = TNs ⊕ L|Ns has an
orientation, it follows that L|Ns

is the orientation line bundle of N . It follows that L|Ns
gives

no additional structure at all, and this variant of the Smith homomorphism factors through
ΩO
n−1 ⊂ ΩO

n−1(BO(1)). That is, we have a map

(1.2) smσ : ΩSO
n (BO(1)) −→ ΩO

n−1.

To the best of our knowledge, this was first written down by Komiya [Kom72, §5]. Other examples
in the literature show the same phenomenon: if one places a tangential structure on M in the
sense of Lashof [Las63], the Smith homomorphism lands in a bordism group whose degree and
tangential structure are in general different from those of the domain.

Despite the variety of known examples, the general theory of the Smith homomorphism does
not appear in the literature. The first objective of this paper is to tell the general story.

Our other major objective is to apply the Smith homomorphism to quantum physics. Our inspi-
ration for this paper came from [HKT20], where they study the physical process of defect anomaly
matching as modelled by Smith homomorphisms. Work of Freed-Hopkins-Teleman [FHT10],
Freed-Hopkins [FH21], and Grady [Gra23] classifies various kinds of invertible field theories (IFTs)
in terms of Anderson duals2 to bordism homology theories.3 Therefore, the Anderson dual of
the Smith homomorphism is a map of invertible field theories. As invertible field theories can be
understood as anomalies of quantum field theories (see Section 8.1), the Anderson-dualized Smith
homomorphism provides an anomaly-matching formula expressing the anomalies of certain QFTs
in terms of anomalies of lower-dimensional defect theories [HKT20, COSY20].

However, in [HKT20], they noted in section 4.4 that they were missing a mathematical way to
compute their homomorphisms of interest. The fiber sequence of spectra we studied to answer
this question led to more interesting physics: in forming a fiber sequence, hence a long exact

1Kirby-Taylor [KT90b, Theorem 6.11, Remark 6.15] generalize the Smith homomorphism in a different direction in
the setting of characteristic bordism; that generalization is out of scope of this paper.
2See §8.2.2 and [FH21, §5.3] for more on Anderson duality and how we use it.
3There are additional classification theorems for invertible field theories due to Yonekura [Yon19], Rovi-
Schoenbauer [RS22], and Kreck-Stolz-Teichner (unpublished). All of these are closely related to [FHT10, FH21]
and to each other, but for the purposes of our paper, we need the homotopical approach presented in [FH21].
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sequence, we found a tool to easily compute Smith homomorphisms. Furthermore, two new
maps in the long exact sequence also have interesting physical interpretations in the context of
spontaneous symmetry breaking. In our companion paper [DDK+24], we provide detailed physical
interpretations of the entire symmetry breaking long exact sequence (SBLES) and address many
physical examples and applications. We provide a summary in Section 8 in this paper.

Next we outline the results of this paper. We make use of standard definitions in bordism
theory, which we review in §2. Fix a tangential structure ξ : B → BO, a space X, a virtual vector
bundle V → X of rank rV , and a vector bundle W → X of rank rW .

By an (X,V )-twisted ξ-structure on a virtual vector bundle E → M , we mean the data of a
map f : M → X and a ξ-structure on E ⊕ f∗(V ) (Definition 3.1); this is a tangential structure
in its own right (Lemma 3.3), which we denote ξ + (X,V ). In particular, there is a notion of
bordism of (X,V )-twisted ξ-manifolds, and by Corollary 3.4 the corresponding bordism groups
are naturally isomorphic to the ξ-bordism groups of the Thom spectrum XV−rV of the rank-zero
virtual bundle V − rV → X:4

(1.3) Ωξ+(X,V )
n

∼=−→ Ωξn(XV−rV ).

Our first result is to define a Smith homomorphism smW associated to the data of ξ, X, V , and
W . This Smith homomorphism will have type signature

(1.4) smW : Ωξn(XV−rV ) −→ Ωξn−rW
(XV⊕W−rV −rW ).

That is, passing through (1.3), the Smith homomorphism passes from the bordism group of n-
dimensional (X,V )-twisted ξ-manifolds to the bordism group of (n− rW )-dimensional (X,V ⊕W )-
twisted ξ-manifolds. We actually provide three different definitions of smW :

(1) First, in Definition 3.7 we define smW as the map sending the bordism class of a manifold
M with map f : M → X to the bordism class of the zero locus of a section of f∗W → M

transverse to the zero section.
(2) We then define the Smith homomorphism in Definition 3.13 as the map of bordism groups

induced by a map of Thom spectra XV → XV⊕W , itself induced by the map of total
spaces of vector bundles V → V ⊕W sending v 7→ (v, 0).

(3) Our third definition, in Definition 4.27, defines smW as the cap product homomorphism
with the Euler class of V in (twisted) ξ-cobordism, following a construction of Euler classes
in twisted generalized cohomology in §4.1.

Theorem (Proposition 3.17 and Corollary 4.39). The above three definitions are equivalent.

Each definition has its own advantages: the first and third allow for a direct comparison with
preexisting special cases in the literature and the second is an essential ingredient for constructing
long exact sequences. Specifically, in Section 5, we reprove the following well-known theorem.

Theorem 5.1. With X, V , W , and ξ as above, the fiber of the map of spectra XV → XV⊕W in
definition 2 is the map p : S(W )p∗V → XV , where S(W ) denotes the unit sphere bundle of W and
p : S(W ) → X is the bundle projection map.

4This perspective on twisted bordism, and these results, are not new, and we are not sure who originally developed
them. We follow the language and perspective of [DDHM23, §10], and note this is not the first approach to this
material.
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This is not a new result; in [KZ18, Remark 3.14] it is attributed to James. Our contribution is
to relate it to the fully general definition of the Smith homomorphism.

From the fiber sequence of spectra in Section 5, we derive two long exact sequences. First, in
bordism:

Corollary 5.8. Let X, V , W , and ξ be as above. There is a long exact sequence of bordism
groups:
(1.5)
· · · −→ Ωξn(S(W )p∗V−rV ) p−→ Ωξn(XV−rV ) smW−−−→ Ωξn−rW

(XV⊕W−rV −rW ) δ−→ Ωξn−1(S(W )p∗V−rV )−→ · · ·

As we discuss in Remark 5.11, this is a generalized Gysin sequence. As a computational tool, it
turns out to be remarkably convenient. Different vector bundles W can be combined to calculate
bordism groups, often avoiding difficult spectral sequence calculations. For example, we use this
idea in Appendix A to address an extension problem; other papers using this or closely related
techniques to do computations include [HS13, Deb23, DDHM23, DL23, DYY23].

Next, there are many examples of Smith homomorphisms in the literature, so we devote some
time in this paper to explicating the Smith homomorphism for various choices of ξ, X, V , and
W . One phenomenon that we address in §6 is that Smith homomorphisms come in “families”:
if you iterate smW with V = 0,W, 2W, 3W, . . . , often the domain and codomain recur with a
finite period p because the notions of (X, kW )-twisted and (X, (k + p)W )-twisted ξ-structures are
equivalent. In §6, we use the “fake vector bundle twists” of [DY23a, §1] to establish the following
Smith families.

• Example 6.11: when ξ = id: BO → BO (unoriented bordism), the period p = 1 for all X
and W : like in (1.1), the tangential structure does not change.

• Examples 6.12 and 6.13: for ξ : BG → BO for G = SO, Spinc, or U, p = 1 if W is
orientable and 2 if W is unorientable.

• Example 6.14: for ξ : BSpin → BO, p can be 1, 2, or 4 depending on the first two
Stiefel-Whitney classes of W .

These may be thought of as versions of James periodicity over bases other than S; see Example 6.24.
For some other common choices of ξ, including SU-structure, string structure, and stable framing,
the period is harder to determine, as we discuss in §6.4. We would be interested in learning tools
for computing such periods, and suspect that these periodicities are related to the image of the
J-homomorphism; see Remark 6.35.

We also study examples where we fix X, V , and W , but let ξ vary, recovering known Smith
families from the literature.

(1) In §7.1, we let X = RP∞, V = kσ, and W = σ, where σ → RP∞ is the tautological line
bundle.

• In Example 7.4, we apply this to unoriented bordism, where it reproduces Conner-
Floyd’s original Smith homomorphism (1.1) [CF64, Theorem 26.1].

• For oriented bordism, see Example 7.6, where we get Komiya’s [Kom72, §5] 2-periodic
family of Smith homomorphisms exchanging SO × Z/2- and O-bordism.

• On spinc bordism (Example 7.11), this recovers the Smith homomorphisms between
Spinc × Z/2 and Pinc bordism studied in [BG87a, HS13].
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• On spin bordism (Example 7.8), this Smith family is 4-periodic, involving bordism
for the groups Spin ×Z/2, Pin−, Spin ×{±1} Z/2 and Pin+. This family or subsets of
it have been discussed in [Pet68, ABP69, Gia73a, Kre84, KT90b, HS13, KTTW15,
TY19, HKT20, WWZ20, BR23].

• On string bordism (Example 7.10), this family has period 8 and to our knowledge
has not appeared in the literature. It would be interesting to study this family in
more detail.

(2) In §7.2, we instead consider the tautological complex line bundle over CP∞. For some
tangential structures (O, SO, Spinc, U) this family is 1-periodic (Example 7.22).

• For spin bordism (Example 7.26), this family is 2-periodic, exchanging Spin × U(1)
and spinc bordism, recovering work of Kirby-Taylor [KT90b, Corollary 6.12, Remark
6.14].

• In Example 7.28, we pull L back along BZ/n → BU(1), obtaining a 2-periodic family
exchanging bordism for the groups Spin × Z/n and Spin ×{±1} Z/2n also studied
in [DDHM23, Appendix E].

These are not the only examples we consider—see §7 for more.
In Section 8, we leverage our theory toward physical applications. Let Ω∗

ξ(–) denote the
generalized cohomology theory which is Anderson dual to ξ-bordism. As mentioned above, Ω∗

ξ(X)
classifies anomalies of X-families of field theories with ξ tangential structure. In particular, when
X = BG, this classifies field theories with G-symmetry. Using the fiber sequence, we show the
following.

Corollary 8.19. Let X, V , W , and ξ be as above. There is a long exact sequence of invertible
field theories:
(1.6)
· · · −→ Ωn−1

ξ (S(W )p∗V−rV ) IndW−−−→ Ωn−rW

ξ (XV⊕W−rV −rW ) DefW−−−−→ Ωnξ (XV−rV ) ResW−−−→ Ωnξ (S(W )p∗V−rV ) −→ · · ·

This is our mathematical model for the SBLES of [DDK+24], and we have labelled the maps
as in that paper. The map dual to the Smith map smW is the defect anomaly matching map
DefW studied in [HKT20] and [COSY20]. Our framework allows for the study of more physical
examples, as well as provides a way of explicitly computing each map and thus extracting more
physical information. Moreover, it expands our physical understanding of this form of symmetry
breaking to include two other processes: residual anomaly obstructions, which prevent certain
symmetry breaking patterns, and index anomaly matching. We study these phenomena in detail
in [DDK+24].

Finally, we have two appendices. In Appendix A, we explicate a Smith long exact sequence
from Example 7.35, which interchanges pin− and pin+ bordism, with the third term in the long
exact sequence identified with a certain twisted spin bordism of RP1. In Appendix B, we explain
why we use Euler classes in cobordism, rather than in ordinary cohomology: the latter is not
compatible with the Smith long exact sequence, and in Theorem B.2 we give an explicit example
to this effect. As part of our investigation of this example, we prove a theorem that may be of
independent interest.

Theorem B.4. Let V → X be a rank-3 vector bundle with spin structure and S → X be the
spinor bundle of V . If η ∈ ko−1(pt) ∼= Z/2 is the unique nonzero element and pH1 ∈ ko4(BSp(1))
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denotes the first symplectic ko-Pontrjagin class (see Proposition B.3), then the ko-cohomology
Euler class of V is

(1.7) eko(V ) = η · pH1 (S) ∈ ko3(X).

An interesting direction for future work is to investigate what happens in the absence of
unitarity. The mathematical backbone of our work generalizes nicely to the nonunitary case:
Freed-Hopkins-Teleman [FHT10] classify invertible topological field theories in the absence of a
reflection positivity structure using unstable Madsen-Tillmann spectra, and the Smith long exact
sequence generalizes to this case (see, e.g., Example 7.57). Anomalies of nonunitary theories are
not so well-studied, but some examples appear in [CL21, HTY22], and the fact that the Smith
long exact sequence generalizes suggests our methods do too.

From there one could ask: the appearance of Madsen-Tillmann spectra in the classification of in-
vertible TFTs is due to theorems of Galatius-Madsen-Tillmann-Weiss [GMTW09], Nguyen [Ngu17],
and Schommer-Pries [SP17] establishing Madsen-Tillmann spectra as classifying spectra for bordism
(higher) categories. Can one lift the Smith homomorphism to a morphism of bordism categories?
This is a question in pure mathematics whose affirmative answer would suggest a generalization
of our methods to noninvertible TFTs, and therefore to the symmetry breaking of noninvertible
symmetries of field theories, as studied in, e.g., [LTL+21, ABC+23, CHZ23, DAC23, DY23b].
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Johnson-Freyd, Justin Kulp, Miguel Montero, David Reutter, Luuk Stehouwer, Weicheng Ye, and
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thank both Perimeter and the Simons Collaboration for Global Categorical Symmetries for their
hospitality. CK and NPT are supported by NSF DGE-2141064 and SKD is supported by NSF
DGE-2140743.

2. Bordism and Thom spectra

In this section, we review virtual bundles, tangential structures, and their Thom spectra. We
also review the Pontrjagin-Thom theorem, which relates the homotopy groups of Thom spectra to
bordism groups.

2.1. Virtual vector bundles and tangential structures. Everything in this subsection is well-
worn mathematics; see [Fre19, FH21, DY23a] and the references therein for additional references
for this material.

Definition 2.1. A virtual vector bundle V → X is the data of two vector bundles V1, V2 → M ,
which we think of as “V1 − V2.”

An isomorphism of virtual vector bundles f between V = (V1, V2) and W = (W1,W2) over a
common base space X is the data of vector bundles E1, E2 → X and isomorphisms f1 : V1 ⊕E1

∼=→
W1 ⊕ E2 and f2 : V2 ⊕ E1

∼=→ W2 ⊕ E2.
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The idea behind this definition of isomorphism is that we would like the following pairs of
virtual vector bundles to be isomorphic.

(1) (V1, V2) and (W1,W2) when V1 ∼= W1 and V2 ∼= W2.
(2) (V1, V2) and (V1⊕E, V2⊕E): adding and subtracting E should not change the isomorphism

type of the vector bundle.
A vector bundle V defines a virtual vector bundle as the pair (V, 0). In the future we will make
this assignment implicitly.

Let BO denote the classifying space of the infinite-dimensional orthogonal group O := lim−→n
On.

Lemma 2.2. The space Z×BO classifies virtual vector bundles: for a space X with the homotopy
type of a CW complex, the set [X,Z ×BO] is naturally in bijection with the set of isomorphism
classes of virtual vector bundles on X.

Projection Z×BO → Z onto the first component defines a numerical invariant of virtual vector
bundles; this is the rank rank(V ) := dim(V1) − dim(V2). Thus BO, thought of as BO × {0}, is
the classifying space for rank-zero virtual vector bundles.

Definition 2.3. A (stable) tangential structure is a map ξ : B → BO, and given ξ, a ξ-structure
on a (rank-zero virtual) vector bundle V → X is a homotopy class of a lift of its classifying map
fV : X → BO as in the diagram

(2.4)
B

X BO,
fV

ξn
f̃V

i.e. a homotopy class of maps f̃V : X → B such that fV ≃ ξ ◦ f̃V .

If M is a manifold, a ξ-structure on M means a ξ-structure on the virtual vector bundle defined
by TM . One also sees normal ξ-structures on M , which are ξ-structures on −TM , the virtual
vector bundle defined by the pair (0, TM).

Example 2.5. For ξ : BSO → BO, a ξ-structure is equivalent data to an orientation. For
ξ : BSpin → BO, a ξ-structure is equivalent to a spin structure.

If M is a manifold with boundary, the outward unit normal vector field defines a trivialization
of the normal bundle to ∂M ↪→ M , so T (∂M) ⊕ R ∼= TM |∂M , and therefore a ξ-structure on M

induces a ξ-structure on ∂M . It is therefore possible to define a notion of bordism of manifolds
with ξ-structure, as Lashof [Las63] did; we let Ωξn denote the set of bordism classes of n-manifolds
with ξ-structure, which becomes an abelian group under disjoint union.

Often, one studies groups G with maps ρ : G → O, and lets ξ := Bρ : BG → BO. In this case it
is common to denote Ωξ∗ as ΩG∗ (e.g. G = O, SO, Spin, Pin±, etc.).

Remark 2.6. The category of tangential structures is the slice category Top/BO, i.e. the objects
are spaces with a map to BO, and the morphisms are maps which commute with the maps to BO.
Bordism groups are covariantly functorial in this category.

2.2. Construction of Thom spectra. First, recall the classical construction of a Thom space:
if V → X is a vector bundle, choose a Euclidean metric on V . Let D(V ) be the disc bundle of
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vectors in V of norm at most 1 and S(V ) be the sphere bundle of vectors of norm exactly 1; write
Th(X;V ) := D(V )/S(V ).

Example 2.7. Let Rn → X be a trivial bundle and let X+ be the space X with a disjoint
basepoint. Then the Thom space is the n-fold suspension Th(X;Rn) ≃ ΣnX+.

Example 2.8. Let X = RPn and let V = σ be the tautological line bundle. Then the Thom
space is Th(RPn;σ) ≃ RPn+1.

Proposition 2.9. If X is compact, then Th(X;V ) is the one point compactification of the disk
bundle D(V ).

Let V → X be a rank d real vector bundle (not merely a virtual vector bundle), and also write
V : X → BO(d) for the classifying map. Let Top denote the ∞-category of spaces and Top∗ denote
the ∞-category of pointed spaces. The action of O(d) on Rd induces an action on Sd = SRd , and
this induces a functor from the fundamental ∞-groupoid of BO(d) to Top∗.

Proposition 2.10. The Thom space Th(X;V ) is naturally homotopy equivalent to the colimit of
the X-shaped diagram5

(2.11) X
V−→ BO(d) −→ Top∗.

We need a similar construction for virtual bundles on X. It has the structure of a spectrum.6

The reader unfamiliar with spectra is encouraged to think of them as similar to topological spaces,
in that one can take homotopy, (co)homology, and generalized (co)homology groups of them. See
Freed-Hopkins [FH21, §6.1] or Beaudry-Campbell [BC18, §2] for precise definitions and [DDHM23,
§10.3] for a longer but still heuristic overview. We write Sp for the category of spectra.

We follow [ABG+14a] in the rest of this section. By a local system of spectra over a space X
we mean a functor L from the fundamental ∞-groupoid of X to spectra. We will usually denote
this as L : X → Sp. The fiber of a local system at a point p ∈ X is obtained by composing L with
the functor pt → X given by inclusion at p; a functor out of pt is equivalent to a single spectrum,
and we call this the fiber of L at p.

Definition 2.12 ([DL59, ABG+14a]). A stable spherical fibration is a local system of spectra
valued in the full sub-∞-category of spectra with objects ΣnS, n ∈ Z.

Here S denotes the sphere spectrum.

Definition 2.13. Let X be a space and V → X be a vector bundle of rank r. Let SV → X

denote the associated stable spherical fibration, whose fiber at a point x ∈ X is the suspension
spectrum of the one-point compactification of Vx.

Now fix a base space X and a virtual vector bundle V → X, which is equivalently a map
V : X → BO×Z. There is a canonical spectrum called the Thom spectrum XV associated to X,V
constructed as follows. There is a functor J : BO × Z → Sp, generalizing the map BO(d) → Top∗
above. It maps into spectra now, instead of spaces, because for a virtual bundle V1 − V2, we
want to assign the sphere SV1 ∧ S−V2 , but S−V2 doesn’t make sense as a space, since spheres of

5When we say “X-shaped diagram,” we mean a functor out of the fundamental ∞-groupoid of X.
6Spectra in stable homotopy theory are etymologically unrelated to spectra in algebraic geometry, operator theory,
physics, etc.
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negative dimension don’t exist. However, the sphere spectrum S can be desuspended, and the
Thom spectrum associated to a virtual bundle is defined as follows.

Definition 2.14. Given a virtual bundle V : X → BO×Z, the Thom spectrum XV is the colimit
(in spectra) of the composite X V−→ BO × Z J−→ Sp.

Here’s the compatibility between the Thom space and Thom spectrum construction.

Lemma 2.15. Let V : X → BO(d) be a vector bundle and let ξ : X → BO(d) → BO × Z be the
corresponding virtual bundle. Then the Thom spectrum of ξ is the suspension spectrum of the
Thom space of V ; i.e. Xξ ≃ Σ∞

+ X
V .

Here by Σ∞
+ we mean first taking the disjoint union with a single point, which we take as the

basepoint, then taking the suspension spectrum.

Proof. This follows from the fact that Σ∞
+ : Top → Sp preserves colimits. □

Using Lemma 2.15, one can directly check that the Thom spectrum of the trivial bundle
Rn → X is homotopy equivalent to a suspension of the suspension spectrum ΣnΣ∞

+ X.

Lemma 2.16 ([Ati61a, Lemma 2.3]). Let V → X and W → Y be virtual vector bundles. Then
the Thom spectrum of V ⊞W → X × Y is homotopy equivalent to XV ∧ YW .

Here ⊞ is the external direct sum, i.e. the direct sum of the pullbacks of V and W across the
projection maps X × Y → X, resp. X × Y → Y .

One can often combine Lemma 2.16 with the observation that Thom spectra of trivial bundles
are suspensions to simplify Thom spectra appearing in examples. For example, XV+Rn , often
denoted XV+n, is homotopy equivalent to ΣnXV . Since we are working with virtual vector
bundles, n may be any integer.

Let us discuss a variant for tangential structures.

Definition 2.17. Let ξ : B → BO be a tangential structure. Then its inverse (as a virtual
vector bundle) −ξ is often denoted ξ⊥. Equivalently, ξ⊥ is the composition of ξ with the map
−1: BO → BO, which is the inverse map in the E∞-structure on BO induced by direct sum.
Therefore ξ⊥ is also a tangential structure; its Thom spectrum B−ξ is called a Madsen-Tillmann
spectrum [MT01, MW07] and is often denoted MTξ. If B → BO is obtained from a family of Lie
group homomorphisms H(n) → O(n) in the (co)limit n → ∞, MTξ is often written MTH .

Likewise, the Thom spectrum of the pullback of −Vn → BO(n) across a map ξn : Bn → BO(n)
is denoted MTξn; if B = BH(n) for a Lie group H(n), this is often written MTH (n).

MTξ has two key properties:

(1) (Pontrjagin-Thom theorem) There is a natural isomorphism πn(MTξ)
∼=→ Ωξn.7

7It is most common to define Thom spectra and bordism in terms of the stable normal bundle, rather than the
tangent bundle; the resulting spectra are written Mξ. The spectra MTξ and Mξ coincide for the tangential structures
O, SO, Spinc and Spin, but not in general: MTPin± ≃ MPin∓. By composing with the map −1: BO → BO,
one can pass between normal bordism and tangential bordism and therefore pass between our definition and the
standard one.
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(2) (Thom isomorphism theorem) Let A be a commutative ring. Then there is a natural8

isomorphism H∗(B;Aw1)
∼=→ H∗(MTξ;A), where Aw1 denotes the pullback by ξ of the

orientation local system on BO.
In the Thom isomorphism theorem, the use of twisted cohomology can be avoided by assuming
A = Z/2 or by choosing an orientation of the virtual vector bundle classified by the map ξ.

When ξ is the result of applying the classifying space functor to a group homomorphism G → O,
we often write MTG for MTξ.

3. Maps of spectra inducing Smith homomorphisms

This section is the technical heart of the paper—we provide a general definition of the Smith
homomorphism, then lift it to a map sm of bordism spectra. The map of spectra has been studied,
though its identification with the Smith homomorphism is new; using this, we can write down the
cofiber of sm (Theorem 5.1) and therefore obtain Smith long exact sequences of bordism groups
and Anderson-dualized bordism groups (Corollaries 5.8 and 8.19).

3.1. (X,V )-twisted tangential structures. Twisted tangential structures are an important
ingredient in the Smith homomorphism—they determine its domain and codomain. We take this
subsubsection to define them and point out why they arise in the Smith homomorphism setting.

Throughout this subsubsection, we fix a topological space X, a vector bundle V → X of rank r,
and a tangential structure ξ : B → BO.

Definition 3.1. Let W → Y be a vector bundle. An (X,V )-twisted ξ-structure on W is the data
of a map f : Y → X and a ξ-structure on W ⊕ f∗(V ).

There is a space of (X,V )-twisted ξ-structures on W , and just like for tangential structures, we
will think of two such structures as the same if they lie in the same connected component.

Twisted ξ-structures provide a convenient way to describe a more complicated tangential
structure in terms of a simpler one.

Example 3.2. Recall that a spinc structure on an oriented vector bundle W → Y is the data of a
complex line bundle L → Y and an identification w2(L) = w2(W ). The data of L is equivalent to
a map Y → BU(1) such that L is the pullback of the tautological complex line bundle S → BU(1).
The identification w2(L) = w2(W ) is equivalent by the Whitney sum formula to w2(W ⊕ L) = 0.

Choosing a spin structure on W ⊕ L first provides an orientation of W ⊕ L, which since L
is canonically oriented by its complex structure is equivalent to an orientation of W ; then it
additionally provides an identification w2(W ⊕ L) = 0. Therefore the data of a spinc structure on
W is equivalent to the data of L and a spin structure on W ⊕L, meaning that a spinc structure is
equivalent to a (BU(1), S)-twisted spin structure.

In a similar way, one can show that if σ → BZ/2 is the tautological real line bundle, pin−

structures are equivalent to (BZ/2, σ)-twisted spin structures, pin+ structures are equivalent to
(BZ/2, 3σ)-twisted spin structures, and pinc structures are equivalent to (BZ/2, σ)-twisted spinc

structures.

8Naturality here is for maps of tangential structures as in Remark 2.6; this map typically does not commute with
the action of cohomology operations.
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It turns out that all of these twisted tangential structures can also be “untwisted” into ordinary
tangential structures.

Lemma 3.3 (Shearing). Let T → BO denote the tautological rank-zero virtual vector bundle
and ζ : B ×X → BO be classified by the rank-zero virtual vector bundle ξ∗(T )⊞ (V − r). Then
(X,V )-twisted ξ-structures are equivalent to ζ-structures.

The proof is given in [DDHM23, Lemma 10.18] for ξ = Spin; the general case is completely
analogous. Invoking the Pontrjagin-Thom theorem, we then learn:

Corollary 3.4. There is a notion of bordism of manifolds with (X,V )-twisted ξ-structures,
corresponding to the Thom spectrum MTξ ∧XV−rV ; thus the bordism groups of these manifolds
are Ωξ∗(XV−rV ).

Here we use the fact that the Thom spectrum functor sends external direct sums to smash
products, which is Lemma 2.16.

Lemma 3.5. Suppose X is a closed smooth manifold with a ξ-structure and M ⊂ X is an
embedded submanifold such that the image of the mod 2 fundamental class of M in H∗(X;Z/2) is
Poincaré dual to e(V ) ∈ Hr(X;Z/2). Then M has a canonical (X,V )-twisted ξ-structure.

Proof. Because the homology class of M is Poincaré dual to the mod 2 Euler class of V , the
normal bundle to M ↪→ X is isomorphic to V |M . Choose a Riemannian metric on X; this is a
contractible choice, so will not change the connected component of the data we obtain, so as
discussed above different choices of metric lead to the same (X,V )-twisted ξ-structure in the end.

Using the Levi-Civita connection induced by the metric, we may split the short exact sequence
of vector bundles over M ,

(3.6) 0 TM TX|M ν 0,

thereby obtaining an isomorphism TM ⊕ V |M ∼= TX|M . Since TX has a ξ-structure, this implies
TM ⊕V |M has a chosen ξ-structure, i.e. that we have put a (X,V )-twisted ξ-structure on M . □

3.2. Smith homomorphisms induced by maps of Thom spectra. We will now apply the
previous discussions of Thom spectra and shearing to understand a class of homomorphisms
between bordism groups called Smith homomorphisms. These map between bordism groups of
manifolds of different dimensions and with different tangential structures.

Fix a tangential structure ξ : B → BO such that its bordism spectrum MTξ is a ring spectrum
(e.g. O, SO, Spinc, Spin). Fix also a virtual vector bundle V → X of rank rV and W → X a
vector bundle of rank rW .

Definition 3.7. The Smith homomorphism associated to ξ, V , and W is the homomorphism

(3.8) smW : Ωξn(XV−rV ) −→ Ωξn−rW
(XV⊕W−rV −rW )

that sends a closed n-manifold [M ] to the bordism class [N ], where N ⊂ M is the submanifold
defined as follows: pull back W from X to M and choose a section s : M → f∗W transverse to
the zero section. Then, N := s−1(0) is an (n− rW )-dimensional manifold whose mod 2 homology
class is Poincaré dual to e(W ), hence by Lemma 3.5 has a (X,V ⊕W )-twisted ξ-structure, and
we define smW ([M ]) := [N ].
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Proposition 3.9 ([HKT20] §4.2). The bordism class [N ] ∈ Ωξn−rW
(XV⊕W−rV −rW ) is independent

of the choice of section.

Example 3.10. Let ξ : BSpin → BO, X = BZ/2, V = 0, and W = σ → BZ/2, where σ is the
tautological line bundle. The corresponding Smith homomorphism is

(3.11) ΩSpin
n (BZ/2) smσ−−→ ΩSpin

n−1((BZ/2)σ−1).

After shearing (Lemma 3.3), we recognize this as

(3.12) ΩSpin×Z/2
n

smσ−−→ ΩPin−

n−1 .

Letting V = 0, σ, 2σ, and 3σ produces the maps in the four-periodic family discussed in
Example 7.8.

Later, in Section 7, we thoroughly discuss the history of Smith maps and present many more
examples. For the rest of this section, we discuss how Smith homomorphisms are induced by maps
of Thom spectra. Let X be a topological space and V be a rank r real vector bundle on X. We
abuse notation and also denote the associated classifying map by V : X → BO(r). The inclusion
0 ↪→ W induces a zero section map X → XW . More generally, we have the following.

Definition 3.13. Let V and W be vector bundles on X. Let SV → SV⊕W be the map of finite-
dimensional spheres over X induced by the zero section map on W . The Smith map associated to
X, V , and W is the map of Thom spaces

(3.14) smW : Th(X;V ) → Th(X;V ⊕W )

formed as the colimit of the map of spheres.

Definition 3.15. In the case that we have a virtual bundle V , the zero section map induces a
map of stable spherical fibrations SV → SV⊕W ≃ SV ∧ SW over X. Taking the colimit, we get a
map of Thom spectra

(3.16) smW : XV → XV⊕W

which we also call a Smith map.

Proposition 3.17. The map on ξ-bordism groups induced by the map (3.16) of spectra is equal to
the Smith homomorphism as defined in Definition 3.7.

This follows by unpacking the Pontrjagin-Thom isomorphism.

4. Euler classes and Smith homomorphisms

In the next section, we develop an alternate definition of the Smith homomorphism via the
Euler class.

4.1. Euler classes in generalized cohomology. Fix ξ : X → BO a tangential structure and
W : X → BO(rW ) a vector bundle on X. We would like to describe the Smith homomorphism on ξ
bordism groups as taking a manifold (M,p : M → X) with ξ-structure to a smooth representative
of the Poincaré dual of e(p∗W ), where e(p∗W ) ∈ HrW (M ;Z) is the Euler class of W . This,
however, is not true in general, as we show in Appendix B—we need to upgrade what we mean by
the Euler class.
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We will define an Euler class living in twisted cobordism. More generally, for R an E1 ring
spectrum, we define a R-valued Euler class in the R-cohomology of X−W . In the case we have
an untwisting, given by a R-orientation on W , we will see in Lemma 4.24 that the untwisted
Euler class is the pullback of the Thom class UR(W ) ∈ RrW (Th(X;W )) along the 0 section
X → Th(X;W ) (e.g. in [Bec70, §13]), so that our definition deserves to be called an Euler class;
we also generalize to the twisted setting where there is no Thom class.

Recall the setup of Definition 3.15. Let 0 be the vector bundle over X of rank zero. The zero
section gives a map 0 → W of vector bundles over X. Therefore we get a map of stable spherical
fibrations

(4.1a) z : S0 −→ SW ,

i.e. a fiberwise map of spectra. Because 0 is the trivial rank-zero vector bundle, S0 is the constant
stable spherical fibration S with fiber S.

Apply the duality Map(–,S) fiberwise to obtain another map

(4.1b) z∨ : S−W −→ S0.

Because the codomain of z∨ is constant as a functor X → Sp, there is an induced map of spectra:

(4.1c) eS(W ) : X−W = colimX S−W → S.

Definition 4.2. The class eS(W ) is called the stable cohomotopy Euler class of W . Usually, we
will interpret generalized cohomology of XrW −W as the (−W )-twisted cohomology of X, meaning
eS(W ) is an element of the degree-rW (−W )-twisted stable cohomotopy of X.

Remark 4.3. This cohomology class of eS(W ) lives in (S)0(X−W ). By the Pontrjagin-Thom
isomorphism, this is equivalent to the twisted cobordism group Ω0

fr(X,−W ).

Definition 4.4. Let R be a (E1)-ring spectrum, so that there is a unique ring map 1R : S → R.
The R-cohomology Euler class of W , denoted eR(W ), is the composition 1R ◦ eS(W ). As in the
previous definition, we interpret this as an element of the degree-rW (−W )-twisted R-cohomology
of X.

Now we see how the Euler class and Smith homomorphism are related:

Proposition 4.5.
(1) Let 0 be the trivial rank 0 vector bundle on X; then eS(0) : Σ∞

+ X → S is the infinite
suspension of the crush map X → ∗.

(2) Let W be a vector bundle on X and smW : X−W → X be the Smith map. Then eS(W ) =
(smW )∗(eS(0)).

Proof. For part 1: 0 defines the trivial stable spherical fibration on X, which factors through a
point. Therefore the Euler class of 0 is the pullback of the Euler class of the trivial bundle over a
point.

For part 2: this follows from the fact that eS(W ) : X−W → S factors through

X−W smW−−−→ X
eS(0)−−−→ 0. □

We immediately learn that Smith maps pull back Euler classes.
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Corollary 4.6. Given a virtual vector bundle V and a vector bundle W , let smW denote the
Smith homomorphism smW : X−V⊕−W → X−V . Then

(4.7) sm∗
W (eS(V )) = eS(V ⊕W ).

We can thus recover the Smith homomorphism from capping with the twisted Euler class.

Proposition 4.8. For any virtual bundle V on X, the Smith map XV → XV⊕W can be defined
as the following composition:

(4.9) XV ≃ X(V⊕W )⊕−W ∆−→ (X ×X)(V⊕W )⊞−W ≃ XV⊕W ∧X−W eS(W )−−−−→ XV⊕W .

The map X(V⊕W )⊕−W ∆−→ (X ×X)(V⊕W )⊞−W is induced by the diagonal map ∆: X → X ×X.

Proof. The Euler map for the trivial rank 0 vector bundle

(4.10) X0 ≃ Σ∞
+ X

eS(0)−−−→ S.

is the counit for the E∞-coalgebra structure on Σ∞
+ X. By Proposition 4.5, the Euler class eS(W )

factors through (4.10) as

(4.11) X−W −→ X−W⊕W ≃ Σ∞
+ X

eS(0)−−−→ S.

This implies that (4.9) can be written as
(4.12)

XV ≃ X(V⊕W )⊕−W (X ×X)(V⊕W )⊞−W (X ×X)(V⊕W )⊞0 XV⊕W ∧ Σ∞
+ X XV⊕W

XV⊕W

∆

ϕ

≃ eS(W )

∆

Since the map XV⊕W → (X ×X)(V⊕W )⊞0 ≃ XV⊕W ∧ Σ∞
+ X comes from the comodule structure

of XV⊕W over Σ∞
+ X, the composite XV⊕W → (X ×X)(V⊕W )⊞0 → XV⊕W is the identity map.

Therefore it is sufficient to show that the map ϕ in (4.12) is homotopy equivalent to the spectral
Smith map smW , and this follows by restricting to the diagonal in the map (X ×X)(V⊕W )⊞−W →
(X ×X)(V⊕W )⊞0 along the top of (4.12), which is induced from id⊞ smW . □

We see that the Euler class records all the “Smith” information about W . We will therefore
refer to the Smith homomorphism as capping with the Euler class or as the map of Thom spectra
interchangeably.

The dual version of Proposition 4.8 also holds.

Proposition 4.13. Let R be a ring spectrum. Then the pullback map on R-cohomology
sm∗

W : R∗(XV⊕W ) → R∗(XV ) is equal to the cup product with eR(W ).

Remark 4.14. The long exact sequence of field theories we shall discuss in Section 8 is cohomological
in nature: it is given by applying IZMTξ-cohomology to smW . However, Proposition 4.13 does
not apply: the Smith homomorphism there cannot be described as taking the product with an
IZR-Euler class. This is because if R is a ring spectrum, IZR usually admits no ring spectrum
structure. However, IZR is an R-module, so we do learn from Proposition 4.13 that this Smith
homomorphism is the cup product with eR(W ) using the R-module structure. For example, when
we study fermionic invertible phases, we will typically choose R = MTSpin.
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Let us review the standard story that “the Euler class is the pullback of the Thom class along
the zero section.” First we review orientations and Thom classes. For simplicity, we will define
them only for vector bundles, though the story generalizes to virtual bundles and much more.

Definition 4.15. Let W be a vector bundle of rank n on X. Fix R an E1-algebra in spectra
and let ModR be the ∞-category of R-module spectra. An R-orientation of W is a natural
isomorphism ϕ of functors between

(4.16) RW : X W−→ BO(n) → Sp –∧R−−−→ ModR

and the constant functor valued in ΣnR. An R-orientation of a manifold M means an R-orientation
of TM .

Remark 4.17. The map z∨ from (4.1b) is similar to an orientation on −W , in the sense of Ando-
Blumberg-Gepner-Hopkins-Rezk, except that z∨ is in general non-invertible and between different
suspensions of the sphere spectrum.

An R-orientation ϕ on W induces an equivalence

(4.18) colimXRW ≃ Σ∞
+ Th(X;W ) ∧ R ≃ X ∧ ΣnR ≃ ΣnΣ∞

+ X ∧ R.

Definition 4.19. The composite

(4.20) U : Σ∞
+ Th(X;W ) = XW → Σ∞

+ Th(X;W ) ∧ R ≃ ΣnΣ∞
+ X ∧ R → ΣnR

is the Thom class. Often we think of U through its homotopy class, which lives in Rn(Th(X;W )).

Given a R-orientation on W , we can also define the (untwisted) Euler class of W . This is a
standard definition (e.g. [Bec70, §13]).

Definition 4.21. Given an R-orientation, we have a natural isomorphism of functors X → ModR

(4.22) R−W ≃ Σ−nR,

where Σ−nR is the constant functor valued in Σ−nR. The composite

(4.23) Σ−nX −→ Σ−nX ∧ R ≃ X−W ∧ R smW−−−→ X ∧ R → R

is called the (untwisted) Euler class of W .

Unlike the twisted Euler class, this untwisted Euler class depends on the R-orientation.
Finally, we can prove that our definition of the Euler class, Definition 4.4, coincides with the

more standard Definition 4.21 when they overlap (i.e. when there is an R-orientation chosen on
V ).

Lemma 4.24. Suppose W is R-oriented, and let U ∈ Rr(Th(X;W )) denote the Thom class.
Then eR(W ) = z∗

WU , where zW : X → Th(X;W ) is the inclusion as the zero section.

Proof. After suspending, the zero section map becomes the Smith map. Therefore it suffices to
show that the following diagram commutes.

(4.25)
Σ∞

+ X Σ∞
+ X ∧ R ΣnX−W ∧ R

Σ∞
+ Th(X;W ) ≃ XW XW ∧ R ΣnX ∧ R.

–∧R

smW

≃

smW ∧idR smW

–∧R ≃
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Here the equivalences in the right square are the ones induced by the orientation ϕ.
The left-hand square commutes because smashing with R is a functor. The right-hand square

commutes because the following diagram commutes in Fun(X,ModR):

(4.26)
R ΣnR−W

RW ΣnR,

(ϕ∧R−W )

z∨∧R z∨∧R∧RW

ϕ

which follows from naturality. Recall that z∨ : R → RW is the map of spherical fibrations over X
that induces the Smith map. □

4.2. Smith homomorphisms defined via Atiyah-Poincaré dual of the generalized Euler
classes. Now equipped with the theory of Euler classes, we can give another alternate definition
of the Smith homomorphism. Fix ξ : B → BO, V → X of rank rV , and W → X of rank rW as in
Definition 3.7. Recall that by Corollary 3.4, a class c ∈ Ωξn(XV−rV ) can be represented by a closed
n-manifold M with an (X,V )-twisted ξ-structure, which includes the data of a map f : M → X.

In this subsubsection, we assume that MTξ is a ring spectrum.

Definition 4.27. The Smith homomorphism associated to ξ, V , and W is the homomorphism

(4.28) smW : Ωξn(XV−rV ) −→ Ωξn−rW
(XV⊕W−rV −rW )

sending the class [M ] to the Poincaré dual of the cobordism Euler class eMTξ(f∗W ).

To show this, we first recall Atiyah duality. There is the standard notion of duals in any
symmetric monoidal category C [Lin78, DP80, DM82]. Here for C we take the homotopy category
of spectra, which is monoidal with respect to the smash product ∧. If A,B have duals A∨, B∨,
then a morphism f : A → B induces a dual morphism, which we write as f∨ : B∨ → A∨.

Theorem 4.29 (Atiyah duality [Ati61b, Proposition 3.2 and Theorem 3.3]). Let M be a compact
manifold; then (M/∂M)∨ ≃ M−TM . If M is closed and V → M is a virtual vector bundle, then
(MV )∨ ≃ M−TM−V .

Furthermore, dual spectra provide isomorphisms between homology and cohomology groups:
let X be a spectrum with a dual X∨; then, for any spectrum R, we have a canonical isomorphism

(4.30) R∗(X)
∼=−→ R−∗(X∨).

We call two classes α ∈ R∗(X) and β ∈ R−∗(X∨) Atiyah-Poincaré dual if α 7→ β under the
isomorphism (4.30).

Furthermore, this is functorial: given a map f : X → Y of dualizable spectra, let f∨ : Y ∨ → X∨

be the dual map. We have a commutative square:

(4.31)
R∗(X) R∗(Y ).

R−∗(X∨) R−∗(Y ∨).

f∗

≃ ≃

(f∨)∗

Let Ωfr
∗ (X) denote the stably framed bordism of X, i.e. the bordism groups of manifolds with a

map to X and a trivialization of the stable tangent bundle (or equivalently, the stable normal
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bundle). The Pontrjagin-Thom theorem identifies these bordism groups with the stable homotopy
groups of X. We learn a neat fact:

Lemma 4.32. Let M be a closed compact d-dimensional manifold. Then M defines a canonical
class in Ωfr

d (M,−TM) = S0(M−TM ). This is the Atiyah-Poincaré dual to the Euler class for the
trivial bundle eS(0) ∈ S0(M).

Proof. The Euler class is represented by a map e : M+ → S0 taking + to the basepoint of S0 and
the entirety of M to the other point. On the other hand, consider an embedding ι : M → RN and let
ν be the normal bundle. Then Σ∞

+ Th(M ; ν) ≃ Σ−NM−TM . By the Pontrjagin-Thom construction,
the tautological class [M ] ∈ Ωfr

d (M,−TM) comes from the collapse map SN = (RN )+ → Th(M ; ν),
where (−)+ denotes the one point compactification.

The result follows from the finite-dimensional description of the evaluation and co-evaluation
map of M and M−TM [Ati61a]: we have an evaluation map SN → M+ ∧ Th(M ; ν), representing
S → M ∧M−TM . The composite SN → M+ ∧Th(M ; ν) e−→ S0 ∧Th(M ; ν) = Th(M ; ν) is precisely
the Pontrjagin-Thom collapse map. □

Now we see how Atiyah duality interacts with Smith homomorphisms on compact manifolds:

Lemma 4.33. Fix a closed compact manifold M . Given a virtual bundle V → M and a vector
bundle W → M , the Atiyah dual (smW )∨ of the Smith map

(4.34) smW : MV −→ MV⊕W

is the Smith map associated to −TM − V −W :

(4.35) smW : M−TM−V−W −→ M−TM−V .

Proof. Let us do the case V = 0; the general case follows in the same way. First we give a
space-level description of the Atiyah dual map. Consider the manifold with boundary DM (W ),
the disc bundle of W . Its tangent bundle is T (DM (W )) ∼= TM ⊕ W , where we are implicitly
pulling back W to DM (W ). Now consider an embedding µD : DM (W ) → RN . Then M , sitting as
the zero section, also gets an embedding µM : M → DM (W ) → RN .

Let νD, resp. νM be the normal bundle of µD, resp. µM . As virtual bundles,

νD ∼= RN − TM −W(4.36a)

νM ∼= RN − TM.(4.36b)

Note that νM = νD ⊕W . Now let ND(µ) be a tubular neighborhood of DM (W ) and NM (µ) the
same for M . Observe that ND(µ) and NM (µ) are diffeomorphic to µD, resp. µM .

Using the standard Pontrjagin-Thom collapse argument, the open embedding i : NM (µ) →
ND(µ) induces a map of one-point compactifications i+ : ND(µ)+ → NM (µ)+. By Proposition 2.9,
we can write this as Th(DM (W ); νD) ≃ Th(M ; νD) → Th(M ; νD). Recall that DM (W ) is
homotopy equivalent to W .

After passing to spectra, Equation (4.36) gives a map

(4.37) ΣnM−TM−W −→ ΣnM−TM .

This is the Atiyah dual map of the Smith map.
To see this is the Smith map for −TM − V − W as claimed, notice that the composite

Th(M ; νD) → Th(DM (W ); νD) → Th(M ; νD ⊕ W ) is induced by the inclusion of disk bundles,
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a.k.a. the Smith homomorphism on Thom spaces, which suspends to the Smith map on Thom
spectra. □

Lemma 4.38. Let W be a rank rW vector bundle on a closed compact d-manifold M , and
let [M ] ∈ Ωfr

d (M,−TM) be the tautological class. Then (smW )∗([M ]) ∈ Ωfr
d (M,−TM + W ) =

S0(M−TM+W ) is the Atiyah-Poincaré dual of the Euler class eS(W ) ∈ ΩrW −d
fr (M,−W ).

Proof. By Equation (4.31), smW ∗([M ]) is Atiyah-Poincaré dual to ((smW )∨)∗(eS(0)), where 0
denotes the zero vector bundle. By Lemma 4.33, (smW )∨ is still smW . By Proposition 4.5,
(smW )∗(eS(0)) is eS(W ). □

Now we can collect our prize: we show that Definitions 3.15 and 4.27 are equivalent definitions
of the Smith homomorphism. In other words, the Smith homomorphism as we first defined it is
the same as the map taking the Poincaré dual of the Euler class, as it is often described in the
literature.

Corollary 4.39. Let V → X be a virtual vector bundle and W → X be a rank rW vector bundle.
Choose a bordism class in Ωfr

d (X,V ) (i.e. (X,V )-twisted framed bordism) and let M be a closed
manifold representative of that class. Let [N ] ∈ Ωfr

d (M,−TM ⊕W ) be the Atiyah-Poincaré dual of
the Euler class eS(W |M ). Then the image of [N ] in Ωfr

d (X,V ⊕W ) is smW ([M ]).

Proof. Since M has a (X,V )-twisted framing, the map M → X Thomifies to a map f : M−TM →
XV . The Smith map is functorial, so we get a commutative square:

(4.40)
M−TM XV

M−TM⊕W XV⊕W .

f

smW |M smW

f

Furthermore, [M ] ∈ Ωfr
d (X,V ) is the f -pushforward of the tautological class in Ωfr

d (M,−TM).
The result now follows from Lemma 4.38. □

Remark 4.41. This tells us that given a bordism class represented by M , smW ([M ]) is represented
by a manifold N that is Atiyah-Poincaré dual (in the bordism homology theory) to the twisted
cobordism Euler class of M .

5. The Smith fiber sequence

In this section we extend the Smith map into a fiber sequence, which allows us to derive a long
exact sequence of bordism groups and, dually, a long exact sequence of field theories.

For any vector bundle E → X of rank r, let E also denote the classifying map X → BO(r).
Which of these two things we mean by E will be clear from context. In this section, we will write
SX(E) and DX(E) for the sphere, resp. disc bundles of E, because there will be places where it
will help to remember which base space we work over.

The following result is not new; see, e.g. [KZ18, Remark 3.14], where it is attributed to James.

Theorem 5.1. Let V,W be real vector bundles over X. Then there is a cofiber sequence in pointed
spaces:

(5.2) SX(W )V → XV → XW⊕V .
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Similarly, if V is a virtual bundle, we have a (co)fiber sequence in spectra:

(5.3) SX(W )V → XV → XV⊕W .

Proof. We will do the case where V is an actual vector bundle; the virtual bundle case is analogous.
Given an r-dimensional vector space W , we have a cofiber sequence in pointed spaces:

(5.4) S(W )+ → D(W )+ ≃ S0 → SW .

Now since Aut(W ) ∼= O(r) acts on W , we can upgrade (5.4) to a cofiber sequence of spaces with
O(r)-actions; equivalently, (5.4) is a cofiber sequence of functors BO(r) → Top∗. Pulling back to
X via the map X → BO(r) classifying W , we get a cofiber sequence of functors X → Top∗. Now
smash with SV : we get a cofiber sequence of the form

(5.5) S(W )+ ∧ SV → D(W )+ ∧ SV → SW ∧ SV ≃ SV⊕W .

This cofiber sequence is in the category of functors X → Top∗.
Since taking the colimit over X preserves cofiber sequences, it is sufficient to show that the

colimit of (5.5) over X is

(5.6) SX(W )V −→ XV −→ XV⊕W .

For the last term SV⊕W in (5.5), this follows directly from the definition of the Thom spectrum
(Definition 2.14).

For colimX(D(W )+ ∧ SV ), note that D(W )+ ≃ S0, so D(W )+ ∧ SV ≃ SV , so Definition 2.14
once again tells us the colimit is XV . It also follows that the map XV → XV⊕W on colimits is
the Smith map.

Lastly, the colimit of S(W )+ over X is the associated sphere bundle SX(W ). It follows that the
colimit of S(W )+ ∧ SV over X is equivalent to the colimit of (the pullback of) SV over SX(W ),
which is SX(W )V . □

Remark 5.7. Everything here is functorial, so given a map Y → X, we get maps between cofiber
sequences and therefore a map of long exact sequences of homotopy groups.

Corollary 5.8. Applying π∗ to the fiber sequence, we get a long exact sequence of bordism groups:

(5.9) · · · −→ Ωξk(SX(W )V ) −→ Ωξk(XV ) −→ Ωξk−r(X
V+W−r) −→ Ωξk−1(SX(W )V ) −→ · · ·

Though written as bordism groups of Thom spectra, these are also twisted ξ-bordism groups
thanks to Corollary 3.4. We work through an explicit example long exact sequence on the level of
manifold generators in Appendix A.

Remark 5.10. Suppose X = BG for a compact Lie group G and that W → X is the vector bundle
associated to an orthogonal representation of G such that G acts transitively on the unit sphere
in W . Then the sphere bundle has a particularly simple form: if Gv is the stabilizer subgroup
for a point v ∈ S(W ), then the bundle map SX(W ) → X is homotopy equivalent to the map
BGv → BG induced by the inclusion Gv ↪→ G. Thus, as we use in [DDK+24] and allude to in
Section 8, the obstruction for an invertible field theory to be in the image of the Anderson-dualized
Smith homomorphism is its restriction from manifolds with G-bundles (and some sort of tangential
structure) to manifolds with Gv-bundles (and the corresponding tangential structure).
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Remark 5.11 (Smith and Gysin long exact sequences). The reader looking at the type signatures
of (5.9) and (8.20) might notice that they resemble Gysin sequences: long exact sequences involving
(co)homology groups of the base space and total space of a sphere bundle, especially because one
of the maps can be interpreted as a product with an Euler class. And indeed, if one takes ordinary
homology or cohomology, the Smith long exact sequence becomes the Gysin long exact sequence,
as can be verified by comparing the three maps in the long exact sequence.

Thus, the Smith long exact sequence can be thought of as the generalization of the Gysin long
exact sequence to arbitrary vector bundle twists of generalized cohomology theories.

5.1. Comparison with Conner-Floyd’s long exact sequence. Suppose ξ1 : B1 → BO and
ξ2 : B2 → BO are tangential structures and η : ξ1 → ξ2 is a map of tangential structures, i.e. a
map B1 → B2 such that ξ2 ◦ η = ξ1. The map η induces a map of Thom spectra MTξ1 → MTξ2
and hence also maps of bordism groups; we will also denote both of these maps by η.

Conner-Floyd [CF66a, §16] concoct a long exact sequence

(5.12) · · · −→ Ωξ1
k

η−→ Ωξ2
k

j−→ Ωξ2/ξ1
k

∂−→ Ωξ1
k−1 −→ · · ·

where Ωξ2/ξ1
k is the bordism group of k-dimensional ξ2/ξ1-manifolds (see below).

Definition 5.13. A ξ2/ξ1-manifold is a compact manifold M equipped with the data of

(1) a ξ2-structure x on M ,
(2) a ξ1-structure x∂ on ∂M , and
(3) an identification of ξ2-structures η(x∂) ≃→ x|∂M .

Thus a ξ2/ξ1-structure makes precise the notion of a ξ2-manifold equipped with a ξ1-structured
boundary.

Conner-Floyd (ibid.) defined a notion of bordism for ξ2/ξ1-manifolds, and showed that the
corresponding bordism groups Ωξ2/ξ1

k fit into the long exact sequence (5.12),9 where j regards a
closed ξ2-manifold as having an empty boundary and ∂ takes the boundary of a ξ2/ξ1-manifold.
Like with the Smith long exact sequence, one can verify by hand that (5.12) is exact at each entry.

Where this story meets ours is that Smith long exact sequences are special cases of (5.12).
Specifically, given the data (ξ,X, V,W ) that we used to construct the Smith long exact sequence
in Corollary 5.8, let ξ1 be (S(W ), V )-twisted ξ-structure, ξ2 be (X,V )-twisted ξ-structure, and let
η be induced from the bundle map S(W ) → X. Then two-thirds of the Conner-Floyd and Smith
long exact sequences coincide, so by the five lemma all three must (homotopically, they are both
the homotopy groups of equivalent cofiber sequences of spectra):
(5.14)

· · · Ωξk(S(W )V ) Ωξk(XV ) Ωξk−r(XV+W−r) Ωξk−1(S(W )V ) · · ·

· · · Ωξ1
k Ωξ2

k Ωξ2/ξ1
k Ωξ1

k · · ·η j ∂

φ

9Conner-Floyd do not work in this level of generality, only looking at a few tangential structures; nevertheless, their
arguments go through in general. Some other examples with more tangential structures appear in [Sto68, Ale75,
Mit75, RST77, Lau00, Bun15, Deb23, TY23a, TY23b, JFY24].
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That is, the map φ from (X,V ⊕ W )-twisted ξ-bordism to ξ2/ξ1-bordism (i.e. (X,V )-twisted
ξ-manifolds with an (S(W ), V )-twisted ξ-structure on the boundary) must be an equivalence. But
we can do better: we will provide a geometric reason for this equivalence.

• The map φ is: given an (X,V ⊕W )-twisted manifold M , with structure map f : M → X,
φ(M) is the disc bundle of f∗W ; the boundary S(f∗W ) has a canonical reduction of
structure across S(W ) → X, which is to say the map f : D(f∗W ) → M → X, when pulled
back to S(f∗W ), canonically lifts across S(W ) → X. Therefore the output of φ is indeed
a ξ2/ξ1-manifold.

• Going backwards, given a ξ2/ξ1-manifold M , it is possible to construct a bordism of
ξ2/ξ1-manifolds from M to a tubular neighborhood of a manifold representative of the
Poincaré dual of the Euler class of W . The ξ1-structure on the boundary means this
Poincaré dual does not intersect ∂M ; now we have replaced M with a disc bundle, so we
can directly invert φ by restricting to the zero section.

The reader can then check that j and ∂ coincide with their analogues in the Smith long exact
sequence.

6. Periodicity of twists and shearing

The goal of this section is to provide tools for working with twists of tangential structures. We
are interested in collections of similar twists over the same base space; this provides an organizing
principle for different Smith homomorphisms that we will use many times in the next section.

6.1. Families of Smith homomorphisms.

Definition 6.1. Fix a space X, a virtual vector bundle V → X of rank rV , a vector bundle
W → X of rank rW , and a tangential structure ξ. The family of Smith homomorphisms associated
to this data is the set of Smith homomorphisms

(6.2) smW : Ωξn(XV−rV +k(W−rW )) −→ Ωξn−rW
(XV−rV +(k+1)(W−rW ))

for k ∈ Z, i.e. the Smith homomorphisms from (X,V ⊕kW )-twisted ξ-bordism to (X,V ⊕(k+1)W )-
twisted ξ-bordism.

If there is some ℓ ∈ Z and an identification of (X,V ⊕kW )-twisted ξ-structures with (X,V ⊕(k+
ℓ)W )-twisted tangential structures for all k that commutes with the Smith homomorphisms (6.2),
we say this Smith family is periodic with period the smallest positive such ℓ.

This definition may seem too specific to be very applicable, but we will soon see many examples
of periodic families.

The main new result in this section is Proposition 6.10, providing a way to calculate the
periodicity of a family of Smith homomorphisms. We also review the theory of shearing in and
around Lemma 6.18, which is a convenient way to split the Thom spectra for a wide class of
twisted bordism theories, and is an essential step in identifying the terms in Smith long exact
sequences. Our perspective on shearing follows [DY23a, §1], so see there for some more details;
see also [FH21, Bea17, Ste22, DDHM23, BLM23] for additional approaches.

Definition 6.3. Let ξ : B → BO be a tangential structure. Two-out-of-three data for ξ is the
data of:



22 DEBRAY, DEVALAPURKAR, KRULEWSKI, LIU, PACHECO-TALLAJ, AND THORNGREN

• for each pair of ξ-structured virtual vector bundles V,W → X, a natural ξ-structure on
V ⊕W ; and

• for each ξ-structured virtual vector bundle V → X, a natural ξ-structure on −V → X.

The reason for this name is that, given this data, a ξ-structure on any two of V , W , and V ⊕W

induces a ξ-structure on the third. Unfortunately, this is sometimes called a “two-out-of-three
property.”

Example 6.4. The tangential structures O, SO, Spinc, Spin, String, U, SU, and Sp all have
two-out-of-three data. Pin± and Pinc do not.

If M and N are manifolds, T (M×N) ∼= p∗
1(TM)⊕p∗

2(TN), where p1 and p2 are the projections
of M × N onto M , resp. N , so two-out-of-three data induces a ring structure on Ωξ

∗ given by
the direct product of manifolds. More abstractly, this data makes B into a grouplike E∞-space
and ξ into an E∞-map, where BO has the direct sum E∞-structure. This implies by work of
Lewis [LMSM86, Theorem IX.7.1] (see also [May77, ABG18]) that MTξ is an E∞-ring spectrum.

For R an E∞-ring spectrum, May [May77, §III.2] defines a grouplike E∞-space GL1(R),
and Ando-Blumberg-Gepner-Hopkins-Rezk [ABG+14a, ABG+14b] associate to a map f : X →
BGL1(R), which we call a twist of R, a Thom spectrum Mf ∈ ModR. The f -twisted R-homology
groups of X are by definition the homotopy groups of Mf [ABG+14a, Definition 2.27]. Homotopy-
equivalent twists induce equivalent Thom spectra. All of this generalizes our discussion around
Definition 2.14, for which R = S.

Example 6.5 (Vector bundle twists). We have been using (rank-zero virtual) vector bundles to
define twists of bordism theories, and these two notions of twist are compatible: rank-zero virtual
vector bundles V → X are classified by maps fV : X → BO, and the J-homomorphism is a map
BO → BGL1(S); then, if ξ is a tangential structure with two-out-of-three data, the unit map
e : S → MTξ induces a map e : BGL1(S) → BGL1(MTξ). The Thom spectrum for (X,V )-twisted
ξ-bordism, as we characterized it in Corollary 3.4, is naturally equivalent to the Thom spectrum
M(e ◦ J ◦ fV ) of the map

(6.6) X
fV−→ BO J−→ BGL1(S) e−→ BGL1(MTξ).

This is a combination of theorems of Lewis [LMSM86, Chapter IX] and Ando-Blumberg-Gepner-
Hopkins-Rezk (see [ABG+14a, Corollary 3.24] and [ABG+14b, §1.2]).

Theorem 6.7 (Beardsley [Bea17, Theorem 1]). There is a canonical null-homotopy of the map

(6.8) e ◦ J ◦ ξ : B → BGL1(MTξ),

and therefore e ◦ J factors through the cofiber BO/B,10 and in fact through BGL1(S)/B.

In other words, the homotopy type of the Thom spectrum for (X,V )-twisted ξ-bordism depends
only on the image of V in BO/B. And the key slogan is that the orders of elements in [X,BO/B]
control the periodicity of families of Smith homomorphisms for twisted ξ-bordism; the group
structure on [X,BO/B] uses the fact that BO/B is the cofiber of a map of grouplike E∞-spaces,
hence is also a grouplike E∞-space, so homotopy classes of maps into BO/B naturally form abelian
groups.

10Beardsley’s proof is more abstract, more general, and more powerful than this statement: see [DY23a, Lemma
1.13] for a simpler proof of just this part of Beardsley’s theorem.
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Definition 6.9 (Bhattacharya-Chatham [BC22, Definition 2.9]). The MTξ-orientation order of
a virtual vector bundle V → X, written Θ(V,MTξ), is the smallest positive integer k such that
V ⊕k is MTξ-oriented, or infinity if no such k exists.

Equivalently, Θ(V,MTξ) is the order of the classifying map of e ◦ J ◦ fV : X → BGL1(MTξ),
where fV : X → BO is the classifying map of V . By Theorem 6.7, e ◦ J ◦ fV factors through
[X,BO/B], so Θ(V,MTξ) divides the exponent of [X,BO/B]. We will use this fact below to
make quick estimates of orientation orders.

Proposition 6.10. Let V → X be a vector bundle. If ϵ := Θ(V,MTξ) is finite, the Smith
homomorphism family of (X, kV )-twisted ξ-bordism is ϵ-periodic.

This bound is not sharp, as we discuss in §6.4.

Proof. The image fV of the classifying map fV : X → BO in [X,BO/B] satisfies (k+ ϵ)fV = kfV .
Since the homotopy type of the Thom spectrum for (X,W )-twisted ξ-bordism only depends on
fW ∈ [X,BO/B], this implies that the notions of (X, kV )-twisted ξ-bordism and (X, (k + ϵ)V )-
twisted spin bordism coincide, so the Smith family {(X, kV ) : k ∈ Z} is ϵ-periodic. □

6.2. Examples of periodic Smith families. Though Proposition 6.10 seems abstract, it lends
itself readily to examples.

Example 6.11 (Unoriented bordism families are 1-periodic). Proposition 6.10 implies that when
ξ = id: BO → BO, the periodicity of a Smith family of (X, kV )-twisted unoriented bordism
divides the exponent of [X,BO/BO] = 0. In other words, all Smith families of twisted unoriented
bordism are 1-periodic.

We will see some examples of Smith families for unoriented bordism in Examples 7.4, 7.22,
and 7.39.

Example 6.12 (Oriented bordism families are 2-periodic). Because BSO is the fiber of w1 : BO →
K(Z/2, 1), and the Whitney sum formula implies w1 is a map of E∞-spaces, the cofiber BO/BSO
is equivalent to K(Z/2, 1) as grouplike E∞-spaces. Thus for all spaces X, [X,BO/BSO] is
annihilated by 2, so all Smith families for twisted oriented bordism are 2-periodic (or 1-periodic).

We will see some examples of Smith families for oriented bordism in Examples 7.6, 7.13, 7.22,
7.35, and 7.39.

Example 6.13 (Complex and spinc bordism families are 2-periodic). If V is a real vector bundle,
then V ⊕ V has a canonical complex structure (think of this bundle as V ⊕ iV ), and therefore also
a canonical spinc structure. Therefore for any map f : X → BO, 2f lifts to BU and to BSpinc.
Therefore the image of the map [X,BO] → [X,BO/BU] has exponent 2 (and likewise for Spinc),
so by Proposition 6.10 all Smith families of complex and spinc bordism are at most 2-periodic.

For examples of Smith families for spinc bordism, see Examples 7.11, 7.22, and 7.39 and
Footnote 20.

Example 6.14 (Spin bordism families are 4-periodic). BO/BSpin is not equivalent to a product
of Eilenberg-Mac Lane spaces even as an E1-space [DY23a, Lemma 1.37], so we cannot reuse the
strategy of (6.12). However, there is a cofiber sequence of grouplike E∞-spaces (heuristically, an
extension of abelian ∞-groups) [DY23a, §1.2.3]

(6.15) K(Z/2, 2) −→ BSpin/BO −→ K(Z/2, 1),
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inducing a long exact sequence on [X, –]. Since [X,K(Z/2, 2)] and [X,K(Z/2, 1)] both have
exponent at most 2 for any X, exactness implies [X,BO/BSpin] has exponent at most 4. Thus
using Proposition 6.10 we conclude that all twisted spin bordism Smith families are at most
4-periodic; in fact, Example 7.8 has period exactly 4, which implies (6.15) does not split. One
could also argue 4-periodicity similarly to Example 6.13.

If we restrict to oriented vector bundles, we can do better, as periodicity is controlled by
maps into BSO/BSpin ≃ K(Z/2, 2) (the argument is similar to BO/BSO ≃ K(Z/2, 1) from
Example 6.12). Therefore we conclude that twisted spin Smith families using an oriented vector
bundle are 2-periodic.

We will discuss several examples of 1-, 2-, and 4-periodic Smith families for spin bordism in
Examples 7.8, 7.26, 7.33, 7.35, 7.39, and 7.45.

Remark 6.16. Periodicity for spin bordism also implies periodicity for ko and KO. Bhattacharya-
Chatham [BC22, Main Theorem 1.5] generalize this periodicity of KO-orientability to higher real
K-theories EOΓ.

Example 6.17 (Families of twisted string structures). The space BSpin is 3-connected, with
π4(BSpin) ∼= Z; if one kills this homotopy group by taking the 4-connected cover, one gets a space
BString, and the corresponding tangential structure is called a string structure [ST04, Definition
5.0.3] (see also [Gia71, §1]). The generator of H4(BSpin;Z) is not the first Pontrjagin class p1,
but rather is a class λ with 2λ = p1 [Tho62, Theorem 1.2]. Thus a string structure on a spin
vector bundle is equivalent data to a trivialization of λ.

As grouplike E∞-spaces, BO/BString is an extension of BO/BSpin by BSpin/BString ≃
K(Z, 4) (see [DY23a, §1.2.4]); since BO/BSpin is itself an extension of K(Z/2, 1) by K(Z/2, 2), if X
is a 3-connected space, [X,BO/BString] ∼= H4(X;Z). Thus for a general space X, Proposition 6.10
provides no information on Smith families for twisted string bordism: it reports that the period is
at most infinity. We will nevertheless prove in Corollary 6.33 that all twisted string Smith families
have finite period, though our proof does not provide an effective computation of the period.

In special cases, though, Proposition 6.10 allows us to provide sharper bounds: for example,
because H∗(BZ/2;Z) is 2-torsion in positive degrees and [BZ/2, BO/BSpin] has exponent 4, the
long exact sequence associated to the cofiber sequence K(Z, 4) → BO/BString → BO/BSpin
implies [BZ/2, BO/BString] has exponent at most 8, implying that all Smith families of (BZ/2, V )-
twisted string bordism are at most 8-periodic; an 8-periodic example appears in Example 7.10.

6.3. Examples of twisted bordism. In this subsection, we discuss how to use the perspective
we have been developing to concretely identify examples of twists of ξ-bordism for the tangential
structures SO, Spinc, and Spin.

Lemma 6.18 (Shearing [ABG+14b, §1.2]). If a twist f : X → BGL1(Mξ) factors through
a map gV : X → BO classifying a rank-zero virtual vector bundle V → X as in (6.6), then
Mf ≃ MTξ ∧XV .

We will use this lemma as follows: first, for the four tangential structures ξ : BG → BO
mentioned above, we compute the homotopy type of BO/BG and understand the map BO →
BO/BG, to recognize when a map X → BO/BG comes from a (virtual rank-zero) vector bundle
V → X. In that situation, Lemma 6.18 describes the corresponding twisted ξ-bordism groups as
Ωξ∗(XV ), so we can use the Smith homomorphism tools we developed in this paper.
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Example 6.19 (Twists of oriented bordism). Recall from Example 6.12 that BO/BSO ≃
K(Z/2, 1); the argument there implies the map BO → BO/BSO ≃−→ K(Z/2, 1) is the first Stiefel-
Whitney class. Given a map a : X → BO/BSO, the Thom spectrum of the corresponding twist
fa : X → BGL1(MTSO) of MTSO is the bordism spectrum whose homotopy groups are the
bordism groups of manifolds M with a map ϕ : M → X and a trivialization of w1(M) − ϕ∗(a).11

Every class a ∈ H1(X;Z/2) is the first Stiefel-Whitney class of some line bundle La → X, so
for any twist f : X → BGL1(MTSO) described by a map fa : X a−→ K(Z/2, 1) ≃ BO/BSO →
BGL1(MTSO), there is a homotopy equivalence

(6.20) Mf
≃−→ MTSO ∧XLa−1.

For example, unoriented bordism is an example of such a twist: every manifold M has a canonical
map to K(Z/2, 1), given by w1(M), and w1(M) −w1(M) has a canonical trivialization. Therefore
unoriented bordism is twisted oriented bordism for the twist K(Z/2, 1) ≃−→ BO/BSO, and
Lemma 6.18 implies MTO ≃ MTSO ∧ (K(Z/2, 1))σ−1, where σ → BZ/2 ≃ K(Z/2, 1) is the
tautological line bundle; this is a theorem of Atiyah [Ati61a, Proposition 4.1].

For another example of how to use Lemma 6.18, let W denote the Thom spectrum for the
notion of bordism of manifolds M equipped with a lift of w1(M) to a class α ∈ H1(M ;Z).
The class α is equivalent to a map ϕ : M → BZ = S1, and α = ϕ∗x, where x ∈ H1(S1;Z) is
the generator; rephrased in this way, the condition that α mod 2 = w1(M) is equivalent to a
trivialization of w1(M) − ϕ∗(x mod 2). Therefore W-bordism is twisted oriented bordism for
(S1, x mod 2), and as x mod 2 is w1 of the Möbius bundle σ → S1, we learn from Lemma 6.18
that W ≃ MTSO ∧ (S1)σ−1. This is also due to Atiyah [Ati61a, §4].

Example 6.21 (Twists of spinc bordism). There is an equivalence of spaces, but not E1-spaces,
BO/BSpinc ≃ K(Z/2, 1) ×K(Z, 3) [DY23a, Proposition 1.20, Lemma 1.30], and the map BO →
BO/BSpinc is picked out by (w1, β(w2)), where β is the integral Bockstein. The fact that β(w2)
is not linear in the direct sum of vector bundles is why this decomposition of BO/BSpinc does
not respect the E1-structure.

Given data a ∈ H1(X;Z/2) and c ∈ H3(X;Z), if Mfa,c is the Thom spectrum for the
corresponding twist

(6.22) fa,c : X (a,c)−→ K(Z/2, 1) ×K(Z, 3) ≃ BO/BSpinc −→ BGL1(MTSpinc),

then the homotopy groups of Mfa,c are the bordism groups of manifolds M with maps ϕ : M → X

and trivializations of w1(M) − ϕ∗(a) and β(w2(M)) − ϕ∗(c); the proof is essentially the same
as Hebestreit-Joachim’s [HJ20, Corollary 3.3.8] (Footnote 11 still applies: what appears is the
stable normal bundle, but the characteristic classes are the same). If there is a (rank-zero,
virtual) vector bundle V → X with w1(V ) = a and β(w2(V )) = c, then Lemma 6.18 implies
Mfa,c ≃ MTSpinc ∧XV and we can invoke the Smith homomorphism on V .

For example, a pinc structure on a manifold M is a trivialization of β(w2(M)) (i.e. the spinc

condition without the trivialization of w1). Thus a pinc structure is equivalent to a twisted
spinc structure where X = BZ/2, a is the generator of H1(BZ/2;Z/2), and c = 0: as in
Example 6.19, w1(M) gives us a canonical map to BZ/2, there is a canonical trivialization of

11Strictly speaking, what one trivializes is w1(ν) − ϕ∗(a), where ν → M is the stable normal bundle, but there is a
canonical identification of w1(M) and w1(ν). This nuance will matter for spin structures.
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w1(M) − w1(M), and c = 0 means this twisted spinc condition does not modify β(w2). So
this twisted spinc condition is that β(w2) = 0 and w1 is arbitrary, i.e. a pinc structure. And
if σ → BZ/2 is the tautological line bundle, w1(σ) = a and β(w2(σ)) = 0 = c, so Lemma 6.18
implies MTPinc ≃ MTSpinc ∧ (BZ/2)σ−1, reproving a theorem of Bahri-Gilkey [BG87a, BG87b].

Other examples of twists of spinc bordism which can be realized by vector bundles include the
spin-U(2) bordism of Davighi-Lohitsiri [DL20, DL21] and the tangential structure corresponding
to Stehouwer’s alternate class AI fermionic groups [Ste22, §2.2].

Not every choice of (a, c) can be realized by a vector bundle; for example, β(w2) is always
2-torsion, but c need not be. There are also examples with 2-torsion c, as a consequence of work
of Gunawardena-Kahn-Thomas [GKT89, §2].

Example 6.23 (Twists of spin bordism). The most commonly studied examples of twisted
ξ-bordism in mathematical physics are twists of spin bordism. The story is closely analogous
to Example 6.21, with K(Z, 3) replaced with K(Z/2, 2), and the map BO → BO/BSpin ≃
K(Z/2, 1) × K(Z/2, 2) is (w1, w2). Given classes a ∈ H1(X;Z/2) and b ∈ H2(X;Z/2), the
homotopy groups of the Thom spectrum of the corresponding twist fa,b : X → BGL1(MTSpin)
are the bordism groups of manifolds M with maps ϕ : M → X and trivializations of w1(ν) − ϕ∗(a)
and w2(ν) − ϕ∗(b) [HJ20, Corollary 3.3.8], where ν → M is the stable normal bundle. Now,
unlike in Footnote 11, the distinction between TM and ν matters: w1(TM) = w1(ν), but
w2(TM) + w1(TM)2 = w2(ν), providing a formula for the nontrivial transition from tangential
to normal data. If a = w1(V ) and b = w2(V ) for a rank-zero virtual vector bundle V → X,
Lemma 6.18 implies Mfa,b ≃ MTSpin ∧XV . See [DY23a, §1.2.3] for more information.

Many commonly studied tangential structures arise as vector bundle twists of spin structures.

(1) A pin− structure is a trivialization of w2(M) + w1(M)2, with no condition on w1. Thus
this is equivalent to a trivialization of w2(ν). Like in Examples 6.19 and 6.21, we can ask
for a map ϕ : M → BZ/2 and a trivialization of w1(ν) − ϕ∗(a), where a ∈ H1(BZ/2;Z/2)
is the generator, and this is no data at all; then we also want to impose w2(ν) = 0. So pin−

bordism is the Thom spectrum of the twist fa,0 : BZ/2 → BGL1(MTSpin). The classes a
and 0 are w1 and w2 of σ → BZ/2, so we learn that MTPin− ≃ MTSpin ∧ (BZ/2)σ−1, a
splitting first written down by Peterson [Pet68, §7].

(2) A pin+ structure is a trivialization of w2(M), with no condition on w1. Switching to the
stable normal bundle, we want a trivialization of w2(ν)+w1(ν)2. Just as for pin− structures,
pick a map ϕ : M → BZ/2 and ask for a trivialization of w1(ν) − ϕ∗(a), which is no data;
then we want to trivialize w2(ν) + ϕ∗(a2). Thus pin+ bordism is the Thom spectrum of
the twist fa,a2 : BZ/2 → BGL1(MTSpin). The classes a and a2 are w1, resp. w2 of the
virtual vector bundle −σ, so Lemma 6.18 tells us MTPin+ ≃ MTSpin ∧ (BZ/2)1−σ, a
result of Stolz [Sto88, §8].12

(3) A spinc structure is data of a trivialization of w1(TM) and a class c1 ∈ H2(M ;Z) such
that c1 mod 2 = w2(TM); in this case there is no difference between w2(TM) and w2(ν).
This is a twisted spin structure where X = BU(1) = K(Z, 2), a = 0, and b is the

12As [BZ/2, BO/BSpin] has exponent 4 by Example 6.14, [1 − σ] = [3σ − 3], so the reader who prefers to avoid
virtual vector bundles can write MT Pin+ ≃ MT Spin ∧ (BZ/2)3σ−3.
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generator of H2(K(Z, 2);Z/2) ∼= Z/2. As 0, resp. b are the first and second Stiefel-
Whitney classes of the tautological complex line bundle L → BU(1), Lemma 6.18 implies
MTSpinc ≃ MTSpin ∧ (BU(1))L−2, which is known due to Bahri-Gilkey [BG87a, BG87b].

(4) A spin-Z/2k structure on a manifold M is data of a principal Z/k-bundle P → M

together with trivializations of w1(M) and w2(M) − w2(VP ), where V is the standard
one-dimensional complex representation of Z/k as rotations and VP → M is the associated
complex line bundle to P . Thus, analogous to the spinc argument above, this structure is
a twisted spin structure for X = BZ/k, a = 0, and b = w2(V ), and Lemma 6.18 implies
MT (Spin-Z/2k) ≃ MTSpin∧(BZ/k)V−2, reproving a theorem of Campbell [Cam17, §7.9].

(5) A spinh structure is data of a trivialization of w1(M) and a rank-3 oriented vector
bundle E → M and a trivialization of w2(M) − w2(E). Again tangential vs. normal
does not matter here, and one can use the same line of reasoning to show that spinh

structures are twisted spin structures for X = BSO3, a = 0, and b = w2. As these
are w1, resp. w2 of the tautological vector bundle V → BSO3, Lemma 6.18 tells us
MTSpinh ≃ MTSpin ∧ (BSO3)V−3, which is due to Freed-Hopkins [FH21, §10].

There are many more examples of vector bundle twists of spin bordism, including the examples in,
e.g., [FH21, Guo18, DL20, GOP+20, WW20a, DL21, Ste22, DDHM23]. But one can find twists
of spin bordism not described by vector bundle twists, even in physically motivated examples:
see [DY22, Theorem 4.2] for an example where X = BSU8/{±1}, with a few more examples given
in [DY23a, §3.1]. The Smith-theoretic techniques in our paper do not apply in those situations.

Example 6.24 (James periodicity as Smith periodicity). James periodicity [Jam59] is a classical
result in homotopy theory that the homotopy types of the stunted projective spaces RPnk :=
RPn/RPk (here k < n) are periodic, with periodicity dependent on n and k. There are also results
for the analogously defined stunted complex and quaternionic projective spaces CPnk := CPn/CPk

and HPnk := HPn/HPk. These periodicities can be thought of in terms of periodic Smith families
for framed bordism—or conversely, the periodicities in the previous several examples can be
thought of as generalizations of James periodicity over other ring spectra than S.

Proposition 6.10 is the engine behind our periodicity results; its key idea is that vector
bundles inducing equivalent maps to BGL1(R) have equivalent R-module Thom spectra. For
framed bordism, where R = S, we therefore should look at the image of the homomorphism
[X,BO] → [X,BGL1(S)]; following Atiyah [Ati61b, §1], this image is typically denoted J(X).
Atiyah (ibid., Lemma 2.5) proves that if V,W → X have equal images in J(X), then XV ≃ XW .13

Therefore we can obtain framed bordism Smith periodicities, or equivalences of Thom spectra, by
calculating the groups J(X). Atiyah (ibid., Proposition 1.5) shows that when X is a finite CW
complex, J(X) is a finite group, implying the existence of many framed Smith families.

For James periodicity specifically, choose F ∈ {R,C,H}. Stunted projective spaces are Thom
spectra: if L → FPk denotes the tautological (real, complex, or quaternionic) line bundle, there
is an equivalence Σ∞FPnk ≃ (FPk)(n−k)L [Ati61b, Proposition 4.3], reducing the proof of James
periodicity to the computation of the order of L in J(FPk). For example, for F = R Adams
calculates the order of L in J(RPk) in [Ada62, Theorem 7.4] and [Ada65a, Example 6.3] to be
2ϕ(k), where ϕ(k) is the number of integers s with 0 < s ≤ k and s ≡ 0, 1, 2, or 4 mod 8. Therefore

13See Held-Sjerve [HS73, Theorem 1.2] for a partial converse to this result.
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for all k and n, there is a homotopy equivalence

(6.25) Σ∞RPn+2ϕ(k)

k
≃−→ Σ∞Σ2ϕ(k)RPnk .

(and in fact this is true even before applying Σ∞ [Mah65]). Additional computations in J-
groups of FPk are done by Adams-Walker [AW65], Lam [Lam72], Federer-Gitler [FG73, FG77],
Sigrist [Sig75], Walker [Wal81], Crabb-Knapp [CK88], Dibağ [Dib99, Dib03], Obiedat [Obi01], and
Randal-Williams [RW23, §5.3].

Remark 6.26. There are many other tangential structures ξ that one can study twists of. See [SSS09,
Sat10, Sat11a, Sat11b, Sat12, SSS12, Sat15, SW15, SW18, LSW20, SY21, BC22, DY23a] for more
examples.

6.4. The bound in Proposition 6.10 is not sharp. In this subsection, we discuss ways in which
Proposition 6.10 loses information, yielding Smith families with lower-than-expected periodicity.
This in particular occurs for twisted string structures.

Proposition 6.10 estimates the periodicity of a Smith family for a tangential structure ξ and
vector bundle V → X in terms of the minimal positive integer k such that V ⊕k has a ξ-structure.
As we have seen above in Examples 6.11, 6.12, 6.13, and 6.14, k is finite in many examples of
interest, including O-, SO-, Spinc-, Spin-, and U-structures. However, k is not always finite.

Lemma 6.27.
(1) Let V → X be a real vector bundle whose rational first Pontrjagin class p1(V ) ∈ H4(X;Q)

is nonzero. Then for k ̸= 0, V ⊕k does not admit a string structure.
(2) Let V → X be a complex vector bundle whose rational first Chern class c1(V ) ∈ H2(X;Q)

is nonzero. Then for k ̸= 0, V ⊕k does not admit an SU-structure.

Proof. For part (1), if E → M is a string vector bundle, then λ(E) = 0 implies p1(E) = 0 ∈
H4(M ;Z) (since 2λ = p1), which implies the image of p1(E) in H4(M ;Q) is also 0, so it suffices
to show p1(V ⊕k) has nonzero image in Hq(X;Q) for k ̸= 0. Since p1(V ) is nonzero in this
group, it is in particular nontorsion, and the Whitney sum formula implies that in Q-cohomology
p1(V ⊕k) = kp1(V ), so it is also nonzero. Part (2) is analogous, using that the complete obstruction
for lifting from a U-structure to an SU-structure is c1 ∈ H2(BU;Z). □

There are many bundles satisfying the hypotheses of Lemma 6.27: for example, both are true
for the tautological complex line bundle over BU(1).

Definition 6.28 (Lashof [Las63, §3]). Let BU⟨6⟩ denote the 5-connected cover of BU, and let
ξ⟨6⟩ : BU⟨6⟩ → BO be the composition of the covering map BU⟨6⟩ → BU and the map BU → BO
forgetting the complex structure. We will refer to ξ⟨6⟩-structures as U⟨6⟩-structures.

A U⟨6⟩-structure induces both an SU-structure and a string structure; the former because
the 5-connected covering map always factors through the 3-connected cover, which for BU is
BSU → BU, and the latter because the map BU⟨6⟩ → BO must factor through the 5-connected
cover of BO, which is BString.

One can construct two-out-of-three data for U⟨6⟩-structures using the 5-connected covers of the
maps in the two-out-of-three data for BU. Since this data is constructed in this universal way, it
is compatible with the two-out-of-three data we have already used for U, SU, String, etc.
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Proposition 6.29 (Bauer [Bau03, Lemma 2.1]). Let ξ be a tangential structure with two-out-of-
three data admitting a map ξ⟨6⟩ → ξ compatible with two-out-of-three data. If L → BU(1) denotes
the tautological complex line bundle, then there is a homotopy equivalence

(6.30) MTξ ∧ (BU(1))+
≃−→ MTξ ∧ (BU(1))24L∗−48.

Bauer’s statement in [Bau03, Lemma 2.1] is only a corollary of this, obtained by base-changing
from MU ⟨6⟩ to tmf , but in his proof he proves the version we provide here. One can also pass
from L∗ to L by pulling back along the complex conjugation map BU(1) → BU(1).

Corollary 6.31. With ξ as in Proposition 6.29, in particular including string and SU-structures,
every Smith family for ξ-structures and a complex line bundle is at most 24-periodic. In particular,
Proposition 6.10 is not sharp.

What went wrong? In this specific case, we didn’t use all of the available information in
Proposition 6.10. Looking into Bauer’s proof, one learns that the map [BU(1), BO/BString] →
[BU(1), BGL1(MTString)] from Theorem 6.7 sends the class of L∗, which is infinite-order in
[BU(1), BO/BString], to a finite-order class in [BU(1), BGL1(MTString)]. Specifically, because
this twist came from a vector bundle, it also factors through [BU(1), BGL1(S)/BString] (see
Theorem 6.7), and the image of L∗ in this group has finite order.

Proposition 6.32. For any space X homotopy equivalent to a CW complex with finitely many
cells in each degree, let J∗ : [X,BO] → [X,BGL1(S)/BString] denote the map induced by the
J-homomorphism BO → BGL1(S) followed by taking the cofiber of BString → BO J→ BGL1(S).
Then all classes in Im(J∗) have finite order.

Corollary 6.33. Every twisted string structure Smith family over a base space X as in Proposi-
tion 6.32 has finite periodicity.

Proof of Proposition 6.32. Because BO and BGL1(S)/BString are grouplike E∞-spaces,14 one
can prove the proposition by lifting the map BO → BGL1(S)/BString to the equivalent data of a
map of spectra j/bstring : bo0 → bgℓ1(S)/bstring.15

The map j/bstring was induced from a map of grouplike E∞-spaces that factored through
BGL1(S), and therefore j/bstring factors through bgℓ1(S). The homotopy groups of this spectrum
are torsion, which follows from May’s definition [May77, §III.2] of GL1(S) and the triviality of the
positive-degree rational stable homotopy groups of the sphere [Ser53]. Thus the rationalization
bgℓ1(S) ∧ HQ ≃ 0. For any class x ∈ (bo0)0(X), if J∗(x) has infinite order, its image in the
rationalized bgℓ1(S)/bstring-cohomology of X must be nonzero: because X has finitely many cells
in each dimension, its generalized cohomology groups for any finite-type spectrum (including all
spectra appearing in this proof) are finitely generated, so infinite-order elements persist through
rationalization. Rationally, though, J∗ passes through the zero spectrum. □

Remark 6.34. One way to interpret this phenomenon is that, even though the first Pontrjagin class
p1 : BO → K(Z, 4) descends to a map p1 : BO/BString → K(Z, 4), this map does not extend to a

14It is not immediately obvious that BGL1(S)/BString is a grouplike E∞-space, but one can prove it by modifying
the argument in [DY23a, Proof of Proposition 1.20].
15The name bo0 instead of bo is because it is traditional to use bo to refer to the spectrum corresponding to the
grouplike E∞-space Z × BO, i.e. the spectrum ko.
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rationally nontrivial map out of BGL1(S)/BString. In the language of [DY23a], “a fake vector
bundle with respect to twisted string structures has a first Pontrjagin class, but a fake spherical
fibration does not.”

Remark 6.35 (O⟨n⟩-families’ periodicity and Bernoulli numbers?). Proposition 6.32 and Corol-
lary 6.33 generalize mutatis mutandis to tangential structures further up the Whitehead tower of
BO. To wit, given a natural number n, let ξ : BO⟨n⟩ → BO be the (n−1)-connected covering map.
This defines a tangential structure commonly called a O⟨n⟩-structure, and the two-out-of-three
data for BO pull back by the universal property of the (n− 1)-connected cover to define two-out-
of-three data for O⟨n⟩-structures. (Compare Definition 6.28.) Thus Definition 6.1, Example 6.5, ,
and Theorem 6.7 define vector bundle twists, non-vector-bundle twists, and Smith families for
twisted O⟨n⟩-structures just like for string structures.

For n > 4, the homotopy groups of BO/BO⟨n⟩ are not all torsion, which is downstream from
the isomorphism π4(BO) ∼= Z [Ste51, §24, §25]. Therefore, like for BO/BString, the order of a
twist in [X,BO/BO⟨n⟩] is not a particularly good estimate for the value of the corresponding
Smith family’s period. Indeed, Proposition 6.32 and Corollary 6.33 and their proofs generalize
directly from BString to BO⟨n⟩, showing all Smith families of twisted O⟨n⟩-structures have finite
order, provided they are over spaces homotopy equivalent to CW complexes with finitely many
cells in each dimension. One can also generalize this whole story to the limiting case as n → ∞,
which is the tangential structure EO → BO, i.e. a stable framing.

Our proof did not give any estimates on the orders of these Smith families, just finiteness. It
would be interesting to bound or compute these orders; for example, one could investigate the
map of Atiyah-Hirzebruch spectral sequences induced by j/bo⟨n⟩, the generalization of j/bstring in
the proof of Proposition 6.32, or generalize Bauer’s proof in [Bau03, Lemma 2.1]. We suspect that
sharp estimates for periodicity for Smith families of twisted O⟨n⟩-structures will have formulas
involving Bernoulli numbers, because of their appearance in Adams’ seminal work computing the
image of the J-homomorphism in π∗(S) [Ada63, Ada65a, Ada65b, Ada66]. We would be interested
in learning whether this is the case.

For n ≤ 16, twisted O⟨n⟩-structures as defined here recover familiar twists of familiar tangential
structures.

(0) O⟨0⟩- and O⟨1⟩-structures are canonically equivalent to O-structures, i.e. no data, and so
this story is vacuous.

(2) O⟨2⟩-structures are equivalent to SO-structures, and this story recovers the twists in
Example 6.19.

(3) π3(BO) = 0 [Car36, §IV], and BO⟨3⟩ and BO⟨4⟩ are equivalent to BSpin. This story
recovers the notion of twisted spin structure we discussed in Example 6.23.

(5) πk(BO) vanishes for k = 5 [Ste51, Remarks 24.11], k = 6 [Eck51, 3.72], and k = 7 [BS53,
Proposition 19.5], so BO⟨5⟩, BO⟨6⟩, BO⟨7⟩, and BO⟨8⟩ all coincide, and are BString.
This story recovers the standard story of twists of string bordism that we mentioned in
Example 6.17.

(9) Sati-Schreiber-Stasheff [SSS09, Definition 1] call an O⟨9⟩-structure a fivebrane struc-
ture, and in a sequel paper [SSS12, §2.3], they introduce twisted fivebrane structures
over a space X given by data of a map X → K(Z, 8). It is possible to show that
their definition is a special case of ours. Specifically, similarly to the identification
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K(Z, 4) ≃ BSpin/BString producing a map from the K(Z, 4)-twists of string bordism
to the more general group of BO/BString twists of string bordism [DY23a, (1.45)],
the characteristic class 1

6p2 : BString → K(Z, 8) induces an equivalence of grouplike
E∞-spaces BString/BO⟨9⟩ → K(Z, 8), and this equivalence leads to a map K(Z, 8) ≃
BString/BO⟨9⟩ → BO/BO⟨9⟩ carrying Sati-Schreiber-Stasheff’s twisted fivebrane struc-
tures to a subgroup of the fake vector bundle twists of fivebrane structure.

(10) Sati [Sat15, Definition 2.4] calls O⟨10⟩-structures “2-orientations.” and studies their twists
in (ibid., Definition 5.1). Like for twisted fivebrane structures, Sati’s twists are classified
by maps to K(Z/2, 9) ≃ BO⟨10⟩/BO⟨9⟩, and map to the twists we considered via the
map BO⟨10⟩/BO⟨9⟩ → BO/BO⟨9⟩.

(13) As π11(BO) = 0 [Bot59], O⟨11⟩- and O⟨12⟩-structures coincide. Sati refers to this as a
“2-spin structure” [Sat15, Definition 2.5], and in (ibid., Definition 5.2) introduces twisted
2-spin structures corresponding to K(Z/2, 10) ≃ BO⟨11⟩/BO⟨10⟩ → BO/BO⟨10⟩.

(14) As πk(BO) = 0 for k = 13, 14, and 15 [Bot59], BO⟨13⟩ = · · · = BO⟨16⟩. Sati [Sat15, Defi-
nition 3.1] names this tangential structure a ninebrane structure, and produces twisted nine-
brane structures classified by the fractional Pontrjagin class (1/240)p3 : BO⟨12⟩ → K(Z, 12)
(ibid., Definition 5.3). As in the previous cases, the map K(Z, 12) ≃ BO⟨13⟩/BO⟨11⟩ →
BO/BO⟨11⟩ sends Sati’s twists to ours.

Passing to the infinite limit, we obtain an interpretation of maps to BO/EO, i.e. to BO, as
classifying vector bundle twists of framed bordism. These twists of framed bordism are studied
in [Cru03, FSS24].

7. Examples of Smith fiber sequences

In this section, we implement the discussion from the previous section for some commonly
studied vector bundles. We find many previously studied Smith homomorphisms, and also identify
a few other well-known cofiber sequences, including Wood’s sequences, Wall’s sequence, and the
cofiber sequences associated to the Hopf maps and to transfer maps, as Smith homomorphisms
(Examples 7.13 and 7.16). We include this Pokédex of examples in part to illustrate what kinds of
Smith cofiber sequences are out there; in part to make contact with preexisting literature; and in
part to illustrate how to put theorems such as Theorem 5.1 into practice to explicitly write down
Smith cofiber sequences.

7.1. Twisting by real line bundles. Our first family of examples use the tautological line
bundle σ → BZ/2; its sphere bundle is the tautological Z/2-bundle EZ/2 → BZ/2, whose total
space is contractible. Therefore by Theorem 5.1, for any k ∈ Z, we have a cofiber sequence

(7.1) S −→ (BZ/2)k(σ−1) smσ−−→ Σ(BZ/2)(k+1)(σ−1),

where smσ is the Smith homomorphism associated to σ. When k = 0, this is especially nice: the
middle spectrum is Σ∞

+ BZ/2 ≃ S ∨ ΣBZ/2 and the map S → S ∨ ΣBZ/2 is the inclusion of the
first factor of the wedge sum, leading to a Smith isomorphism smσ : Σ∞BZ/2 ≃→ (BZ/2)σ. This
equivalence is well-known; see Kochman [Koc96, Lemma 2.6.5] for a proof.

Remark 7.2. The Thom spectrum (BZ/2)kσ is often denoted in the homotopy theory literature by
RP∞

k , so that (BZ/2)k(σ−1) can be identified with its desuspension Σ−kRP∞
k . One justification
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for this notation stems from (7.1): suspending it k times gives a cofiber sequence

(7.3) Sk −→ RP∞
k −→ RP∞

k+1,

which exhibits RP∞
k+1 as the spectrum obtained by crushing the bottom cell of RP∞

k .

Example 7.4. Smash (7.1) with MTO. As every virtual bundle has a unique MTO-orientation,
this cofiber sequence simplifies to

(7.5) MTO −→ MTO ∧ (BZ/2)+
smσ−−→ MTO ∧ Σ(BZ/2)+.

This was the first Smith homomorphism studied; it was defined and named the Smith homomor-
phism by Conner-Floyd [CF64, Theorem 26.1]. Thom’s celebrated calculation of ΩO

∗ implies that
MTO is a sum of shifts of HZ/2; on each of these copies, the Smith map (7.5) is the cap product
with the nonzero element of H1(BZ/2;Z/2).

Stong [Sto69, Proposition 5] and Uchida [Uch70] study related examples, where one smashes (7.5)
with spaces X; they identify the fiber MTO∧X and show that the long exact sequence of homotopy
groups splits. Their papers are among the earliest examples identifying the Smith long exact
sequence.16

Example 7.6. Smash (7.1) with MTSO. Since σ is not orientable, but 2σ is oriented (see
Example 6.12), we obtain a 2-periodic series of codimension-1 Smith homomorphisms between the
oriented bordism of BZ/2 and (BZ/2, σ)-twisted oriented bordism. The latter can be identified
with unoriented bordism: a (BZ/2, σ)-twisted orientation on V is data of a line bundle on L and
an orientation of V ⊕ L, which is no data at all: this identifies L ∼= Det(V )∗ ∼= Det(V ) up to a
contractible space of choices, and V ⊕ Det(V ) is canonically oriented. So every vector bundle has
a canonical (BZ/2, σ)-twisted orientation.

Therefore by Theorem 5.1 we obtain a 2-periodic sequence of codimension-1 Smith homomor-
phisms:

MTSO −→ MTSO ∧ (BZ/2)+
smσ−−→ ΣMTO(7.7a)

MTSO −→ MTO smσ−−→ ΣMTSO ∧ (BZ/2)+.(7.7b)

These maps are obtained by taking smooth representatives of Poincaré duals of w1 either of the
manifold (when the domain is ΩO

∗ ) or of the principal Z/2-bundle (when the domain is ΩSO
∗ (BZ/2)).

See [DDK+24, §IV.B] for the physical interpretation of the corresponding long exact sequence of
Anderson dual groups.

These Smith homomorphisms were first introduced by Komiya [Kom72, §5]; see also Shi-
bata [Shi73, Proposition 2.1]. See Córdova-Ohmori-Shao-Yan [COSY20, Appendix A], Hason-
Komargodski-Thorngren [HKT20, §4.4], and Fidkowski-Haah-Hastings [FHH20] for applications
of these Smith homomorphisms to physics. The splitting of the k = 0 case of (7.1) implies a
homotopy equivalence MTSO ∧BZ/2

∼=→ ΣMTO, a theorem of Atiyah [Ati61a, Proposition 4.1].

Example 7.8. Some of the coolest examples of this kind come about by smashing (7.1) with
MTSpin. As we discussed in Example 6.14, the periodicity of this family is 1, 2, or 4; a Whitney

16At the time, it was common to think of ΩO
∗ (BZ/2) as the bordism groups of manifolds M equipped with a free

involution τ , rather than manifolds with a principal Z/2-bundle; Stong and Uchida’s results are phrased in that
language. To pass between these perspectives, rewrite (M, τ) as the principal Z/2-bundle M → M/τ ; in the other
direction, take the deck transformation involution of the total space of a principal Z/2-bundle.
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sum formula calculation shows that kσ is spin iff k is a multiple of 4, and therefore this Smith
family is 4-periodic. The corresponding (BZ/2, kσ)-twisted spin bordism groups can be identified
with H-bordism for certain Lie groups H, as discussed in Example 6.23; specifically,

(1) a (BZ/2, σ)-twisted spin structure is equivalent to a pin− structure;
(2) a (BZ/2, 2σ)-twisted spin structure is equivalent to an H structure, where H = Spin×{±1}

Z/4; and
(3) a (BZ/2, 3σ)-twisted spin structure is equivalent to a pin+ structure.

Using Theorem 5.1 once again, the 4-periodic sequence of codimension-1 Smith homomorphisms
takes the form

MTSpin −→ MTSpin ∧ (BZ/2)+
smσ−−→ ΣMTPin−(7.9a)

MTSpin −→ MTPin− smσ−−→ ΣMT (Spin ×{±1} Z/4)(7.9b)

MTSpin −→ MT (Spin ×{±1} Z/4) smσ−−→ ΣMTPin+(7.9c)

MTSpin −→ MTPin+ smσ−−→ ΣMTSpin ∧ (BZ/2)+,(7.9d)

with each smσ obtained by taking a smooth representative of a Poincaré dual of w1 of the manifold
or of a associated principal Z/2-bundle, like in (7.7).

The splitting of the k = 0 Smith homomorphism in (7.1) gives us an equivalence MTSpin ∧
BZ/2 ≃ MTPin−, a theorem of Peterson [Pet68, §7].

This family of Smith homomorphisms has been discussed in the literature before. The
piece involving Spin × Z/2 and Pin− was used by Peterson [Pet68, §7] and Anderson-Brown-
Peterson [ABP69], who say that it was already “well-known.” The long exact sequence corre-
sponding to (7.9c) appears in [Gia73b, Theorem 3.1], where it is attributed to Stong. The Smith
homomorphism smσ in (7.9d) appears in Kreck [Kre84, §4]. The long exact sequence induced
by (7.9b) is used by Botvinnik-Rosenberg [BR23, §2], who also discuss (7.9c) and (7.9d). The
composition of two maps in (7.9) in a row to go between pin+ and pin− bordism appears in
Kirby-Taylor [KT90a, Lemma 7]. We work out the corresponding long exact sequences, as well as
some physical consequences for all four Smith homomorphisms in [DDK+24, §IV.C].

The full family appears more recently in work of Hambleton-Su [HS13, §4.C], Kapustin-
Thorngren-Turzillo-Wang [KTTW15, §8], Tachikawa-Yonekura [TY19, §3.1], Hason-Komargodski-
Thorngren [HKT20, §4.4], and Wan-Wang-Zheng [WWZ20, §6.7]. Ekholm [Ekh98] produces the
4-periodic sequence of tangential structures in a different setting but does not discuss the Smith
homomorphism.

Example 7.10. As we discussed in Example 6.17, for a general vector bundle V → X, there is
no guarantee that kV has a string structure. However, on BZ/2, kσ has a string structure iff
k ≡ 0 mod 8, so there is an eight-periodic family of codimension-1 Smith homomorphisms between
bordism groups of manifolds with (BZ/2, kσ)-twisted string structures for various k.17

In Example 7.8, the four twisted spin structures turned out to be equivalent to G-structures for
four Lie groups G. An analogous result is true here, but in the world of 2-groups, because the
string group is a Lie 2-group [SP11]. One can show that for each k ∈ Z/8, there is a Lie 2-group

17To prove the claimed fact about string structures on kσ, first use the Whitney sum formula to show that w1(kσ),
w2(kσ), and w4(kσ) all vanish iff k ≡ 0 mod 8. The reduction mod 2 map H4(BZ/2;Z) → H4(BZ/2;Z/2) is an
isomorphism, so the string obstruction λ(kσ) vanishes iff its mod 2 reduction does, and λ mod 2 = w4.
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G[k] and a map ξ : BG[k] → BO such that G[k]-structures on a smooth manifolds are naturally
equivalent to (BZ/2, kσ)-twisted string structures. These Lie 2-groups G[k] are extensions of
Spin × Z/2, Spin ×{±1} Z/4, and Pin± by BU(1); such extensions of a compact Lie group G by
BU(1) are classified by H4(BG;Z) [SP11, Wei22], and the G[k] 2-groups’ extension classes are λ
of various spin vector bundles over BSpin ×BZ/2, B(Spin ×{±1} Z/4), and BPin±. For example,
G[4] = String ×BU(1) sLine, where sLine is the abelian Lie 2-group of Hermitian super lines.

Example 7.11. If one smashes (7.1) with MTSpinc, one obtains a very similar story to Exam-
ple 7.6: twice any vector bundle is complex, hence spinc, and (BZ/2, σ)-twisted spinc bordism is
naturally identified with pinc bordism, as we discussed in Example 6.21. So taking Poincaré duals
of w1 as in Example 7.6 defines a 2-periodic sequence of codimension-1 Smith homomorphisms

MTSpinc −→ MTSpinc ∧ (BZ/2)+
smσ−−→ ΣMTPinc(7.12a)

MTSpinc −→ MTPinc smσ−−→ ΣMTSpinc ∧ (BZ/2)+.(7.12b)

To our knowledge, these long exact sequences first appear in Hambleton-Su [HS13, §4.C].
We also obtain an equivalence MTSpinc ∧ BZ/2 ≃→ ΣMTPinc, which was first observed by

Bahri-Gilkey [BG87a, §3]. See Shiozaki-Shapourian-Ryu [SSR17, §E.1] and Kobayashi [Kob21,
§IV] for applications in condensed-matter physics and [DYY23] for an application of a closely
related Smith long exact sequence.

Example 7.13. Pull back (7.1) along the map BZ → BZ/2, i.e. S1 = RP1 ↪→ RP∞. The sphere
bundle of σ → RP1 is not contractible: it is the double cover S1 → RP1, and its Thom space is
RP2. Therefore we obtain from Theorem 5.1 a cofiber sequence Σ∞

+ S
1 → Σ∞RP2 → Σ1+∞

+ RP1,
which is a rotated version of the multiplication-by-2 cofiber sequence

(7.14) S 2−→ S −→ Σ−1+∞RP2.

The same story applies to the complex, quaternionic, and octonionic Hopf fibrations: their cofibers
are the respective projective planes Σ−2+∞CP2, Σ−4+∞HP2, and Σ−8+∞OP2, and in each case the
map to the cofiber is a Smith homomorphism for the tautological line bundle over the respective
projective line (which is a sphere). In the case of the complex Hopf fibration, after smashing with ko
or KO, one obtains the Wood cofiber sequences [Woo63] ΣKO η−→ KO → KU and Σko η−→ ko → ku
as rotated versions of Smith cofiber sequences.

Smash (7.14) with MTSO and you obtain Wall’s cofiber sequence [Wal60, Theorem 3]

(7.15) MTSO 2−→ MTSO −→ W,

where W is the Thom spectrum whose homotopy groups are the bordism groups of manifolds with
an integral lift of w1. This follows from Atiyah’s identification of W ≃ Σ−1MTSO ∧ RP2 [Ati61a,
§4], but it is also easy to directly check that an integral lift of w1 is equivalent data to a
(RP1, σ)-twisted orientation, using that RP1 is a BZ.

It is also interesting to smash (7.14) with MTSpin; we work out the induced long exact sequence
of bordism groups in low degrees in Figure 2, and this long exact sequence also appears in [DYY23].

Example 7.16. Let π : E → B be a principal Z/2-bundle and L := E ×Z/2 R → B be the
associated line bundle. Then we have a Smith homomorphism smL : B−L → Σ∞

+ B. The fiber is
the Thom spectrum of the pullback of L to its sphere bundle; the sphere bundle is E and π∗(L) is
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trivial, so Theorem 5.1 gives us a cofiber sequence

(7.17) B−L smL−−−→ Σ∞
+ B

τ−→ Σ∞
+ E.

Lemma 7.18. The map τ in (7.17) is the Becker-Gottlieb transfer [Rou72, KP72, BG75] for π.

Proof. It suffices to work universally with the Smith cofiber sequence (BZ/2)−σ → Σ∞
+ BZ/2 →

Σ∞
+ EZ/2, i.e. (RP∞)−σ → Σ∞

+ RP∞ → S, and to show that the latter map is the transfer for
EZ/2 → BZ/2.

This transfer map admits the following description: consider the map of Z/2-spectra18 f : S →
Σ1−σ(Z/2)+, whose cofiber is S−σ. Upon taking homotopy orbits, we obtain a map fhZ/2 : Σ∞

+ RP∞ →
S, and this is the transfer map.

If G is a finite group and V ∈ RO(G), there is a natural equivalence of spectra (SV )hG ≃
(BG)V .19 And taking homotopy orbits of G-spectra preserves cofiber sequences, so the fiber of the
transfer fhZ/2 is the map (RP∞)−σ → Σ∞

+ RP∞ given by the “inclusion” of virtual representations
−σ ↪→ 0, which is the Smith homomorphism we began with. □

In the case that B is a finite CW complex, one can prove Lemma 7.18 more classically by
adapting Cusick’s calculation [Cus85, Corollary 2.11] identifying the cofibers of transfer maps for
double covers.

Remark 7.19. For another example along the lines of (7.17), Morisugi [Mor09, Theorem 1.3] shows
that the cofibers of certain Smith homomorphisms over compact Lie groups can be described
as Becker-Schultz transfer maps [BS74, §4]. And Uchida [Uch69], motivated by the study of
immersions, works out the Smith long exact sequences of a few special cases of Example 7.16,
where E = BO(k)×BO(k) and B = B(O(1)⋉ (O(k)×2)), where O(1) acts on O(k)×2 by swapping
the two factors.

Remark 7.20. The ease of modifying the Smith long exact sequence by a vector bundle twist
suggests that Example 7.16 could be generalized to some sort of twisted transfer map. The relevant
twisted transfer maps have been constructed by Kashiwabara-Zare [KZ18].

7.2. Twisting by complex line bundles. Now we consider the analogous family of examples
arising from the tautological complex line bundle L → BU(1). Its sphere bundle is EU(1) → BU(1),
which is contractible, so just like in (7.1), we have for any k ∈ Z a cofiber sequence

(7.21) S −→ (BU(1))k(L−2) smL−−−→ Σ2(BU(1))(k+1)(L−2).

Again, when k = 0, this sequence splits, yielding another Smith isomorphism Σ∞BU(1)
∼=→

(BU(1))L. This equivalence is well-known, e.g. [Ada74, Example 2.1].

Example 7.22. Let G be one of O, SO, Spinc, or U; then the tautological line bundle over BU(1)
has a G-structure, and MTG is an E∞-ring spectrum and we can make sense of G-orientations.
The G-orientation on L untwists the Thom spectrum, so smashing (7.21) with MTG has a similar

18This fact, and our argument using it, works for both Borel and genuine Z/2-spectra.
19One quick way to prove this uses the Ando-Blumberg-Gepner-Hopkins-Rezk approach to Thom spectra [ABG+14a,
ABG+14b]: both (SV )hG and (BG)V are both the colimit of the pt/G-shaped diagram whose value on pt is SV

and whose value on the morphism set G encodes the G-action on SV [ABG+14a, Theorem 1.17]. It is also possible
to prove this more classically by working with Thom spaces.
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effect to Example 7.4: the result is a cofiber sequence

(7.23) MTG −→ MTG ∧ (BU(1))+
smL−−−→ Σ2MTG ∧ (BU(1))+.

For G = U, this Smith homomorphism was first studied by Conner-Floyd [CF66b, §5].

Lemma 7.24. For G = O, SO, Spinc, or U,

(7.25) MTG ∧ (BU(1))+ ≃
∨
k≥0

Σ2kMTG.

Proof. The zeroth step is splitting off the basepoint: MTG ∧ (BU(1))+ ≃ MTG ∨ MTG ∧ (BU(1)).
As noted above, Σ∞BU(1) ≃ (BU(1))L, and we have a Thom isomorphism MTG ∧ (BU(1))L ≃
MTG ∧ Σ2(BU(1))+. We are now in the same situation as at the beginning of the proof, but
shifted up by 2, and we carry on in a similar way. □

Example 7.26. Smash (7.21) with MTSpin; the bundle L → BU(1) is oriented but not spin, so
2L is spin, and therefore we obtain a 2-periodic, codimension-2 family of Smith homomorphisms
between the spin bordism of BU(1) and (BU(1), L)-twisted spin bordism. A (BU(1), L)-twisted
spin structure is equivalent data to a spinc structure, as we discussed in Example 6.23, so this
Smith family takes the form

MTSpin −→ MTSpinc smL−−−→ Σ2MTSpin ∧ (BU(1))+(7.27a)

MTSpin −→ MTSpin ∧ (BU(1))+
smL−−−→ Σ2MTSpinc.(7.27b)

The long exact sequence arising from (7.27a) was identified by Kirby-Taylor [KT90b, Corollary
6.12, Remark 6.14]. The splitting of (7.21) when k = 0 leads to an equivalence MTSpin∧BU(1) ≃
Σ2MTSpinc, a theorem due to Stong [Sto68, Chapter XI]. We discuss the physical interpretation
of (7.27) in [DDK+24, §IV.A].

It would be interesting to study analogues of this example for pinc or pinc̃± bordism and
applications to invertible phases. Kirby-Taylor [KT90b, Remark 6.15] consider two additional
analogues of (7.27a), including a Smith long exact sequence for G-bordism where G := Spin ×{±1}

O(2). Guillou-Marin [GM80] and Stehouwer [Ste22, §4] compute G-bordism groups in low
dimensions, and G-bordism also appears in [DDHM22, DDHM23, DYY23]. In addition, Hambleton-
Kreck-Teichner [HKT94, §2] study a pin− and pinc analogue of Example 7.26.

Example 7.28. Pull back (7.21) along the inclusion Z/k ↪→ U(1), giving us Smith homomorphisms
(BZ/k)k(L−2) → Σ2(BZ/k)(k+1)(L−2), where L is the complex line bundle induced by the rotation
representation of Z/k on C. Recall from Theorem 5.1 the fiber sequence

(7.29) S(V2)V1 → XV1 → XV1⊕V2 .

For this example, we start with X = BZ/n, V2 = i∗L− 2 (for L as in the previous example and 2
the trivial complex line bundle), and V1 = k(i∗L− 2). We can compute the sphere bundle S(i∗L)
by fitting it into a pullback square:

(7.30)

S(i∗L) S(L) ≃ ∗

BZ/n BU(1).

p
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As noted above, S(L) is contractible as it is the total space of the universal fibration. Therefore, the
other three corners of the square form a fiber sequence. To compute the fiber of BZ/n → BU(1), we
notice that applying the classifying space functor to the short exact sequence Z/n ↪→ U(1) ×n−−→ U(1)
gives a fibration BZ/n → BU(1) → BU(1). Then, recognizing the map BU(1) → BU(1) as the
classifying map for a principal U(1)-bundle over U(1) with total space BZ/n, we conclude that
the fiber of the map BZ/n → BU(1) is exactly U(1). So, S(i∗L) ≃ S1.

Next, we need to pull back V1 along the projection p : S(i∗L) → BZ/n. We have that
p∗(k(i∗L− 1)) ∼=

⊕
k p

∗(i∗L). Since L is oriented as a real vector bundle, its pullbacks are as well,
so p∗i∗L is oriented when considered as a real vector bundle over S1, and thus it is the trivial
2-plane bundle.

Therefore, we recognize the Thom spectrum S(i∗L)kp∗(i∗L) as

S(i∗L)kp
∗(i∗L) ≃ (S1)k

≃ Σ2kTh(S1; 0)

≃ Σ2k(Σ∞
+ S

1)

≃ Σ2k(Σ∞S1 ⊕ Σ∞S0)

≃ Σ2k+1S ∨ Σ2kS.

Thus for each k ≥ 0 we have a Smith cofiber sequence

(7.31) Σ2k+1S ∨ Σ2kS −→ (BZ/n)k·i∗L −→ BZ/n(k+1)i∗L.

Finally, we place V1 in virtual dimension zero by taking V1 = k(i∗L− 2), to be consistent with the
other examples in this section, and obtain the cofiber sequence

(7.32) ΣS ∨ S −→ (BZ/n)k(i∗L−2) smL−−−→ Σ2(BZ/n)(k+1)(i∗L−2).

Example 7.33. Smash (7.32) with MTSpin. Like in Example 7.26, i∗L is oriented but not
spin, and 2i∗L is spin, so we obtain a 2-periodic, codimension-2 family of Smith homomorphisms
between the spin bordism of BZ/n and (BZ/n, i∗L)-twisted spin bordism. Campbell [Cam17,
§7.9] identifies the latter as bordism for the tangential structure Spin ×{±1} Z/2n, explicitly giving
us Smith cofiber sequences

ΣMTSpin ∨MTSpin −→ MT (Spin ×{±1} Z/2k) smi∗L−−−−→ Σ2MTSpin ∧ (BZ/k)+(7.34a)

ΣMTSpin ∨MTSpin −→ MTSpin ∧ (BZ/k)+
smi∗L−−−−→ MT (Spin ×{±1} Z/2k).(7.34b)

Spin ×{±1} Z/2k bordism appears in the mathematical physics literature in [Bel99, Bla00, BBC17,
Cam17, GEM19, Hsi18, Jan18, Li19, GOP+20, DDHM22, Deb21, DL21, DDHM23, HTY22,
DYY23]; the case k = 2 also appears in [Gia73a, HKT20, TY19, FH20, MV21]. The Smith
homomorphisms in (7.34) for n = 4 appear in [DDHM23]. We work out the Anderson-dualized
long exact sequences corresponding to (7.34) for the n = 3 case in [DDK+24, §IV.D], and for the
n = 4 case in [DDK+24, §IV.E].

Example 7.35. We elaborate on Example 7.33 when n = 2. The rotation representation is
isomorphic to 2σ, where σ denotes the real sign representation; we will also let σ denote the
associated bundle over BZ/2.
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Everything in Example 7.33 still works for n = 2, but now we have more options: we can start
with an odd number of copies of σ. In this case, the fiber of the Smith map is the Thom spectrum
of the Möbius bundle (σ − 1) → U(1); one can directly check that the Thom space of σ is RP2, so
the Thom spectrum of σ − 1 is Σ−1+∞RP2. Therefore we have a Smith cofiber sequence

(7.36) Σ−1+∞RP2 −→ (BZ/2)(2k−1)(σ−1) sm2σ−−−→ Σ2(BZ/2)(2k+1)(σ−1).

Out of all the examples we have studied in this section, this is the first one where the pullback of
V2 to the sphere bundle is nontrivial.

As usual, we smash (7.36) with various bordism spectra. The map sm2σ is the composition of
two iterations of smσ from (7.1), so some of the resulting cofiber sequences look familiar from that
perspective. We only discuss a few examples, but plenty more are out there.

• If we smash (7.36) withMTSO, we obtain a cofiber sequence first discussed by Atiyah [Ati61a,
(4.3)]:

(7.37) W −→ MTO sm2σ−−−→ Σ2MTO,

where W is Wall’s bordism spectrum (see Example 7.13). Here we use the identifications
ΣMTO ≃ MTSO ∧BZ/2 and W ≃ MTSO ∧ Σ−1RP2, both due to Atiyah [Ati61a, §4],
that we discussed in Examples 7.6 and 7.13, respectively.

• If we instead smash (7.36) with MTSpin, we obtain a cofiber sequence

(7.38) MTSpin ∧ Σ−1RP2 −→ MTPin± sm2σ−−−→ Σ2MTPin∓,

which was first constructed by Kirby-Taylor [KT90a, Lemma 7]. Here we have used the
identifications of pin+, resp. pin− bordism as (BZ/2, 3σ), resp. (BZ/2, σ)-twisted spin
bordism that we discussed in Example 7.8. In Figure 3, we calculate the long exact sequence
on bordism groups corresponding to (7.38) (specifically, the pin− to pin+ case) in low
degrees. See [DDHM23] for an application of a related but different Smith homomorphism
in physics.

The Smith homomorphism in (7.38) is the composition of two of the Smith homomor-
phisms in the 4-periodic collection of Example 7.8, where we go from pin+ to Spin × Z/2
to pin−, or from pin− to Spin ×{±1} Z/4 to pin+. The other two compositions, which
exchange the spin bordism of BZ/2 with Spin ×{±1} Z/4 bordism, are (7.34) for n = 2.

7.3. A few more examples. In this section, we record some examples of Smith cofiber sequences
that do not arise from real or complex line bundles.

Example 7.39. Like our previous examples over BZ/2 and BU(1), we can study Smith homo-
morphisms for the tautological quaternionic line bundle V → BSU(2). Once again, the sphere
bundle of V is contractible, as it is ESU(2) → BSU(2), so we obtain Smith cofiber sequences like
in (7.1) and (7.21):

(7.40) S −→ (BSU(2))k(V−4) smV−−−→ Σ4(BSU(2))(k+1)(V−4).

For k = 0, this sequence splits, yielding a third Smith isomorphism Σ∞BSU(2)
∼=−→ (BSU(2))V .

This equivalence is well-known, e.g. [Tam97, §2].
This bundle has a G-structure for G including O, SO, Spin, Spinc, U, SU, and Sp, and in all of

these cases, smashing with MTG produces Smith homomorphisms similar to those in Examples 7.4
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and 7.22. The proof of Lemma 7.24 still works in this setting, and for these G we obtain splittings

(7.41) MTG ∧ (BSU(2))+ ≃
∨
k≥0

Σ4kMTG.

When G = Spin, (7.41) is closely related to the splitting in Corollary B.19.
The Smith map (7.40), after smashing with MTSp, was studied by Landweber [Lan68, §5].

Example 7.42. As we mentioned in Example 7.10, Lie 2-group extensions of a compact Lie group
G by BU(1) are classified by H4(BG;Z) [SP11, Wei22]. Let String-SU(2) be the Lie 2-group
belonging to the extension

(7.43) 0 BU(1) String-SU(2) Spin × SU(2) 0

classified by λ+pH1 ∈ H4(BSpin×BSU(2);Z); here λ ∈ H4(BSpin;Z) and pH1 ∈ H4(BSU(2);Z) are
the canonical generators of H4 of a connected, simply connected, simple Lie group. (For BSpin, we
may use BSpin(n) with n ≫ 0.) Using the usual map Spin → O, we obtain a tangential structure
B(String-SU(2)) → BO; by an argument similar to the one in [DDHM23, §10.4] (see [BDDM24,
§3.3.1]), MT(String-SU(2)) ≃ MTString ∧ (BSU(2))L−4, where L → BSU(2) is the tautological
quaternionic line bundle. Thus (7.40) with k = 0, smashed with MTString, produces a Smith
isomorphism

(7.44) smL : Ω̃String
∗ (BSU(2))

∼=−→ ΩString-SU(2)
∗−4 .

As L → BSU(2) is not string, the argument for (7.41) does not apply, and indeed one can
show MT(String-SU(2)) does not split in that way. Thus this Smith isomorphism is expressing
something nontrivial about string-SU(2) bordism. To our knowledge, (7.44) is the first such
nontrivial quaternionic Smith isomorphism known.

String-SU(2) bordism appears in [BDDM24, §3] as an intermediary to other twisted string
bordism computations, and Bruner-Rognes [BR21, §1.4, Chapter 8, §12.3, Appendix D] study a
closely related object called tmf /ν.

Example 7.45. Consider the Smith homomorphisms coming from the tautological rank-3 vector
bundle V → BSO(3). Then, like in Example 7.49, the one-point compactification of so(3)/u1 is
isomorphic to SO(3)/U(1) ∼= S2. Since so(3)/u1 ⊕ R is isomorphic to the defining representation
V of SO(3), we obtain a cofiber sequence of spectra

(7.46) (BU(1))k(L−2) −→ (BSO(3))k(V−3) −→ Σ3(BSO(3))(k+1)(V−3).

We are most interested in smashing this sequence with MTSpin.20 Note that V is not spin, but
because V is oriented, 2V is spin; therefore we obtain a 2-periodic family of codimension-3 Smith
homomorphisms exchanging the spin bordism of BSO(3) and (BSO(3), V )-twisted spin bordism.
Freed-Hopkins [FH21, (10.20)] identify (BSO(3), V )-twisted spin bordism with bordism for the
group G0 := Spin ×{±1} SU(2), which is in various sources called spinh bordism, spinq bordism,

20It is also interesting to smash (7.46) with MT Spinc: in this case one obtains a codimension-3, 2-periodic family
of Smith homomorphisms exchanging the spinc bordism of BSO(3) with “spin-U(2) bordism,” i.e. bordism of the
group Spin ×{±1} U(2) ∼= Spinc ×{±1} SU(2). Davighi-Lohitsiri [DL20, DL21] introduced Spin-U(2) bordism and
calculated it in low dimensions; spin-U(2) structures also appear in Seiberg-Witten theory (e.g. [FL02, DW19])
under the name spinu structures.
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spin-SU(2) bordism, or G0 bordism.21 The fiber we’ve seen before in Example 7.26: spinc bordism
when k is odd in (7.46), and the spin bordism of BU(1) when k is even.

In summary, we have two Smith cofiber sequences

MTSpinc −→ MTSpinh smV−−−→ Σ3MTSpin ∧ (BSO(3))+(7.47a)

MTSpin ∧ (BU(1))+ −→ MTSpin ∧ (BSO(3))+
smV−−−→ Σ3MTSpinh.(7.47b)

The long exact sequence of bordism groups associated to (7.47a) appears in Theorem B.2 as an
example where one must use the cobordism Euler class to calculate the Smith homomorphism:
ordinary cohomology Euler classes give the wrong answer. Other works studying anomalies of spinh

QFTs include [FH21, WW19, WWW19, WWZ20, DL20, WW20b, BCD22, DY22, WY22, DYY23].

Remark 7.48. Freed-Hopkins [FH21] also study two unoriented analogues of spinh structures, called
pinh± or G± structures, corresponding to the groups Pin± ×{±1} SU(2). It would be interesting
to work out analogues of the Smith homomorphisms such as the ones in Examples 7.8 and 7.45
for pinh± structures and apply them to symmetry breaking; see [DK24] for some work in that
direction. Pinh± manifolds are also studied in [BC18, GPW18, LS19, AM21, DYY23].

Example 7.49. If we pull Example 7.45 back to BSU(2), we obtain a Smith long exact sequence
which makes an appearance both in [DDK+24, §IV.F] and in Appendix B.

The tautological quaternionic line bundle over BSU(2) is not isomorphic to the bundle associated
to su2 ⊕ R, where su2 is the adjoint representation of SU(2). Rather, since su2 ∼= R ⊕ su2/u1, the
map BU(1) → BSU(2) exhibits BU(1) as the unit sphere bundle in the adjoint representation of
SU(2). It follows that there is a cofiber sequence

(7.50) BU(1) −→ BSU(2) smV−−−→ Σ3(BSU(2))V−3,

where V → BSU(2) is the vector bundle associated to su(2). We claim the first map is induced by
the inclusion of a maximal torus into SU(2). To see that the sphere bundle is BU(1) as claimed,
identify SU(2) → SO(3) with Spin(3) → SO(3) and U(1) → SU(2) with Spin(2) → Spin(3); by the
third isomorphism theorem, Spin(3)/Spin(2) ∼= SO(3)/SO(2), and in Example 7.45 we identified
that quotient with the unit sphere inside R3. Therefore taking associated bundles, we end up with
BSpin(2) as the fiber in (7.50).

Since SU(2) is simply connected, BSU(2) is 2-connected and therefore all of its vector bundles
admit spin structures. Thus, when we smash (7.50) with MTSpin, we obtain a cofiber sequence

(7.51) MTSpin ∧ (BU(1))+ −→ MTSpin ∧ (BSU(2))+
smV−−−→ Σ3MTSpin ∧ (BSU(2))+.

The Thom spectrum (BSU(2))su(2) is known as James’ “quasiprojective space” (see [Jam76]). The
Anderson dual of (7.51) appears in a physics application in [DDK+24, §IV.F.].

The same Thom isomorphism applies for any MTSpin-oriented ring spectrum, such as MTSO
or ko; if we used ko instead of MTSpin in (7.51), we would obtain the cofiber sequence in (B.26).

21To the best of our knowledge, spinh structures were first studied in [BFF78] in the context of quantum gravity; they
have also been applied to Seiberg-Witten theory [OT96], index theory, e.g. in [May65, Nag95, Bär99, FH21, Che17],
almost quaternionic geometry, e.g. in [Nag95, Bär99, AM21], immersion problems [Bär99, AM21], and the study of
invertible field theories [FH21, BC18, WWW19, DY22]. See [Law23] for a review and [BM23, Hu23, Mil23, DK24]
for additional related work.
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Example 7.52. In [DDK+24, §III.B.1], we study the SBLES in twisted spin bordism corresponding
to the vector bundle 2L → BU(1), where L denotes the tautological bundle. Since 2L is spin, we
obtain a one-periodic family of Smith homomorphisms of the form

(7.53a) S(2L) −→ BU(1) sm2L−−−→ Σ4(BU(1))2L−4.

The new wrinkle is showing that S(2L) → BU(1) is homotopy equivalent to the map S2 → BU(1)
given by the inclusion of the 2-skeleton. But this is not so hard: using the long exact sequence
in cohomology associated to the cofiber sequence, one learns that if C is the cofiber of sm2L,
H̃∗(C;Z) vanishes except in degree 3, where it is Z; this characterizes S3, so the fiber, which is
the total space of the sphere bundle, is S2. Stably this splits as S∨ Σ2S, so our cofiber sequence is

(7.53b) S ∨ Σ2S −→ Σ∞
+ BU(1) sm2L−−−→ (BU(1))2L−4.

This cofiber sequence is a complexified version of (7.32). One therefore wonders what happens
if we consider it within its family

(7.54) sm2L : (BU(1))kL−2k −→ Σ4(BU(1))(k+1)L−2k−2.

If we smash with MTSpin, this is a 2-periodic family: it only matters whether k is odd or even.
For k even we reduce to (7.53b) above; for k odd, we have a very similar cofiber sequence, but the
sphere bundle does not split: we obtain for the fiber (CP1)O(−1)−2 ≃ CP2:

(7.55) MTSpin ∧ CP2 −→ MTSpinc −→ Σ4MTSpinc,

using the identification MTSpin ∧ (BU(1))L−2 ≃ MTSpinc from Example 6.23. This is the
complex analogue of (7.38).

Remark 7.56. There is a related example where one uses L ⊕ L∗ → BU(1) instead of 2L; the
corresponding long exact sequence in twisted SU-bordism was studied by Conner-Floyd [CF66b,
§§6, 14, 17]. When L is odd, the third term in the long exact sequence, corresponding to
the sphere bundle, is the bordism of manifolds with c1-aspherical structures or complex Wall
structures, first introduced by Conner-Floyd [CF66b], and also discussed by Stong [Sto68, Chapter
VIII]. Complex Wall bordism plays an important role in the calculation of ΩSU

∗ via the Adams-
Novikov spectral sequence [Nov67, §7], and has also been studied in the context of complex
orientations [Buh72, PC23, Che22].

Example 7.57. The unit sphere bundle to the tautological bundle Vn+1 → BO(n+1) is homotopy
equivalent to the map BO(n) → BO(n + 1). This is because Sn ∼= O(n + 1)/O(n), so the unit
sphere bundle can be described by the mixing construction

(7.58) Sn×O(n+1)EO(n+1) ∼= (O(n+1)/O(n))×O(n+1)EO(n+1) ∼= EO(n+1)/O(n) ∼= BO(n).

More generally, if ξn+1 : Bn+1 → BO(n + 1) is an unstable tangential structure and ξn : Bn →
BO(n) is the pullback of ξn+1 by BO(n) → BO(n + 1), the sphere bundle of ξ∗

n+1Vn+1 is the
pullback of S(Vn+1) = BO(n) by ξn+1, which is ξn. If you then pull ξ∗

n+1Vn+1 back across
Bn → Bn+1, it splits as Vn ⊕ R, so there is a Smith cofiber sequence

(7.59) Σ−1Bn−Vn
n −→ B

n+1−Vn+1
n+1 −→ Σ∞

+ Bn+1.

This cofiber sequence is due to Galatius-Madsen-Tillmann-Weiss [GMTW09, (3.3), §5]. The
spectrum ΣnBn−ξ∗

nVn
n is often denoted MTξn.
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8. Long exact sequence of invertible field theories

In this section, we turn to physical applications of the Smith fiber sequence (Theorem 5.1). In
Section 8.1 we give a brief overview of anomalies and how they relate to invertible field theories.
In Section 8.2 we review the mathematical classification of invertible field theories as Anderson
dual groups of Thom spectra. In Section 8.3 we show how the Smith fiber sequence gives rise to
a long exact sequence of invertible field theories (Corollary 8.19), which we call the symmetry
breaking long exact sequence (SBLES). Finally, we give a mathematically-oriented introduction to
our companion work [DDK+24] and a table of cross-listed examples (Table 1).

Quantum field theory is not yet completely mathematically formalized, and the applications of
the Smith homomorphism in [HKT20, COSY20, DDK+24] take place at a physical level of rigor,
not a mathematical one. As such, parts of this section are also only at a physical level of precision.

8.1. Anomalies and invertible field theories. Our homotopy-theoretic techniques in this
paper apply to the classification of invertible field theories, while the physical objects we ultimately
wish to study are (not necessarily invertible) quantum field theories with potentially anomalous
symmetries. To apply our techniques, we take the following perspective on anomalies.22

Let us first consider anomalies of symmetries. Physically, we begin with a k-dimensional
quantum system (such as a quantum field theory) with partition function Z, as well as a symmetry
group G, which is usually a compact Lie group. We can couple the theory to a background G-gauge
field A. Then, put simply, the G symmetry is anomalous if the partition function evaluated on
a pair of a closed k-manifold M and a background gauge field with connection A is not gauge
invariant but rather transforms with a phase. That is, under a gauge tranformation A 7→ Ag, the
partition function transforms as

(8.1) Z(M,Ag) = eiα(M,A,g)Z(M,A),

where eiα(M,A,g) is a phase factor that cannot be cancelled by local counter-terms.
Mathematically, this means that when we evaluate the theory on a k-dimensional manifold M

with a G-principal bundle with connection A, the partition function is a section of a non-trivial
line bundle. The non-triviality of the line bundle is the anomaly.

To relate anomalies to invertible field theories, we use the notion of anomaly inflow: under mild
hypotheses, and in all known cases, there is a local counterterm eiω(K,A) defined in one dimension
higher, so that if K is a (k+ 1)-dimensional manifold with boundary and ∂K = M (and A extends
into K), then

(8.2) eiω(K,Ag)−iω(K,A) = eiα(M,A,g).

We may interpret eiω(K,A) as the partition function of a k + 1-dimensional invertible field theory
with G symmetry. It is invertible, as stacking with the e−iω(K,A) theory gives the trivial theory.
Furthermore, Z naturally lives at the boundary of this invertible theory, and together they are
gauge invariant by Equation (8.2). Therefore we can interpret the existence of the G-anomaly,
which is the failure of Z(M,A) to be gauge invariant, as the statement that Z is a boundary theory
of a non-trivial (k + 1)-dimensional invertible field theory, which we call the bulk theory. This

22There are many things called “anomalies” in quantum field theory, and we are not claiming our definitions or
approach is universal. Instead, our application is to a broad class of anomalies.
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perspective, formulated mathematically by Freed-Teleman [FT14], is the link between anomalies
and invertible field theories; see also Freed [Fre23].

We also study anomalies of families of field theories parameterized by a topological space X.
An anomaly of an X-family of field theories indicates a failure of the partition function to be
consistently defined over the space of background X-fields.23 In this case, the bulk theory is an
one-dimension-higher X-family of invertible field theories. More generally, we can ask for X to be
a space with G-action, and consider anomalies of G-equivariant X-families field theories. We refer
the reader to [DDK+24, §II.A] and the references therein for more detail.

8.2. Invertible field theories and Thom spectra. Here we review the mathematical classifica-
tion of (reflection-positive) invertible theories. First we must relate symmetries and tangential
structures.

8.2.1. Symmetries and tangential structures. For any tangential structure in the sense of Defini-
tion 2.3, there is a notion of topological field theory. Given a field theory whose anomaly we want
to investigate, which tangential structure ξ do we want our invertible field theories to carry?24

The answer typically depends only on the symmetries of our field theory, not on its field content
(the anomaly itself—which invertible field theory we get out of all the invertible field theories on
ξ-manifolds—uses more information from the theory). We follow Freed-Hopkins [FH21, §2], who
take the stance that since we typically study QFTs in Minkowski signature but invertible field
theories are Euclidean, we should Wick-rotate the group of symmetries to define our tangential
structure.

Assume the dimension n is at least 2. Let I(1, n− 1) be the isometry group of Minkowski space,
and let I(1, n − 1)↑ ⊂ I(1, n − 1) be the subgroup of isometries that preserve the direction of
time. The group of symmetries of our theory is a Lie group H(1, n− 1) with a map ρ(n) : H(1, n−
1) → I(1, n − 1)↑. Let K := ker(ρ(n)); we assume K is compact. Assume that the normal
subgroup of translations R1,n−1 ⊂ I(1, n− 1) lifts to a normal subgroup of H(1, n− 1), and let
H(1, n− 1) := H(1, n− 1)/R1,n−1. Now:

(1) Let O(1, n− 1)↑ := O(1, n− 1) ∩ I(1, n− 1). There is an exact sequence

(8.3a) 0 −→ K −→ H(1, n− 1) −→ O(1, n− 1)↑.

(2) This exact sequence can be extended to an exact sequence of complexifications:

(8.3b) 0 −→ K(C) −→ H(n,C) −→ O(n,C),

(3) and then to compact real forms of these complex Lie groups:

(8.3c) 0 −→ K −→ H(n) −→ O(n).

The tangential structure that the anomaly field theory has is ξ : BH(n) → BO(n). Just as it is not
a priori clear that the anomaly field theory extends to dimension n+1, it is also not necessarily clear
that ξ extends to an (n+ 1)-dimensional unstable tangential structure, but Freed-Hopkins [FH21,

23Typically in physics, X carries more structures, such as a smooth structure or Riemannian metric. The anomalies
we consider here will not depend on those structures.
24For non-topological invertible field theories, there is also the question of enriching the tangential structure to
something more geometric, such as including the data of a Riemannian metric or a connection for a principal bundle.
At the level of invertible field theories this is accounted for by working with Anderson duals of bordism spectra, so
our calculations include these geometric modifications.
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Theorem 2.19] prove that it does in nearly every situation one might want, as we discuss below.
In this paper, we will always be in the situation that ξ extends to (n+ 1)-manifolds.

In practice, one can often use an idea of Stehouwer [Ste22] to compute ξ using the formalism of
fermionic groups (sometimes called supergroups).

Definition 8.4 (Benson [Ben88, §7]). A fermionic group is a topological group G together with
data of:

• a central element squaring to 1, which we call fermion parity and denote −1 ∈ G, and
• a group homomorphism θ : G → Z/2 such that θ(−1) = 0.

We think of θ as defining a Z/2-grading on G, and we refer to elements of G as odd or even.
The even elements form a subgroup G0 ⊂ G, which is itself a fermionic group with θ trivial.

Given two fermionic groups G and H, one can take their fermionic tensor product (ibid.)
G⊗H := (G×H)/⟨(−1,−1)⟩. This is a fermionic group, with central element (−1, 1) = (1,−1)
and grading θ((g, h)) equal to the sum mod 2 of the gradings on g and on h.

Fermionic groups describe symmetries of theories with fermions: −1 acts by fermion parity,
which may mix nontrivially with other symmetries in the theory; and θ describes whether elements
of G act unitarily or antiunitarily. Given a fermionic group G, Stolz [Sto98, §2.6] defines a
tangential structure ξG : B → BO as follows: let H be the even subgroup of the fermionic tensor
product Pin+ ⊗ G; here, to make Pin+ into a fermionic group, we use the usual −1, and the
grading homomorphism is π0 : Pin+ → O(1) ∼= Z/2. Then B := BH, and the map ξ : B → BO is
induced from the usual map Pin+ → O and the constant map to the identity on the quotient of
G0 by fermion parity. See [Ste22] for several examples of computations of tangential structures
from data of the symmetries of a theory.

Tangential structures can encode not only the symmetries of quantum systems, but also the
parameter space. For example, S1-families of fermionic theories with an internal unitary Z/2
symmetry may be described using the tangential structure BSpin ×BZ/2 × S1 → BSpin → BO.
There are also variations and twists: if Z/2Z acts on S1, then we replace BZ/2Z × S1 with
the homotopy quotient S1/(Z/2Z). To encode a time-reversal symmetry T with T 2 = (−1)F ,
we replace BSpin × BZ/2 with BPin+. Note that the process of describing the symmetry and
parameter space of a field theory can be subtle. See [DDK+24] for more examples of converting
the data of symmetries and parameter spaces to tangential structures.

8.2.2. Invertible field theories and bordism invariants. At this point in the story we have turned
the physics question of determining the possible anomalies of a theory with a given collection
of symmetries into the mathematical question of classifying (reflection-positive) invertible field
theories for a fixed tangential structure ξ : B → BO, with B = BG.

In this subusbsection we discuss how this classification question reduces to a well-studied
problem in algebraic topology: the computation of groups of bordism invariants. See Freed [Fre19,
Lectures 6–9] and Galatius [Gal21] for more detailed reviews of this story.

A field theory Z : Bordξn → C is invertible if there is some other theory Z−1 such that Z⊗Z−1 is
the trivial theory [FM06, Definition 5.7]. This tensor product is evaluated “pointwise,” meaning that
(Z⊗Z−1)(M) := Z(M) ⊗Z−1(M), where M is an object, morphism, etc. in the bordism category;
therefore invertibility implies that Z, as a functor, factors through the Picard sub-k-groupoid
of units C× inside C, meaning that if X is any object, morphism, or higher morphism in Bordξn,
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Z(X) is invertible: ⊗-invertible if X is an object, and composition-invertible if X is a (higher)
morphism. If X is invertible, then we must have data of an isomorphism Z(X−1)

∼=−→ Z(X)−1

because Z is symmetric monoidal; thus, even if X is not invertible, we can heuristically define
Z(X−1) := Z(X)−1 as if X−1 existed. These definitions are compatible as X varies, in the sense
that Z extends to the Picard k-groupoid completion Bordξn of Bordξn: the Picard k-groupoid defined
by formally adding inverses to all objects, morphisms, higher morphisms, etc. of Bordξn. Thus, an
invertible field theory Z : Bordξn → C is equivalent data to a morphism of Picard k-groupoids

(8.5) Z : Bordξn −→ C×.

So to compute deformation classes of invertible field theories, we should compute the groups of
symmetric monoidal functors between these Picard k-groupoids, modulo natural isomorphisms.
The homotopy theory of Picard groupoids embeds in the usual stable homotopy category: if D is
a Picard groupoid, the geometric realization |ND| of the nerve of D has an E∞-structure arising
from the monoidal product on D, and the Picard condition implies |ND| is grouplike. Therefore it
is equivalent data to a connective spectrum |D|, which we call the classifying spectrum of D. This
turns out to be a complete invariant of Picard k-groupoids.

Theorem 8.6 (Stable homotopy hypothesis (Moser-Ozornova-Paoli-Sarazola-Verdugo [MOP+22])).
There is an equivalence of ∞-categories between the ∞-category of Picard k-groupoids and the
∞-category of spectra whose homotopy groups vanish outside of [0, k].

Remark 8.7. For k = 1, the stable homotopy hypothesis was originally a folklore theorem: proofs
or sketches appear in [BCC93, HS05, Dri06, Pat12, JO12, GK14]. For k = 2, the stable homotopy
hypothesis was proven by Gurski-Johnson-Osorno [GJO19].

Therefore we need to compute the group of homotopy classes of maps of spectra |Bordξn| → |C×|.
A reasonable first step would be to identify these two classifying spectra. For the domain,
the Picard k-groupoid completion of the bordism category, this is due to Galatius-Madsen-
Tillmann-Weiss [GMTW09] and Nguyen [Ngu17] for the bordism (∞, 1)-category and to Schommer-
Pries [SP17] for more general (∞, k)-categories.

Theorem 8.8 (Galatius-Madsen-Tillmann-Weiss [GMTW09], Nguyen [Ngu17], Schommer-Pries [SP17]).
If Bordξn denotes the (∞, k)-category of bordisms of ξn-structured manifolds in dimensions n −
k, . . . , n, then there is a natural equivalence |Bordξn| ≃ ΣkMTξn.

Here MTξn is a Madsen-Tillmann spectrum as in Definition 2.17.
Freed-Hopkins-Teleman [FHT10] then applied this result to classify invertible field theories

in terms of MTξn. To do so, we need to determine |C×|, which depends on one’s choice of
C—Freed-Hopkins [FH21, §5.3] argue that the (shifted) character dual of the sphere spectrum
ΣnIC× is a universal choice, and that a related object called the (shifted) Anderson dual of the
sphere spectrum Σn+1IZ should appear when one wants to classify deformation classes of invertible
field theories. For applications to anomalies, we are interested in deformation classes, so use
Σn+1IZ.

The Anderson dual IZ is characterized by its universal property that for any spectrum X , there
is a short exact sequence [And69, Yos75]

(8.9) 0 Tors(Hom(πn+1X ,C×)) [X ,Σn+2IZ] Hom(πn+2X ,Z) 0.φ ψ
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We are interested in anomalies of unitary QFTs, hence we expect the anomaly theories to satisfy
the Wick-rotated analogue of unitarity: reflection positivity. Freed-Hopkins [FH21, §7.1, §8.1]
define reflection positivity for invertible TFTs using Z/2-actions on Bordξn and C,25 and prove two
key results allowing for a complete classification of reflection positive invertible TFTs following
their definition.

Theorem 8.10 (Freed-Hopkins [FH21, Theorem 2.19]). If n ≥ 3 and ξn : BH(n) → BO(n) is
a tangential structure arising from a representation ρ : H(n) → O(n) with H(n) a compact Lie
group and SO(n) ⊂ Im(ρ), then there is a stable tangential structure ξ : BH → BO such that ξn is
the pullback of ξ along BO(n) → BO.

Theorem 8.11 (Freed-Hopkins [FH21, Theorem 5.23], Grady [Gra23]). Suppose ξ : BH(n) →
BO(n) satisfies the hypotheses of Theorem 8.10. The abelian group of deformation classes of
n-dimensional, reflection positive invertible field theories on manifolds with ξ-structure is naturally
isomorphic to [MTξ,Σn+1IZ].

So after we require reflection positivity, the classification changes from Madsen-Tillmann
bordism to bordism in the usual sense, which is easier to calculate.

Remark 8.12. There are some other approaches to the classification of invertible topological
field theories, due to Yonekura [Yon19], Rovi-Schoenbauer [RS22], and Kreck-Stolz-Teichner
(unpublished).

Theorem 8.11 has a nice interpretation from the point of view of anomalies. Using the defining
property of IZ, there is a short exact sequence

(8.13) 0 Tors(Hom(Ωξn+1,C×)) [MTξ,Σn+2IZ] Hom(Ωξn+2,Z) 0,φ ψ

where Tors(–) denotes the torsion subgroup. The first and third terms in this short exact sequence
have anomaly-theoretic interpretations.

• The quotient Hom(Ωξn+2,Z) is a free abelian group consisting of characteristic classes of
(n+ 2)-dimensional ξ-manifolds; under this identification, the map ψ sends an anomaly
field theory to the corresponding anomaly polynomial, which is one degree higher, such as
Chern-Simons and Chern-Weil forms. This data is visible to perturbative techniques, and
is sometimes called the local anomaly.

• The subgroup Tors(Hom(Ωξn+1,C×)) is identified with the torsion subgroup of [MTξ,Σn+2IZ];
these are the reflection positive invertible field theories which are topological. Such field
theories’ partition functions are bordism invariants, and the identification of these reflec-
tion positive invertible TFTs with Tors(Hom(Ωξ

n+1,C×)) assigns to a reflection positive
invertible TFT its partition function. Typically this data is invisible to perturbative
methods and is called the global anomaly.

Yamashita-Yonekura [YY23] and Yamashita [Yam23] relate the short exact sequence (8.13) to a
differential refinement of Map(MTξ,Σn+2IZ).

25The definition of reflection positivity for extended not-necessarily-invertible TFTs is still open: see [JF17, MS23,
FHJF+24, Ste24] for work in this direction.
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8.3. Long exact sequence of invertible field theories. Just as the map of spectra of Section 3.2
induces a Smith homomorphism on bordism, it dually induces a map of invertible field theories.
Explicitly, we obtain this by mapping into the Anderson dual and taking homotopy groups. As in
Section 3.1, consider a topological space X, a tangential structure ξ : B → BO, a virtual bundle
V → X, and a vector bundle W → X of rank r. As we discuss in the end of Section 8.2.1, the
tangential structure encodes both symmetries of the theory as well as the parameter space.

Definition 8.14. The defect anomaly map, generalized from [HKT20] section 4.2, is the map

(8.15) Ωk−r
ξ (XV+W−r) DefW−−−−→ Ωkξ (XV )

of invertible field theories induced by the zero section map.

Physically, we interpret Ωkξ (XV ) to be classifying anomalies of QFTs in dimension k − 1 with
symmetry according to a (X,V )-twisted ξ-structure. The group mapping in, Ωk−r

ξ (XV+W−r),
classifies the anomalies of defect theories in dimension k − r− 1. These defect theories are created
from the bulk theory, physically, by setting a non-trivial boundary condition on a symmetry-
breaking order parameter, which corresponds to a section of the vector bundle W . See [DDK+24,
§III.A] for further explanation.

For clarity, we begin a running example.

Example 8.16. Recall the Z/2 family of examples from Example 7.8 and specifically Equa-
tion (7.9d):

(8.17) MTPin+ smσ−−→ ΣMTSpin ∧ (BZ/2)+.

Here, we take ξ according to spin bordism and twist with the tautological line bundle W = σ over
X = BZ/2. We take V = 3σ and apply the results of Section 6 to simplify (i.e., we use the that
4σ is spin). The corresponding map on invertible field theories is

(8.18) Ωk−1
Spin×Z/2

Defσ−−−→ ΩkPin+ .

Physically, we begin with a field theory with a pin+ symmetry; that is, a fermionic theory with
an additional time reversal symmetry T that squares to fermion parity: T 2 = (−1)F . We require
the physical assumption that there is a Z/2-odd bosonic operator ϕ such that the theory is gapped
when the theory is deformed by ϕ. One example is the Majorana mass term for 2 + 1D Majorana
fermions (see [DDK+24, §III.A.1]). We can define the theory on any manifold M with a pin+

structure P : M → BPin+ on its tangent bundle. If we choose generic configuration for the ϕ field,
i.e., choose a section of the tautological line bundle P ∗σ, we arrive at an effective theory whose
excitations are localized at the zero set of ϕ. We view this as a theory in one dimension lower,
which is called a domain wall theory. Note that the bordism class of the zero set of ϕ is precisely
the image of [M ] under smσ in (8.17). The domain wall theory no longer has the symmetry of
the bulk theory: instead, it is a fermionic theory with a unitary internal symmetry U squaring
to 1; i.e. it has Spin × Z/2 tangential structure. We direct the reader to [DDK+24, §III.A] and
[HKT20, §3.1] for more details.

In this context, anomaly matching refers to the process of identifying pairs of preimages and
images of anomaly classes under the defect anomaly map DefW . To perform anomaly matching,
we must understand not only the two groups classifying the possible bulk and defect theories, but
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Smith fiber sequences SBLES
Example 7.26 [DDK+24, §IV.A]
Example 7.6 [DDK+24, §IV.B]
Example 7.8 [DDK+24, §IV.C]
Example 7.33 [DDK+24, §IV.D & E]

Examples 7.39 and 7.45 [DDK+24, §IV.F]

Table 1. A cross-list of Smith fiber sequences with the corresponding symmetry
breaking long exact sequences (SBLES) that we study in [DDK+24, §IV].

also the kernel and cokernel of the map DefW . In some cases, one may deduce that information
from an understanding of explicit bordism generators, but in general this approach is difficult. To
address this question, we derived the map of spectra and identified its fiber, forming the Smith
fiber sequence of Section 5. Now, just as for bordism, we may form a long exact sequence.

Corollary 8.19. Applying IZ to the cofiber sequence (5.3), we obtain the following long exact
sequence of Anderson-dualized bordism groups, or in light of Theorem 8.11, groups of invertible
field theories:
(8.20)

· · · −→ Ωk−r
ξ (XV+W−r) DefW−−−−→ Ωkξ (XV ) ResW−−−→ Ωkξ (SX(W )V ) IndW−−−→ Ωk−r+1

ξ (XV+W−r) −→ · · ·

This long exact sequence is our mathematical model for the symmetry-breaking long exact
sequence (SBLES) of [DDK+24] (see Table 1). In addition to the defect anomaly map DefW
defined in Definition 8.14, we call ResW the residual anomaly map and IndW the index anomaly
map.

Ωk−1
Spin×Z/2 ΩkPin+ ΩkSpin

−1 0 0 Z

0 Z Z/2 0

1 0 0 Z/2

2 (Z/2)2 Z/2 Z/2

3 (Z/2)2 Z/2 Z

4 Z ⊕ Z/8 Z/16 0

Defσ Resσ

Figure 1. Long exact sequence of field theories associated to Equation (7.9d).
Observe that all maps in low degrees are determined by exactness. This long
exact sequence also appears in [DDK+24, §IV.C]
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Example 8.21. In degree k = 4, there is a map of invertible field theories

(8.22) Ω3
Spin×Z/2

∼= Z ⊕ Z/8 Defσ−−−→ Z/16 ∼= Ω4
Pin+ .

The Z/16 classifies anomalies of Majorana fermions in 2 + 1 dimensions. An associated domain
wall theory often has 1 + 1d chiral fermion modes. To answer the question of what particular
chiral fermions can live on the domain wall, we need to identify the map Defσ in (8.22). To do so,
we turn to the long exact sequence of invertible field theories, which we draw out in Figure 1.

By exactness, we deduce that the defect matching map in degree k = 4 sends (a, b) ∈ Z⊕Z/8 to
−a+ 2b ∈ Z/16. This matches with the physical computation in [HKT20, §3.1], and its physical
significance is discussed further there and in [DDK+24, §III.C.3].

As a computational tool, the long exact sequence allows us to determine the defect matching maps
with ease. Moreover, the other two maps in the SBLES (8.20) also have physical interpretations.
The residual anomaly map classifies the obstruction to gapping a QFT after symmetry breaking,
as we explain in [DDK+24, §III.B], while the index anomaly map generalizes the relationship
between Berry phases and the ground-state degeneracy in 0 + 1D systems; see [DDK+24, §III.C].

Appendix A. The Long Exact Sequence in Bordism

In this appendix, we explicitly describe the Smith long exact sequence of bordism groups and
work through an example. As in Section 5, let (X, ξ) be a stable tangential structure, let V be a
virtual bundle over X, and let W be a real vector bundle over X of rank r. The corresponding
long exact sequence of bordism groups of Corollary 8.19 is
(A.1)

· · · → Ωξk(SX(W )p∗V ) Ωξk(XV ) Ωξk−r(XV+W−r) Ωξk−1(SX(W )p∗V ) → · · ·p smW δ

Here, p : SX(W ) → X is the projection, smW is the Smith homomorphism, and δ is the connecting
map. In this section, we will be explicit about taking the pullback p∗V of V to SX(W ).

Starting from the left, Ωξk(SX(W )p∗V ) is the bordism group of k-manifolds M equipped with
a map f : M → SX(W ) together with a ξ-structure on TM ⊕ f∗(p∗V ). Next, Ωξ

k(XV ) is the
bordism group of k-manifolds equipped with a map to X with the analogous twisted ξ-structure,
and Ωξ

k−r(XV+W−r) is the bordism group of (k − r)-manifolds N equipped with a map g to X
with a ξ-structure on TM⊕g∗V ⊕g∗W . Note that the Smith homomorphism lowers the dimension
by r and twists the tangential structure condition by W .

Now we describe each map at the level of manifolds.
(1) p: Let M be a closed k-manifold equipped with a map h : M → SX(W ) such that

TM ⊕ h∗V has a ξ-structure, so that M represents a bordism class in Ωξ
k(SX(W )p∗V ).

The image of M under p is represented by the same manifold M with an (X,V )-twisted
ξ-structure given by the composition with the projection. That is, equip M with the map
M

h−→ SX(W ) p−→ X.
(2) smW : Now let M be a closed k-manifold equipped with a map f : M → X such that

TM ⊕ f∗V has a ξ-structure. Let s : M → W be a generic section, which is transverse to
the zero section s0. Then, the intersection N := s(M) ⋔ s0(M) is a (k − r)-dimensional
manifold. Let g be the composite g : N ↪→ M

f→ X. Since the normal bundle ν to N

satisfies ν ∼= f∗W |N = g∗W , TM |N ∼= TN ⊕ ν ∼= TN ⊕ g∗W , and hence N carries an
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(X,V + W )-twisted ξ-structure coming from the (X,V )-twisted ξ-structure on M . We
have smW : M 7→ N .

(3) δ: This is the connecting map in the long exact sequence. Start with a closed k−r-manifold
N with an (X,V +W )-twisted ξ-structure given by, as above, g : N → X and a ξ-structure
on TN ⊕ g∗V ⊕ g∗W . Consider the sphere bundle SN (g∗W ) of W restricted to N : it has
a map to SX(W ) given by inclusion.

We claim that SN (g∗W ) is the image under δ of N , but it remains to show that
SN (g∗W ) has the appropriate tangential structure. This will be a corollary of a general
splitting result of tangent bundles of sphere bundles.

Lemma A.2. For any vector bundle π : V → B, there is an isomorphism of vector bundles,
canonical up to a contractible space of choices,

(A.3) TS(V ) ⊕ R
∼=−→ π∗(TB) ⊕ π∗(V ).

Proof. Choose a metric and connection on V ; both of these are contractible choices. For
any fiber bundle π : E → B of smooth manifolds, the choice of connection splits TE as a
direct sum of the horizontal subbundle, which is isomorphic to π∗(TB), and the vertical
tangent bundle TvE = ker(π∗), which when pulled back to a fiber is the tangent bundle of
that fiber.

Let ν be the normal bundle of S(V ) ↪→ V . Then there is a canonical isomorphism
TvS(V ) ⊕ ν ∼= π∗(V ), which is a parametrized version of the standard isomorphism
TSn ⊕ νSn↪→Rn+1 ∼= Rn+1. Combining this with the previous paragraph,

(A.4) TS(V ) ⊕ ν ∼= π∗(TB) ⊕ TvS(V ) ⊕ ν ∼= π∗(TB) ⊕ π∗(V ),

and the fiberwise outward unit normal vector field trivializes ν. □

If we now analyze the vertical and horizontal pieces of the tangent bundle to SN (g∗W ),
we find that T (SN (g∗W )) ⊕R ∼= p∗TN ⊕ p∗g∗W . Then, we can pull back the relationship
describing the tangential structure of N to see that p∗TN⊕p∗g∗W ⊕p∗g∗V over SN (g∗W )
has a ξ-structure. So, T (SN (g∗W )) ⊕ R ⊕ p∗g∗V has a ξ-structure, and thus S(g∗W ) has
a (SX(W ), p∗V )-twisted ξ-structure.

Let us now go through the long exact sequence of bordism groups for the Smith map 7.38. In
this case, the Smith homomorphism is a map

(A.5) sm2σ : ΩPin−

k −→ ΩPin+

k−2

between the bordism group of k-dimensional pin− manifolds to the bordism group of (k − 2)-
dimensional pin+ manifolds, described by sending a pin− manifold M to any closed submanifold
N whose homology class is Poincaré dual to w1(M)2. Alternatively, in view of Definition 3.7,
we could define sm2σ by choosing a section s of the pullback of 2σ to M transverse to the zero
section, then letting N be the zero locus of s. Recall from Example 6.23 that a pin− structure is a
trivialization of w1(M)2 + w2(M), while a pin+ structure on M is equivalent to a trivialization
of w2(M). Equivalently, a pin− manifold M admits a spin structure on TM ⊕ det(M), while a
pin+ manifold M admits a spin structure on TM ⊕ 3 det(M). These conditions mean that if N is
Poincaré dual to w1(M)2 inside a pin− manifold M , then N acquires a pin+ structure.

The third set of groups in this long exact sequence corresponds to the homotopy groups of
the fiber, MTSpin ∧ Σ−1RP 2. By Pontrjagin-Thom, these are the groups Ω̃Spin

∗+1 (RP2): bordism



THE SMITH FIBER SEQUENCE AND INVERTIBLE FIELD THEORIES 51

groups of spin manifolds X equipped with maps f : X → RP2, modulo the subgroup for which
f is null-homotopic. Equivalently, we may consider the twisted bordism groups ΩSpin

∗ (RP1, σ).
Elements of this group are represented by manifolds N with maps f : N → RP1 such that TN⊕f∗σ

is spin.
We next describe the other two maps that appear alongside sm2σ in the bordism long exact

sequence and provide several lemmas that help us understand the geometry.

Definition A.6. Define a map p : ΩSpin
∗ (RP1, σ) → ΩPin−

∗ by sending (N, f : N → RP1) to N .

Lemma A.7. If N has an (RP1, σ)-twisted spin structure, then N has a canonical pin− structure
(so the map p lands in pin− bordism as claimed).

Proof. The orientation of TN ⊕ f∗σ is equivalent data to an isomorphism Det(TN)
∼=→ f∗σ, so we

obtain a spin structure on TN ⊕ Det(TN), i.e. a pin− structure. □

The third map in the long exact sequence is the connecting map δ : ΩPin+

∗ → ΩSpin
∗+1 (RP1, σ).

The map δ sends a pin+ manifold M to the total space of the sphere bundle S(2Det(TM)).26 The
key to understanding δ is showing that S(2Det(TM)) has a (RP1, σ)-twisted spin structure; in
particular, we must cook up a map to RP1.

Definition A.8. Given a pin+ manifold M , choose a metric on Det(TM) (a contractible choice);
then, given x ∈ M and p, q ∈ σx with

√
|p2| + |q2| = 1, so that (x, p, q) ∈ S(2Det(TM)), the two

sections of π∗(2Det(TM))

(A.9)
(x, p, q) 7→ (p, q)

(x, p, q) 7→ (−q, p)

are everywhere linearly independent, so π∗(2Det(TM)) is canonically trivial. This allows us
to define a map φM : S(2Det(TM)) → RP1: given (x, p, q) ∈ S(2Det(TM)) as above, (p, q) ∈
(π∗(2Det(TM)))(x,p,q), which is canonically identified with R2, send (p, q) to its image [p : q] ∈ RP1

(using that p and q are never both 0).

Definition A.10. Let δ : ΩPin+

∗ → ΩSpin
∗+1 (RP1, σ) be the map sending M 7→ (S(2Det(TM)), φM ),

where φM is defined above in Definition A.8.

If σ → RP1 is the Möbius bundle, then φ∗
M (σ) = π∗(Det(TM)).

Lemma A.11. If M is pin+, (S(2Det(TM)), φM ) has a canonical (RP1, σ)-twisted spin structure,
up to a contractible space of choices, so that δ lands in ΩSpin

∗+1 (RP1, σ) as claimed.

Proof. Plugging in V = 2Det(TM) to Lemma A.2, we learn

(A.12a) TS(2Det(TM)) ⊕ R ∼= π∗(TM) ⊕ 2π∗(Det(TM)).

Since φ∗
M (σ) ∼= π∗(Det(TM)),

(A.12b) TS(2Det(TM)) ⊕ φ∗
M (σ) ⊕ R ∼= π∗(TM) ⊕ 3π∗(Det(TM)).

Since M is pin+, the right-hand-side of (A.12b) is spin, so the left-hand side is too; by two-out-of-
three, this means TS(2Det(TM)) ⊕ φ∗

M (σ) is also spin. □

26Note that S(2Det(T M)) ≃ S(g∗(2σ)).
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The maps sm2σ, p, and δ assemble into a long exact sequence in bordism, as we will draw in
Figure 3. To write out this long exact sequence, we need to know the relevant bordism groups in low
dimensions. Giambalvo [Gia73b, §2, §3] computes ΩPin+

k for k ≤ 12, more than good enough for
us, and gives generating manifolds in all degrees we need except k = 2, 3 (though see [KT90a] for a
correction); the rest were given by Kirby-Taylor [KT90b, Proposition 3.9, Theorem 5.1]. Anderson-
Brown-Peterson [ABP69, Theorem 5.1] computed pin− bordism groups, with generating manifolds
again described by Giambalvo [Gia73b, Theorem 3.4] and Kirby-Taylor [KT90b, Theorem 2.1].
However, the twisted spin bordism of RP1 is less well-documented, so we calculate it here, using
another Smith homomorphism.

Lemma A.13. There is an abelian group A of order 4 such that

(A.14) ΩSpin
k (RP1, σ) ∼=


Z/2, k = 0, 1, 3, 4
A, k = 2
0, k = 5.

Proof. We may start the computation of ΩSpin(RP1, σ) using the observation of Kirby and Taylor
[KT90b] that the degree two map

(A.15) S ·2−→ S −→ Σ∞−1
+ RP2

of Example 7.13 induces multiplication by two on spin bordism. Taking the spin bordism long
exact sequence of A.15 and inputting the spin bordism of a point, we may deduce the groups
ΩSpin(RP1, σ) in low dimensions, up to one ambiguity, as indicated in Figure 2. □

∗ ΩSpin
∗ ΩSpin

∗ ΩSpin
∗ (RP1, σ)

5 0 0 0

4 Z Z Z/2

3 0 0 Z/2

2 Z/2 Z/2 A

1 Z/2 Z/2 Z/2

0 Z Z Z/2

Figure 2. Long exact sequence in spin bordism partially determining
ΩSpin

∗ (RP1, σ)
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Remark A.16. To address the question as to whether A is isomorphic to Z/4 or Z/2 ⊕ Z/2, one
could appeal to geometric arguments or an Adams spectral sequence calculation, but it turns out
that the Smith long exact sequence that we will study in Figure 3 provides a cleaner argument
that A ∼= Z/4.

∗ ΩSpin
∗ (RP1, σ) ΩPin−

∗ ΩPin+

∗−2

6 0 Z/16 Z/16

5 0 0 Z/2

4 Z/2 0 Z/2

3 Z/2 0 0

2 Z/4 Z/8 Z/2

1 Z/2 Z/2 0

0 Z/2 Z/2 0

(g)

(f)

(e)

(c) (d)

(b)

(a)

Figure 3. Bordism Long Exact Sequence for Pin− ⇝ Pin+

We will provide some explicit descriptions of the interesting maps in this sequence using
knowledge of the generators of each bordism group, which for pin+ and pin− may be found in
[KT90b]. For the twisted spin bordism of RP1, we use what we learned in Lemma A.13.

(a) ∗ = 0: The group ΩSpin
0 (RP1, σ) ∼= Z/2 is generated by the class of the point equipped

with the inclusion i into RP1. The condition of Tpt ⊕ i∗σ being spin is satisfied since i∗σ
is trivial. The map f forgets i, so sends this generator to the point with its pin− structure,
which is a generator of ΩPin−

0
∼= Z/2.

(b) ∗ = 1: Consider the circle with spin structure induced from its Lie group framing, denoted
S1

nb, equipped with the degree two map ϕ : S1 → S1 ≃ RP1. If x ∈ H1(RP1;Z/2) is the
generator, we have

(A.17) w(TS1 ⊕ ϕ∗σ) = w(TS1)ϕ∗w(σ) = (1)(1 + 2ϕ∗(x)) = 1,

so (S1
nb, ϕ) has an (RP1, σ)-twisted spin structure. The map p forgets ϕ, so sends the

bordism class of (S1
nb, ϕ) to S1

nb, which generates ΩPin−

1
∼= Z/2 [KT90b, Theorem 2.1].

(c) ∗ = 2 (part 1): Exactness of the Smith long exact sequence at ΩSpin
2 (RP1, σ) ∼= A implies

that A maps injectively to ΩPin−

2
∼= Z/8, so A ∼= Z/4, and we have resolved the extension

problem from Lemma A.13.
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The Klein bottle K is an S1-bundle over RP1, with the monodromy of the fiber
S1 around the base given by reflection. Therefore K = S(σ ⊕ R) as S1-bundles over
RP1. Let π : K → RP1 be the bundle map; then Lemma A.2 defines an isomorphism
TK ⊕R ∼= π∗(σ) ⊕R2 (using the Lie group trivialization of TRP1). The Möbius bundle σ
represents the nonzero class in [RP1, BO] = π1(BO) ∼= Z/2, so 2σ is trivializable,27 and in
particular spin, meaning that (K,π) admits an (RP1, σ)-twisted spin structure (in fact, it
admits 4).

That (K,π) generates ΩSpin
2 (RP1, σ) depends on which of the four (RP1, σ)-twisted spin

structures one chooses. Specifically, each (RP1, σ)-twisted spin structure restricts to a spin
structure on the fiber S1, and we need this to be the spin structure on S1 induced by the
Lie group framing. Two of the four (RP1, σ)-twisted spin structures satisfy this. To then
see that either of these two Klein bottles generates, one can play with the Smith long
exact sequence from Example 7.13

(A.18) · · · −→ ΩSpin
k

·2−→ ΩSpin
k −→ ΩSpin

k (RP1, σ) smσ−−→ ΩSpin
k−1 −→ · · ·

to see that smσ : ΩSpin
2 (RP1, σ) → ΩSpin

1 is the unique surjective map Z/4 → Z/2; the
Poincaré dual to w1(σ) is represented by the fiber S1 in K, which we chose to have the
Lie group spin structure, so smσ(K,π) = S1

nb, which generates ΩSpin
1 , implying (K,π)

generates ΩSpin
2 (RP1, σ).

Now take f(K,π), which amounts to forgetting π and finding the pin− bordism class ofK.
The Arf-Brown-Kervaire invariant is a complete invariant ΩPin−

2
∼=−→ Z/8 [Bro71, KT90b],

so it suffices to compute this invariant on K, as has been explicitly worked out in [Tur20,
§II.D]. Our choice of the nonbounding spin structure on the fiber implies that the Arf-
Brown-Kervaire map ΩPin−

2
∼=−→ Z/8 sends [K] 7→ ±2, so f : Z/4 → Z/8 sends 1 7→ 2, as

required by exactness.
(d) ∗ = 2 (part 2): There are two pin− structures on RP2, and both are generators of ΩPin−

2
∼=

Z/8 [KT90b, §3]. Pick either of these pin− structures; the class w2(σ) ∈ H2(RP2;Z/2) ∼=
Z/2 is a generator, and the Smith homomorphism ΩPin−

2 → ΩPin+

0 maps the input RP2

to the Poincaré dual of w2(2σ). The class PD(w2(2σ)) is 1 ∈ H0(RP2;Z/2) ∼= Z/2 and
is represented by a single pin+ point. The class of the point also corresponds to the
zero-dimensional intersection of the zero section and a generic section of 2σ.

(e) ∗ = 4 → 3: ΩPin+

2
∼= Z/2 is generated by the Klein bottle K, where as before we need

the nonbounding spin structure on the S1 fiber of K. The connecting map δ sends K to
S(2Det(K)); we saw above in part (c) that Det(K) ∼= σ and 2σ is trivialized over K, so
S(2Det(K)) ∼= S1 ×K.

Tracking the (twisted) spin structures through this argument, one sees that we obtain
the nonbounding spin structure on S1, so g(K) = [S1

nb ×K] ∈ ΩSpin
3 (RP1, σ) ∼= Z/2, and

[S1
nb ×K] is indeed the generator.28

27To make this argument carefully, one must know that addition in [S1, BO] corresponds to direct sum of vector
bundles. A priori this is not true—addition in [S1, X] is built from the pinch map S1 → S1 ∨ S1. That this
coincides with the group structure on [S1, BO] arising from direct sum of virtual vector bundles depends on the
Eckmann-Hilton argument.
28Another way to see this is that because the connecting morphism in the Smith long exact sequence is obtained
from a map of spectra by taking homotopy groups, the connecting morphism commutes with the π∗(S)-actions
on ΩPin+

∗ and ΩSpin
∗ (RP1, σ). The Pontrjagin-Thom theorem identifies this π∗(S)-action on bordism groups with
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(f) ∗ = 5 → 4: ΩPin+

3
∼= Z/2 is generated by S1

nb ×K [KT90b, §5], and ΩSpin
4 (RP1, σ) ∼= Z/2 is

generated by S1
nb ×S1

nb ×K, with the map to RP1 induced from the fiber bundle K → RP1

from part (c).29 Thus the story is the same as in (e), crossed with S1
nb.

(g) ∗ = 6: The group ΩPin−

6 is generated by RP6 with either of its two pin+ structures,
while ΩPin+

4 is generated by RP4 with either of its two pin− structures. Since the normal
bundle to RP4 inside RP6 is indeed the restriction of 2σ, RP4 represents the Poincaré dual
homology class to e(2σ) and is the image of the Smith homomorphism applied to RP6.

Appendix B. Why we use the cobordism, rather than the cohomology, Euler class

The Smith homomorphism is often defined by taking a Poincaré dual of the Z- or Z/2-cohomology
Euler class of a vector bundle V → X, for example in [KTTW15, COSY20, HKT20]. However, in
Definition 4.27, we used a different and more abstract definition: the Smith homomorphism for
twisted ξ-bordism should use the (possibly twisted) ξ-cobordism Euler class. The purpose of this
appendix is to explain that additional effort: we will walk through a concrete, low-dimensional
example where the cohomological Euler class does not produce a well-defined Smith homomorphism,
and show that the cobordism Euler class does suffice.

Recall that a spinh structure is a (BSO(3), V3)-twisted spin structure, where V3 → BSO(3) is
the tautological vector bundle. Then, as we discussed in (7.47a), there is a Smith homomorphism

(B.1) smV : ΩSpinh

k → ΩSpin
k−3 (BSO(3)).

Theorem B.2. Give S4 the spinh structure whose SO3-bundle is classified by either map S4 →
BSO(3) whose homotopy class generates π4(BSO(3)) ∼= Z.

(1) Exactness forces smV (S4) to be the bordism class of S1
nb with constant map to BSO(3)) in

ΩSpin
1 (BSO(3)).

(2) e(V ) ∈ H3(S4;Z) = 0, and there is no way to assign every smooth representative of the
Poincaré dual of e(V ) a spin structure whose bordism class equals that of S1

nb.
(3) The spin cobordism Euler class of V is nonzero, and all smooth representatives of its

Poincaré dual have the spin bordism class of S1
nb and a constant map to BSO(3).

This is why we use cobordism Euler classes.
We work with ξ = Spin and its twists throughout this appendix; see Remark B.39 for other

tangential structures. Let ko denote the connective real K-theory spectrum; work of Anderson-
Brown-Peterson [ABP67] shows that the Atiyah-Bott-Shapiro map MTSpin → ko [ABS64] is
7-connected, meaning that as long as we restrict to manifolds of dimension 7 and below, we
may replace twisted spin bordism with twisted ko-homology; in particular, we will work with
ko-cohomology Euler classes.

Another consequence of the Atiyah-Bott-Shapiro map is that vector bundles with spin structure
are oriented for ko-cohomology, meaning that if V → X is a spin vector bundle, the Euler class

taking products with stably framed manifolds; focusing specifically on the nonzero element of π1(S), which is
represented by the bordism class of S1

nb. Thus, since ×S1
nb : ΩPin+

2 → ΩPin+
3 is an isomorphism [KT90b, §5] and

the Smith maps ΩPin+
k−2 → ΩSpin

k
(RP1, σ) are isomorphisms for k = 3, 4 as we saw in the long exact sequence, then

×S1
nb : ΩSpin

3 (RP1, σ) → ΩSpin
4 (RP1, σ) is also an isomorphism.

29Another choice of generator is the K3 surface with trivial map to RP1, as follows from (A.18). The complicated
topology of the K3 surface makes this generator harder to work with explicitly.
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eko(V ) that a priori lives in kor(XV−r) in fact can be passed by the Thom isomorphism to
eko(V ) ∈ kor(X).

Recall the exceptional isomorphism Spin(3) ∼= Sp(1), and recall that ko∗ ∼= Z[η, v, w]/(2η, η3, 2v, 4w−
v2) with |η| = −1, |v| = −4, and |w| = −8.30

The following result is stated without proof by Davis-Mahowald [DM79, §2]; see Bruner-
Greenlees [BG10, Theorem 5.3.1] for a proof.

Proposition B.3. There is an isomorphism of ko∗-modules ko∗(BSp(1)) ∼= ko∗[[pH1 ]] with |pH1 | = 4.

The class pH1 is called the first symplectic ko-Pontrjagin class. The specific isomorphism in
Proposition B.3 can be fixed uniquely by requiring that the image of pH1 under ko → HZ is the
usual first symplectic Pontrjagin class, which is positive on the tautological quaternionic line
bundle over HP1.

Given a spin vector bundle V → X, let SV → X be the associated spinor bundle, which is the
quaternionic line bundle associated to the accidental isomorphism Spin(3) ∼= Sp(1).

Theorem B.4. Let V → X be a rank-3 vector bundle with spin structure. Then eZ(V ) ∈ H3(X;Z)
and eZ/2(V ) ∈ H3(X;Z/2) both vanish, and

(B.5) eko(V ) = ηpH1 (SV ) ∈ ko3(X).

Remark B.6. Theorem B.4 is new as far as we know. It is a subtle result in that several standard
techniques for computing ko-Euler classes do not provide any information.

(1) Analogous to the formula for ku-Euler classes of complex vector bundles, there is a formula
for ko-Euler classes of quaternionic vector bundles (see, e.g., Davis-Mahowald [DM79]),
but a rank-3 vector bundle cannot be quaternionic.

(2) For non-quaternionic vector bundles, one could compare with Euler classes in ku-cohomology
or ordinary cohomology, as Davis-Mahowald (ibid., §2) do, but H3(BSpin(3);Z) = 0,
so comparing with the Z-cohomological Euler class provides no information. Moreover,
ku∗(BSpin(3)) is a free ku∗-algebra on generators in even degrees [BG10, Theorem 5.3.1],
so ku3(BSpin(3)) = 0, and therefore we can learn nothing even by comparing to ku.

(3) It is more fruitful to compare to KO-Euler classes, understood in many cases (see [Cra91,
Corollary 3.37(i)] and [FH00, Footnote 13]), but not in rank 3.

(4) The use of the splitting principle to compute Euler classes is stymied by the fact that
maximal tori in Spin(3) can be conjugated into the usual embedding Spin(2) → Spin(3),
so the pullback of the Euler class to the maximal torus vanishes, as the pulled-back vector
bundle will have a nonvanishing section.

Taking Theorem B.4 for granted now, let us dig into Theorem B.2.

Proof of Theorem B.2 assuming Theorem B.4. Recall from (7.47a) that the Smith homomorphism
smV : ΩSpinh

k → ΩSpin
k−3 (BSO(3)) belongs to a long exact sequence whose third term is spinc bordism:

(B.7) · · · → ΩSpin
2 (BSO(3)) → ΩSpinc

4 → ΩSpinh

4
smV→ ΩSpin

1 (BSO(3)) → ΩSpinc

3 → . . .

From Stong [Sto68, Chapter XI] we know ΩSpinc

3 = 0 and ΩSpinc

4
∼= Z2, from Freed-Hopkins [FH21,

Theorem 9.97] we know ΩSpinh

4
∼= Z2, and from Wan-Wang [WW19, §5.5.3] we know ΩSpin

1 (BSO(3)) ∼=
Z/2 and ΩSpin

2 (BSO(3)) is torsion. Plugging this into (B.7), we see that smV is surjective.

30The negative grading is a feature of generalized cohomology: for any spectrum E, Ek(pt) = E−k(pt) = π−k(E).
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Wan-Wang’s argument implies that the map ΩSpin
1 → ΩSpin

1 (BSO(3)) choosing the trivial
SO(3)-bundle is an isomorphism, so the generator of ΩSpin

1 (BSO(3)) is any nonbounding spin
1-manifold with trivial SO(3)-bundle. Hu [Hu23, Appendix A] shows that CP2 and S4 generate
ΩSpinh

4 , where CP2 has spinh structure induced from its spinc structure via the standard inclusion
U(1) ∼= SO(2) → SO(3), and S4 has spinh structure whose principal SO(3)-bundle V → S4 is
induced from the tautological quaternionic line bundle on HP1 ∼= S4: this has an associated
Sp(1)-bundle, and we quotient by {±1} to get an SO(3)-bundle. In particular, CP2 is in the image
of ΩSpinc

4 → ΩSpinh

4 , so because smV is surjective, smV (S4, V ) must be S1
nb with trivial map to

BSO(3), proving the first part of the theorem.
Because H3(S4;Z) and H3(S4;Z/2) both vanish, the Z and Z/2 cohomology Euler classes of

V are zero. Therefore any null-homologous 1-manifold in S4 (i.e. any closed, oriented 1-manifold
mapping to S4) is a smooth representative of the Poincaré dual of e(V ). Most of these manifolds,
such as the standard S1 ⊂ S4, can be given a nonbounding spin structure, but the empty
submanifold cannot, even though it is Poincaré dual to e(V ). This proves the second part of the
theorem.

As discussed above, the Atiyah-Bott-Shapiro map is 7-connected, and therefore for discussing
degree-3 spin cobordism of S4, we may use ko-cohomology without losing information. The
Atiyah-Hirzebruch spectral sequence quickly implies

(B.8) ko∗(S4) ∼= ko∗[z]/(z2), |z| = 4.

In particular, ko3(S4) ∼= Z/2, generated by ηz.
The spinor bundle of V is the quaternionic line bundle associated to the identification Spin(3) ∼=

Sp(1). Since V came from the identification S4 ∼= HP1, the spinor bundle of V is the tautological
quaternionic line bundle LH → HP1. This is classified by the inclusion j : HP1 → HP∞ ≃ BSp(1)
as the 4-skeleton; considering the map of Atiyah-Hirzebruch spectral sequences for ko-cohomology
induced by j shows that pH1 ∈ ko4(BSp(1)) pulls back by j to z ∈ ko4(S4). Thus by Theorem B.4,
eko(V ) = ηz ̸= 0 in ko3(S4).

Because ko3(S4) has only one nonzero element, the Poincaré dual of the nonzero element
must be the unique nonzero element x of ko1(S4) ∼= Z/2. Pulling back to spin bordism, the
same argument we made for BSO(3) shows that the smooth representatives of x are precisely
the nonbounding spin 1-manifolds with null-bordant map to S4—and composing with the map
S4 → BSO(3) classifying V , we have shown that every smooth representative of the Poincaré dual
of eko(V ) (hence also the spin cobordism Euler class) represents the image of (S4, V ) under the
Smith homomorphism. □

The rest of this appendix is devoted to proving Theorem B.4.

Lemma B.9. Let X be a CW complex with finitely many cells in each dimension, and whose
cells are concentrated solely in even degrees. Suppose that the images of the attaching maps of X
in ko-homology are never of the form wsη times any other class, where s > 0. Then there is an
equivalence of ko-module spectra from ko ∧X+ to a sum of shifts of copies of ko and ku.

Here ku is a ko-module in the usual way, i.e. through the complexification map c : ko → ku. In
essence, this is downstream from the way in which C is an R-module.
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Proof. It suffices to prove this when X is a finite-dimensional CW complex, and then take the
colimit. Thus we may induct on the dimension of X, as the result is vacuously true when X is
0-dimensional.

If X is n-dimensional (so n is even), with (n− 2)-skeleton X ′, then X is the cofiber of the map

(B.10a)
N∨
i=1

S2n−1 −→ X ′,

classified by (f1, . . . , fN ) ∈ π2n−1(X ′), which attaches the n-cells of X. Smash with ko and apply
the inductive assumption to deduce that ko ∧X is the cofiber of a map of ko-modules

(B.10b) (ko ∧ f1, . . . , ko ∧ fN ) :
N∨
i=1

Σ2n−1ko −→
∨
i∈I

Σ2iko ∨
∨
j∈J

Σ2jku.

A map of ko-modules Σℓko → M is equivalent data to a map of spectra ΣℓS → M . Therefore the
homotopy class of each ko ∧ fi is an element of

(B.11)
⊕
i∈I

π2i−(2n−1)ko ⊕
⊕
j∈J

π2j−(2n−1)ku,

and knowledge of these classes for 1 ≤ i ≤ N suffices to recover ko ∧X as the cofiber. Moreover, we
can compute the cofiber by attaching one sphere at a time, computing the cofiber, and continuing.

The first observation is that ko ∧ fi is trivial on the Σ2jku summands, because the odd-degree
homotopy groups of ku vanish. And on the Σ2iko summands, our only nonzero choices are wsη,
where w ∈ π8(ko) is the Bott class. By assumption, wsη does not occur for s > 0, so we only
need to check the cofibers of 0 and η. The cofiber of 0: Σkko → ko is ko ∨ Σ2k+1ko, and Wood’s
theorem implies the cofiber of η : Σko → ko is ku. □

We will want to know the specific factors in the decomposition promised by Lemma B.9.

Definition B.12. Let A denote the mod 2 Steenrod algebra and A(1) := ⟨Sq1,Sq2⟩ ⊂ A, which
acts on the Z/2-cohomology of any space. Since A(1) is Z-graded (|Sqi| = i), we consider only
Z-graded A(1)-modules. Then, consider the following two A(1)-modules.

(1) Z/2 in degree 0 with trivial A(1)-action.
(2) Cη, which consists of two Z/2 summands in degrees 0 and 2, with a nontrivial Sq2-action

from the former to the latter.

If k ∈ Z and M is an A(1)-module, we will let ΣkM (a suspension or shift of M) denote the
same ungraded A(1)-module with the grading of each homogeneous element increased by k. For
example, this means that Cη ∼= Σ−2H̃∗(CP2;Z/2) as A(1)-modules.

Lemma B.13. With X as in Lemma B.9, there is an A(1)-module isomorphism from H∗(X;Z/2)
to a sum of shifts of Z/2 and Cη.

Proof. Since X only has cells in even degrees, H∗(X;Z/2) is concentrated in even degrees, meaning
Sq1 acts trivially on H∗(X;Z/2). Thus the problem reduces to how Sq2 can act; the Adem relation
Sq2Sq2 = Sq1Sq2Sq1 means that Sq2Sq2 acts trivially on H∗(X;Z/2). Therefore if Sq2(x) ̸= 0
for any x ∈ Hk(X;Z/2), then x and Sq2(x) generate a ΣkCη ⊂ H∗(X;Z/2), and this is a direct
summand, because x cannot be Sq1 or Sq2 of anything. After doing this for all x which Sq2 acts
nontrivially on, the result is a direct sum of shifts of the trivial A(1)-module Z/2. □
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Corollary B.14. Let X be as in Lemma B.9. If the decomposition of H∗(X;Z/2) from
Lemma B.13 is of the form

(B.15a) H∗(X;Z/2) ∼=
⊕
i∈I

ΣmiZ/2 ⊕
⊕
j∈J

ΣmjCη,

then there is an equivalence of ko-modules

(B.15b) ko ∧X+ ≃
∨
i∈I

Σmiko ∨
∨
j∈J

Σmj ku.

Proof. By Lemma B.9, we know there are nk, nℓ such that

(B.16) ko ∧X+ ≃
∨
k∈K

Σnk ko ∨
∨
ℓ∈L

Σnℓku;

now we need to match this data to the data coming from cohomology in (B.15a).
Stong [Sto63] showed H∗(ko;Z/2) ∼= A ⊗A(1) Z/2 and Adams [Ada61] showed H∗(ku;Z/2) ∼=

A ⊗E(1) Z/2, where E(1) := ⟨Sq1,Sq1Sq2 + Sq2Sq1⟩; there is an isomorphism Cη ∼= A(1) ⊗E(1)
Z/2 [BC18, Example 4.5.6], so

(B.17) A ⊗A(1) Cη ∼= A ⊗A(1) A(1) ⊗E(1) Z/2 ∼= A ⊗E(1) Z/2 ∼= H∗(ku;Z/2).

Therefore (B.16) implies

(B.18a) H∗(ko ∧X+;Z/2) ∼= A ⊗A(1)

(⊕
k∈K

ΣnkZ/2 ⊕
⊕
ℓ∈L

ΣnℓCη

)
,

and the Künneth formula and Stong’s result above imply

(B.18b) H∗(ko ∧X;Z/2) ∼= A ⊗A(1) H
∗(X;Z/2).

We conclude by plugging (B.15a) into (B.18b) and comparing with (B.18a); a priori information
could be lost by tensoring with A, but this tensor product respects direct sums and A ⊗A(1) Z/2
and A ⊗A(1) Cη are not isomorphic, so no information is lost. □

Corollary B.19. As ko-modules,

ko ∧ (BU(1))+ ≃ ko ∨
∨
n≥0

Σ4n+2ku(B.20a)

ko ∧ (BSp(1))+ ≃
∨
n≥0

Σ4nko.(B.20b)

Part (B.20a) is already known, proven by Greenlees-May [GM95, §15]. See (7.41) for a related
but different splitting result.

Proof. Once we have shown that BU(1) and BSp(1) satisfy the hypothesis of Lemma B.9, the
result follows from Corollary B.14 together with the understanding of H∗(BU(1);Z/2) and
H∗(BSp(1);Z/2). The latter is a trivial A(1)-module (i.e. a sum of shifts of Z/2) for degree
reasons, and the A(1)-module structure on H∗(BU(1);Z/2) is computed in [BC18, Example 3.4.2
and Figure 4] to be a direct sum of Z/2 and a Σ4n+2Cη for each n ≥ 0.

Thus all we have left to do is verify the hypotheses of Lemma B.9. The standard CW
decomposition of BU(1) ≃ CP∞ has a k-cell in every nonnegative even degree k, attached to the
(k − 2)-cell (for k > 0) by the map η ∈ π1(S) ∼= Z/2, which satisfies the hypothesis, as it maps to
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the class we call η in ko1. For BSp(1) ≃ HP∞, the standard CW decomposition has a k-cell in
each degree k ≡ 0 mod 4, attached to the (k − 4)-cell (again k > 0) by the map ν ∈ π3(S). The
image of ν in ko3 ∼= 0 vanishes for degree reasons, and so the hypothesis of Lemma B.9 is met. □

Remark B.21. Analogues of Corollary B.19 for the periodic theory KO and its generalizations to
the higher real K-theories EOΓ are known: see Bousfield [Bou90], Meier [Mei17, Theorem 2.8],
Chatham [Cha20, Theorems 5.13 and 5.14], Bhattacharya-Chatham [BC22, Main Theorem 1.7],
and Chatham-Hu-Opie [CHO24, Example 2.10].

Definition B.22. Recall the complexification map c : ko → ku. The cofiber of c is a map
R : ku → Σ2ko, denoted realification.

As ku ̸≃ ko ∨ Σ2ko, the third map in the cofiber sequence begun by c and R must be nontrivial
in

(B.23) π0Mapko(Σko, ko) ∼= MapS(ΣS, ko) ∼= π1ko ∼= Z/2,

so must be the unique nontrivial class, namely the Hopf map η : Σko → ko. That is, we have found
the Wood cofiber sequence

(B.24) ko c−→ ku R−→ Σ2ko η−→ Σko −→ · · ·

which we identified as a Smith cofiber sequence in Example 7.13.
Recall from Example 7.57 that the unit sphere bundle inside the tautological rank-3 vector

bundle V3 → BSpin(3) is homotopy equivalent to the map BSpin(2) → BSpin(3), which can
be identified via accidental isomorphisms to the map BU(1) → BSp(1) given by the inclusion
of a maximal torus. Choose for concreteness the standard maximal torus, given by the map
U(1) → SU(2) ∼= Sp(1) defined by

(B.25) i : z 7→

[
z 0
0 z−1

]
.

Thus there is a Smith cofiber sequence

(B.26) ko ∧ (BU(1))+
i∗−→ ko ∧ (BSp(1))+

⌢eko(V )−→ ko ∧ Σ3(BSp(1))V3−3,

which is the cofiber sequence in Example 7.49 smashed with ko.31 This sequence is also studied,
and placed in context, in Example 7.49.

Since V3 → BSp(1) is spin, the Thom isomorphism identifies the third term in this sequence
with Σ3ko ∧ (BSp(1))+.

Proposition B.27. The identifications in Corollary B.19 may be chosen to produce the following
identifications of ko-module homomorphisms.

(1) The map i∗ : ko ∧ (BU(1))+ → ko ∧ (BSp(1))+ is the direct sum of the maps

(B.28a) Σ4n+2R : Σ4n+2ku −→ Σ4nko,

together with the identity ko → ko on the basepoint.

31In [DDK+24, §IV.F], we computed the Anderson dual long exact sequence in low degrees.
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(2) The fiber of i∗, which is a map y : ko ∧ Σ2(BSp(1))+ → ko ∧ (BU(1))+, is the direct sum
of the maps

(B.28b) Σ4n+2c : Σ4n+2ko −→ Σ4n+2ku.

(3) The map ⌢ eko(V ) : ko ∧ (BSp(1))+ → Σ3ko ∧ (BSp(1))+ is the direct sum of the maps

(B.28c) Σ4n−1η : Σ4nko −→ Σ4n−1ko,

together with the zero map on the copy of ko in degree 0.

Proof. Using the Wood cofiber sequence (B.24), any one of these three results implies the other
two; we will prove (2).

Restricted to Σ4k+2ko, y is a map

(B.29) y|Σ4k+2ko : Σ4k+2ko −→ ko ∨
∨
ℓ≥0

Σ4ℓ+2ku.

We will show that it is possible to choose the equivalences in (B.19) to make y “diagonal”, i.e.
after composing to the projection onto each summand of (B.29) except Σ4k+2ku, y|Σ4k+2ko is
trivial. We know that the “diagonal terms,” i.e. the maps obtained by restricting y to Σ4k+2ko
and then projecting to the Σ4k+2ku summand in the codomain, must be ±c, because this is the
only choice compatible with base change along ko → HZ inducing maps on Z cohomology which
are isomorphisms in those degrees: this is because

(B.30) π0Mapko(Σ4k+2ko,Σ4k+2ku) ∼= π0MapS(S, ku) ∼= π0ku ∼= Z

and c is a generator; thus we must obtain either c or −c on the equal-degree summand.
The map out of Σ4k+2ko is trivial when projected to the ko in degree 0, because we need that

Σ0ko summand to map to the degree-0 ko summand in the cofiber ko ∧ (BSp(1))+, because that
map arose from a basepoint-preserving map of spaces. In the rest of the proof, we will address the
Σ4ℓ+2ku summands.

A map of ko-modules Σmko → Σnku is equivalent data to a map of spectra ΣmS → Σnku, which
is classified by πn(ku). Since ku is connective, all “off-diagonal terms” vanish unless 4k+2 ≥ 4ℓ+2;
therefore for our Σ4k+2ko summand we may restrict to the map

(B.31) y : Σ2ko ∨ · · · ∨ Σ4k+2ko −→ Σ2ku ∨ · · · ∨ Σ4k+2ku.

We may therefore describe y as a (k + 1) × (k + 1) matrix. Connectivity of ku implies this matrix
is upper triangular.

We saw in (B.30) that if m ≥ ℓ, then π0Mapko(Σ4m+2ko,Σ4ℓ+2ku) ∼= π2(m−ℓ)ku ∼= Z; tracing
through the identifications there, we learn that this Z of maps is the set of scalar multiples of
the map b2(m−ℓ)c, where b : Σ2ku → ku is the connective version of the Bott periodicity map.
Therefore there are integers λij for 1 ≤ i < j ≤ k + 1 such that the map (B.31) is given by the
following upper triangular matrix:

(B.32)


±c λ12b

2c λ13b
4c · · · λ1(k+1)b

2kc

±c λ23b
2c · · · λ2(k+1)b

2k−2c
. . . . . .

...
±c λk(k+1)b

2c

±c

 .
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This matrix can clearly be row-reduced over ko∗ to c · Id, and the requisite row operations
correspond to automorphisms of ko ∨ · · · ∨ Σ4k+2ko. The row operations are compatible with
adding on more summands by increasing k, so we may conclude. □

Lemma B.33 (Bruner-Greenlees (see [BPR23, Theorem 3.8])). Recall ko∗(BSp(1)) ∼= ko∗[[pH1 ]]
from Proposition B.3. There is an isomorphism φ : ko∗(BSp(1))

∼=→ ko∗[x], where |x| = 4,32 such
that the ko∗(BSp(1))-module structure on ko∗(BSp(1)) is the one uniquely specified by

(B.34) pH1 ⌢ xk = xk−1.

Finally, we can calculate the ko-Euler class!

Proof of Theorem B.4. It suffices to work universally with the tautological bundle V3 → BSpin(3);
the spinor bundle is the tautological quaternionic line bundle associated to Spin(3) ∼= Sp(1), and
so pH1 (SV3) is the class we called pH1 ∈ ko4(BSp(1)) in Proposition B.3.

By Proposition B.27,

(B.35) eko(V3) ⌢ xk = ηxk−1,

where we define x−1 = 0 for convenience.33 A general element of ko3(BSp(1)) is of the form

(B.36)
∑
k≥0

η(pH1 )kwk−1.

We know how η and wk−1 act on ko∗(BSp(1)) because the ko-theory cap product is linear over
ko∗. We know how pH1 acts on ko∗(BSp(1)) thanks to Lemma B.33. Using these, we can see that
the only class of the form (B.36) whose cap product matches that of eko(V3) in (B.35) is ηpH1 .

Finally, we have to check that eZ(V3) and eZ/2(V3) both vanish. BSp(1) is 3-connected, so
H3(BSp(1);Z) and H3(BSp(1);Z/2) both vanish. □

Remark B.37 (Euler classes of low-rank spin vector bundles). For 2 ≤ n ≤ 6, Spin(n) participates
in an accidental isomorphism34 with a Lie group satisfying Lemma B.9, and one can run a similar
argument to compute ko-Euler classes of other low-rank vector bundles.

(1) If L is a real line bundle with spin structure, eko(L) = 0, because eko pulls back from
the twisted Euler class over BSO(1) = ∗. The image of this fact in KO-theory is due to
Crabb [Cra91, Corollary 3.37(i)].

(2) If V2 has rank 2, one can use the accidental isomorphism Spin(2) ∼= U(1) and the fact that
the map c : ko∗(BU(1)) → ku∗(BU(1)) is injective [BG10, §5.2] to show that eko(V2) is
determined by eku(V ), hence also by eK(V ), the image in periodic K-theory. In particular,
V2 acquires the structure of a complex line bundle, and there is a formula for the K-theory
Euler classes of complex vector bundles, e.g. in Bott [Bot69, (7.2)].

(4) If V4 → X has rank 4, its spinor bundle factors as S = S+ ⊕ S−, where the two factors S±

are quaternionic line bundles associated to the two factors of ϕ : Spin(4)
∼=→ Sp(1) × Sp(1).

There is a choice of ϕ such that

(B.38) eko(V4) = pH1 (S+) − pH1 (S−) ∈ ko4(X).
32Here we use polynomial notation only for conciseness; we have not defined any ring structure on ko∗(BSp(1)).
33As we have not been careful about explicit choices of isomorphisms, there could be a sign factor in the choice of
xk, but since 2η = 0, the possible sign error goes away.
34“There are no mistakes, just happy little accidental isomorphisms.”



THE SMITH FIBER SEQUENCE AND INVERTIBLE FIELD THEORIES 63

(5) There is an accidental isomorphism Spin(5) ∼= Sp(2), and ko∗(BSp(2)) ∼= ko∗[[pH1 , pH2 ]]
with |pH1 | = 4 and |pH2 | = 8 (see [DM79, §2] or [BG10, Theorem 5.3.5]). Therefore
ko5(BSp(2)) ∼= 0, so for any rank-5 spin vector bundle V5, eko(V5) = 0. The image of this
fact in KO-theory is due to Crabb [Cra91, Corollary 3.37(i)].

Remark B.39. We saw above that for twisted spin bordism, the ko-theoretic Euler class suffices.
For other tangential structures, one may need more or less information.

• Unoriented bordism decomposes as a sum of shifts of mod 2 homology, and this splitting
is compatible with the Smith homomorphism. Therefore in this setting, one can use the
Z/2-cohomology Euler class.

• Wall [Wal60] showed that MTSO, localized at 2, splits as a sum of shifts of HZ and
HZ/2. Therefore when one studies Smith homomorphisms for twisted oriented bordism,
the Z-cohomology Euler class will be accurate up to odd-primary torsion. On odd-primary
torsion, oriented and spin bordism coincide, so in that setting one can use ko-Euler classes
for twisted oriented bordism.

• Analogously to spin and ko, one can use ku-theory Euler classes for twisted spinc bordism
Smith homomorphisms.
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