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Abstract.

Counterfactual examples are frequently used for model develop-
ment and evaluation in many natural language processing (NLP)
tasks. Although methods for automated counterfactual generation
have been explored, such methods depend on models such as pre-
trained language models that are then fine-tuned on auxiliary, of-
ten task-specific datasets. Collecting and annotating such datasets for
counterfactual generation is labor intensive and therefore, infeasible
in practice. Therefore, in this work, we focus on a novel problem set-
ting: zero-shot counterfactual generation. To this end, we propose a
structured way to utilize large language models (LLMs) as general
purpose counterfactual example generators. We hypothesize that the
instruction-following and textual understanding capabilities of recent
LLMs can be effectively leveraged for generating high quality coun-
terfactuals in a zero-shot manner, without requiring any training or
fine-tuning. Through comprehensive experiments on various down-
stream tasks in natural language processing (NLP), we demonstrate
the efficacy of LLMs as zero-shot counterfactual generators in eval-
vating and explaining black-box NLP models.

1 Introduction

Over the last couple of decades, machine learning and natural lan-
guage processing (NLP) systems have developed massively, espe-
cially in terms of the complexity and scale of the models used in
different downstream tasks. For example, for most NLP tasks, such
as tasks in the GLUE or SuperGLUE benchmark, the state-of-the-
art performance is achieved by large, black-box models such as pre-
trained language models (PLM) [23]. Effective use and deployment
of such models, especially in high stakes areas, require careful evalu-
ation, validation and stress-testing. Furthermore, models should also
be explainable or interpretable, i.e., decisions made by such black-
box models should ideally be accompanied by how and/or why the
model reached that decision [28]]. While such endeavors are still chal-
lenging in the context of black-box models, in this regard, counter-
factual examples have been used to perform evaluation, explanation,
robustness testing and even improvement of NLP models [48} 126 15].
For example, the following two sentences - si: This movie is bril-
liant!, s2: This movie is boring. are counterfactual examples for the
input sentence This movie is great. Such minimally perturbed varia-
tions of the input text can be used in a variety of settings to evaluate
models, to understand whether a model is able to focus on the task-
specific features in the input text in order to classify the input text
correctly.
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original sentiment
Their cheese burger is amazing. pos
counterfactuals
Their cheese burger is bland. neg
Their cheese burger is so original. pos
Their cheese burger is not amazing. neg
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ity of human expert annotators to design such counterfactual ex-
amples [16, 32], this is not scalable in practice, thereby motivat-
ing the exploration of automated counterfactual generation meth-
ods. Automated counterfactual generation methods such as [48| 26]
use pre-trained language models, or mask-filling, or models trained
via control codes for the generation. Such models require training
or fine-tuning using multiple datasets that are often task-specific
in nature. For example, training a conditional generation model in
Polyjuice [48] requires sentence-pair dataset for each control code
(such as: negation, quantifier, shuffle, lexical, etc.). Similar methods
requiring vast amounts of training and/or data are used in other au-
tomated counterfactual generation methods. However, having access
to such task-specific training datasets may be infeasible in practice,
especially for newly emerging data domains and tasks. Therefore, we
are interested in investigating: Is there a way to simplify the counter-
factual generation process and perform the generation without any
auxiliary data?

To this end, in this work, we address a new problem setting:
zero-shot counterfactual generation. We tackle this problem by us-
ing the power of recent state-of-the-art instruction-tuned large lan-
guage models (LLMs). Given that these LLMs are trained on massive
amounts of text data, followed by subsequent supervised fine-tuning
and alignment steps, there is empirical evidence to suggest that such
LLMs can be used as pseudo-oracles or general purpose solvers es-
pecially in natural language processing tasks [8]. As an extension,
we propose the paradigm of using LLMs as zero-shot counterfac-
tual generators for text. To this end, we propose a pipeline that lever-
ages recent LLMs in order to generate plausible, human-interpretable
counterfactual examples in a completely zero-shot manner. Our pro-
posed pipeline requires only the input text along with either the
ground truth label or the predicted label from the black-box clas-
sifier (depending on the use-case) and uses a simple hard-prompting
method to use off-the-shelf LLMs for generating the counterfactuals,
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without any fine-tuning or training with additional data. We envi-
sion that automating the task of counterfactual generation via a care-
fully designed pipeline that leverages LLMs can help to reduce costs
and make NLP model development, evaluation and explanation more
streamlined and efficient. We use our proposed pipeline to generate
counterfactual explanations and we empirically evaluate the quality
and effectiveness of the generated counterfactuals in (1) explaining
and, (2) evaluating NLP models for a variety of downstream tasks.
Our results demonstrate that, when used in our pipeline, LLMs can
generate high quality and effective zero-shot counterfactuals that pre-
serve high semantic similarity with the original input text.

To the best of our knowledge, this is the first piece of work to
tackle the problem of zero-shot counterfactual generation in text, and
also the first to utilize LLMs as general purpose counterfactual gen-
erators. Overall our contributions in this paper are as follows:

1. We propose a Framework for Instructed Zero-shot Counterfactual
Generation with LanguagE Models, which we refer to as FIZLE
for brevit

2. We demonstrate FIZLE for two important use-cases: explaining
and evaluating black-box text classification models.

3. Through experiments on three benchmark datasets and tasks we
investigate the effectiveness of the proposed pipeline compared to
recent baselines and discuss implications for future work in this

direction.

Instruction and
@ constraint prompt

Task dataset

(M)—*EPJ

L2
off-the-shelf %
LLM
¢ generated
counterfactal

/ !/ with same/different
(CE , ) label

same label different label
y=1 yl=9

! |

. & Model Explanation
M°d9| ETEIETIE) .’ .’ (e.g. via counterfactual
(e.g. via contrast sets) explanations)

- naive generation

- guided generation

Figure 2. Our proposed FIZLE framework for zero-shot LLM-guided gen-
eral purpose counterfactual generation, along with applications in model eval-

uabﬁﬁ'ealjéls‘fw%aeﬁﬁgper is organized as follows: Section [2] dives into
the background and relevant related works. Section [3] describes our
pipeline and methodology in detail. We briefly talk about our gen-
eral experimental settings in Section[d] We demonstrate our two use-
cases, Counterfactual Explanations in Section[5|and Evaluation using

L All code and data will be available at <link-to-be-inserted-after-blind-
review>.

Counterfactuals as Contrast Sets in Section [6] We finally conclude
with a discussion on future works in Section 7]

2 Background and Related Works

In this section we describe some preliminary concepts along with
related works.

Counterfactual Generation According to most definitions in lit-
erature [28]], counterfactuals in text are minimally edited versions of
an original text that can flip the label of a classifier. Counterfactuals
are typically similar to the input instance, and vary from it in a small
number of features. Counterfactual examples are widely used to
stress-test trained models, provide explanations in the form of coun-
terfactual explanations, and also for model improvement via training
with counterfactual examples and counterfactually augmented data.
While several efforts have been made in the manual creation of coun-
terfactuals [[16} 32]], this method does not scale up and is therefore
infeasible in practice for most use-cases. Automated methods for
counterfactual generation are therefore more prevalent. Such meth-
ods often use language models trained on some control codes for
conditional text generation in order to generate plausible and diverse
counterfactuals [26) [48]). In the context of text classification, which
is the scope of this paper, counterfactual examples can be generated
from the input text via token-based substitution methods, masked-
language modeling, controlled text generation via control codes [27].
Authors in [37] create realistic counterfactuals via language model-
ing using a Counterfactual GAN architecture. However, all of these
methods use either auxiliary models and/or training data, for exam-
ple, to capture the style characteristics of different control codes. In
contrast, in this work we focus on zero-shot counterfactual genera-
tion.

Large Language Models and Applications in NLP Large Lan-
guage Models (LLMs) are usually transformer-based models capable
of generating human-like text. Recent examples of large language
models include the GPT family of models [33| [7, [29], Llama [41],
Llama-2 [42], Falcorﬂ etc. A general training recipe for training
LLMs include an unsupervised pre-training step, where the model is
trained using a huge corpora of text, typically comprising of text from
the internet [31}[15], followed by one or more supervised fine-tuning
steps, such as instruction-tuning [30L12]]. More recent state-of-the-art
LLMs such as ChatGPT-3.5 or GPT-4 are further fine-tuned via re-
inforcement learning with human feedback (RLHF) [[11], in order to
‘align’ such models more with human preferences and values. During
the fine-tuning and RLHF stages LLMs learn to follow instructions
for specific tasks and respond in a helpful manner. Instruction-tuning
essentially fine-tunes the model on massive datasets of (instruction,
output) pairs, whereby LLMs learn to follow instructions in a prompt
in order to perform tasks. The vast amount of training, both via the
pre-training and the instruction-tuning stages, enables the LLMs to
perform complex tasks [8], perform in-context learning [[14], etc. Re-
cent advancements in LLMs have sparked simultaneous exploration
and research into the applicability of these LLMs on a variety of
different tasks, such as data labeling [19} 3 40|, text classification
[3914]], model explanation [S], etc. We add on to this emerging body
of work and perform zero-shot general purpose counterfactual gen-
eration using LLMs.

2 https://huggingface.co/tiiuae/falcon-40b



3 FIZLE: Zero-shot LLM-guided Counterfactual
Generation

In this section, we describe our main framework as shown in Figure
[l Following the causal explanation generation procedure in prior
work [5], we use state of the art LLMs in an off-the-shelf manner,
without any fine-tuning. We improve upon prior work [S]] by expand-
ing and broadening their pipeline into a more general framework that
can work for tasks other than causal explanation. Note that in this pa-
per, we formulate and evaluate our pipeline on the broad task of text
classification, whereas formulations for other text tasks can be de-
rived in a similar manner. To facilitate this we explain the following
components in our framework:

Input Dataset and Other Task-specific Input The first compo-
nent in our pipeline takes a task dataset as input and pre-processes it
into tuples denoted by (z;, §;), where x; € X denote a text sample
in the input dataset X, and §; € {0, 1, ..., k} denote the ground truth
label of the corresponding input, in a k-class classification problem.
Depending on the use-case, we also have black-box access to a text
classification model f(-) whereby we get f(x;) = y;, which is the
predicted label. In this case, we also build tuples of the form (z;, y;)
for use in the generation step.

LLM as the Counterfactual Generator We leverage recent state-
of-the-art LLMs as the counterfactual generators. Given that these
models have been trained on vast amounts of textual data along with
extensive instruction tuning, we assume that LL.Ms can learn to mod-
ify and perturb text input to simulate how human annotators generate
counterfactuals for specific tasks [18]. For this, we use both pro-
prietary models from OpenAl and open-source models from Meta
Al, and use carefully crafted instructions and constraint prompts to
generate the counterfactuals. Specifically, we use the following pro-
prietary models via the OpenAl API where applicable:

o text-davinci-003: This model was a pre-cursor to OpenAl’s GPT-
3.5.

e GPT-3.8} Often referred to as ChatGPT. This is the model that
has been explored in a variety of text applications. Specifically we
use the gpt—3.5-turbo version as of January-February 2024.

o GPT-4% This is the successor to GPT-3.5 and is known to be more
capable. Specifically this model is purported to be able to under-
stand complex instruction better, thereby making it highly suitable
to our task of counterfactual generation. We use the gpt -4 and
gpt—-4-turbo versions in our experiments.

Among the open-source models, we use two sizes of the Llama 2
model wherever applicable. These are:

e Llama 2 7B: This is the 7 billion parameter version of the model.
We specifically use the ‘chat’ variant via Huggingfaceﬂ

e Llama 2 13B: This is the 13 billion parameter version of the
model. Similar to the previous one, we use the ‘chat’ variant from
Huggingface{ﬂ

Due to resource constraints, we were unable to use the largest 70B
Llama 2 model.

3 https://platform.openai.com/docs/models/gpt-3-5-turbo

4 https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
5 https:/huggingface.co/meta-llama/Llama-2-7b-chat-hf

6 https:/huggingface.co/meta-llama/Llama-2-13b-chat-hf

Instruction and Constraint Prompt To generate the counterfac-
tuals in a zero-shot manner using the chosen LLM, the prompt needs
to have informative instructions and constraints to guide the gener-
ation. We generate two types of counterfactuals: (1) counterfactuals
with different label from original: these are used in the counterfac-
tual explanation experiments (see Section[3)), and (2) counterfactuals
with same label as original: these are used in the contrast set ex-
periments (see Section [6). For setting (1), we experiment with two
variants of the generation process: (i) naive: Here the LLM is di-
rectly prompted to generate a counterfactual, and (ii) guided: Here
we use a two-step process - first leveraging the LLM to identify the
important input features (i.e., words) that result in the predicted la-
bel, and then prompting the same LLM to edit a minimal set of those
identified features to generate the counterfactual. We do this since
generating a counterfactual that flips the label of the original input
is intuitively more challenging and providing additional guidance to
the LLM in the form of steps may potentially improve the quality
of the generated counterfactuals. For ease of extraction of the gener-
ated rationales, we also specify an output constraint that allows easy
parsing based on a regular expression string match.

4 Experimental Settings

We use our proposed F I ZLE pipeline to generate counterfactuals and
demonstrate these in two specific use-cases: (1) Counterfactual ex-
planations for explaining decisions of black-box text classifiers and
(2) Evaluating black-box text classification models via contrast sets.
To facilitate this, here we go over the datasets used and the general
experimental setup for all our generation and evaluation experiments:

4.1 Datasets

In this work, we focus on two broad categories of language tasks: text
classification and natural language inference (NLIﬂ For text classi-
fication we use two datasets: IMDB [24] for sentiment classification
and AG Newsﬂ for news topic classification. For NLI, we use the
SNLI dataset 25| 16]. This variety of datasets allows us to evaluate
the LLM-generated counterfactuals over a variety of label situations
from binary to multi-class.

The IMDB dataseﬂ consists of a total of 50k highly polar movie
reviews from IMDB (Internet Movie Database). Each data instance
consists of a text string comprising the review text, and a label, either
‘negative’ or ‘positive’. The AG News dataset consists of over 120k
news articles, belonging to one of four news topics: ‘world’, ‘sports’,
‘business’ and ‘science/technology’. The Stanford Natural Lan-
guage Inference (SNLI) datasem consists of 570k sentence pairs
consisting of a premise and a hypothesis. Each premise-hypothesis
pair is labeled with one of ‘entailment’, ‘contradiction’ or ‘neutral’
labels.

4.2  Experimental Setup

All experiments on open-source models were performed on two
A100 GPUs with a total of 80G memory. For 13B Llama 2 models,
we use 4-bit quantization using the optimal ‘nf4’ datatype [13]. For
all LLMs, we use top_p sampling with p = 1, temperature ¢ = 0.4

7 NLI here is also treated as a text classification task where the labels for each
input are simply one of {entailment, neutral, contradiction}.

8 https://huggingface.co/datasets/ag_news

9 https://huggingface.co/datasets/imdb

10 https://huggingface.co/datasets/snli



and a repetition penalty of 1.1. We use PyTorch and fine-tuned mod-
els hosted on Huggingface for in both Sections[5]and[f]

5 Counterfactual Explanations via LLM-generated
Counterfactuals

Explainability is a major challenge in many NLP applications such
as text classification [35] 2 [9]]. Although recent models involving
pre-trained transformer based language models [44] have achieved
or even exceeded human-level performance on several tasks [45}146],
most of these models are black-box by design and hence are not inter-
pretable. Such models do not offer transparency on why it predicted
a certain label, or even what features in the input resulted in the pre-
diction. The ubiquity of these black-box classifiers necessitates the
development of explanation frameworks and techniques that provide
some degree of understanding into the decision-making function of
the model [1]]. Counterfactual explanations [28]] give an insight into
what could have been different in the input to change the output la-
bel predicted by the classifier. Gold-standard counterfactual gener-
ation requires human annotators and is also task-specific [20l 211,
therefore making it an extremely expensive and labor-intensive en-
deavor. Therefore, we use our LLM-genearted counterfactuals in the
of counterfactual explanations for black-box text classifiers.

5.1 Methodology

To generate counterfactual explanations for a black-box text classi-
fier f() that predicts f(x;) = y;, we use the tuple (z;,y;) in the
generation step, thereby replacing the ground truth label in Figure 2]
by the model-predicted label, since we aim to explain why the model
predicted y; for the input sample x;. In our experiments, we use a
DistilBERT model [38]], fine-tuned on the specific task dataset as the
black-box model we aim to explain. Note that since our counterfac-
tual generation process is model-agnostic, the same procedure can be
applied to any black-box classifier in place of DistilBERT. Inspired
by prior work [5], we develop and experiment with two variants of
FIZLE: (1) FIZLEnaive: Which directly generates the counterfac-
tual explanation, and (2) FIZLEguideq: Which first extracts words
that may have caused the predicted label, and then uses those selected
words to generate a counterfactual explanation, in a two-step man-
ner. We hypothesize that the two-step generation may result in more
effective and better quality counterfactual explanations, due to the
additional guidance provided to the LLM, analogous to prior work
such as Chain of Thought [47]]. We show the prompts used in both
the variants in Table[Tl

5.2 Evaluation Metrics

To evaluate the goodness of the counterfactual explanations gener-
ated by our zero-shot LLM-guided pipeline, we use a variety of eval-
uation metrics following prior work [48} |26, |3]]. Ideally, the gener-
ated counterfactual explanations should be able to flip the label of the
classifier, thereby showcasing what could have changed in the input
that would flip the label of the classifier. Furthermore, counterfactual
explanations should also be minimally edited samples of the input
text, i.e., they should be as close as possible to the input sample both
in the token space and the semantic space. To capture and evaluate
these criteria, we use the following metrics:

Label Flip Score We use Label Flip Score to measure the
effectiveness of the generated counterfactual explanations. For each
input text x; in the test split of the dataset, with correctly predicted
label f(z;) = yi, we evaluate the corresponding LLM-generated
counterfactual z¢/ using the same black-box classifier f(-) and
obtain a label for the counterfactual. For an effective counterfactual,
the obtained label should be different from the original label yy.
Then Label Flip Score (LFS) is computed as:

n

LFS = 2 S 1[f(wi) # f(27)] x 100 (1)

n -
i=1

where n is the number of samples in the test set and 1 is the iden-
tity function.

Textual Similarity = Counterfactual explanations generated by the
LLMs should ideally be as ‘similar’ to the original input text as pos-
sible. To evaluate this similarity, we use two metrics: similarity of the
text embeddings using the Universal Sentence Encoder (USE) [10] in
the latent space, and a normalized Levenshtein distance [[22] to mea-
sure word edits in the token space. The semantic similarity using the
embeddings of the original input and the generated counterfactual is
computed as the inner product of the original and the counterfactual
embeddings, averaged over the test dataset:

, BN
S1Msemantic = E Zl ETLC(.’L’z) . Enc(xz?f) ?

where Enc(-) refers to the Universal Sentence Encoder, n is the
number of samples in the test set.

Levenshtein distance [22] between two strings is defined as the
minimum number of single character edits that are required to con-
vert one string to another. To measure the distance between the origi-
nal input text and the generated counterfactual in the token space we
use a normalized Levenshtein distance, further averaged over the test
dataset. This is computed as:

lev(z, z57)
)

%

. RN
edit_dist = - Z 3)

i=1 max(‘xiL |‘T

where |;| and |2/ | refer to the length of z; and x5/ respectively,
lev(-,-) refers to the Levenshtein distance, and n is the number of
samples in the test set.

5.3 Baselines

Similar to other counterfactual generation methods [261 48], we com-
pare our proposed FIZLE pipeline with three representative base-
lines from three categories of similar works: (i) BAE [17] is a re-
cent adversarial attack method that uses masked language modeling
with BERT to perturb the input text by replacing masked words; (ii)
CheckList [36] is a method for behavioral testing of NLP models via
test cases generated by template-based methods as well as masked
language models like ROBERTa; (iii) Polyjuice [48]] is a recent coun-
terfactual generation method that uses an auxiliary language model
(such as GPT-2) to generate diverse counterfactuals. Note that un-
like these baselines, our FIZLE pipeline does not require any auxil-
iary model, language model or dataset, thereby enabling a completely
zero-shot generation.



Framework Variant

Prompt Structure

FIZLEguided

Step 1: In the task of <task on task-dataset>, a trained black-box classifier correctly predicted
the label ‘<y;> for the following text. Explain why the model predicted the ‘<y;>’ label by
identifying the words in the input that caused the label.

List ONLY the words as a comma separated list.\n—\nText: <z;>

Step 2: Generate a counterfactual explanation for the original text by ONLY changing a minimal set of the
words you identified, so that the label changes from ‘<y;>’ to ‘<y.;>’. Use the following definition of
‘counterfactual explanation’: “A counterfactual explanation reveals what should have been different in an
instance to observe a diverse outcome." Enclose the generated text within <new> tags.

FIZLEnaive

In the task of <task on task-dataset>, a trained black-box classifier correctly predicted the label ‘<y;>’

for the following text. Generate a counterfactual explanation by making minimal changes to the input text,

so that the label changes from ‘<y;>’ to ‘<y.;>". Use the following definition of ‘counterfactual explanation’:
“A counterfactual explanation reveals what should have been different in an instance to observe a diverse
outcome." Enclose the generated text within <new> tags.\n—\nText: <x;>.

Table 1. Prompt structure for the two variants of our pipeline when used for counterfactual explanations. <task on task-dataset> denotes the task description
such as “natural language inference on the SNLI dataset”. <z;> denotes the input text. <y;> denotes the label output by the black-box classifier for the input
text <x;>. <y. ;> denotes the desired label for the counterfactual text (any label other than <y;>).

Model IMDB AG News SNLI
LFST Sem.Sim.1T EditDist.| LFS{t Sem.Sim.{T EditDist.] LFS?T Sem.Sim.71  Edit Dist.
BAE [17] 79.6 0.99 0.044 25 0.97 0.063 74.4 0.95 0.054
CheckList [36] 2.6 0.99 0.013 1.6 0.92 0.083 3 0.96 0.036
Polyjuice [48]  96.86 0.25 0.884 72.64 0.22 0.749 95.8 0.74 0.367
text-davinci-003 o5 4 0.87 0.186 54.9 0.84 0.153 39.6 0.83 0.179
(guided)
text-davinci-003 g 19 0.88 0.219 66.4 0.88 0.252 40.2 0.89 0.218
(naive)
ChatGPT-3.5 40 55 0.91 0.126 30.55 0.95 0.084 32.47 0.89 0.102
(guided)
ChatGPT3.5 59 19 0.88 0.236 49 0.91 0.325 56.39 0.92 0.182
(naive)
GPT-4 97.2 0.89 0.142 82.39 0.65 0.232 73.6 0.88 0.153
(guided)
GPT-4 99.6 0.87 0.226 84.39 0.65 0.278 78 0.88 0.152
(naive) I
Llama278 = o0 o4 0.66 0.546 5111 0.77 0.244 36.82 0.74 0304
(guided)
Llama 2 78 64.7 0.59 0.68 35.25 0.7 0.492 58.33 0.62 0.577
(naive)
Llama 2 138 51.11 0.7 0.533 51.65 0.77 0.266 50.2 0.67 0.495
(guided)
Llama 2 13B 66.67 0.52 0.715 37.63 0.58 0.606 59.95 0.55 0.621
(naive)

Table 2. Evaluation results of both variants of our FIZLE framework in comparison to baselines: BAE [[17], CheckList [36] and Polyjuice [48]. We report the

Label Flip Score (LFS), semantic similarity (Sem. Sim) and normalized Levenshtein distance (Edit Dist.). Best LFS scores for each dataset are underlined.



5.4 Results: Effectiveness of Generated
Counterfactual Explanations

Following the experimental setup described above, we evaluate the
generated counterfactuals to explain black-box classifiers for the
three datasets, and compare to baselines. We show these quantita-
tive results in Table 2] For each LLM, we evaluate both variants of
our framework: FIZLE yided and FIZLEnqive. For effective and
good quality counterfactual explanations, ideally we would expect
high values of LFS and semantic similarity with low values of edit
distance. Overall, we see varied performance of the LLMs and the
two variants across the different tasks. Similar to other counterfac-
tual generation works [26]], we see an obvious trade-off between the
Label Flip Score and the semantic similarity. This is intuitive since
the more the generated counterfactual deviates from the original in-
put text, higher the chances are for it to be a successful counterfac-
tual for the original input (i.e, it would result in a label flip). Among
the three baselines, we see CheckList fails completely in generat-
ing counterfactual explanations. We see satisfactory performance by
BAE, except for the AG News dataset. For Polyjuice, even though
the LFS scores are high, the poor textual similarity scores imply that
the counterfactuals generated are not good quality and deviate from
the input text significantly.

For most of the LLMs we evaluated, FIZLE gyided Outperforms
FIZLEnaive on the IMDB and AG News datasets. This may im-
ply that the additional ‘guidance’ provided by identifying the input
words before the counterfactual explanation generation step enables
the generation of better counterfactuals. Interestingly, we do not see
this trend for GPT-4, where the naive variant performs better than
the guided one. This might be due to the fact that GPT-4 is extremely
good at understanding complex tasks and instructions [8]], and the
additional feature extraction step in the guided variant does not pro-
vide additional useful guidance, and perhaps even confuses the LLM.
GPT-4 when used in the naive variant of our pipeline, has the best
performance for zero-shot counterfactual explanation generation, in
terms of LFS. For natural language inference on the SNLI dataset,
we see all LLMs struggle to generate good counterfactual explana-
tions. GPT-4 performs well, possibly owing to its instruction and tex-
tual understanding capabilities [8], but the best performance is by the
Polyjuice baseline. This poor performance of LLMs particularly on
the SNLI dataset is further evidence towards LLMs struggling with
inference and reasoning. This gap in the capabilities of recent LLMs
on reasoning tasks has been observed by several recent efforts as
well [341143].

Lastly, we see the open-source models Llama 2 7B and 13B
struggle to generate zero-shot counterfactual explanations with small
number of edits, thus resulting in very high edit distances. The Llama
2 models struggle to keep the generated counterfactuals semantically
similar to the original input, implying they either make too many ed-
its to the input text, or output some unrelated, low-quality text that
does not conform to the instructions provided in the prompt.

6 Evaluating Models via LLM-generated
Counterfactuals

Deep learning models such text classification models are often
trained in a supervised manner using labeled training sets, and then
evaluated on a hold-out test set. Such train-test splits of data usu-
ally arise from the same corpus that has same or similar sources and
annotation guidelines. Therefore, in essence, standard evaluation us-
ing such hold-out test sets measure merely the in-distribution perfor-

mance of the model, while in reality, the same model may demon-
strate sub-par performance on out-of-distribution or in-the-wild test
data [[16]]. To alleviate this issue to some degree, approaches such as
evaluating using challenge sets or robustness to label-preserving per-
turbations, etc. have been explored by the community. One specific
method of stress-testing such models is via contrast sets [16]. A con-
trast set C'(x) is essentially a sample of points around a data point z,
that is close to the local ground truth decision boundary. Samples in
C(x) may have same or different ground truth label as x. In practice,
C(x) can be a set of samples that are ‘close’ to z, i.e., have mini-
mal edit distance from z, yet be ‘challenging’ for a trained model to
classify. In the original contrast sets work, the authors advocate for
an evaluation paradigm where dataset authors themselves create and
release such contrast sets for model evaluation. However, we note
that this is highly infeasible in practice, given the cost of expert cre-
ation of such challenging data points. Therefore, automated methods
for designing such challenging evaluation sets in the form of contrast
sets are highly desirable, albeit at the expense of trading off expert
insights. One such automated method for developing contrast sets to
evaluate models is that of counterfactual examples, as demonstrated
by previous work [48]]. Motivated by the effectiveness of counter-
factuals as contrast sets in prior work [48]], we envision the use of
LLM-generated contrast sets as well for the same purpose of model
evaluation. Here we describe the methodology for the generation and
evaluation of such contrast sets using LLMs in a zero-shot manner.

6.1 Methodology

For generating the contrast sets, we use the same LLMs as used in
Section except text-davinci-00 3['1 and prompt the LLM to
generate counterfactuals in a zero-shot manner using the input text
and ground truth label tuple (z;,9;). Unlike [48], we do not use
human annotators to label the generated counterfactuals. Therefore,
differing from [48], we only focus on counterfactuals that have the
same label as the original input, and use these as contrast sets. We
make this choice since the lack of human annotation and lack of step-
by-step guidance (such as in FIZLE gyideq) Would make it harder to
validate whether the edits performed by the LLM are actually label
flipping or not. Instead, we guide the generation process via the in-
struction in the prompt. We use the following prompt to perform the
generation:

“You are a robustness checker for a machine learning algorithm.
In the task of <task;>, the following data sample has the ground
truth label <g,;>. Make minimal changes to the data sample to
create a more challenging data point while keeping the ground
truth label the same. Text: <x;>’

where, task; is the description of the task, such as “sentiment clas-
sification”, x; is the input text, and ¢j; is the ground truth label.

6.2 Evaluation Metrics

For evaluating the goodness of the generated counterfactuals as con-
trast sets, we compare the accuracy of the target model f(-) on both
the original test set and the generated contrast set. We also measure
the consistency,

1 since OpenAl deprecated this model by the time we performed these con-

trast set generation experiments.



Counterfactual IMDB SNLI AG News
generator Original Cis. Acc. | I?Zdit S'em. Cons. | Original Cs. Ace. | ljidit S'em. Cons. | Original Cs. Ace. | ]j:dit Sem. Cons.
Test Acc. Dist. |  Sim. 1 %l Test Acc. Dist. |  Sim. 7T %l Test Acc. Dist. |,  Sim. 7T %l
Polyjuice [48] 94.3 84.9 - - 76.1 86.5 72.3 - - 56.4 - - - - -
Expert [16 96.31 84.84 0.136 0.939  81.56 - - - - - - - - - -
GPT-3.5 88.82 0.162 0.931 85.22 57.42 0.175 0.908  53.53 93.42 0.287 0.883  92.07
GPT-4 93.35 92.65 0.157 0942 90.95 86.25 73.01 0.277 0.841 68.82 046 94 0.352 0.855 93
Llama 2 7B o 87.32 0.559 0.728  83.74 ’ 63.88 0.382 0.782  57.87 ’ 92.94 0.438 0.808  91.72
Llama 2 13B 84.76 0.580 0.710 82.2 48.6 0.476 0.738 4321 93.5 0.427 0.808  92.03

Table 3. Performance of F I ZLE-generated counterfactuals as contrast sets. C.s. Acc. refers to accuracy on the generated contrast sets, Original Test Acc. is the
test accuracy on the corresponding paired original samples. Sem. Sim. refers to semantic similarity as computed by Eq.[2} Edit. Dist. is the token level distance

as computed by Eq.[3] Cons. (%) is the consistency as computed by Eq. 4]

consistency = %Z 1[f(zs) = 9 f (25°) = 95°] x 100 (4)
i=1

where z§° is the LLM-generated contrast set for the original input
xi, P5° is the ground truth label for the contrast set example and n
is the number of test samples. Consistency measures the percentage
of times when the model correctly classifies both the original and
the contrast set example. Like the previous set of experiments, we
want the generated counterfactuals (or contrast sets) to be as close
to the original text input as possible, i.e., the edits should ideally be
minimal. Therefore, we capture the textual similarity again in the
token space via Equation [3]and the latent space via Equation 2}

6.3 Baselines

Since there is not much work on contrast sets, we have a limited
set of baselines here. We use the original expert-created contrast sets
for the IMDB dataset from the original work [16]. This consists of
488 original test data samples, and 488 contrast samples created by
the dataset experts. Furthermore, we use Polyjuice-generated coun-
terfactuals [48] as contrast sets for comparison.

6.4 Results: Effectiveness of Counterfactuals as
Contrast Sets

We use the same DistilBERT models as in Section 3] that are fine-
tuned for each of the 3 tasks (IMDB, SNLI and AG News). We eval-
uate each of these 3 models on both the original test set and the coun-
terfactual one (i.e., the contrast sets) and show these results in Table
[3] We obtain the performance values for Polyjuice-generated con-
trast sets from the original paper [48]. For the ‘Expert’ baseline, the
IMDB contrast sets are created by human experts in [16]. Unfortu-
nately, there does not exist any expert created contrast set for SNLI
and AG News datasets. As evident from the test accuracies on both
the original test set and the counterfactual one, we see a consistent
decrease in performance on the generated counterfactuals over the
original samples. The performance drop for the AG News dataset
seems to be the least while interestingly, we see the highest perfor-
mance drop on contrast sets for the SNLI dataset. Furthermore, we
see GPT-3.5 and GPT-4 are able to create contrast sets with high de-
gree of semantic similarity and low edit distance, thus being more
desirable over Llama 2 generated contrast sets. Overall, the drop in
accuracy and the consistency values seem analogous to similar re-
sults in literature (average drop in classification accuracy of around
6.8% according to [48]]) that use human-generated contrast sets for
evaluation [16,48].

While this is promising, we do note the ethical concerns surround-
ing this: LLM-generated contrast sets may induce pre-existing biases

that can propagate further bias and errors through evaluation and sub-
sequent model improvement steps. One way to effectively use LLM-
generated contrast sets is by broadly identifying the failure models of
the model via probing the model using the LLM-generated contrast
sets, and then employing human annotators or data creators to hone
in on that specific failure mode to either generate more contrast sets
or counterfactually augmented training data to fill the identified gap.
Such a combined method would greatly reduce costs while still being
effective in terms of model evaluation and development.

7 Conclusion & Future Work

In this paper, we tackle the novel task of zero-shot general purpose
counterfactual generation. To this end, we propose the paradigm
of leveraging large language models as pseudo-oracles in order to
generate plausible, high quality, and effective counterfactuals. Such
a framework is zero-shot, requiring no training data or auxiliary
models or even in-context learning. We validate our hypothesis via
demonstrating the use and effectiveness of LLM-generated counter-
factuals on two broad NLP model development tasks: (1) counterfac-
tual explanation of black-box text classifiers, and (2) evaluation of
black-box text classification models via contrast sets. Our results are
promising and we see benefits to using our proposed FIZLE frame-
work across the two use-cases and three downstream tasks. Our find-
ings suggest the effective use of LLM-generated counterfactuals for
explaining black-box NLP models, as well as potentially identifying
failure models of NLP models via evaluation with contrast sets. We
further discuss implications and how hybrid human-and-Al methods
may benefit from our exploration.

Future work may investigate modifications to this proposed frame-
work such as generating contrast sets with opposite labels. More ef-
fort can also be put into validating the faithfulness of the generated
counterfactual explanation and correctness of generated contrast sets.
Another gap that can be addressed is how to improve the reasoning
capabilities of the LLMs used in the pipeline, to improve explana-
tion performance on the NLI task. Since one of the challenges in our
method was to ensure that the generated text is actually a counterfac-
tual, devising ways and human annotations to ensure more confor-
mity of the generated counterfactual explanations to the definition
of ‘counterfactual explanation’ is also be an area that can be im-
proved. Finally, apart from these two use-cases of counterfactuals,
LLM-generated counterfactuals can also be evaluated in tasks such
as model training or improvement, uncovering biases in model pre-
dictions, incorporating fairness into model predictions, etc.
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