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Non-radial oscillation modes of a neutron star possess valuable information about its internal
structure and nuclear physics. Starting from the quadrupolar order, such modes under general
relativity are known as quasi-normal modes since they dissipate energy through gravitational ra-
diation and their frequencies are complex. The stability of these modes is governed by the sign
of the imaginary part of the frequency, which determines whether the mode would decay or grow
over time. In this Letter, we develop a fully consistent framework in general relativity to study
quasi-normal modes of neutron stars with anisotropic pressure, whose motivation includes strong
internal magnetic fields and non-vanishing shear or viscosity. We employ parametrized models for
the anisotropy and solve the perturbed Einstein field equations numerically. We find that, unlike
the case for isotropic neutron stars, the imaginary parts of some of the pressure (p-)modes flip signs
as the degree of anisotropy deviates from zero, depicting a transition from stable modes to unstable
modes. This finding indicates that some anisotropic neutron star models are unstable, potentially
restricting the form of sustained anisotropy.

Introduction.—Pulsation modes provide the basis to
study the dynamical deformations of a neutron star (NS).
The frequency of these modes characterizes the stellar in-
ternal composition and density profile. In addition, the
stability of the modes also helps predict whether certain
configurations of a star can exist in nature. With the ad-
vancement in multimessenger astronomy over the years,
the detection of some of the pulsation modes is expected
in the future [1–8].

Within Newtonian theory, the pulsation modes are
normal modes described by real frequencies. For even
parity (polar) non-radial modes, the well-known ones
include the fundamental (f -)modes, the pressure (p-
)modes, and the gravity (g-)modes. In the original clas-
sification by Cowling [9], the naming of these modes is
based on the local propagation behavior of the waves that
form the modes. For example, the p-modes, which are of
interest in this study, can be conceived as the standing
waves formed by propagating acoustic waves within the
bulk via a local analysis [10–12].

Under general relativity (GR), non-radial oscillation
modes (except the dipole modes) can dissipate energy
through the emission of gravitational radiation. These
modes are described by oscillations with complex fre-
quencies, denoted by ω hereafter, and are known as the
quasinormal modes (QNMs). The complex values are the
characteristics of an open system. Despite many of those
being referred to as the ‘fluid modes’ [13], which are anal-
ogous to the Newtonian stellar pulsation modes, they are
fundamentally different due to the boundary conditions
in the exterior vacuum region of the star.

The stability of the QNMs is determined by the sign
of the imaginary part [14]. For our sign convention of
the time dependence of the QNMs expressed as eiωt, the
mode will grow exponentially over time if the imaginary
part is negative, thus being unstable.

Typical NSs are described as isotropic fluids, in which

the local stress is invariant under rotational transforma-
tions. Stability analysis on the QNMs of non-rotating
isotropic fluid stars has shown that the unstable modes
must have pure imaginary frequencies, i.e., the mode
must be non-propagating [15–17]. This stability crite-
rion can be extended to certain regimes, including the
two-fluid NS models [18], where the argument given in
[15] still applies. A similar condition has also been shown
to hold in the scalar-tensor theories for the radial scalar-
modes [19, 20], an example of QNMs in non-GR theories.

Meanwhile, local anisotropy can exist within a NS in
various scenarios involving elasticity [21–23], superfluid-
ity [24, 25], pion condensation [26], strong magnetic field
[27–31], and viscosity [32]. Certain exotic relativistic
stars are also predicted to have anisotropic stress, like
boson stars [33–35], strange stars [36, 37], dark matter
stars [38], and gravastars [39, 40]. The solution to a static
spherically symmetric anisotropic NS was first studied in
[41]. After that, much work has been done on calculations
of the NS structure with different anisotropic equations
of state (EOSs) as well as assessing the radial stability
[42–50]. One interesting finding is that depending on
the anisotropy analysis, the maximum-mass configura-
tion of the anisotropic NSs may or may not correspond
to a change in radial stability [48–50], in contrast to the
isotropic NSs [51].

The non-radial deformations of anisotropic NSs are
also studied in previous literature. In the static limit,
such perturbations within the slow rotation and small
tidal deformation approximation allow one to calculate
the moment of inertia, spin-induced quadrupole moment,
and tidal deformability [52, 53] that are known to enjoy
some universal relations [54–56]. Anisotropic NSs were
used to also study how universal relations for multipole
moments of NSs approach the black hole limit [57, 58].
For non-radial time-dependent perturbations, Refs. [59–
62] employed the relativistic Cowling approximation in
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calculating the pulsation modes of anisotropic NSs by
ignoring the metric perturbations. Such an approxima-
tion can accurately predict the frequencies of non-radial
oscillation modes for isotropic stars with an error of
< 10% for p-modes, which decreases with the order of
the mode [63], while its validity is currently unknown for
anisotropic stars. Reference [43] has also investigated the
non-radial instability of anisotropic stars, demonstrating
that the non-radial pulsation modes are stable except
for infinitely large anisotropy. They, however, considered
only the Newtonian limit of incompressible stars for a
specific anisotropy ansatz that turns out to be unphysi-
cal as it causes a divergence at the stellar center.

In this work, we develop a consistent framework to
treat stellar perturbations for anisotropic fluids in full
GR. Although there are many works studying stellar per-
turbations for isotropic stars in full GR since the early
1970s [15–17], there was no such formulation available for
anisotropic stars for more than 50 years. The new for-
mulation developed here allows us to check the validity
of the Cowling approximation and study the stability of
anisotropic stars for the first time. Our numerical result
shows that the anisotropy causes certain p-modes to ac-
quire a negative imaginary part in the eigenfrequencies
while having a non-zero real part. This can be inter-
preted as an oscillatory mode with exponentially grow-
ing amplitude, which is in stark contrast with the case for
isotropic NSs. We further demonstrate how the mathe-
matical proof of the non-existence of oscillatory unstable
modes for isotropic NSs does not apply to the anisotropic
case by considering a similar integral formula as Eq. (16)
of [15]. We also found that the Cowling approximation
is valid for anisotropic NSs with an error of < 30% for f -
modes and < 10% for p-modes from the fully consistent
analysis.

Unless otherwise specified, we employ the geometrized
unit system with G = c = 1 in this letter.

Anisotropic neutron star models.—The fluid stress
within an anisotropic NS has directional dependence.
The stress-energy tensor describing the anisotropic fluid
with spherical symmetry takes the form [41]

Tαβ = ρuαuβ + prhαβ − σΩαβ , (1)

where ρ is the energy density, σ = pr−pt is the degree of
anisotropy, pr and pt represent the pressures in the radial
and tangential direction respectively, hαβ = gαβ+uαuβ is
the transverse metric on a 3D space, Ωαβ = hαβ − kαkβ
is another transverse metric on a 2D sphere, uα is the
four-velocity vector of a fluid, and kα is the unit normal
vector in the radial direction orthogonal to uα.

In this letter, we consider two anisotropy ansatzes
described by quasi-local parameters. These anisotropy
models contain not only the local thermodynamic pa-
rameters, like ρ, or pr, but also quasi-local parameters
that depend on the geometry at the specified point of the

spacetime. The first one is modified from the anisotropy
model given in Horvat et al. [46]:

σ = βprµ
2, (2)

where µ = 2m/r, m is the gravitational mass enclosed
within a radius r, and β is a dimensionless parameter gov-
erning the degree of anisotropy. We denote this ansatz
as the ‘H-model’. Note that compared to [46], σ here
contains an extra factor of µ. Such an additional factor
is introduced to satisfy the regularity conditions of the
perturbations at r = 0, which requires ∂σ/∂µ = O(r2)
(see Supplemental Material [64] for the explicit forms of
the solutions near the center). The above model still sat-
isfies the conditions used to construct the original model,
namely (i) the anisotropy term to vanish from the hydro-
static equilibrium equation in the non-relativistic limit
(pr ≪ ρ), and (ii) the anisotropy vanishes at the stellar
center. Due to the additional factor of µ in the new model
which is of the order ∼ 0.1, we use the range |β| ≤ 10
instead of |β| ≤ 2 in the original model. Note that in the
relativistic Cowling approximation used in [59], the orig-
inal anisotropy model satisfies the regularity conditions
automatically since there are no metric perturbations.
The second model is proposed by Bowers and Liang

[41]:

σ = β
(ρ+ pr)(ρ+ 3pr)

1− µ
r2, (3)

where |β| ≤ 0.5 as in [50]. This anisotropy model permits
an analytic solution to the stellar structure for incom-
pressible stars. We denote it as the ‘BL-model’. Unlike
the H-model, we do not need to modify the BL-model as
it satisfies the regularity conditions at the center.
The relation between ρ and pr is provided by an EOS.

We choose the polytropic EOS named ‘EOS II’ in [59]
(denoted by ‘Poly’ hereafter) and a more realistic EOS,
SLy4 [65], to demonstrate our major numerical results.
With these anisotropy ansatzes and EOSs, we numeri-
cally integrate the structural equations (see, e.g., [41])
to construct the anisotropic NS models at equilibrium.
The stress-energy tensor of all models considered satis-
fies the dominant, weak, and strong energy conditions.
Moreover, the speeds of sound in the radial and tangen-
tial directions within the stars (see, e.g., [61, 66]) both
satisfy causality.
Unstable quasinormal modes.—Here we show the re-

sults of the ℓ = 2 QNMs of anisotropic NS models where
the p-mode frequencies can have a negative imaginary
part for a certain range of anisotropic parameters. These
modes are interpreted as unstable QNMs. These results
are obtained by numerically solving the linearized per-
turbed Einstein equations and stress energy conservation
(see Supplemental Material [64] for the detailed formula-
tion for numerical computation), which we derive for the
first time. The equations have been checked to correctly
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FIG. 1. The imaginary part of the first three ℓ = 2 QNM frequencies, f = ω/(2π), against the anisotropy parameter β for
different combinations of the EOSs (Poly vs SLy4) and the anisotropy models (H vs BL). The p-mode frequencies are scaled
up by the constant factors specified in the legends to provide better visualization of the zero-crossings. The central densities of
the Poly models and the SLy4 models are set at 7.455×1014g cm−3 and 9.88×1014g cm−3 respectively, such that the isotropic
(β = 0) NS model has a mass of 1.40 M⊙.

reduce to those in the Cowling limit of anisotropic stars
given in [59]. We performed our calculations using two
independent numerical codes and found consistent results
with a difference of ∼ 1%. The major code is publically
available at [67].

In Fig. 1, we present the imaginary parts of the QNM
frequencies of the f -mode, p1-mode, and the p2-mode
against β for various combinations of the ρ–pr EOS (Poly
and SLy4) and the anisotropy models (H and BL). First,
the imaginary part of all modes in the isotropic limit
(β = 0) is also positive, which serves as a sanity check of
the numerical results, as the governing equations readily
reduce to the isotropic case given in [68, 69]. Next, we
see that the f -modes have positive imaginary frequencies
for any anisotropy parameter β. On the other hand, the

imaginary parts of the p-modes cross zero as we vary
β away from 0, and become negative in a certain range
of β. For the p2-modes of the Poly-H model, it even
crosses zero three times within the range of β we consider.
We also found similar zero-crossing behaviors in p-modes
at higher radial orders. This illustrates that there are
multiple unstable p-modes within the anisotropic NSs.
For a particular value of β, even the lowest order modes
being stable does not necessarily imply a stable star. In
principle, one needs to solve for an infinite number of
p-modes to check for stability.

We further illustrate the instability in contrast to the
isotropic case, in which a smooth sequence of QNMs is
forbidden to cross the real axis [15, 16]. We focus on
the p1-mode frequencies and present in Fig. 2 a set of
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FIG. 2. The ℓ = 2 p1-modes in the complex frequency plane of the models in Fig. 1 for Poly (left) and SLy4 (right) EOSs.
The arrow indicates the direction of increasing β, in which the absolute values are chosen to be |β| ≤ 10 and |β| ≤ 0.5 for the
H-model and the BL-model respectively. The value of β corresponding to the first point within the plotting range is shown for
the SLy4-H model. Note that the curves intersect in the isotropic case (the intersection with Re(f) = 6304 Hz for the right
panel.

anisotropic NS models with various β in the complex fre-
quency plane. We start increasing β from the correspond-
ing lower bound value in the direction indicated by the
arrow in each sequence of models. The frequency crosses
the real axis multiple times depending on the EOSs and
anisotropy models. In the case of isotropic stars, these
crossings are forbidden by the equation of motion [15] as
we describe in more detail below.

We next perform a further analytic study by follow-
ing [15]that was devised for variational principle. They
showed, in the isotropic case, that the QNM frequency
can be related to the eigenfunctions as an integral for-
mula consisting of pairs of the perturbation variables,
schematically written in the form

ω2

∫ ∞

0

I1dr =

∫ ∞

0

I2dr + I3(R) + I4(∞), (4)

where ω is the QNM frequency and I1 to I4 are sums of
pairs of the perturbation variable eigenfunctions, which
are in general complex (see Supplemental Material [64]
for the explicit expressions). The term I3 is evaluated
at the stellar radius R while I4 is evaluated at infinity.
In I1 to I3, the perturbation variables are expressed in
complex conjugate pairs such that they are guaranteed
to be real. That is, any pair of complex variables, a and
b, are either paired as a∗a, b∗b, or ab∗ + a∗b, where the
asterisk sign denotes complex conjugation. For I4, the
outgoing wave condition for QNMs makes its imaginary
part non-vanishing, except when ω is purely imaginary.
As a result, ω cannot be real unless there is no outgo-
ing wave at infinity, meaning that the QNM frequencies
cannot cross the real axis in the complex frequency plane

except at the origin.

For the anisotropic case, we find the following extra
terms on the right-hand side of Eq. (4):

−ω2

∫ R

0

J1dr +

∫ R

0

J2dr + J3(R), (5)

where J1 and J3 are real, while J2 is in general complex
(see Methods for the explicit forms of these terms). To-
gether with I4(∞) in Eq. (4), there is the possibility of ω
becoming purely real. As a result, ω2 is allowed to cross
the real axis for β ̸= 0.

Discussions and conclusions.—In this work, we
demonstrated that the p-modes can become unstable in
some range of the anisotropy parameter β with two dif-
ferent anisotropy models and two NS EOSs. We ana-
lytically illustrated that such instabilities are allowed to
exist based on the mathematical structure of the eigen-
value problem, in contrast to the isotropic case. In Sup-
plemental Material [64], we compared our calculations in
full GR with those within the Cowling limit and found
that the latter is valid for anisotropic NSs with an error
of < 10% for p-modes. Additional data are also provided
for numerical comparisons.

The implication of the instability still requires further
analysis. We can expect the nonlinear effects will be-
come important as the unstable mode amplitude grows
exponentially with time, causing the linearized theories
to eventually break down. A feedback mechanism is ex-
pected to explain the source of energy for the growth of
QNMs while gravitational waves carry away the energy.
This should cause some permanent changes in the stellar
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background and/or the anisotropy model while extract-
ing the energy for the growth.

We can draw some insights from the Chandrasekhar-
Friedman-Schutz (CFS) instability of a rotating star
[70, 71], in which a QNM is seen as a prograde mode
in the inertial frame, but retrograde in the co-rotating
frame, thus having opposite angular momenta (see e.g.,
[72]). When it loses positive angular momentum through
gravitational wave emission, it is driven to even larger
amplitudes since the mode carries a negative angular mo-
mentum. In this case, the energy source that drives the
instability comes from the rotation of the background
star. Such an effect cannot be captured without consid-
ering the feedback on the background rotation.

In the setup of this study, there is no background rota-
tion to source the growth in the mode amplitude. How-
ever, some permanent changes to the background star are
expected for the mode to increase its amplitude sponta-
neously. One possibility is that the anisotropy will de-
cay in a short time due to certain feedback mechanisms
from the unstable mode, which can only be obtained
through calculations beyond linearized perturbation the-
ories. This may restrict the form of the anisotropy models
that can be sustained in a NS.

The effects of viscous damping within the NS are also
neglected in this study. These effects are important in
determining the suppression of the instability due to
other dissipative processes. As a reference, the dominant
(shear) viscosity damping rate of typical isotropic NSs is
≲ 10−8 Hz for ℓ = 2 modes [73], which is much smaller
than the growth rate of the unstable p-modes of the ma-
jority of the parameter range reported here. This means
the known viscous damping effect does not suppress the
instability.

This work opens up several new avenues in the study
of anisotropy-driven instabilities. First, to explore the
physical origin of the instability, we need to identify the
energy source for the growth of the mode amplitude. A
variational approach may allow us to construct an en-
ergy balance law as in [15]. Second, the stability of
other QNMs, like the f -modes and g-modes, is also an
interesting problem to consider. Although our numeri-
cal results suggest that the former are stable within the
range of β considered, it requires a thorough study with a
larger range of NS parameters and anisotropy models to
draw a meaningful conclusion. Finally, we can further ex-
plore the prospects of constraining the anisotropy models
through the unstable QNMs by requiring stability.

Note added.— While we were working on this project,
a preprint [74] appeared on arXiv that provided a deriva-
tion of perturbation equations for oscillating anisotropic
NSs in full GR. However, we noticed that the authors
have incorrectly assumed an isotropic deformation of the
fluid when applying the thermodynamic relations, while
the deformation along each direction should be different
for a generic nonradial deformation (see Eqs. (31) and

(32) of Supplemental Material [64]). Hence, the pertur-
bation equations presented in [74] do not correctly reduce
to those in the Cowling limit [59] and are inconsistent
with those in this letter that were derived through a dif-
ferent approach than [74]. Furthermore, Ref. [74] used
the original anisotropy model by Horvat et al. [46] that
does not satisfy the correct boundary conditions for the
perturbation equations. The main focus of this letter is
on the stability of QNMs, which is also different from
[74].
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Supplemental material

I. FORMULATION

Here we provide the full GR formalism for computing the QNMs. We define the static spherically symmetric
background metric as

ds2 = −eνdt2 + eλdr2 + r2dΩ2, (1)

where ν and λ are functions of r while dΩ is the unit 2-sphere line element. The Einstein field equations of the
anisotropic fluid background give (e.g., [1])

ν′ =2
m+ 4πr3pr

r2
eλ, (2)

p′r =− (ρ+ pr)
ν′

2
− 2σ

r
, (3)

λ′ =2
−m+ 4πr3ρ

r2
eλ, (4)

eλ =

(
1− 2m

r

)−1

, (5)

where the superscript prime denotes derivative with respect to r.
In the pulsating star, the metric and the matter dynamics are governed by the perturbed Einstein field equations

and the stress-energy conservation:

δGαβ = 8πδTαβ , (6)

δ(∇αT
αβ) = 0, (7)

where ∇α denotes the covariant derivative, Gαβ is the Einstein tensor and Tαβ is the stress-energy tensor. The prefix
δ represents Eulerian perturbations and is related to the Lagrangian perturbations ∆ through the Lie derivative [2],
∆ = δ + Lξ, given the Lagrangian displacement vector ξα of the fluid.

We employ the same convention of the perturbed metric as in [3, 4], defined in the Regge-Wheeler gauge [5]:

δgαβdx
αdxβ =−

∑

ℓ,m

[
eνrℓH0dt

2 + 2iωrℓ+1H1dtdr

+ eλrℓH2dr
2 + rℓ+2KdΩ2

]
eiωtYℓm. (8)

Here (H0, H1, H2,K) are functions of r, and Yℓm are the spherical harmonics. The radial parts of the expansion
depend on the index ℓ, which is suppressed for conciseness in the following expressions. This applies to all the radial
parts of the expansions in spherical harmonics.

The stress-energy tensor takes the same form as [6]. One major assumption about the perturbed density and radial
pressure is the adiabatic relation

∆pr =
γpr

ρ+ pr
∆ρ, (9)

where γ is the adiabatic index, and is assumed to be

γ =
ρ+ pr
pr

(
∂pr
∂ρ

)

s

=
ρ+ pr
pr

(
∂pr
∂ρ

)

eq

. (10)

The subscript ‘s’ represents an adiabatic derivative while the subscript ‘eq’ denotes the derivative of the background
pr against ρ. This essentially means the EOS remains a single variable function in the dynamical timescale. The
Lagrangian displacement vector is defined as

ξα∂α =
∑

ℓ,m

rℓ−1eiωt
[
e−λ/2WYℓm∂r

− V

r

(
∂Yℓm

∂θ
∂θ + csc2 θ

∂Yℓm

∂ϕ
∂ϕ

)]
, (11)
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where V and W are functions of r.
Using Eqs. (6)–(11), we arrive at the set of equations governing the stellar pulsations:

H ′
1 =

[
4π(ρ− pr)e

λr − 2meλ

r2
− ℓ+ 1

r

]
H1 +

eλ

r
K +

eλ

r
H0 −

16π(ρ+ pr)

r
eλ (1− σ̄)V, (12)

K ′ =
ℓ(ℓ+ 1)

2r
H1 +

(
ν′

2
− ℓ+ 1

r

)
K − 8π(ρ+ pr)

eλ/2

r
W +

1

r
H0, (13)

W ′ =reλ/2(1− σ̄)K +

(
−ℓ+ 1

r
+

2σ̄

r

)
W +

re(λ−ν)/2

γpr
X +

reλ/2

2
H0 −

ℓ(ℓ+ 1)

r
eλ/2(1− σ̄)V, (14)

X ′ =
ρ+ pr

2
eν/2

[
rω2e−ν +

ℓ(ℓ+ 1)

2r
(1− 2σ̄)

]
H1 +

ρ+ pr
2

eν/2
[(

3

2
− 2σ̄

)
ν′ − (1− 6σ̄)

1

r
− 4σ̄2

r

]
K

− ρ+ pr
r

e(λ+ν)/2
[
4π(ρ+ pr) + ω2e−ν − F

]
W − 1

r

(
ℓ− 2

ρ+ pr
γpr

σ̄

)
X

+
ρ+ pr

2
eν/2

(
1

r
− ν′

2

)
H0 +

ℓ(ℓ+ 1)eν/2p′r
r2

(1− σ̄)V +
2eν/2

r
S. (15)

Here, the overbarred anisotropy parameter is defined by

σ̄ =
σ

ρ+ pr
, (16)

while X is the radial part of the expansion

∑

ℓ,m

rℓXYℓmeiωt = −eν/2∆pr, (17)

and F in Eq. (15) is given by

F = e−λ/2

{
r2

2

(
e−λ/2ν′

r2

)′
− e−λ/2

[(
6

r2
− 2ν′

r

)
σ̄ − 2

r2

(
rσ′

ρ+ pr

)
− 4

r2
σ̄2

]}
. (18)

The Eulerian perturbation of the anisotropy parameter, S, is defined by

∑

ℓ,m

rℓSYℓmeiωt = δσ, (19)

and is related to other perturbation variables by

S =−
[(

∂σ

∂pr

)

eq

+ (ρ+ pr)

(
A

p′r
+

1

γpr

)(
∂σ

∂ρ

)

eq

]
e−λ/2p′r

r
W

−
[(

∂σ

∂pr

)

eq

+
ρ+ pr
γpr

(
∂σ

∂ρ

)

eq

]
e−ν/2X −

(
∂σ

∂µ

)

eq

e−λH0. (20)

Here, A is the relativistic Schwarzschild discriminant, which we take to be zero due to our assumption on γ (i.e.,
assuming the EOS is a single variable function of pr), namely

A ≡ ρ′

ρ+ pr
− p′r

γpr
= 0. (21)

We further assume the partial derivatives on σ follow the equilibrium background [6], similar to the case of γ. In
general, these derivatives should depend on the thermodynamic relations in the perturbation timescale [7]. The
Einstein field equations also give H2 = H0 as in the isotropic case. The variables (H0,V ) are related to the dependent
variables through the algebraic relations
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[
3m+

(ℓ− 1)(ℓ+ 2)

2
r + 4πr3pr

]
H0 =8πr3e−ν/2X −

[
ℓ(ℓ+ 1)

2
(m+ 4πr3pr)− ω2r3e−λ−ν

]
H1

+

[
(ℓ− 1)(ℓ+ 2)

2
r − ω2r3e−ν − eλ

r
(m+ 4πr3pr)(3m− r + 4πr3pr)

]
K

− 16πre−λ/2(ρ+ pr)σ̄W, (22)

X =ω2(ρ+ pr)e
−ν/2(1− σ̄)V +

ρ+ pr
2

eν/2H0 −
p′r
r
e(ν−λ)/2W − eν/2S. (23)

Let us summarize how the above equations are derived. Equations (12) and (13) are the (t, θ)-component and the
(t, r)-component of Eq. (6). Equation (14) can be obtained by combining the adiabatic relation Eq. (9) with the
t-component of Eq. (7). It can also be derived with an alternative approach starting from the continuity equation as
described in [8]. Equation (15) is obtained by eliminating H ′

0, K
′ from the r-component of Eq. (7) using the (t, r)

and (θ, r)-components of Eq. (6). The algebraic relation Eq. (22) is derived by eliminating the H ′
0, K

′ terms with
(t, r), (r, r), and (θ, r)-components of Eq. (6), and Eq. (23) is found from the θ-component of Eq. (7). Equation (20)
comes from the relation

δσ =
∂σ

∂pr
δpr +

∂σ

∂ρ
δρ+

∂σ

∂µ
δµ. (24)

To solve for the QNMs, we integrate Eqs. (12)–(15) numerically to obtain the perturbed solution of the NS interior.
We begin the integration near the stellar center. Assuming the solutions are regular yields the following constraints:

H
(0)
1 =

16π

ℓ(ℓ+ 1)
(ρ(0) + p(0)r )W (0) +

2

ℓ+ 1
K(0), (25)

X(0) =(ρ(0) + p(0)r )e
ν(0)

2

{[
4π

3
(ρ(0) + 3p(0)r ) +

2σ(2)

ρ(0) + p
(0)
r

− ω2e−ν(0)

ℓ

]
W (0) +

K(0)

2

}
, (26)

S(0) =0, (27)

where the superscript (n) denotes the coefficient of the nth order expansion of the quantity in series of r about the
stellar center. At the surface, the vanishing Lagrangian pressure perturbation gives X(R) = 0. The interior solution is
then matched with the metric perturbation in vacuum at the stellar surface. We follow the Zerilli’s method described
in [3] (also check [9] for amendments of several typos) to solve for the complex frequency corresponding to purely
outgoing solutions at far-field region.

Note that Eq. (27) combined with Eq. (20) effectively places an extra constraint on σ near the center:

(
∂σ

∂x

)

eq

= O(r2), (28)

where x represents (pr, ρ, µ). This is similar to how the background structure equation (Eq. (3)) restricts σ to go as
r2 at the center (at least r to avoid irregularity). The H anisotropy model in Eq. (??) is modified from the original
form in [10] to satisfy the above condition.

II. AN ALTERNATIVE DERIVATION WITH THE CONTINUITY EQUATION

In this section, we provide an alternative way to derive the pulsation equations, Eq. (14) in specific. Instead of
using the t-component of Eq. (7), we utilize the continuity equation of particle number density and the relation of
thermodynamics. At the end, we explain how this method allows incorporating a more general form of the EOS in
the perturbed configuration.

We begin by reviewing the derivation of the pulsation equations for isotropic stars. It is common to introduce the
particle number density, n, which is governed by the continuity equation (see, e.g., [2]):

∇α(nu
α) = 0 =⇒ ∆n

n
= −1

2
hαβ∆gαβ . (29)
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The number density is an independent variable in the EOS, i.e., p = p(n), ρ = ρ(n), but does not enter the equation
of motion directly once we have ρ as a function of p. The pressure p here is the isotropic pressure. The Lagrangian
perturbation of n is related to that of ρ through the thermodynamic relation

∆ρ = (ρ+ p)
∆n

n
. (30)

Combining Eqs. (29), (30) and the adiabatic relation γ∆ρ/(ρ+ p) = ∆p/p gives the t-component of the stress energy
conservation (Eq. (7)) of an isotropic fluid.

While Eq. (29) still holds in the anisotropic case, Eq. (30) needs to be modified, since the work done on the fluid
does not depend only on the volume change, but is directional dependent1. This requires us to explicitly write down
the change in energy due to work done in each direction (see, e.g., [12, 13], for the generalized thermodynamic relations
in an anisotropic medium):

∆ρ = (ρ+ pr)
∆n

n
+ σ(∆Uθ

θ +∆Uϕ
ϕ), (31)

where ∆Uαβ is the perturbative Lagrangian strain tensor [14] 2, given by

∆Uαβ = ∆hαβ =
1

2
hα

µhβ
ν∆gµν , (32)

and ∆Uα
β = gαµ∆Uµβ . Equation (31), substituted with the adiabatic relation, Eq. (9), reads

∆pr
pr

= γ

[
∆n

n
+ σ̄(∆Uθ

θ +∆Uϕ
ϕ)

]
. (33)

One can show that this is equivalent to Eq. (14) using Eqs. (29) and (32), which are explicitly written as

∆n

n
=
∑

ℓ,m

[
1

2
H0 +K − e−λ/2

r
W ′ − ℓ+ 1

r2
e−λ/2W − ℓ(ℓ+ 1)

r2
V

]
rℓYℓmeiωt, (34)

∆Uθ
θ +∆Uϕ

ϕ =
∑

ℓ,m

[
−K + 2e−λ/2W

r2
+

ℓ(ℓ+ 1)

r2
V

]
rℓYℓmeiωt. (35)

Notice that, in general, the anisotropic fluid can have different adiabatic constants in each direction depending on
the anisotropy EOS. That is,

∆pr
pr

= −
∑

i

γi∆U i
i, (36)

where γi denotes the adiabatic index in the i-th spatial direction. This suggests a further generalization of the
pulsation equations described in the formulation section. We leave such studies for future work.

III. INTEGRAL RELATION OF THE EIGENVALUE AND EIGENFUNCTIONS

The eigenfrequencies and the eigenfunctions of the pulsation equations are related through the integral equations

ω2

∫ ∞

0

(I1 + J1)dr =

∫ ∞

0

(I2 + J2)dr + I3(R) + J3(R)

+ I4(∞), (37)

where J1 to J3 vanish in the isotropic limit and are non-zero only inside the star. In this section, we provide the
explicit forms of the terms I1 to I4 and J1 to J3.

1 Mondal and Bagchi [11] incorrectly assumed that Eq. (30) is valid also for anisotropic stars.
2 In fluid dynamics, it is more common to use the strain rate tensor to describe the deformation of fluid elements during the flow. Since
each fluid element in the pulsating star oscillates about its equilibrium position, the strain rate just differs from the strain by a factor
of iωe−ν/2.
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The terms I1 to I4 are obtained from Eq. (16) of [15], and are explicitly written as:

I1 =e
λ−ν

2 r2
{
(ρ+ pr)

[
1

r4

∣∣∣W̃
∣∣∣
2

+
ℓ(ℓ+ 1)

r2

∣∣∣Ṽ
∣∣∣
2
]
− ℓ(ℓ+ 1)

16πeλr2

∣∣∣H̃1

∣∣∣
2

− 1

16π

[∣∣∣K̃
∣∣∣
2

+ 2Re
(
K̃H̃∗

0

)]}
, (38)

I2 =e
λ+ν
2 r2

{
− (ρ+ pr)ν

′A
2eλr4

|W |2 + 1

γpr

∣∣∣P̃
∣∣∣
2

+

[
ℓ(ℓ+ 1)

16πr2
− 3(ρ+ pr)

4

] ∣∣∣H̃0

∣∣∣
2

− 1

16πeλ

∣∣∣K̃ ′
∣∣∣
2

+
ρ+ pr
γpr

Re
(
P̃ H̃∗

0

)
− (ρ+ pr)A

eλ/2r2
Re(W̃ H̃∗

0 ) +
1

8πeλ
Re
[(

ν′H̃0 + H̃ ′
0

)
K̃ ′ ∗

]}
, (39)

I3 =
eνρ

2

[
2e−ν/2 Re

(
W̃ H̃∗

0

)
+

ν′

r2

∣∣∣W̃
∣∣∣
2
]
, (40)

I4 =
eνr2

16π

[
K̃∗
(
H̃ ′

0 + ν′H̃0 − K̃ ′
)
− K̃ ′H̃∗

0

]
. (41)

Here, P̃ is defined through δpr =
∑

ℓ,m P̃ Yℓmeiωt, and the symbol Re denotes taking the real part. The perturbation
variables are redefined in the following ways to simplify the expressions:

rℓK =K̃, rℓH0 = H̃0, rℓV = −Ṽ ,

rℓS =S̃, rℓ+1H1 = H̃1, rℓ+1W = W̃ . (42)

We see that I1 to I3 are real while I4 is in general complex if we impose the purely outgoing boundary condition at
infinity [15, 16].

The terms J1 to J3 are derived using the procedures described in Appendix A of [15], with the Einstein equations
and stress-energy conservation for the anisotropic case:

J1 =− ℓ(ℓ+ 1)e
λ−ν

2 (ρ+ pr)σ̄
∣∣∣Ṽ
∣∣∣
2

, (43)

J2 =e
ν
2

[
(ρ+ pr)σ̄

(
−K̃ ′ +

2e−
λ
2 A

r3
W̃

)
− 2σ̄

r

(
1 +

ρ+ pr
γpr

)
P̃r +

2

r
S̃

]
W̃ ∗

+ e
ν+λ
2

(
σ̄P̃r +

ρ+ pr
2

σ̄H̃0 − S̃

)[
r2K̃∗ + ℓ(ℓ+ 1)Ṽ ∗

]
, (44)

J3 =
2eνρ

r3
σ̄
∣∣∣W̃
∣∣∣
2

. (45)

The perturbation variables of J1 and J3 are paired in the same way as I1, while J2 is in general complex as the
complex perturbation variables cannot be paired in the same ways as I1 to I3. Although it is not obvious that
the complex pulsation variables within J2 cannot be paired up to form real terms, we verified this by numerically
computing the integral using the solutions of the QNMs.

Another perspective is to focus on S̃, which depends on the anisotropy ansatz itself. The choice of the functional
form for σ affects the perturbation variable S̃, which in general causes J2 to be complex. In [17], it is shown that the

non-radial modes are stable as long as the anisotropy is finite in the Newtonian incompressible star with S̃ = βP̃ . We
point out here that it holds specifically for this anisotropy ansatz and therefore does not contradict our findings in
this paper. In addition, the instability comes from the imaginary part of the eigenfrequency, which is caused by the
GR effect.

IV. ADDITIONAL NUMERICAL DATA

In this section, we provide additional numerical data of the QNMs computed for the EOSs and anisotropy models
shown in the main text. We demonstrate that the anisotropy has a small effect on the real part of the frequency,
even though it changes the stability of the mode. We also quantify the validity of the Cowling approximation for
computing the oscillation modes of anisotropic stars for the first time.

In Fig. 1, we show the real and imaginary parts of the QNM frequencies for the first six ℓ = 2 modes of the
Poly-H model. The real part of the frequencies of the isotropic and the anisotropic case is of similar values for all the
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FIG. 1. The real (top panel) and imaginary (bottom panel) frequencies of the first six ℓ = 2 QNMs of the Poly-H model with
central density 7.455×1014 g cm−3. The left panel has β = 0 and the right panel has β = 10. We also present the normal mode
frequencies computed using the relativistic Cowling approximation (Cowling) described in [6].

TABLE I. Numerical data of the first three ℓ = 2 QNM frequencies of the anisotropic NS models. The central densities of the
Poly models and the SLy4 models are set at 7.455× 1014g cm−3 and 9.88× 1014g cm−3 respectively.

Model β M (M⊙) Re(ω) (kHz) Im(ω) (Hz)

f p1 p2 f p1 p2

Poly 0 1.40 1.574 4.344 6.784 0.550 5.93× 10−2 1.95× 10−4

Poly-H −10.0 2.18 1.945 4.364 6.104 2.262 −1.573 1.212

Poly-H 10.0 1.10 1.233 4.215 6.948 0.156 −0.259 −0.265

Poly-BL −0.5 1.74 1.791 4.347 6.561 1.231 0.351 7.80× 10−3

Poly-BL 0.5 1.16 1.325 4.324 6.931 0.221 −2.01× 10−2 −3.59× 10−3

SLy4 0 1.40 1.934 6.304 9.348 0.830 3.77× 10−2 2.25× 10−5

SLy4-H −10.0 2.52 2.527 5.715 7.672 5.561 13.24 −11.78

SLy4-H 10.0 1.06 1.322 6.147 8.877 0.129 −1.082 −0.361

SLy4-BL −0.5 1.75 2.226 6.070 9.029 2.046 0.186 0.121

SLy4-BL 0.5 1.16 1.556 6.437 9.109 0.274 −3.90× 10−2 −1.24× 10−2
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modes. For the isotropic case, the imaginary part of the modes is all above zero and decreases with the mode order.
Meanwhile, that of the anisotropic case does not show a monotonic behavior and can become negative.

The full GR formalism can be reduced to the relativistic Cowling limit given in [6]. Notice that the approximation
procedure is not by simply taking all metric perturbations to zero. The steps involved are the same as the isotropic
case described in, e.g., [18, 19], where we set H0, K, H1 to zero in Eqs. (14), (15), and (23), and further drop the term
−4π(ρ+ pr)

2e(λ+ν)/2W/r in Eq. (15) 3. The resulting formulas are equivalent to Eqs. (27), (29) and (30) of [6] with a
barotropic EOS, and can further be reduced to the isotropic limit [21]. In Fig. 1, we also show the frequencies obtained
by the Cowling approximation. The f -mode frequencies show 20-30% deviations from the full GR real frequencies.
The percentage deviation decreases if we go to higher radial order p-modes. In the case of the p5-modes, the deviation
reduces to a 1% level.

More numerical data are provided in Table. I, including the real and imaginary frequencies of the first three ℓ = 2
QNMs, as a reference for readers interested in a numerical comparison. The β = 0 case of the SLy4 EOS has been
checked against numerical data available (e.g., [22]), and attains good agreement. We see that with the same ρ–pr
relation, the real part of the frequencies is not very sensitive to the change in β, while the imaginary part can change
by orders of magnitude and even change the sign.
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[8] See Supplemental Material at URL-will-be-inserted-by-publisher for the detailed formalism of the pulsation problem,

the explicit form of the integral formula relating the eigenfrequencies and eigenfunctions of the pulsation problem, and
additional numerical data of the quasinormal modes. (see also references [2, 3, 5, 7, 12, 14, 16, 19–22] therein).
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[10] D. Horvat, S. Ilijić, and A. Marunović, Radial pulsations and stability of anisotropic stars with a quasi-local equation of
state, Class. Quantum Gravity 28, 025009 (2010).

[11] S. Mondal and M. Bagchi, Non-radial oscillation of anisotropic neutron stars in full general relativity (2023).
[12] L. Landau and E. Lifshits, Theory of Elasticity (Pergamon, 1959).
[13] M. Karlovini, L. Samuelsson, and M. Zarroug, Elastic stars in general relativity: Ii. radial perturbations, Class. Quantum

Gravity 21, 1559–1581 (2004).
[14] B. Carter and H. Quintana, Proc. R. Soc. A 331, 57–83 (1972).
[15] S. L. Detweiler and J. R. Ipser, A variational principle and a stability criterion for the non-radial modes of pulsation of

stellar models in general relativity, Astrophys. J. 185, 685 (1973).
[16] R. Price and K. S. Thorne, Non-radial pulsation of general-relativistic stellar models. ii. properties of the gravitational

waves, Astrophys. J. 155, 163 (1969).
[17] W. Hillebrandt and K. O. Steinmetz, Anisotropic neutron star models: stability against radial and nonradial pulsations.,

Astron. Astrophys. 53, 283 (1976).
[18] L. Lindblom and R. J. Splinter, The Accuracy of the Relativistic Cowling Approximation, Astrophys. J. 348, 198 (1990).
[19] T. Zhao, C. Constantinou, P. Jaikumar, and M. Prakash, Quasinormal g modes of neutron stars with quarks, Phys. Rev.

D 105, 103025 (2022).
[20] L. S. Finn, Relativistic stellar pulsations in the Cowling approximation, Mon. Not. R. Astron. Soc. 232, 259 (1988),

https://academic.oup.com/mnras/article-pdf/232/2/259/3316314/mnras232-0259.pdf.
[21] P. N. McDermott, H. M. van Horn, and J. F. Scholl, Nonradial g-mode oscillations of warm neutron stars, Astrophys. J.

268, 837 (1983).
[22] A. Kunjipurayil, T. Zhao, B. Kumar, B. K. Agrawal, and M. Prakash, Impact of the equation of state on f - and p- mode

oscillations of neutron stars, Phys. Rev. D 106, 063005 (2022).

3 The reason for removing this term comes from Eq. (13) in the Cowling limit, assuming H1 does not reduce to zero in the same way as
H0 and K. An argument about H1 being larger than the other metric perturbations in the Newtonian limit is given in [20]


