arXiv:2405.04720v1 [math.AP] 7 May 2024

CONVERGENCE RATE OF THE HYPERSONIC SIMILARITY FOR
TWO-DIMENSIONAL STEADY POTENTIAL FLOWS WITH LARGE DATA

GUI-QIANG G. CHEN, JIE KUANG, WEI XIANG, AND YONGQIAN ZHANG

ABSTRACT. We establish the optimal convergence rate of the hypersonic similarity for two-
dimensional steady potential flows with large data past over a straight wedge in the BV ﬂ L1

framework, provided that the total variation of the large data multiplied by v — 1 + M2
uniformly bounded with respect to the adiabatic exponent v > 1, the Mach number Moo of
the incoming steady flow, and the hypersonic similarity parameter ao. Our main approach in
this paper is first to establish the Standard Riemann Semigroup of the initial-boundary value
problem for the isothermal hypersonic small disturbance equations with large data and then
to compare the Riemann solutions between two systems with boundary locally case by case.
Based on them, we derive the global L'~estimate between the two solutions by employing the
Standard Riemann Semigroup and the local L'-estimates. We further construct an example
to show that the convergence rate is optimal.
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1. INTRODUCTION AND MAIN THEOREMS

We are concerned with the optimal convergence rate of the hypersonic similarity for two-
dimensional steady potential flows with large data past over a straight wedge in the BV N L'
framework. In gas dynamics, hypersonic flows are the flows with a large Mach number (at least
larger than five). One of the important properties of the hypersonic flows is the hypersonic
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similarity, which was first developed by Tsien in [27] for the two-dimensional potential flow and
the three-dimensional axis-symmetric steady potential flow in 1940s. The convergence without
a rate of the hypersonic similarity for two-dimensional steady potential flows past over a straight
wedge was rigorously verified in [I§]. In this paper, we further develop mathematical analysis on
the hypersonic similarity for steady hypersonic potential flow over a two-dimensional straight
wedge with large data (see Fig. [LT]) to establish the optimal convergence rate rigorously.

ock
My >5

ock

FIGURE 1.1. Hypersonic flow over a two-dimensional slender straight wedge

Physically, the law of the hypersonic similarity is also called the Van Dyke similarity law
[30], which states that, for the steady flow around a slender wedge, the flow structures are
similar under some scaling if the Mach number of the incoming flow is sufficiently large. More
precisely, after scaling, the governed equations of the flow with the same hypersonic similarity
parameter can be approximated by the same hypersonic small-disturbance system.

Mathematically, consider a uniform hypersonic flow with velocity (u,0) past over a two-
dimensional straight wedge with boundaries § = +7byZ, for a fixed constant by and a sufficiently
small parameter 7 > 0. The two-dimensional steady isentropic irrotational Euler flows are
governed by the following equations:

dz(p) + 85 (pv) = 0,
2 () + 0y (7) -
where density p and velocity (u,v) satisfy the following Bernoulli law:
Loy o 78 1, it
- = = . 1.2
2(u +v)+'y—1 2uoo+7_1 (1.2)

Due to the symmetry of the initial-boundary value problem, we constrain ourself to consider
the lower half-plane in R? with wedge boundary 4§ = 7hoZ for by < 0 (see Fig. [2)). Then,
along the wedge boundary, the flow satisfies the impermeable slip boundary condition:

(u,v) -n=0, (1.3)
— (Tbo,*l)

Define the hypersonic similarity parameter:

where n is the unit inner normal of the wedge boundary.

~y—1

Uoo 1= TMoo = TUooPoo > - (1.4)
Following the arguments in [2, 27], we define the scaling:

T=x, §=TY, @="Uo(l+TU), U= 1UoTV, p= Poop; (1.5)

where poe = limg_,_ o p(7) so that lim, . p(y) =
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FIGURE 1.2. Hypersonic similarity law

Substituting (LH]) into (LI)—(L2), we obtain

{w(l +72)) + 8y (pv) =0, o
O0yv — Oyu = 0,
and

u—i—%(vQ—l—TQuZ)—i-ﬁ =0 (1.7)

Now the fluid domain and its boundaries (see Fig. [[.3]) are given by
Qw ={(z,y) : >0,y < bz}
and
Iy ={(z.y) : >0,y =boz}, Xo={(z,y) : =0,y <0}

Let ny, = (\l;)f—l—blé be the unit inner normal vector of I'y,. Then the boundary condition (L3])
becomes

(1+7%%v) ng, =0 on I'y. (1.8)
In addition, we impose the initial data on ¥\ as

(p,u,v) = (po,uo,vo)(y) on X, (1.9)

where pg, ug, and vy satisty (LT).

Yy
O = arctan by x
r
(po, o, v0) v
Ow
hock
Yo

FIGURE 1.3. The initial-boundary value problem (L6])—(T9l)
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Mathematically, the hypersonic similarity means that, for a fixed hypersonic similarity pa-
rameter a,, the structure of the solution of (LG)—(L9) is persistent if M, is large (i.e., 7 is
small). In practice, when My, is sufficiently large, v is expected to be near 1. Therefore, if
the hypersonic similarity is valid, when 7 and v — 1 are sufficiently small, the solution of the
initial-boundary value problem (L6)—(L9) should be approximated by the problem via taking
T=0and vy=1:

al‘p + ay(ﬂv) = 07

Oyv — Oyu = 0, (1.10)
ut 50 + 5 =0,
with the boundary condition:
v = by on I'y, (1.11)
and the initial data:
(p,u,v) = (po,uo,v0)(y) on X, (1.12)

where pg and (ug,vo) satisfy (LI0)5.

System (LI0) is called the hypersonic small-disturbance system. The hypersonic similarity
was established in [I8] by proving the existence of global entropy solutions of problem (L6])—
(T3) with large data, provided that (y—1+72)(T.V.{(po, vo); Lo }+|bo|) < 00, and then showing
that the solutions converge pointwise to the solution of problem (LI0)—(TI2) as v — 1 + 72
tends to zero. Therefore, a next natural question is what the convergence rate with respect to
parameter v — 1 4+ 72 should be. The main purpose of this paper is to establish the optimal
convergence rate of the solutions of problem (L6])—(L9) to the solution of problem (LI0)—(T12)
in L' as v — 1 + 72 — 0 with large initial data. To this end, we set

p=(e,7%) = (y—1,72). (1.13)

Denoted by (p), u(#) v(#)) the solution of problem (L) (LJ), and denoted by (p,u,v) the
solution of problem (LIO)-(TI2) (é.e., corresponding to the case: @ = 0). Since the flow moves
from the left to the right, then 1+ 72u®) > 0 so that u(*) can be solved from equation (7))

1
u) = - (\/1 — 2B (p), u() ¢) 1), (1.14)

where B (p, v, €) is given by
2(p° —1)

€ . 2
B9 (p,v,e) := —Z + 2. (1.15)
Substituting (LI4]) with (LI5]) into equations (L6]), we reformulate problem (L6)—(T3]) as
Oy (p(ﬂ) V1= 72BE)(pr) y(k), €)) + Ay (pv)) =0 in O,
B 0) _ 8y(\/1,T23(e)(pQ(u),vw),E),l) 0 O (1.16)

together with the initial condition:

(p*™), ™)) = (po,v0)(y)  on o, (1.17)

and the boundary condition:

<\/1 — 12BE) (p1) (k)] e),v(“)> Ny =0 on I'y. (1.18)
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Similarly, from the third equation of (LI0]), we obtain

1,5, Inp
Then, substituting (I.I9]) into the other two equations of (LI0), we reformulate problem (LI0)—
as
Ozp + 0y(pv) =0 in Qy,
0+ O i ) | o (1.20)
O,v + 8y(5v2 + a—nQQ) =0 in Oy,
with the initial condition:
(p,v) = (po,vo)(y) on ¥o, (1.21)
and the boundary condition:
v=1bp on I'y,. (1.22)

Our main results in this paper are stated as follows:

Theorem 1.1 (Main Theorem). Assume that there exist p* > p. > 0 so that py € [ps, p*]. As-
sume that (pg—1,v0) € (L'NBV)(Xg). Moreover, assume that there exists Co > 0 independent
of p such that

[ (T-VA{(po,vo); o} + |bo]) < Co

for ||| := e + 72. Let (o™, v®) and (p,v) be the entropy solutions of problem (LI6)(LIS)
and problem (L20)—(L22)), respectively. Then there exists py = (€0, 7¢) with €9 = v — 1 > 0
and 19 > 0 such that, when |p|| < |[pol| := €0 + 78,

1(p#) = p, 0™ —0) | 1 (oo beay) < Cllpll  for every x>0, (1.23)

where C > 0 is independent on p and x. Moreover, the convergence rate for p in (L23)) is
optimal.

With Theorem [Tl in hand, we can further show the convergence rate between the entropy
solutions (p®), u(#) v(#) of problems (LB)(T9) and the entropy solution (p,u,v) of problem

(CI0)—(TCI12) below.

Theorem 1.2. Under the assumptions in Theorem LTI, let (p™) u) v#)) and (p,u,v) be
the entropy solutions of problem (L6)—([L9) and problem (LI0)—(LI2)), respectively. Let g be

defined in Theorem [Tl Then, for any ||p| < ||poll, the following optimal convergence rate
holds:

16 = p,u® = 0,08 = )1 ooy < CA+ @)l for every @ >0, (1.24)
where C > 0 is a constant independent of p and x.

To complete the proof, our main strategy is to further develop the methods used in [4] 5], [12]
for the Cauchy problem into the initial-boundary value problem with large data by requiring
that one of the two problems can generate a Standard Riemann Semigroup, denoted by SRS,
while the other admits approximate solutions constructed by the wave-front tracking scheme.

Since there is no theory on the SRS for the initial-boundary value problem in general, we
identify an affine transformation to transfer the initial-boundary value problem (L20)—(T.22])
to be in a quarter region with the unchanged equations (IL20). Then we can apply the results
in [I4] to show that the transformed problem admits a unique SRS. After that, by applying
the inverse transformation, we can establish the L'-stability and the existence of the SRS of
the initial-boundary value problem (L20)—-(L22]). Moreover, a new semigroup formula is also
established.
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On the other hand, for the initial-boundary value problem (LI6)—(I8]) with large data,
by employing the path decomposition technique developed in [I] and following the argument
in [I8], we can also construct the approximate solutions via the wave-front tracking scheme.
Based on them, employing the new semigroup formula obtained in this paper, we establish the
global L'-difference estimate between two approximate solutions and obtain estimate ([23)
by taking the corresponding limits. Finally, we construct a simple example to illustrate that
the convergence rate obtained in Theorem [[.1]is optimal.

We remark that, recently, the law of the hypersonic similarity without a convergence rate
was rigorously justified for the steady potential flow past a straight wedge with large data
in [I8] and the optimal convergence rate for small data was obtained in [19] over a Lipschitz
curved wedge, as well as for the full Euler flows with small data in [9]. Meanwhile, a similar
but different problem on the hypersonic limit was considered in [24], 25] as the Mach number
of the upcoming flow My, tends to infinity with the obstacle being fixed, for which the Radon
measure valued solutions were constructed as the limit of the solutions of the steady full Euler
flows past a two-dimensional obstacle.

There are also some results on the existence of global entropy solutions with large data in
BV for the one-dimensional gas dynamics equations in Lagrange coordinates; see [22], 23] 29]
for more details. There are also some results on the steady supersonic flow problems that
involve the structural stability of shock waves, rarefaction waves, and contact discontinuities;
see [7, [8, 10], 13} 15, 3T, B2] and the references cited therein. See also [6] [11].

The remaining context of this paper is organized as follows: In §2, we study the elementary
wave curves for systems (LI0) and (L20) globally, and then compare the Riemann solvers
between these two systems with a boundary. In §3, we construct the approximate solutions of
the initial-boundary value problem (LI6)—(LI8]) via the wave-front tracking scheme and then
establish the L!-stability estimates and the properties of the Standard Riemann Semigroup
(SRS) for the initial-boundary value problem ([.20)—(L22]). Based on them, a new semigroup
formula is derived. In §4, we complete the proof of Theorem [I.1] by first establishing the local
L'-estimates between two approximate solutions and then applying the semigroup formula and
the properties of the approximate solutions. Finally, we present an example to illustrate that
the convergence rate obtained in Theorem [[1] is optimal. In §5, we complete the proof of
Theorem In the appendix, we show some basic estimates, which are used for establishing
the optimal convergence rate in §4.3.

2. RIEMANN SOLVERS FOR SYSTEMS (LI6) AND (L20)

In this section, we construct the elementary wave curves for system (LI6]) and system (L20),
respectively. Then we make the comparison of the Riemann solvers with a boundary between

the initial-boundary value problems (LI6)—(TI8]) and (T20)—(T.22]).

2.1. Wave curves for system ([I6). For simplicity, we rewrite (p®),v®) as (p,v) and
B (p(”), ON €) as B©. Denote U := (p, U)T. Then, by direct computation, the characteristic
polynomial of system (L.I6]) is

(1- (B 4+ a;f,oe))(/\(“))? —20V/1 = 72BEOXK) 2 — 2 = 0. (2.1)

It admits two roots that are the two eigenvalues of system (LI6]):

a2 v\V/1—72BE) 4 (1) p2 \/ago — 72¢71 ((e +2)p¢ — 2)
a2 (1 — 72(B + ax2p9))

(1) — -
AU p) = for j =1,2. (2.2)
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The corresponding right-eigenvectors are

r (U, ) = (=1 (p, £

a2 (v1-— TQB(G))\g»“) —v)

Lemma 2.1. For any U € D = {(p,v) : p € (p«, p*), |v| < K} with constants p* > p, > 0 and
K > 0 independent of u, then

MO )| = vt (1Y 0] forj =12 (2.4)
n=0

€

)T forj=1,2. (2.3)

)| = (-1 a)T forj=1,2. (2.5)
n=0

Since a > 0, we deduce from Lemma 2.1] that system (L.I6]) is strictly hyperbolic for any
U e D if e>0and 7> 0 are sufficiently small. Moreover, we have

Lemma 2.2. For any U € D with D defined in Lemma 21|, there exists a constant vector
iy = (€0, 72) with & > 0 and 7o > 0 such that, for |||l < ||l

VUAEH)(Ua H') ’ I'§~”)(U, H) >0 fOT J=12 (26)
where ||p| = €+ 72 and ||a,|| = € + 2.
Proof. For j = 1, taking the derivatives on both sides of (2.I]) with respect to p to obtain

(1)
2<(1 e ( (5) + a—Z e)))\(“) val _T2B(6))a)\—1

dp
+a(;,2((2v — (e + 2))\§”)))\§”)7—2 - e)pefl =0. (2.7)
Substituting ([2.2]) for j = 1 into (2.7)), we deduce
8)\§”) _ (2?) —(e+ 2))\5“)))\5”)7'2 —€ (2.8)

Op 2012 \/ago — 72 1((e +2)p¢ — 2)
Similarly, we also obtain

8)\§“) ago<( 1—712B() — 27-21)2))\(“) —v+ 7'21)()\5“))2) 29)
v 2p2\/a2 — 7121 ((e+2)pc — 2) . .

It follows from (23] and (2.8)—(2.9]) that
VoA (U p) - xi (U, )
2((VI = 72B@ — 2r20)A" — v + r20(AM)?) — (VI = ZBOANM — 0) (20 — (e + AP 72 — ¢)
N 2p*§\/ago — 712 ((e+2)pc — 2) (m)\g‘“ — )
which, by Lemma [2.1], implies that

VoA Uop) x Up)| = ax! >0
I_L:

)

In the same way, for j = 2, we have
Vo (U, ) - (U, )
((m 272v) )\(“) —v+ 721)()\5“))2) — (m)\g“) — U)((QU —(e+ 2)>\§“>))\§“)r2 — 6)
2975 /a2 — 72 (e + 2)p- — 2)(V1 — 72BONP) —0) '
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Then, by Lemma 2.1] again, we obtain
VoA (U ) (U )| = ol >0
Therefore, we can choose fi, = (€y,74) with small & > 0 and 7y > 0 such that, when

el < ol VU)\g“)(U,u) . ré“)(U,u) > 0 for j = 1,2 and U € D. This completes the
proof. O

Lemma implies that both characteristic fields of system (.16 are genuinely nonlinear.
Thus, the elementary waves are either shock waves S = S%“ U Sé“ ) or rarefaction waves

RM) = Rg” U Rg” ). Next, we study the shock wave curves and rarefaction wave curves of
system (LI6]) in the (p,v)-plane.

For a given left-state Uy = (pr,vz)', the shock solutions U = (p,v) are the Riemann
solutions satisfying the following Rankine-Hugoniot conditions on the shock with shock speed

oj(p):

pv = pro = 0 (py/T= B (p,v,6) = p/T= B0 (pr,01.6) ),
T2<\/1—7- B (p,v,€) — /1= 72BO(pp, v, € ))ZO']('“)(U_UL),
and the following Lax geometry entropy conditions:
AW ) < o™ < AW ), o AU ) < o < MU, ). (2.11)
Then, for sufficiently small ||p]|, if Uz, and U € D, conditions (2.11]) imply that

(2.10)

p>pr,v<uvn, or p<pL,v<vp. (2.12)
Therefore, it follows from (ZI0) that

2(p° — -
(v—vr)® = G 2 e?z)ipm)m + 7B (oL, vr,€)B (p, v, ¢)

+ (V= 72BOGL, v1,0)(1 = 72BE(p,v,0)) ~ 1)

2(p° = Dp +2(p7, — 1)pr
3c€lp+pL) ) (2.13)

X <1)Lv +
Set a := £ . Define
PL

H,é“) (U — v, Q, UL7 IJ’)

2p5(af = 1)(aa—1
— (U _ UL)Q _ pL( > 6(@ lf 1) ) _ TZB(E)(pL,UL,G)B(e)(pLa7U7 6)

- (V= 72BOG1, 01, 0)(1 = 2B pra,v,0)) ~ 1)

2(p5 (T +1) —a—1
X (va+ (v 5 ) )> (2.14)
a?e(a+1)
Thus, solving v — vy, from equation (2.13)) is equivalent to solving the equation:
Hé”)(v —ULaOZaUL,N) = 0? (215)

where H® is defined by (ZI4)). Its solvability is given by the following lemma:
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Lemma 2.3. Let D be defined in Lemma 21l There exist both a constant & € (0,3) and a
constant vector iy = (&, 72) with €, < € and T < To such that, for ||| < ||@H|,
(i) If « € [1,6,], then equation HW (v — vy, a,Up,p) = 0 admils a unique solution
v—vp = o (e Up,p) € C2([L,651] x D x (0,&) x (0,72)) satisfying
V2 [(a—1)Ina (9g0(5’f)

= - — <0 2.16
u=0 Goo a+1 7 oo ’ (2.16)

o

(ii) If a € [0o,1), then equation H® (v—vp, o, Up, u) = 0 admits a unique solution v—uvy, =
gpé’;)(a; Up, ) € CZ([50,1) x D x (0,€,) x (0,7"62)) satisfying

(1)
() __@ _(1—a)lna 68052 91
©g, o Tra D > 0. (2.17)

Proof. If a« =1, then p = pr.
For a # 1, it follows from (2.12)-(2.14) and Lemma 2] that, when p = 0,

V2 [(p=p)p—pr) V2 [(a=1)lna

v—vp = —— = —_ for a > 1, 2.18
L= e w\ @+1) (218)
or
2 [ (1-a)l
ooy = Y2 [ A-aa (2.19)
(oo (1+ «)

Now, we first consider the case that a > 1. It follows from (2.I8]) that

Héu)(_g %’ o,Ur,0) =0, (2.20)
8Hé“) B __2\/5 (a—1)Ina
Bo=n)|, o™ 2(v —wvp) = . CE (2.21)

Next, we set

H(IJ’)(’U — UL, &, ULa l’l')

]:Igu)(v —vp, o, Up, ) = 1 for a > 1.
a_
Then, by (2.20)),
~ 2v2 [(a—1)Ina
H (- Uz,0) =0
s oo (a+1) @, U, 0) ’
and, by (20,
Bﬁé“)(v—vL,a,UL,u) 2v2 [ Ina

d(v —vr) oo V a2 —1"

pn=0
Since lim,_y14 % =1, we have

lim 8ﬁé“) (U — v, Q, UL7 IJ’)
a—1+ d(v—wvr)
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Note that lnf‘ is monotonically decreasing on [1,00) and lima o0 75 lno‘ = 0. Then we can

T
choose a small constant & € (0, 1) and a constant Cy, € (0, %) such that, for o € [1,65 1),

2 OH ™ 21/2
S = <—i050 <o0.
oo~ (v =), 0 (oo

Therefore, by the implicit function theorem and the compactness of D, we deduce that there
exists a constant pf = (€, 7}*) with € < & and 7 < 7 such that there exists a unique solution:

v—wp =3 (UL, p) € CH([1,657) x D x (0,&) x (0,72))

so that H (“)(ap(S“ ),a, Ur,p) = 0. Moreover, it follows from (2I8]) that the first identity in
(214]) holds.
Taking the derivative with respect to o on both sides of equation (ZI3]) to obtain
(1)
8H§“) . 8H(") I

= 0. 2.22
Oa &p(“) Jda 0 ( )

Taking p = 0 in ([2.22)), we see that

a@(ﬂ) 8Héﬂ) 8H(N) -1
oo ‘IFO ~ " da ((3@(”) >
2 2alna —1
V2 Toalna <0 for a>1. (2.23)
2000 a(a +1)2 /(0 — 1) In
Moreover, we have
o (m) o (m)
lim 2% —ay), lim %L —,
a—1+ « a—r00 o

2 <0 forae 1,650, |lpll < ||A], and Uy € D.

Furthermore, we take the derivative with respect to « on both sides of (2.22]) and set p =0
to obtain

5280(“) - <82Hé”) , 82H(“) 38059’? 82H(“) <39059lf)>2> <6H(“) >1

da? |, da? &p( )&x O 920 (u) da &P(“) _ ’
By direct calculation, we have
o> HM _ 2((0* —4a—1)(a+1) +40?Ina) o2 HM _ o> HM )

da? =0 a2, a?(a+1)3 ’ &P(Sl)ao‘ u=0 ’ 824,0(“) '
Then

62g0(“) ~ 2(a— D((a? —da+1)(a+1)+4a’na) na+ (o® + 2alna — 1)?
9a? 0 2200002 (0 + 1)3 (e —1)In a)% .
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2 (k)
Note that limg—14 6252 = az!. Thus, for a € [1,6;") and ||| < ||foll, we see that

[e.9]

B) (1) _
e C([1,65") x D x (0,&) x (0,72)). This completes the proof of (i), i.e., for the case

Oa?

that a > 1. In the same way, by (219]), we can also prove (ii), i.e., for the case that a < 1. O

Now, we study the rarefaction wave curves with Uy = (pL,vL)T as the left-state. If these
curves are parameterized as U(a) = (p(a),v(a)) T, then the 1-rarefaction wave satisfies

dp _ da
dpv _ ) o~ lda when « € (0, 1], (2.24)

a2, (v/1=72 B (p(a)0(0),) A (U () ) —v() )

with (p, )|a . = (pr,vL), or the 2-rarefaction wave satisfies

dp _ da
dpv _ ) ptda when a € [1, 00), (2.25)

a2, (V1= B (p(a)v(a), 0 A (U (@) ) —v(e)) |
with (p, )|a . = (pr,vr). Then we have the following lemma.

Lemma 2.4. Let D be given as in Lemma 2Tl Then there exists a constant vector fj =
(€5, 74%) with € < & and 7 < 7o such that, for ||| < |2y,

(i) when a € (Q, 1], equation [224]) admits a unique solution v — vy, = gpgﬁ)(a,UL,u) €
C2((0,1] x D x (0,&) x (0,7?)) satisfying

1 &pﬁé‘l)
=——Ilng,
n=0 Goo Ja

(1)

SDRl — 0, ()

oL < 0; (2.26)

a=1

(i) when o € [1,00), equation Z28) admits a unique solution v — vy, = <p(“) (o, Up,p) €
C?([1,00) x D x (0,€)) x (0,7?)) satisfying
1 asDRl

=—1 > 0. 2.27
u=0  Goo YT T (2.27)

(1)

— (1)
SORQ - 07 o

PR,

a=1

Proof. We give the proof of (i) only, since the argument for a € [1,00) is the same. First,
by equation (Z24]),, we see that p = pra. Then we substitute it into equation (2.24]), and
integrate the resulted equation to derive

pilaf=1)

| (V=8O (a0 - ¢Jac = PHE =, (2.28)
vy, o
where U(¢) = (pra,¢) . It follows from ([2.28) that v = vy when a = 1.
When a € (0,1), set
—1
1w v o) = [ (1800, MW@ ) = )i - LG
Therefore, solving equation (2.28]) is equivalent to solving the following equation:
H(”)(v —vr,a,pr, p) =0. (2.29)
Notice that H]({:) € C?, H}(ﬁ)( na " pr,0) =0, and
OHM (v — v ,Q, 0L,
Ry (V700,01 ) —aZl <. (2.30)
d(v —wvp) =0
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Then, by the implicit function theorem, equation (229) has a unique solution v — vy, =

@%)(a,pb p) € C? satisfying w%)(l,pb p) =0 and 90%?

_Ina

p=0 0o’
(u)
To fin d , we take the derivatives with respect to o on both sides of (2.29]) and then set
p=0to obtam
OH W) oH®M | 9ot
el PR —0. (2.31)
da u=o  Op [ 804 =0
Inserting the identity that ag;u) = _ai — into (Z3T)) and using (2.30), we obtain
n=0
8@%) OH ™) OH ™) -1 1
EEUS = — ( ) = — < 0.
e =0 foJe} 'y IS Goolt

This completes the proof. O
For d¢ € (0, %) and U, € D, we set

e (; Up, ) = {@%lj(a; Uiow) - fora (L) (2.32)
op (UL, ) for ac € (0,1],
and
o) (s U, o) = {ﬂﬂ%z(a; Ur,p)  for o€ (6o, 1], (2.33)
¢r, (UL, p) for o € [1,00),
where <p(“ ) and <p(“ ) j =1,2, are given by Lemma 2.3 and Lemma [2.4] respectively.

Using Lemmas [QZ{HHL we have

Lemma 2.5. Let D be given in Lemma[2ZTl and &y € (0, ) Let iy, be given in Lemmal[2.3], and
let iy be given in Lemma 24l Then, for ||p| < m1n{||u0H ||_”||} and Uy, € D, the following
statements hold:

(i) o™ € C2((0,551)x Dx (0, min{ |||, | E411})) satisfies that o)
for a € (0,6,1), and

_lna
Goo for a € (0,1],
(“)‘ - V2 /(a—1)Ina -1 (234)
Taw Vot for ace [1,657);
(k)
(ii) % € C2((60,00) x D x (0, min{ ||z}, | @4||})) satisfies that @I _ =0and 29" >
fm’ a € (0p,00), and
wg”)‘ _ ) Tax T+a f (do, 1], (2.35)
n=0 I;Tg‘ for a € [1,00).
Based on Lemma 2.5 we define
@g”)(oq; UL, 1) = (prov,vr + gp&”)(al;UL,u)) for ay € (0,0, 1), (2.36)

q)é”)(oa; Ur, 1) = (proe,vr, + @é”)(oéz; UL, 1)) for ay € (do, 00). (2.37)
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Denote
W (e Up,p) : = @é“) (w2 <I>§“)(a1; U, ), ) (2.38)
= (pragar,vr + wgﬂ)(al; UL, p) + @é“) (c2; UJ%), mw)',
where a = (1, ) and U](V‘;) = (praz,vr + @&“)(al; Up,p)'.
Next, we consider the elementary wave curves of system (L20) for U := (p,v)’. The
eigenvalues of system (L20) are
M) =v—a,  Mo(U) =v+az, (2:39)
and the corresponding two right-eigenvectors are
ri(U) = (—p, ac?ol)—r7 rQ(U) = (P, ac?ol)—r' (2'40)
Notice that, for any U € D, by Lemma 2.1 and (Z39)—(240]), we know that
MU | =x50), WU =rU) forj=12 (2.41)

n=0 J p=0
For U € D, system (L20]) is strictly hyperbolic. Moreover, a direct computation shows that
Vuri(U) - 1i(U) = az) >0 for j = 1,2.

It implies that the two characteristics families are genuinely nonlinear in D. Then, for any two
constant states U, Uy, € D, we can parameterize the first elementary wave curve (including 1-
shock S; and 1-rarefaction wave R;) and the second elementary wave curve (including 2-shock
Sy and 2-rarefaction wave Ry) of system (L.20]) which connects Uy, to U as

U= (a;Uz) = (pro1,vr + @1(ar)) ', (2.42)
U = ®y(az;Ur) = (prow, vr, + wa(an)) ', (2.43)
respectively, where
—h;ﬁ for a; € (0,1],
p1(ar) = - (2.44)
—% % for ay € [1,00),
V2 / (Q—az)lnas £ 0.1
@2((12) — Aoo 14+a2 or (o © ( ) ]7 (245)
% for ag € [1,00).

Finally, we set
®(a; Ur) = (prazar,vr, + @1(on) + ga(a2)) T for oo = (a1, o). (2.46)
Then, by direct computation, we have

Lemma 2.6. ¢r(«a), k= 1,2, satisfy
(i) gr(a) € C2(Ry) for k =1,2;

— h. J 7 .
% 0 =P ga | @@ forj=12 (2.47)
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2.2. Comparison of the Riemann solvers between systems ([.I6) and (L20). In this
subsection, we consider the comparison of the Riemann solvers between system (LI6]) and
(L20) with/without a boundary.

First, we are concerned with the Riemann problem for system (LI6]) with (Z,7) € © and
the following data:

U(jay) =

{UR = (pr,vR) " for y > g, (2.48)

UL == (pr,vr)" for y < g.

Lemma 2.7. Let domain D be given as in Lemma Il For any two given constant states

Ur,Ug € D, there exist small constants &) € (8o, 3) and @y = (&, 7{?) with € < min{&), €]

and 7, < min{7), 7'} such that, for |p| < ||@}||, the Riemann problem (LI6) and (2.48)
admits a unique constant state U ](\’j ) satisfying

Uy = o (a0 Us,p), Uk =28 (s U3, ), (2.49)
where o, oz € (50, 3r).-

0
Proof. To obtain the solution of the Riemann problem (II6]) and (2:48]), it suffices to solve the
following equations for a = (o, ag):
Ug = W (c; Uy, ).
More precisely, by (Z38)), it can be rewritten as

{PR =: &M (a; UL, p) = prasas, (2.50)
vp = ®W2(; Up, ) = vy, + o\ (s Up, ) + o (cva; o (ay; UL,p), ).
For p = 0, by (234)-235), equations (2.50) admits a unique solution a = («ay,aq) for
Ur,Ugr € D. Next, by (247),

(1)1 (p),2
d O(PW)-H, O):2) ‘
O(ar,a2)  lu=0

> = pL((XQ(P,Q(OéZ) - 06190/1(041))'

Thus, it follows from Lemma that there exists a small constant &) € (do, 3) such that, for
a1,Q2 € (565 %) and pr, € D,

pr(aeph(az) — a1 (ar)) > Cg > 0.

Then, by the implicit function theorem, there exist constants @]} = (&,7/?) with € <
min{ey, €y} and 7 < min{7), 7} such that, for ||| < ||@}|]| = & + 72, equations (Z.50) admit
a unique solution (a1, az) € (6, 3-)°. O

0

We now make the comparison of the Riemann solutions between system (LI6]) and system
(L20) with the initial-boundary condition (2.48]).

Proposition 2.1. For a given number k = 1,2, assume that two constant states U, Ur € D
satisfy

Ur = ®(B;UL), Ug = ‘P;(C”)(Oék; UL, 1), (2.51)
where B = (b1, B2), a € (9, i), and 6 > 0 is given in Lemma 27l Then, for ||p| < ||@1],

Br =0+ O)|oe — Ul[pll,  B; =14 O()|ag — 1|, (2.52)
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where j £k, j =1,2, and @} = (€},7]) is given in Lemma 1. Moreover, if |{Ugr—UL| = anp,
then

61 = 1]+ |B2 — 1] = O(1)anrp, (2.53)
where the bounds of O(1) are independent on .
Proof. First, consider the following equations that are derived from (2.57]):

®(B;UL) = O (an; U, ) for B= (B, ).
Without loss of the generality, we consider only the case: £ = 1. By ([236]) and (Z42)—(243)),
for Uy, € D, the above equation is equivalent to the following equations:
Fl(ﬁl,ﬁ2aalaH’UL) :0’ (254)
Fy(B1, B2, 01, 1,UL) =0,

where

{Fl(ﬂhﬁz,ahu, Ur) = p1B2 — au,

Fy(B1, B2, 01, 1, Up) i= 1(B1) + 2(B2) — o (a3 U, ).
When p = 0, by Lemma [2.6] system (2.54)) has a unique solution 81 = oy and 3 = 1. When
p # 0, by Lemma [2.6],
o(f, F:
det <M> = p5(1) — aqpi(ar) > Cs >0 for a1 € (6, 3-).
8(’81”82) p#0,81=01,B2=1 0 0
Thus, by the implicit function theorem, system (2.54]) admits a unique solution:
(517 52) = (51 (ala l'l’)7 52((117 l'l’)) € CQ'
In addition, by Lemma 2.6l 8;(1, n) = B2(1, ) = 1, f1(a1,0) = a1, and f2(aq,0) = 1. Then
we can apply the Taylor expansion formula to obtain
Brlar, p) = fr(a,0) + (L, p) — A1(1,0) + O()|on = 1|l = a1 + O1)]ar — L[],

Ba(a1, p) = Ba(a1,0) + B2(1, ) — B2(1,0) + O(1)|er — 1[|p]] = 1+ O(1)[ag — 1]|| ],

which are estimates (2.52)).
Since, for Ur,,Ugr € D, there exists C' > 0, independent of u, such that

=D SRR AR ARl SIS

Jj=12 Jj=12

estimate (2.53]) follows immediately. O

Following the proof of Proposition 2.1l above, we have the following corollary in a direct way,
whose proof is omitted.

Corollary 2.1. Assume that two constant states Ur,,Ur € D satisfy
Ur=®(B;UL), Up=3®"(a;Upr,p) for B=(B1,52) and o = (a1, c2),  (2.55)
where oy, oz € (8, 5 ), and constant & > 0 is given in Lemma 27l Then, for ||u| < |||,
0
B =a;+0M)( S lax— 1)l forj=1.2, (2:56)
k=1,2
where iy = (€,,7]) is given in Lemma 7. Moreover, if Ur € D, |Ug — Ug| = anp, and
Ur=2(B;UL), Ur=2"(a;UpL,p) for B=(B1,B2) and o = (a1, a2),  (2.57)
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then

Bi=aj+0M)( Y lag = 1) |ull + O(Manp  forj=1.2, (2.58)
k=1,2

where the bounds of O(1) are independent of p.

Next, we compare the Riemann solutions near the boundary with the following initial bound-
ary value conditions:

vé”) :\/1—7' B (p (r) vé”),e)bo on {z =z, g}—!—bo(x—i“)},
U(z,y) =Up on {x =z,
where U, = (pr,vr) " and by < 0.

Lemma 2.8. For any given constant state Ur, € D with D defined by Lemma 2], there exist
small constants €] < min{ey, ey}, 7/ < min{7, 7/}, and &) € (5o,3) such that, for ||p| <

|z!|l, the Riemann problem (LI6) and (259) admits a unique solution U(“) (Péu) (“))T
connecting Ur, by the first-family wave curve with strength aq € (4], 5,,)'

Ub(ll') — (I)gﬂ') (041; UL, “’), Ub(u) (pl()l‘) (N)) . (260)

Proof. 1t suffices to show that the following equation:

v + 90&“) (a; UL, p) = bO\/1 - TQB(G)(‘bg“)(al? UL, 1) €)

has a unique solution a1 when ||| is small for Uy, € D and by < 0.
Let

Fylons s bo, Ur) = v, + ¢ (a1; Ur, 1) — boy/1 — 2BO@Y (013U, o), ).
When p =0, Fy(ai; p,bo, Ur) can be reduced as
Fy(a150,b0,UL) = ¢1(a1) +vr — bo.
If v, < by, then, by (244), equation Fy(aq;0,bp,vr,) = 0 has a unique solution a3 =
et (L=bo) ¢ (0,1].

If vr, > by, it follows from limg, 00 %
lim Fb(al,O b, Ur) = —o0.

o1—

= oo that

Moreover, for a; € [1,00),
Fb(l;o,bo, UL) =1 — bo >0
and, by Lemma 2.0,

8Fb(0&1; O, bOa UL)
8041

= ¢ (a1) < 0.

Thus, Fy(a1;0,bg, Ur) = 0 has a unique solution ay € (1,00). Therefore, if p = 0, Fp (a5 p, by, Ur) =

0 has a unique solution a; for Uy, € D and by < 0.
Next, notice that there exists a constant ¢ > 0 such that, for a; € (d(, 5,,)

or,

/
= < —Csn < 0.
O | -0 eilen) %
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Then by the implicit function theorem, there exist small constants € < min{€), €} and

' < mln{TO,Té/} such that, for ||p| < H,u |, Fyp(an;p,bo,Ur) = 0 admits a unique solution
a1 € (&7, 6”) This completes the proof. O

Now we are ready to compare the Riemann solutions between system (LI6) and system
(L20) with a boundary.

Proposition 2.2. Let Ur = (pr,vr), Uy = (pp,vp) ", and Ub(”) = (pl()”), (e ))T be the three
constant states in D satisfying

Up=®(B1;UL), UM =W (ay;Up,p) for oy € (5, ), (2.61)
and
w=bo, 0" =bpy/1 - 2BORH, o) o), (2.62)
where §) > 0 is given in Lemma[2Z8. Then, for |p| < ||&]],
Br=a1+O(1) (1 + |ax — 1)) ||, (2.63)

where € and 7| are given in Lemma 28 and the bound of O(1) is independent of p.

Proof. By ([2.30), (2.42]), and (Z61)—([2.62]), we have the following relation for oy and S:

() (ar; UL, p \/1—7 ©(p (u) v( ) L) (p1(B1) + vr).

v + 9
Let

F(Br 0, Uz) - = /1 - 72BOGH o) €)1 (81) — o (01 U, o)

+ (VI o 1)

For p = 0, it is direct to see that Fy(S81,1,0,UL) = ¢1(81) — ¢1(a1) = 0 has a unique
solution 1 = «;. In addition, by Lemma 2.6 for aq € (0j,1) U (1, 5—1,,), we have
0
OFp(B1, 01, 1, UL)
9/
Then, by the implicit function theorem, for ||p|| < ||&]]], there exists a unique solution 8, =

ﬁl(alaﬂ) € C? of the equation: F, = 0. Moreover, when a; = 1, by Lemmas 2.5H2.0]
Fo(B1, 1, 1, Ur) = 0 can be reduced to

\/1 —712BE)(pr,vr,€) p1(B1) + <\/1 —72BE)(pr,vp,€) — 1>UL =0,

= —¢i(a1) — Cgy < 0. (2.64)
n=0,51=c

so that

A1, p) =14 01)]|pll,

where the bound of O(1) is independent of .
Finally, by the Taylor formula and the fact that 51(1,0) =1,

/81(041711/) = Bl(aho) + /81(17/'1/) - 51(170) + O(l)‘al - 1”“"’”
= a1+ O(1)(1 +[en — 1)) [[e]],
where the bound of O(1) is independent of . O
Based on Propositions 2.JH2.2] we have
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Proposition 2.3. Let Uy = (pr,vr) ' and Uy = (pp,vp) " be two constant states in D satisfying
Up=9(B:Ur), U= (a;Ur,p)  for B= (b1, Ba), (2.65)

vp = bo\/l — 12B©) (py, vy, €). (2.66)

Then, for a1 € (5. 3) and [lu] < ]

Bi= a1+ O (L +Jas — 1)l B2 =1+ O(1)(1 + law — 1)) |l (2.67)

where the small constants 0(, €, and 7{' are given in Lemmas ZTHZE|, and the bound of O(1)

is independent of p.

3. EXISTENCE OF SOLUTIONS OF PROBLEM ([L.I6)—(LI8) AND WELL-POSEDNESS OF
ProBLEM ([.20)—(L22) wiTH LARGE DATA

In this section, we construct the approximate solutions of the initial-boundary value problem

(CLI6)-(TI8) and establish the well-posedness of the initial-boundary value problem (L20])—
(C22) in BV N L', which is the basis to establish the L!-error estimate between the two

respective entropy solutions of problem (LI6)—(LI8]) and problem (L20)—-(T22]).

3.1. Wave front-tracking scheme for problem ([I6)—(LIS). Let v € Ny be a given
parameter. As in [T, B] (see also [16]), for given initial data Up(y) = (po,vo)" (y) with y < 0,
we can construct a piecewise constant function U¥(y) = (p4,v¥)" (y) such that

105 () =Uo()llrsey <277 TVAUG(); X0} < T.VAUo(-); Xo}- (3.1)

Then the approximate solution U (“)7”@, y) in Q is constructed in the following way:

Let yy < yn—1 < -+ < y1 < yo = 0 be the location of the discontinuities of Uj(y) at
x = 0. At each point (0,yx) for 1 < k < N, we solve the Riemann problem (LI6]) and (2.44])
with U, = U (yx—) and Ur = U} (yx+). At (0,y0), we solve the Riemann problem ([.I6)
and (Z59) with Uy, = Uy (0—). Then, by Lemmas 2.7H2Z8 the solutions of these two types
of Riemann problem may consist of shock waves S®) or rarefaction waves R(®. We further
partition the rarefaction waves into several small central rarefaction fans (still denoted by) R(*)
with strength less than v~!, which propagate with the characteristic speeds. Such a modified
solution of the two Riemann problems is called an Accurate Riemann Solver (ARS). Putting all
the modified solutions together, we define an approximate solution U(“)’”(x, y). It is piecewise
constant and prolongs until a pair of neighbouring discontinuities interacts at point (z,y) €
or a wave front hits boundary I'y, at point (#1,boZ1). At this point, we continue to construct
the approximate solution by giving the ARS of the Riemann problem (LI6) and (2.44]) with
initial data U®)¥(&—, y) or of the Riemann problem (LI6) and (259) with Riemann data
UM (31—, boi1—). We repeat this construction as long as the number of the wave fronts does
not tend to the infinity in a finite time. Then, to avoid the case that the number of wave fronts
blows up, we introduce a Simplified Riemann Solver (SRS), in which all the new waves are
lumped into a single non-physical wave N P®) with a fixed speed 5\, which is larger than all the
characteristics speeds. To decide when the SRS is used, we introduce a threshold parameter
0 > 0, depending only on v~!. When the strengths of the two approaching physical wave fronts
a and [ satisfy that | — 1|8 — 1| > o, the ARS is used and, otherwise, the SRS is used.

Moreover, we may change some of the speeds of the wave fronts slightly with a quality less
than 277, in order to make sure that only two wave fronts interact or only one wave front hits
boundary I" at each point. The set of all the fronts are defined by J(U(“)) = SWURMWUN P,
Then, applying the path decomposition position method developed in [I] and following the
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arguments in [I8], we obtain the following results for the approximate solution U (w)v (x,y) of
problem (LI6)—-(T.IS).

Proposition 3.1. Assume that p. < po < p* for some constants p* > p. > 0. Then there
exists both a constant vector i = (€, (75)?) and a constant Co > 0 with € > 0 and 7 > 0
depending only on (as, p*, ps) such that, for |pl| < |G, if (po — 1,v0) € (L* N BV)(Z0) and

I (T-VATo(-); Zo} + |bol) < Co, (3.2)

the approzimate solution UM (x,y) constructed above can be defined for all (x,y) € Q and
satisfies

sup [|U (2, )| oo (— oo, boa) + Sup TVAU S (2, -); (=00, boz) } < C1, (3.3)
x>0 x>0
||U(l")7”($1’ -+ b(]xl) — U(”)’V(IEQ, -+ b0x2)HL1(—OO,O) < 62|$1 - $2|. (34)

The strength of each rarefaction wave-front and the total strength of the non-physical front are
small:
max |a — 1| < Car™1, Z a< Cy27". (3.5)
acRK)
acNPK)

Moreover, there ezists a subsequence {v;}°, with v; — 0o as i — oo such that
Ui 5 y®) in L (D), (3.6)
and UM € (BVioeNLL ) () is an entropy solution of problem (LI8)~(I8). Here the positive

loc

constants Cy, k = 1,2,3,4, depend only on (aso, p*, ps), but independent of (u,v).

3.2. Well-posedness of the initial-boundary value problem (L20)—(L22]). In this sub-
section, we consider the initial-boundary value problem (L20)—(T22]), construct the semigroup,
and establish the existence and L'-stability of the solutions. First, we consider the following
initial-boundary value problem on Q = {(x,y) : > 0,y < 0}:

Ozp+ Or(pv) =0 in Q,
{am + 8x((§v2)+ 5 =0 in Q, (37)
with initial data
(p,v) = (Po,0)(y)  on g ={(z,y) : z =0,y <0}, (3.8)
and boundary condition
v=0 onT = {(z,y) : = >0,y =0}. (3.9)

Let U(z,y) = (p,v) " (2,9), Uo(y) = (po, )" (y), and Use = (foc: Uc) " With foe > 0 and
Uoo > 0. Following the results in [14], 21], we have

Lemma 3.1. Assume that 0 < p. < po(y) < p* < 0o and Up(y) — Uss € (BVNL')(E0). Then
there is a constant C}, > 0 such that, if

T.V{Uo(y); X0} + [0 (0-)| < Cy, (3.10)
there exist a domain D C BV ((—00,0)), an L*-Lipschitz semigroup S, : (0,00) x D = D, and
a Lipschitz constant L > 0 so that

(i) D contains the L'-closure of the set of those functions U(-,y) : (—o0,0) — Q satisfying
U —Us € (L' N BV)((—00,0));
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(i) U(x) = S:(Up) is the entropy solution of the initial-boundary value problem (B.7)-(3.9)
and satisfies
1821 U1,0 = S U201l £t ((—00,0)) < L1010 = Uz0ll p1(s59) + |21 — 221); (3.11)

(iii) If Uy is a piecewise constant function, then, for x > 0 sufficiently small, S;(Uy) co-
incides with the solution of the initial-boundary value problem (B.1)-B.3) by piecing
together the Riemann solutions at the all jumps of Uy.

We now turn to the initial-boundary value problem (L20)—(T.22)).
Proposition 3.2. Suppose that 0 < p. < po(y) < p* < 00 and Up(y) — U € (BV N LY) (%)
with Us, = (1,0)". Then there is a constant C} > 0 such that,
T.VAUy(y); X0} + |bo| < CF, (3.12)

there exist a domain D C BV ((—oo,boz)), an L'-Lipschitz semigroup S, : (0,00) x D + D,
and a Lipschitz constant L > 0 so that

(i) D contains the L'-closure of the set of functions U : (—oo,box) — Qy, satisfying U —
Uso € (L' NBV)((—o0,boz));
(i) U(z,-) = SzUo(+) is the entropy solution of problem (L20)—([L22) and
1Sy (U1,0(+)) = Sap (U2,0( ) 21 ((—00,802)) < LIUL0(+) = Uz,0() |1 (505 (3.13)

(iii) If U(z,-) is a piecewise constant function, then, for x > & sufficiently small, S;U(Z,-)
coincides with the solution of the initial-boundary value problem (L20)—(L22)) by piecing
together all the Riemann solutions at the all jumps of U(x).

Proof. Let
(Z, 9) == (z, y — box). (3.14)
Define
P(,9) = pli, G+ bod),  0(,9) = v(d, § + bod) — bo. (3.15)

Then (p, ) satisfies the initial-boundary value problem (B.7)—([3.9) in the (&, §)-plane with the
initial data:

(5,9)(0,9) = (po(9),vo(9) — bo).
Thus, by applying Lemma [B1] there exist a domain 7? C BV((—00,0)), an L!-Lipschitz semi-
group S; : [0,00) X D+ D, and a Lipschitz constant L > 0 so that facts (i)—(iii) in Lemma B.1]
hold. We define the inverse transformation of (B.14)—(B.15):
r=2, y=y+bz, plz,y)=p(z,y—>boz), v(zr,y)=70(z,y—Dbozx)— bo.
Then substituting them into Lemma [B.Jl we obtain (i)—(iii). This completes the proof. O

By Proposition and [3], we can also derive the following semigroup formula:

Proposition 3.3. Let V(z,y) : [0,00) — D be a Lipschitz continuous map with a finite
number of wave fronts for some x > 0 and V(0,y) = Vy(y). Let S be a semigroup obtained by
Proposition B2l Then

182(Vo(-)) = V(& )l 11 (~ 00, boa)

< L/‘$ i inf HS}L(V(Sy )) - V(S +h, ')HLl(—OO,bo(S-l—h))
o 0 h—0+ h

ds, (3.16)

where L and D are given in Proposition [3.2]
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4. PROOF OF THEOREM [ 1]

In this section, we prove the main result of this paper, i.e., Theorem [[L Il To complete the
proof of Theorem [[T], we need first to obtain the convergence rate estimate (I.23]) that is based
on the local L!-difference between the entropy solutions U™ and U, and then show that it is
optimal with respect to p by constructing a simple example.

4.1. Local L' error estimates between the entropy solutions U® and U. In this
subsection, we give some lemmas regarding the local L'-difference between the entropy solutions
U™ and U corresponding to problem (IZI6)—(I8) and problem (L20)—(L22) with a boundary,

respectively.

Lemma 4.1. Suppose that UMY is an approzimate solution of problem (CI8) ([TI8) con-
structed as in §3.1 and satisfies Proposition Bl with a front at point (Z,yz) € Q. For a given
k=1,2, denote

Ur = JUR) or Yy > yr + Yo, b,
U(“)’V(i' 4 h, y) _ R (PR R)T f Yy Yyr Z{ak (41)
Ur = (pr,vr) Jor y <yz + oy h,
where Up, == UMWY (&, yz—), Ug == UMWY (2, yr+), h > 0, and |, | < . Let S be a uniformly
Lipschitz continuous semigroup obtained in Proposition B3l If ||p| < ||&gl with i given in
Proposition Bl and h > 0 is sufficiently small, then

(i) when U and Ugr are connected by a k-th shock wave-font oy € S,g“) and Yo, —

J,(g“)(ozkﬂ <27V for Ulg”)(ak) as the speed of k-th shock wave,
ISh (U (&, ) = U (@ + )| o1 gy < Ozl +277) o — L1hs (4.2)
(ii) when Ur and Ugr are connected by a k-th rarefaction front oy € R,(C“) with Yo, —

)\,(g”)(UR, p)| <277 for )\;g“)(Umli) as the speed of the rarefaction wave,

HSh(U(“)’V(ﬂAUa ) — U(“)’V@ +h, ')|’L1(yrn7yz+n)

(4.3)
< Cz(lull 4277 + A+ ul)v™") ok — 1|h;
(iii) when Uy, and Ug are connected by a non-physical wave anp € NP(“),
IS, (UM (3, ) — UM (3 + h, Mt yz—nyz+n) < Czanp h, (4.4)

where constant Ct > 0 is independent of (u, h), and constant n satisfies n > M.

Proof. We divide the proof into three steps.

1. Without loss of the generality, we consider the case: k = 1 only, since the case: k = 2 can
be dealt with in the same way.

By Proposition 3] we know that, for sufficiently small > 0, S, (U®)* (%, -)) is the Riemann
solution of system ([20]), consisting of three constant states Ur, Ups, and Ugr with Uy =
(par,var) T The three states are separated by the elementary waves 5 and f. Then we have

®(3;Ur) = ®W (an; U, ) for B = (51, B2). (4.5)

By Proposition 2.1, if ||p|| is sufficiently small, equation (45 admits a unique solution
B = (81, B2) so that

Br=ar+0M)|pllar =1,  B2=14+01)|plllor — 1. (4.6)
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Since o € S%“ ), (1 is also a 1-shock wave, while 52 may be either a 2-shock wave or 2-rarefaction

wave (see Fig. @1l or Fig. below).
Let us first consider the case that both 81 and By are shock waves. As shown in Fig. [T],

when 7 > S\h, and h > 0 is sufficiently small, interval (y; — n,yr + 1) can be divided into two
sub-intervals I and I by fronts aq, 81, and (.

h h
Ugp P Up B2
r_= i
(2,y7) U o | 11 (2, 1) Un o | 1T
Ur 1| I Uy, 17T
rT=1a r=x+h rT=1= r=2+h
FiGure 4.1. Comparison of FIGURE 4.2. Comparison
the Riemann solvers for a; € of the Riemann solvers for
S%“) and (2 being a 2-shock o] € S%”) and f2 being a

wave 2-rarefaction wave

Denote the speeds of 1 and B2 by o1(f1) and o1(82). By the Rankine-Hugoniot (R-H)
conditions:

_ PMUM — PLVUL Bre1(B1)
) = PM = PL U TR

_ PRVR — PMUM Bapa(B2)
72(Ba) = PR—PM e Bo—1 "~

Moreover, for agu )(al), when ||p| is sufficiently small, it follows from Lemma [2.6] that
PRVR — PLVL
pr\/1 — 7B (pr,vR, €) — pry/1 — 72BE)(pL, v, €)

ot (on; Up, ) + (a1 = 1og

al\/l — TZB(G)(pLal,gpgu) +wr,€) —\/1—=12BO(pp, v, €)

(H)(

01

041) =

arp1(on)
= O 1 .
L8] 4oy +0()u
Therefore, using (46]) and Propositions B.IH3.2]l we have
a1 (o
o) - or(0) = 22U oy o] - vr - P — o1,

j02(82) — 01 (a1)] < |oa(B2)] + |01 (a1)] < oo
Then
1] < o (1) = o1 (BOIh + [y — o1 (01) B < (O(V) || +27)
11| < [o2(B2) — o (@)l + [y — ot ()| < (O(1) +27)h.
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On the other hand, on interval I,
(SWUWM (3,y) — U (5 + b, y)| = |og — pr| + o — 2] < O]y 1],
and, on interval I7,
SR U (&, y) = UMY (& + h,y)| = |pr — pul + [vr — vu]
<O)[f2 = 1] < O)|pelle — 1.
Base on these estimates, we finally obtain
ISK(U (&, ) = U (@ + ) 11 -y )
HSh(U W0 (&) = UBY(@ + hy)l g o
OW)Hlea = 1+ OW)[L1|[|pll]er — 1
O)(llll +277)lax = 1|,
(i

which completes the proof of (i) for the case that Sy is a shock wave.

Next, we consider the case that (9 is a rarefaction wave as shown in Fig. In this case,

Ur, € [M2(Ur), 1),
Do (B2(8); Unr), € [X2(Unm), XA2(Ur)),
()v (4 = .
SUEED =0 & lo1(B), aUn)), o
Ur, € (=, 01(B1)),

where § = ¥ yI /BQ(AQ(UM)) = 1, and BQ(}\Q(UR)) = 52.
Following the same argument as done for the case that Sy is a shock wave, we have

ISR # (,-)) = US) (@ + hy )y < O ([l +27%) e = 1] (4.8)
For the length of interval I, it follows from Proposition Bl that
1] < ljay = &0l < (27 + |0t = Xo(Uan)))h < (277 + O(1)) h.
Moreover, on I, by ([@6]) and Proposition B.2] we obtain
[Sh (UM (,y)) = UM (& + h,y)| = lpr — pu| + [vr — vud]
< 0|32 — 1] < O — 1],
so that
ISH(UE () = U (& + by )| ary < O ([[ll +277) [ = 1h. (4.9)
On interval I11, it is direct to see
[Sn (U (&) = U (@ + h,y)| = rm& PRl + [v(§) = vr|
O(D)[€o — &1f = O(1)[A2(Unr) — A2(Ur)|
OM)|B2 = 1] < O(M)]er = 1|[pa],
(LTI < O(1)|€ — &1l < 0(1)P\1(UM) — A (Ur)| < O(1)h,
so that
IS (U (&,)) = U (@ + h ) g < OW)llslllar — Lh. (4.10)
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Finally, combining estimates (L.8)—([ZI0) together, we have
ISK (U (&, y)) = U (@ + by )| ot (g —ngr-tm)
= S U™ (&,y) — U (& + h, Yz urrorn
<O (Il +27") o — 1|,
which gives estimate ([£.2)) for the case that (3 is a rarefaction wave.

2. Without loss of the generality, similarly, we consider the case: k£ =1 only. The Riemann
solver Sy (U (k)v (Z,y)) consists of three constant states U, Ups, and Ug, which are separated
by the elementary waves (1 and f2 with equation ([45]) and estimates (4.6]). Moreover, it
follows from (£.6) that 3 is a 1-rarefaction wave. However, Sy may be either a 2-shock wave
or a 2-rarefaction wave (see Fig. .3 or Fig. 4.4 below).

h h
p B2
Ur 2 Ur v
(Z,y1) Um B8 IIT (Z,y1) U 8 III
I 17
Ur AT Ur ! I
T=2= r=x+h T =1z r=2+h
Ficure 4.3. Comparison of FiGureE 4.4. Comparison of
the Riemann solvers for oy € the Riemann solvers for ay €
RYL ) and (B2 being 2-shock wave R§” ) and B2 being a 2-
rarefaction wave
If 55 is a shock wave, then
UR, 5 € [02(/82)5 %),
U, € MUnm),o ,
AU (g = ¢ € Palliar), (%) (111)
®1(B1(£); UL), § € [M(UL), Au(Un)),
UL, §e (=4 MU),
where § = Y222 B1(M(Ur)) = 1, f1(M(Un)) = Bi, and o2(B2) is the speed of 3. Then

interval (yz — n,yz + n) is divided into three subintervals I, I1, and II1.
Using (2.41]) and Proposition B} a direct computation leads to

1] = M (UL) = o [h < (M (UL) = AP (Ug, )| +27) R
< (IM(UL) = M(UR)| +O)||p] +27)
<O)(Jlaa =1+ [|pll +27")
<O)(lpll +v= +27")h.
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Moreover, on I,
[Sh(U W (&,)) = UM (& + h,y)| = [pr = prl + lor —vr| < O(1)]ar —1].
Therefore, we have
ST (&,-)) = U (@ + b, )y < O (el + 277 +v ) |ar =1k (412)
Next, it follows from (6] that
111 = [M(Un) = M (Ur)lh < O(1)|B1 = 1|k = O(1) (1 + [|pl]) o1 — 1R,
and, on interval I17,
[Sn (U (@) = UM (3 + by )|
B1(€):UL) — prl + 17 (B1(€): Us) — vl
B1(€):UL) = paa| + lpar — prl + |24 (B1(): UL) — vaa| + foar — vr
O(1)([¢ = & + 182 — 1)
<OM)(|B1 =1 + B2 — 1))
<OM)(1+ ul)lr ~ 1.
Thus, by Proposition B.I] we obtain
85009 (2,)) = U+ b gaery < OW)(L+ )l — 1B
<O ey — 1]h. (4.13)
Finally, it follows from Proposition Bl and estimates (4.6]) that

I
i
-
=
—

IA
©

1 vp — UV
ITT) = [\ (Unr) — 0a(Ba) = |ogs — - — P2eR— 00

P (h < O(1)h,

and, on interval I11,
[Sn (U (&,y)) = U (& + h,y)| = |par = pr| + [oar — vR|
=O01)[f2 = 1] = O(1)]er — 1|
Then
ISH (U (&,-)) = U (@ + h ) rny < O(L)]ar = 1| (4.14)
Combining estimates (£I12)-(£14]), we finally obtain
ST (3,)) = U6 4 Y (e < OO (1t + 071 +27) a1 — 1

When (s is a rarefaction wave, as shown in Fig. 4], interval (yz — n,yz + 1) is divided into
four subintervals I, I1, III, and IV. Then

Ur, ¢ € [Ma(Ur), 1),
Do (B2(€); Unm ), € € [M2(Unm), A2(Ur)),
SpUH (&,y)) = < U, ¢ € Pa(Un); X (Un)), (4.15)
®1(81(£); UL), ¢ € [M(Ur), \(Un)),
UL, £ e (—#,M(UL)),
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where & = Y51, B1(M(UL)) = 1, fi(M(Unm)) = b1, Ba(A2(Un)) = 1, and Ba(A3(Ur)) = B2.
First, by the same argument for the case that §5 is a shock above,

IS ¥ (,-)) = U (@ + by )| qororny < OO (el + v +27")[ar — 1k (4.16)

Thus, it suffices to consider the estimate of ||S,(U®)¥ (&, .)) — UMW¥ (% + h, Mzravy- By
Proposition B.I] we directly have

[TV | = [A2(Ur) — Ma(Unr)|h < O(1)h,
and, on IV,
[SWU(&,9)) = U (& + hoy)| = 1857 (B2(€): Unr) = prl + 157 (82(): Un) — vl
< O)[&2 — & < O1)|62 — 1] < O(1)|ar — 1|[u],
so that
IS (T (&,9)) = UW¥ (& + h,y) 2 gvy < O(D]ar — 1]l (4.17)
Then combining estimate (416 with estimate (A7) yields
HSh(U(“)’V(@ ) — U(”)’V@ +h, ')HLl(yz—n,yzHI)
< |Sp(UW (&, ) = U (& + b, Mz qurrorrom)
<O (Jall +v-1 +2-")jar — 1]h.

h
Ur anNp
) B>
(xny) UM
UL B
=21 rT=I+h

FIGURE 4.5. Comparison of the Riemann solvers for ayp € NPWw)

3. When the front in U®)¥ (& + h,-) is a non-physical wave ayp, as shown in Fig. F5,
|Ur — Ur| = anp, and the Riemann solution Sy, (U®) (&, -)) consists of two waves 31 and S
satisfying

Ur = ®(B1, B2;UL). (4.18)
Applying Proposition 2] leads to
81— 1] +[82 — 1] = O()anp. (4.19)
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Let Uy be the middle state of Sy (U®)¥(&,-)). Then it follows from Propositions
and estimate (£19) that

th(U(u)J'(@ ) — U(IL)W(Q;7 +h,-)

IN

O()(|Un = Ur| + [Unr — Ug|)h
O)(|81 = 1| + 182 = 1[)h
O(l)anp h.

I (yz—myz+n)

IN

IN

O

Based on LemmalET] it is direct to derive the following corollary for the case that U®) (i +
h,y) contains more than one discontinuities:

Corollary 4.1. Let UMY be an approzimate solution of problem (LI6) (LIR) constructed in
§3.1 with a jump at point (Z,y) € Q. Let S be the uniformly Lipschitz continuous semigroup
obtained in Proposition 3.3l Denote

Ur = (pr,vR)" fory > yr + \h,

Ur = (pr,or) T or Y1 + Yauh < y < yz + Ah,
U4y =4 F (PR, 0R) ] for yz o <y < yr ) (4.20)

Unm = (pmrvm) for yz + Yo h <y < yz + Yash,

Ur = (pr,vr)" for y < yz + Yo, h,

where U, = UMWY (&, yz—), Up = UMY (&, y74), [, | < A with k = 1,2, and Uy, Ug, and
Ur satisfy B3). For ||p|| < ||asll with pg given in Proposition Bl and, for sufficiently small
h >0, if Uy and Uy are connected by a 1-shock wave oy € S%“) with Yo, — Ji”)(a1)| <27V
(or a 1-rarefaction front aq € RE“) with e, — M (Unr, )| < 27%), if Ups and Ug are connected
by a 2-shock wave ag € Sé“) with |Ya, — Uéu)(a2)| < 27 (or a 2-rarefaction front as € Ré“)
With Yo, — A2(Ur, )| < 27%), and if Ug and Ug are connected by a non-physical wave front
anp € NPW | then

HSh(U(“)’V(i“, ) — U(“)’V(i" + h, ')”Ll(yzfn,yzﬂv)

< CII(HMH 4+ 277 4 V*I) ( Z log — 1] + aNp>h, (4.21)
k=12

where constant n > 0 satisfies n > S\h, and constant Crz > 0 is independent of p and h.

Next, we consider the comparison of the approximate solution U (“)7”@ + h,y) of problem

(LI8) - (LI8) and the entropy solution Sp,(U®) (&, -)) of problem (L20)-(L22) near boundary

Iy with (2,b9Z) as a discontinuity point on it. Denote

Up = (pp,vp) " = UMWY (&, boi—), Up= (pp,vp) | := UMWY (& bo),  (4.22)

Ub(“) = (pl()”),v,g“))T = UMWY (g, bo) forx € (z,2+h), h >0, (4.23)
v Uy for y = boz,

UMY (3,y) = ) (4.24)
Ur for y < boz.

Then we have the following lemma:
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Lemma 4.2. Let Ub(“)’l/(a%,y) be defined by [@24) with vy, = by. Let S be a uniform Lipschitz
continuous semigroup obtained in Proposition B2l Define

U or bod + Yoy h < y < boh,
D00 gy o { O T e <y < (42)
UL for y <boZ + Yo, I,
where o, € (=, by), and Ué“) satisfies
o = b\ /1= 72BO () o) ). (4.26)

For ||| < ||l with @ given in Proposition Bl and for sufficiently small h > 0,

(i) if Ué”) and Uy, are connected by a 1-shock wave oy € S®) with |y, — agﬂ) (1) <27%

for O'YL)(OQ) as the speed of aq, then

[Su (U (@) = U (@ o B )23 (a4
< Cy(lpll +27)(Jlox — 1] + 1)h; (4.27)
(i) z'be(”) and Uy, are connected by a 1-rarefaction wave oy € R with |g)a1—)\§“)(Ub(“),u)| <
277 for Ag“)(Ub(“),u) as the speed of ay, then
IS (UM (&,-)) — U (& + b, MLt boz—n,bo(@-+h))
< Cy(lpll + vt +27)(Jag — 1| + 1)h, (4.28)
where n satisfies n < —S\h, and Cy > 0 is independent of p, v and h.

Proof. We divide the proof into two steps accordingly.
1. We know that Ub(“)7 Ur, and oy satisfy

Ué“) = @g“)(oq;UL,u).
Sh(Ué“)’V(ﬂﬁ, y)) near the boundary I' satisfies

Up=®1(51;UL).
Then

op+ @O Ug, ) = /1 - 2BO@ D, 900 ) (@2 (85U5) +ur), (4.29)

where @g”)’(k) is the k-th component of @g”) for k = 1,2, and ‘1>§2) is the 2-nd component of
®;. Thus, by Proposition 2.2 when ||| < ||p§ll, equation (£29) admits a unique solution
B = Pi(ai, pu) € C? such that

B = a1+ O1)(1+ a1 — 1) 1]l (4.30)

Hence, B is also a 1-shock wave.
To estimate HSh(Ué”)’V(a?, ) — Ué“)’y(ﬁ + By )| L1 (bgz—n,bo(24h))» it suffices to consider it on
intervals I; and Ips as shown in Fig. Let 01(B1) be the speed of 1. Then

_ PpUp — PLVL _ /81901(51)

1(A) Pb— PL pf1—1

+vr
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(33,5053) (:ﬁvbﬂi‘)
() U
Uy | Ing ° Bl Ins
Up | Up Y 1o2
Ibl T
UL Up b1
B a
T T+ h Z T+h
FiGUrRE 4.6. Comparison of FiGure 4.7. Comparison of
the Riemann solvers for a; € the Riemann solvers for a; €
S%“ ) and B1 is a 1-shock wave Rg“ ) and B1 is a l-rarefaction
wave
Note that
o =
o1 = r2BO(o) o), &) = p1\/T= B (pr, 1, €)
(w) ), ()
Py Uy T PLUL
=2 (Z) +O(1)”NH
Py  —PL
(m)
a ay; U,
= AT )4 o)l

Then, by Lemma and Proposition B}, we have
| < [ot*) () — o1(B1)|h +277h

<

(»)
a1y (a;Urn, ) Prei(B) —
( Lo - SR o)+ 2 )
<o) ([|pll +277)h.

On interval I, it follows from (4.30]) and Proposition [B.1] that

ST (2, y)) — U™ (2 + by y)| = |os — pr| + o6 — v
=0(1)|f1 =1 =0(1)(Jar — 1| +1),

so that

1SK (U (,)) = U™ (@ + by gy < O (Jaa — 1]+ 1) (] + 27k (4.31)
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Similarly, on Ij2, we have
[SHUP (@) = U @ + hyy)| = 1o — pol + o) — )
= 0(1)|B1 — an| + O(L)|s]
= 0(1)(Jox = 1] + 1) .
Ta| < 10 () — bolh +27h < (O(1) + 27¥)h,
so that
ISH (U (&,)) = U (@ + byl ) < O) (loa = 1)+ 1) e . (4.32)

Finally, with estimates ([@L3T])-(@32]), we arrive at
1T (@) = U @ o B )t s ntnta-+m

< N7 IShUM Y (@,)) = U (@ + by M)
j=1,2

<O()(Jar = 1|+ 1) (|l +27)h,

which gives estimate (£.27]).

2. In this case, we know that relation (£.29)) and estimate (£30]) hold. Then f; is a rarefaction
wave, and

U, for £ € (A1 (Uy), bo),
SH UM (2,y)) = { ®1(B1(); Un)  for £ € (M(UL), M (Up)], (4.33)
Ur, forfE(—%,)\l(UL)],

where ¢ = Y502, 5 (A1 (U1)) = 1, and $1(\(Uy)) = B

To show estimate (4.28]), we only consider the case as shown in Fig. [47 since the other case
can be treated in the same way. Interval (bgZ — 1, bo(Z + h)) is divided into three subintervals,
i.e., Iy; with 1 < j < 3. Using (2.41), Proposition B}, and Lemma [Z5 we have

Il < (MO, ) — MU +27")h
<o) (lpll +lar — 1] +27")h
<O)(lull + v~ +27)h,
and, on interval Iy,
[SHUM™ (&,9)) — U (@ + hyy)| = |0 — prl + [0 —vr] < O] — 1],
so that

ISh(U (&,)) = U (& + by 111, < OD)]en = 1] (lal] + v~ +27) . (4.34)

Next, it follows from (30 and (£33]) that
(2| = [A1(Up) = M(UL)|h = O(1)|Up — Urlh = O(1)|en —1/h,
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and, on Ipo,
[SW(UH (&,y)) — U™ (& + hyy)| = |1(81(€);Ur) — UM
(

By (81(€); Up) — Uy | + U — UM
1

IN

€0 — &1] + O(1)|aq — 1]

so that
[Sh(UE (2,2)) = U (@ + )| 1) < OM)]en = 120 < O(1)]an — 1~ h. (4.35)
On interval Ip3, by Lemma and estimate (4.30]), we obtain
Su O (,9) = U (@ + oyl = o) = ol + 1oy = vy
<O)(181 — 1| + [l
< O)(Jar = 1[ + 1) [[gell;
and |Ip3] = |A1(Up) — bolh < O(1)h, so that
[Su(U (@) = U @ b)) = 1o = ool + ey =l
<OM)(|61 — ar| + [l ll)
<O(1)(leq — 1] + 1) || [P (4.36)
Finally, combining estimates (£34])—(238]), we obtain

IS (UM (2,-)) — U7 (& + MLt (boz—n,po(@-+h))
3
< ST ISK O () = U (@ + byl

<O (Jax =1 + 1) (el + v~ +277)h.

This completes the proof. O

Next, we consider the comparison between the Riemann solutions with a boundary but away
from the reflection points. Using Proposition 23] and following the procedure of the proof in
Lemma 1] we have

Lemma 4.3. Let Ué”)’y(i“,y) be a piecewise constant function defined by ([L24) with y # boZ.
Let S be a uniform Lipschitz continuous semigroup obtained by Proposition B2l Define
U, or boZ + Yo h < y < bo(Z + h),
U (64 hyy) e O for bo z{al <y o(Z +h) (4.37)
U, fory <bok + Yo, h,

where §o, € (=, bo), and Uy is defined by @22 with

vy = bo\/l — 72B) (py, vp, €). (4.38)

For ||p|| < ||yl with i given in Proposition Bl and for sufficiently small h > 0,
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() if Uy and Uy, are connected by a 1-shock wave o € S™ with |ja, — 0%”)(041)] <277

for agﬂ)(al) as the exact speed of ay, then

IS (UM (&,)) — U (& + b, MLt boz—n,bo@-+h))
< Cp(lpll +27)(Joy — 1| + 1A (4.39)

(ii) if Uy and Uy are connected by a l-rarefaction wave front oy € R with |ya, —
)\gu)(Ub(“),uﬂ <27V for )\gu)(Ub(”),u) as the exact speed of oy, then

IS (UMY (&,)) — U (& + b, MLt boz—n,bo(@-+h))
< Cup(|lpll + v +27)(Jou — 1| + 1)k, (4.40)
where 1 < —Ah and constant Cy, > 0 is independent on p, v and h.

4.2. Proof of Theorem [I.1]for the convergence rate estimate ([.23)). Now, we are ready
to prove estimate ([.23]) that is completed by the following two steps:

1. Estimate for ||S,(UM*(z,-)) — UMY (& + h, Mt (=00, bo(@+n))- Let boZ = yo > y1 >
o> yy (or boi > yo > y1 > --- > yy) be the jumps of UMY (%,-) on line x = &. Suppose
that there is no wave interaction on the stripe between x = £ and x = & + h, and there is no
reflection on boundary (z,boz) for z € (&,& + h). Let S® (or R(™) be the set of indices oy
with i € {1,2,--- , N} such that U (%, y,+) and UMY (& y,—) are connected by a shock
wave front (or a rarefaction wave front) with strength a;. Let NP®) be the set of indices
anp such that UMWY (& yo+) and UMY (i, y,—) are connected by a non-physical front with
strength ayp.

By Lemmas B.THZ3] and Proposition B, for sufficiently small h > 0, if ||p|] < [|pg]|, then

ISK (U (&, ) = UM (& 4+ By )| 11 (—oo, bo (5-h)

< > ST (&,9)) = U (& + By )| 22 (o, yo-t)
acSHURM)UN P(1)

<c(lu+27+v ) Y Ja-u+tprom)( Y ane)h
acSURM) anpENPMW)
< O(llpll +277 +v ) (TVAU (@, )} + 1) b+ O(1)2 "R
<C(|pll+27"+v ), (4.41)
where C is independent of (i, k), and n = 1 minj<j<n{y;—1 — y;}-

2. Estimate on |[U® (x,-) — U(x, It (—o0,box)- Let UM (z,7) be an approximate solu-
tion of (LIG)-(LI8) with initial data U satisfying (3.1). Let S be the uniformly Lipschitz
semigroup given by Proposition Then, by the triangle inequality, we have

U (@, ) = U@, )Lt (—oobor) < 1T (@, ) = U (2, )] 21 (oo, boa)
+ U (2,-) = Sp(UF (D) 11 (o0, bor)
+ 1S (Ug () = U@, )l 21 (o0, bow)
= J1+ Jo + J3. (4.-42)

For .J;, by Proposition Bl we can choose a subsequence (still denoted as) {U*)*}, such
that UM — UMW in L} (Q) as v — co. Then J; — 0 as v — oo.
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Next, for Js, by the Lipschitz property of S and (3.I]), we have
J3 < (182 (UG (+) = Sa(Uo ()£t (=00 bo2)
< L|UG (1) = Uo ()l 1 (—00,b0a) = O as v — 0. (4.43)
For J,, thanks to Proposition B3 and Step 1, we obtain that, when [|u|| < ||,

Jy < L/I lim inf ||Sh(U(“)7y(j? )) - Uv(u)’y(j +h, ')HLl(—oo,bo(i-i—h)
—Jo

) 1.
d
h—0+ h v

<OMz(27 + v+ |u]). (4.44)

Then it follows from (ZZI)—-(44) that we can choose a constant vector p, = (eo,7¢) with
€0 > 0,79 > 0, and a constant C7 > 0, independent of (u, v, z) such that, as v — oo,

1T () = U (@, )| 11 (—o0,om) < Crliel]
which gives estimate (L23]).

FIGURE 4.8. An example for the optimal convergence rate

4.3. Proof of Theorem [1.1] for the optimal convergence rate (L23]). In this subsection,
we further show that our convergence rate with respect to p in estimate (L23]) is optimal. To
achieve this, it suffices to calculate an accurate convergence rate of a special Riemann solution
in the following: As shown in Fig. A8, by = 0. We consider the Riemann problem for system
(C20) with the following Riemann data:

v =0 for y = 0,
Ulaeo = . (4.45)
U = (pl,vl) for y <0,
where py =1 and v; =9 > 0. Set U := Ul|5:0 =(1,0)". Then, by ([242)), the following relation
holds:
For § = 0, by (@46) and Lemma 26, we see that a; = 1. Since ¢}(1) = —azl < 0

from Lemma [2.6] by the implicit function theorem, equation (4.46) admits a unique solution
a1 = a1(0) for 6 > 0 sufficiently small. Moreover, by direct computation, we obtain from (Z.46])
that

aj(0) = M = Uoo- (4.47)
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Therefore, by the Taylor formula, we have
a1(6) = a1(0) 4+ o (0)6 + O(1)8? = 1 4 axd + O(1)62, (4.48)

where the bound of O(1) depends only on U. It implies that oy is a shock wave.
Denote by pp the density on boundary y = 0. Then, by (Z42]), p, satisfies

pp = aip; =1+ asd + O(1)62. (4.49)
Therefore, the Riemann problem (L.20) and (4.45]) admits a unique solution that consists of only
one shock wave «y issuing from point (0,0) and belonging to the 1-st family with U; = (1,4)

and Uy, := (py,vp) " as its left-state and right-state for some § > 0.

Now, we turn to the Riemann solution of problem (I8 with U; = (1,6)" as the left-state

and vl()” ) as the velocity on the boundary. Let 8 be the elementary wave in the Riemann

solution. Then
o) — o= L UL, p = pibr. (4.50)
It follows from by = 0 and the boundary condition (£26]) in Lemma that vl()“ ) =o. Thus,

combining (4.46) with (450]) yields
A (B1, UL ) = g1 (). (4.51)
By Lemma [2.6] we have

0o\ (B, Uy, ) |
8181 51:17”:0

= —ag} <0.

Thus, by applying the implicit function theorem again, equations (£50]) admit a unique solution

B1 that is a function of (ay, u), i.e., 1 = P1(aq, p). Let pl()”)

y = 0. Then, by (2.38]), pl()”) satisfies p,()”) = P1p = 0p1.
Moreover, by (£50]), we see that
B1(1, ) =0, Bi(a1,0) = ag. (4.52)
Then, by the Taylor formula and ([@48]), we have
Bi(er, p) = Bi(ar,0) + Bi(1, p) + O(1)|ar — |||
= a1+ O(1)|ar — 1[|p]] = 1+ ased + O(1)|| |5,

where ||| = € + 72. Thus, for § > 0 sufficiently small, the Riemann problem (LI6]) with
Riemann data U; = (1,6)" and vé“ ) = 0 admits a unique solution that also consists of only
one shock wave (3 issuing from point (0,0) and belonging to the 1-st family with U; = (1,9)
and Ub(”) = (pl()”),v,g”))—r as its left-state and right-state for some § > 0. Moreover, 51 = 1 is
equivalent to § = 0.

2 2
Next, we compute 221 and 281 . We first take the derivative on
) p 9a19¢ |, 1 o 90107 | 1 im0 @352)
with respect to a; to deduce that

0 (81, Un, ) 0B

be the density state on boundary

(4.53)

= . 4.54
Taking a1 = 1 and p = 0 in (£54]), by Lemma 2.6] we obtain
0 L1
b1 - e (1) -1 (4.55)
oy lay=1,u=0 00" (B1,U1,1)
0B

a1=1,u=0
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Based on this, we further take the derivatives on both sides of ([4.54]) with respect to e and
72 to obtain

apl 61 020" apop | 921 o

=0
3,81 804186 85% Oe 30&1 85186 8041 ’
8(‘0&#) 3251 0290&“) %3,@1 0290&“) 051 0
3,81 804187’2 85% 87’2 30&1 3,81 87’2 8041 '
These imply that
(u) 081 (M) 08 (u) 081 () 08
3?6 _ < 8ﬁ2 e 8ﬁ1186 )aTi 3?6 _ ( 862 or2 651572) Do (4.56)
3@186 N 8go§”) ’ 3@187’2 N 8go§”) ' .
0B 01

In the followmg, we are devoted to the estimates of all the terms on both the right-hand
sides of 8‘904656 and 82 ngQ in (4.50), respectively. Since f; is a shock wave, states v — y; and
U, satisfy equation (m)

) . w2 281 —1D(B—1)
/HSM (Qplu ) (11306(51 + 1)

2 -1
(I 1) (4 G e
=0, (4.57)
where B() is given by
po = 20— 5 g2 (4.58)

as e

Using the Taylor formula and estimates (i)—(ii) in Lemma [A T and applying Lemmal[A.2] we
obtain

oL w 25213 253() -1
W—wl —((1—75)2—(1—78 )2)5

282 (1
+2(5+¢§u))(1775)>2((5+¢ 154 20081 = )>72_2(5+¢§u))7252

1— 728 aZ.e(f1 + 1)
=26+ O0(1)(6 + e+ 12)6,
oML (e+ 1B +eB =1 21— 7)1 = r2BU)5 (e+ )8 + B -
b a2 (61 +1)%€ a? (51 +1)2 €
+<1—728(5)> ((5+901 o+ oo(ﬁ1+1) >a2 o aZ, L

(4.59)
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and
oHe B —1 1—726% \} e 281085 — 1) 72
de _{ago(ﬁ1 +1) <1 — TZB(G)) ((5+ pL)o+ a2 (B1 + 1)6)@
N (1 =7262)2(1 — r28())2 — 1) 4 _ 2 Lo\ (elf - 1B+l
aZ, (b1 +1) a, €

= (54 03 + e+ 7)) (a8 + O(1)(3 + ¢ + 7))

(00%)

= —a0od® + O(1)(6 + €+ 72)5°,

ang) 1 1_7_28(5) %2 1 — 72482 % (o) (1) 2/81(55_1) 2 12(€)
W—§<<W> #+(7—gm) B )(“M >5+m)‘”

= (25406 + e+ 7)5) (6 + OW)(6 + e + 7))

2 (075 Qoo

2
=02 +0(1)(6 + e+ 7%)5°.
oo
(4.60)
Now, taking the derivatives on both sides of equation (&57) with respect to € and 72 respec-
tively, we have

+ =0, B (4.61)
agpgﬂ) de de awgﬂ) or or
Then it follows from estimates (£59)—(4.60) that
() oHe) 3 2\ 53
Opy ”  THe _—aoo6 +O0(1)(0+e+7°)d
Oe  omW —20+0(1)(0 + e+ 72)d
o
- —%‘052 FOM) (S + e+ 72)82,
(1)
0o e 22 L 01)(6 4 e+ 75+ O(1)(8 + €+ 72)8
or2  ou®w 20+ 0(1)(0 + e+ 72)d
aipgﬂ‘)

1
= — 04+ 0)( +e+ 120,

2000
which leads to
(m) (m)
i _ 9o — 0. (4.62)
Oe a1=1,e=7=0 or? a1=1,e=7=0
Therefore, we obtain from ([@50) and (4.62]) that
830%‘” 8(,05”)
% = — ” a=he=r=0 _ 0 % _ or ay=l,e=7=0 __ 0
86 CVl:l,ézT:O Bcpgm ’ 87’2 Clll:l,ézT:O nggu) ’
961 a1=1l,e=7=0 oA a;=1,e=7=0

(4.63)
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Next, we further take the derivatives on equation (A61]) with respect to Lp&” ), b1, €, and 72
respectively, and combine with the estimates in Lemmas [A.THA 2] to obtain

29 (1)
0 HS —2+(5"‘%05“))(1—TQB(G))_%T25—2T252
asp(li)
22523 (1 — 7283 (1) (1) 261 (81— 1)\
+2(1= 721 - 2B H 6+ o) (04 )0 + 7
2 -1
o A
00 1
=24+ 0(1)(6 + e+ 723, (4.64)
PHE (B Der1)pi-1 B (G +ef)s (6 -+ 615 + Qﬁl(ﬁf—l))}
B0 (B1+1)% s 20— 72B0) ! a2, (B1 + 1)e
< 1— 7282 );(5_’_@(#))
1 — 728 az,
327'[(“) (1) 25\1 (1) 261(Bf — 1)\ o
a@gu)ae {5+2(5+90 )(1_T 5)2<(5+901 )5+m)7’
L AG M)A - r0)3 (1= B (1-72B9) 37 (elnfy — 15 + 1
/81 + 1 ago 62
= O(1)726%, (4.66)
627_[(1"') 1 3 L
dpWorz 2
(1) 2/81 Bs—1)\/1—7 3
+20+ ) (0 + o9+ 2 ) (5 728(6))
(1—7252)2B© — (1 — 72B(9)2 62

1 2
< (1 21— 728%)(1 — 72B09) )"

= O(1)(6 + e+ 72)8, (4.67)
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PHY 2 (et D — 1B+ Inpy +1
0p10e a2, (B1+ 1)2 €2
9(1 - 726%)% (1 — 72BO) 7 (81 + 1)e + 1)ef{In By — <+ 1
N a2, (B +1)2 &2
2 (Br+De+1]85 -1 5 e 260(85 = 1) BT
+{a’go(ﬁl+1)2 € +ﬁ1+1+<(5+¢1 )5+ago(51—|—1)e) 2 }
272 11— 7262 \3 (eln By —1)Bf +1
X—<1—728()> €2

1— 1252 261 (85 — 1) filn By
+{<1—T2B(e)> <(5+901 )+ 00(514-1)) 6} 1a2 v

- 212 (3a005+0( )(5+6+72)5> 212 (2a°°5+0( )(5+6+72)5> +O(1)(6+72)5
= —KM—O( )(S + e+ 1), (4.68)

and

PHL _ (1= 7B + (1= 728)B (B + De+1)5 — 1

/1O (1 7252)3(1 — 72B())3 aZ, (B + 1)%
e—1 1— ,7_252 1 (B(E) _ 62)’7'2 25 (ﬁE _ 1)
1 2 () 1\F1
1 P
* a?, <1 — T28(5)> ( * 2(1 —7262)(1 — 7'2[)’(5))> <(5 Tt a3e (P + 1)6)
= O(1)(6 + ¢ +72)d. (4.69)
Then we obtain from estimates (£.64])—(Z69) that
827-[%”) 830%”) 827-[%”) 8¢§u) 827-[%”) 84,05”) 827-[%”)
82¢§”) < W70 9™ 36) 9P 010" Oc dP10¢
0B10e oH
acpglll)
1 2
= (E +O()@ +e+77))
(2+0()(6 +e+720) (= %62 + 010 + ¢ + 7)8%) + 0(1)7%6° )
% 25+ O(1)(0 + e+ 72)8
(%”52 +0(1)(5+e+72)52)0(1)726 ()5 + e+ 72)5
B 20 +0(1)(6 + e +72)8 264+ 0(1)(6 4+ e+ 72)5

:—L+O( (6 +e+72),

8o
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and

) <82H,(SH) aipgﬂ‘) 827‘[,(5“) >a£pgu) 827-[,(5“) aipgﬂ‘) aQngﬁ")
8%%" B ap? 0T T g W ) OB T g g, 02 T 95107

- =
0p10T oH)

et

= —(i +O()(@ +e+7%))

(oo

(24000 + ¢+ 72)6) (b + O()(6 + e +72)8) + O(1)(6 + e +72)3)

2
0

% 25+ O(1) (0 + e+ 72)0

n O(1)(§+e+172)8
204+ 0(1)(0 +e+712)0

1 2
——@+O(1)(5+6+T ),

which show that

32()05!0 1 8290&“) 1

65166 a1=1,e=7=0 N 8&00, 8,818’7'2 a1=1,e=7=0 B 2&20 '

(4.70)

Using Lemma [2.6] (4.63]), and (£T0), we thus obtain

83 Oe. 9P10¢ ‘97‘1041:1,5:7:0 1

a1=1,e=7=0 N (94,05“) N
01

(8290§H) 8ﬁ1 82905“)> 8ﬁ1

9%B1
801166

a1=1,e=7=0

(3230§”) 081 82SO§H) ) 961

A

(4.71)

9B
80413T2

a1=1,e=7=0 1

a1=1,e=7=0 8g0§”)
0p1

a1=1l,e=7=0

Finally, combining the Taylor formula again with (£71]), we arrive at
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51(0417 677—2) - ﬂl(ala 07T2) + 51(17 677—2) - /81(17077—2)

801166
= B1(a1,0,0) + B1(1,0,72) — B1(1,0,0)

1 1 a2
Tlea = 1)6/0 0 catd (& (a1 — 1) + 1, &9¢,7%) d&ydéy

2
+ (a1 — )7 //ai%e (&1(a1 — 1) +1,0,&372) dEdés

—|—51(1e7')—51(107')
2
+ (a1 — 1)e // At (1(a1 — 1) + 1, 96, 72) d€1dE,

801166
52 2
0”51 0°f
-1
Oay e alzl,e:ﬂzo(al e+ 010712

+0(1)(Jen — 1] + € +7’2)|a1 —1|(e+7%)

(041 — 1)T2

a1=1,e=72=0

1 1
=a) — g(al —1)e— 5 2 (o1 — 1)7' +O(1 )(]al -1 —i—e—i-TQ)\al — 1](64-7'2),
(4.72)

where the bounds of O(1) depend only on U.
Denoted by o1(a;) and agu )(51) the speeds of oy and B;, respectively. Then, for §, €, and 7
are sufficiently small, by ([@48]), we have

PyUL — PLU] o 1
o1(ay) = = — =——+ 0(1)9, 4.73
1(a1) p— o1 oo (1) (4.73)
o) = g B _
pl()“) 1—72B6) — p/1 - 125 BiV1—12B6E) — /172§
=3 d Tt O(1)7%5. (4.74)
=

Notice from ([A72) that

pr—1 :(041—1)(1—%6— 20320’7'2+O(1)(|041—1|—|—€—|—’7’2)(6—{—7'2)),

Therefore, we can further deduce from (74 that

4]

o (B) = - +O(1)7%5
1 (51) (a1_1)<1_%6_2(11207—2+O(1)(‘041_1’+6+T2)(e—|—72)) ( )
- _alé_ 1 <1 T 21; + 2%7 +0(1)(d + 6—1—7'2)(6—1-7'2)) +0(1)7%. (4.75)
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Thus, by (£.173) and (4.75]), we have

o1(c1) — o\ (B1) = 0415_1(1+§13 +21 24100 )(5+e+72)(e+72)> B

i +0(1)725

041—1

2"
)
:041—1( ) 5+6+T)(6+72)+O(1)572

:8% +L7— +O0(1) (8 + e+ 7°) (e + 7). (4.76)

On the other hand, using estimates (£48)) and (4.54]), we have

s = pi| = |81 — 1]
1

= Jfor = (1 = e = g7+ O (lon = 11+ ) +72)|

= a6 + O(1) (0 + e + 7%)0, (4.77)

10 — oy = |81 — v

= [(@r = 1)( = Ze = s 7+ OW)(lon — 1]+ e+ ) (e + 7))

1 L 2 2
- (EH@T )am5+0(1)(5+e+7 ) (e + 72)3. (4.78)
With estimates (L73]) and (£70)—(£18) in hand, we thus have

(165 = pr] + [ = wi]) (o1(r) — o™ (81))

= (aooé +O01)(6+e+7%)5 + 5) <ie + %7’2 +O01)(6+€+7%)(e+ 7'2))

8a

=Gt iyt j L2254 0(1) (6 + ¢ + 72) (e + )5, (4.79)

(lop — ﬂg(,”)| + vy — vf(,”)l) (—oi(ar))

= ((:6+ % 12 )aoo5+ O(l)(5+ e+72)(e +72)5> <aoo<5+ 0(1)(5+ €_|_7-2)5>

1 1
= 565 + ﬁ#é +0(1) (6 + € +72) (e + T%)6. (4.80)

Finally, combining estimate (d.79) with estimate (£80]), we conclude

o1(a1)z 0
o~ vl = [, o vy [ o -]y
O'gu)(ﬁl)$ o1(ar)zx

— (16% = ot + [0 = vy)) (01(a1) — o (B1)) 2

+ (106 — ) + [0 — o)) (= o1(en))z

2000 +1 2%0—{—12
= 6
8aoo cow+ 2a3,

This implies that the convergence rate we have obtained in Theorem [Tl is optimal.

6z + O(1)(6 + €+ 7°) (e + 72)0. (4.81)
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5. PROOF OF THEOREM

In this section, we give the proof of Theorem to establish the convergence rate between
the entropy solutions (p(#), u(#), v(#)) of problems (L6)-(LY) and the entropy solution (p,u,v)

of problem (LI0)—(TI2).
For p > 0, define

B (p,v,€) 1, Inp
U(U,p) = L , Y (U) = =v° + —-, 5.1
C-m) V1—=12BE(p,v,e) + 1 © 2 a% (51
where U = (p,v)” and B are given by (ILI5). Clearly, for fixed U, we have
U (U,0) =¥ (U). (5.2)

We first introduce two lemmas which are useful to the proof of Theorem

Lemma 5.1. For p >0,

9 e—1 ) €] € 1
9,89 =" 9,B9 =2, 8B = (< np—p L), (5.3)
az, az €
Lemma [5.11is obtained by direct calculation, so we omit the details.
Lemma 5.2. For p >0,
ps—l v
aP\II(Ua H) = 5 av\I](Ua M) = s (54)
a2 \/1—712B) az \/1—712B)
and
epflnp—pc+1 B©?
0V (U, p) = 02V (U, p) = (5.5)

a2 \/1—712B) ’
Proof. By direct computation, we have
(V1—=72B© +1)9,B + §r2BE(1 — 72B9)2,B
(V1 -72B6 +1)?
~ (2+2V1-72B) —72B))9,B
21— 72BO(y/1 = 2B 4+ 1)°
apB(e)

2/1— 2B

Then the expression of 0,¥ (U, ) follows from Lemma [5.Il The expressions of 0,V (U, u) and
0.¥ (U, ) can be obtained by similar arguments from Lemma G511
Finally, for 0.2¥ (U, p), by (1)) and direct calculations, we have

2v/1- 2B (/1 - 2B + 1)*

aP\D(Ua l'l') =

0.2W(U, p) = —BY B (1-72B)7%
iorpo 1) 2
Ble?
T 2/1-72BO(/1-_72B0 +1)°
This completes the proof of the lemma. O

Now, we are ready to prove Theorem
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Proof of Theorem L2l Let (p®),v(#)) be the entropy solution of problem (LI6)-(LI8) ob-
tained by Proposition B.I] and (p,v) be the entropy solution of problem (L.20)-(L.22]) as given
by Proposition Then, by relations ([LI4) and (LI9), we obtain ) and u from the

solutions of problem (L6)—(L9) and problem (LI0)—(LI2]), respectively, as

o Inp

1 1
W — L (12w v o) - _ Ll My
u 7'2(\/1 2B (pl) v €) 1>, u 50 Z (5.6)
Then
10—y = L (\/1 = 2BO ), o0, ) — 1 L _lnp
W = 5 (1= 7B o **)‘(‘5”‘@)

JI—PBOm, o, g+1 2
= —(L(UW, p) - T (U))
= — (VUMW p) = ¥(U. p) = (YU, p) - ¥(V)), (5.7)

B _( BE(p) y#) ¢) 1, ln_p>

where UM = (p) o) T and U = (p,v)T.
Next, we estimate the two terms (UM, u) — W(U, u) and ¥ (U, u) — ¥ (U) one by one. By
Lemma [(£.2] we have

H\I’(U(“), p) — (U, “)HLl((foo,bol“))

|

:

1
/ V(U +tUW —U), p)dt- (UM - U)
0

L1((~00,b02))
1 () _ e+1
/ (p+t(p™ —p) dt
0 aZ\/1—72BE(p+t(p) — p), v+ t(0H) —v),€) +1
+ H / | (v + t(®) =) H
0 aZ2\/1=72BE(p+t(p) — p),v + t(vW) —v),€) + 1lI1(q,

() _
o) /12 pHLl((—oo,boa:))

- UHLl((—oo,boJ:))'

(5.8)

Hv(u)
)

Note that, by Propositions B IH3.2l for 7 > 0 and e > 0 sufficiently small, we can choose a
constant Cy > 0 depending only on as, p*, and p, such that

H /1 (p+t(pW) — p) " at
0 a2/T—r2BO(p + L — p), 0 + H0P) —0),0) + 1= (an)
1 to® — o))t
+ H / (vt t™) — v)) <Co.  (59)
0 a2 \/1—72BO(p+t(p®) — p),v + t(v) —v),€) + 1llL=()
Thus, using Theorem [[T] and estimates (5.8)—([59]), we conclude
e, 1) = U, )| 11 (Coopoay < Calliels (5.10)

where C3 > 0 only depends on ao, p*, and p,.
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Furthermore, by (5.2 and Lemma [5.2], we have

|2 (U, 1) — \II(U)HLl((—oo,box)) = [, p) O)HLl((—oo,box))

1
_ H/ VL U(U, 0p) d6 -

Lt ((—o0,bo))

H / 96,09e Inp— pfc + 1) de
a2.\/1 — 072B©)(p,v,0¢) + 1

€
L1((—o0,box))

1 B
/ (p,v, 0¢) 46 _ 2. (5.11)
0 2\/1 — 072B©) (p, v, Oe) (\/1 —072B©) (p,v, fe¢) + 1) L1((=00,bo))

For 7 > 0 and € > 0 sufficiently small, we can deduce from Proposition that
/1 (06[)96 Inp — pf + 1) de
0 a2 \/1—012B@(p,v,0¢) + 1

_l’_

LY ((~o00,box))
+ H / B (p,v,0¢)db
0 2¢/1=0r2BE(p,v,0€)(v/1— 072BE (p,v,0€) + 1) |1 ((~00,b02)
< Cyll(p = L,v) |21 ((~o0,b02))» (5.12)

where Cy > 0 depends only on aq, p*, and p,.
It follows from (5.11)-(5.12) that a constant Cs > 0 can be chosen, depending only on @,
p*, and py, so that

12U, 1) = O 11 (s pomy) < Cllall- (5.13)

Then, combining estimates (0.10) and (5.I3]) altogether and employing equality (5.7), we
obtain

[0 — ]| 1o por)) < Co(1+ )|l (5.14)

where Cg > 0 depends only on aq, p*, and p,.
Finally, combining estimate (B.I14]) with estimate (L23]) in Theorem [IT] we conclude (L24]).
This completes the proof of Theorem O

APPENDIX A.

In this appendix, we give some basic estimates of the terms obtained from the derivatives of
H) which are used in proving the optimal convergence rate as stated in §4.3.

Lemma A.1l. Let 31 be given in ([@L50) which satisfies (A54). Then, for § > 0, € > 0, and
7 > 0 sufficiently small, the following estimates hold:

(i) B = a6+ 0(1)(6 + e+ 72)5,
(i) (GDADIL _ 9(g 4+ 1)5 + O(1)(6 + € + 72)3,

)
)
(i) (A DBEL _ gk 52 4 O(1)(8 + €+ 72)62,
)
)

€

(iv

ele _ € 62 e—1
(e(e+1)InB1—1)Bi+€°B InB1+1 _ MTOO5+O(1)(5+€+T2)57

€2

(v) GDAVGIIAIHL _ 9g 64+ O(1)(65 + € + 72)5,
where the bounds of O(1) depend only on U.
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Proof. First, using estimate (£.54]) and the Taylor formula, for 6 > 0 sufficiently small, we have
Inp =06 —1+01)(B1 —1)* = acd + O(1) (6 + €+ 7%)0. (A1)
Then, using estimate (A.Jl) and applying the Taylor formula again, we obtain

1
BS=1+elnpy + 62(1nﬁ1)2/ (1 —t)pdt (A.2)
0

=14 asod + O(1)(6 + € + 72)de. (A.3)

Therefore, estimate (i) can be obtained from (A.2). In the similar way, we can also show
estimate (ii) with the help of (AJ]).
Next, we turn to consider estimate (iii). To this end, we set

be) = (eln B — 1B + 1.
Then a direct calculation shows that ¢(0) = 0 and
W(e) = (InB1)’eBf,  ¢'(e) = (mp)*(1+elnpr)ff, ¢ (e) = (Inp1)*(2+ el fr) By,
which satisfy
¢'(0) =0,  ¢"(0)=(Inf).
Thus, by (A2]) and the Taylor formula, we obtain

1 1 1
Y(e) = =(In By)%e® + —(1n51)3e3/ (1 —1t)%(2+ teln By) Bl dt
2 2 0

1
= 5@,5262 +O(1)(8 + e+ 12)5%€2,
which leads to estimate (iii). In the same way, we can also show estimates (iv)—(v). O

Lemma A.2. Let B be defined by @EBR) with By and gogﬂ) giving in (AB0) and satisfying
&354) for p1. Then, for § >0, € >0, and T > 0 sufficiently small,

BO = 25 L O(1)(6 + e + )5, (A4)

[£23%)

where the bounds of O(1) depend only on U.

Proof. Using the Taylor formula, Lemma 2.6 and estimate ([@54]), for 6 > 0, € > 0, and 7 > 0
sufficiently small, we have

(M)
(w) _ (1m0 Oy - L
901“ = (,01“’ it aﬁll 61=1(/81 1) —|—O(1)(/81 1)
3()0(10
= (G s cterm T O+ 7)) (a8 + O()(e +7)9)
+ O(1) (assd + O(1) (e + 7_2)5)2
= 5+ O(1)(e + 75 -

which implies
oM 45 = 01)(e + 7). (A.6)
Then combining the (A.6]) with estimate (i) in Lemma (A.T]) leads to estimate (A.4). O
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