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Stacking fault energies (SFEs) are key parameters to understand the deformation mechanisms
in metals and alloys, and prior knowledge of SFEs from ab initio calculations is crucial for alloy
designing. Machine learning (ML) algorithms used in the present work show a∼80 times acceleration
of generalized stacking fault energy (GSFE) predictions, which are otherwise computationally very
expensive to get directly from density functional theory (DFT) calculations, particularly for alloys.
The origin of the features used for training the ML algorithms lies in the physics-based Friedel
model, and the present work uncovers the connection between the physics of d-electrons and the
deformation behavior of transition metals and alloys. Predictions based on the ML model agree
with the experimental data. Our model can be helpful in accelerated alloy designing by providing
a fast method of screening materials in terms of stacking fault energies.

I. INTRODUCTION

Stacking fault (SF) in face-centered cubic (FCC) ma-
terials is a planar defect that arises during plastic de-
formation through dissociating a perfect dislocation into
two Shockley partial dislocations. Stacking fault energy
(SFE) is a crucial parameter that determines the defor-
mation mechanisms of FCC materials. Materials with
low-to-medium SFE generally deform via transformation-
induced plasticity (TRIP) or twinning-induced plasticity
(TWIP), while those with high SFE deform via disloca-
tion slip. SFE depends on several parameters like tem-
perature [1, 2] and stress [3, 4] and it can be tuned via al-
loying [5–8]. Since SFE dictates dislocation dissociation,
it is one of the determining factors for the dislocation
pile-up at the twin boundaries (TBs), resulting in fatigue
cracking [9]. Deformation processing (like ball milling,
rolling, and torsion) or lattice mismatch-induced inter-
face strain can form high-density SFs in low-to-medium
SFE metals, leading to strain hardening while maintain-
ing good ductility [10]. SFE plays a major role in the
mechanical properties of bulk nanostructured materials
processed via severe plastic deformation [11]. The creep
life of Ni-based superalloys improves due to SFE reduc-
tion by alloying with Co [12]. Due to its importance in
the mechanical behavior of metals, several experimental
and computational methods have been developed for SFE
estimation, as discussed below.

Experimentally, SFEs are estimated by transmission
electron microscopy (TEM) or by X-ray diffraction
(XRD) and neutron diffraction (ND). Using TEM, the in-
trinsic SFE is estimated by measuring the stacking fault
width, which is defined as the separation distance of iso-
lated pairs of leading and trailing partial dislocations.
This method assumes a balance between the excess en-
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ergy stored in the stacking fault and the elastic strain en-
ergy responsible for the mutual repulsion of leading and
trailing partials [13]. The determination of SFE through
XRD and ND involves analyzing the shift and broaden-
ing of the Bragg peak, considering the relationship be-
tween stacking fault probability, dislocation density, and
intrinsic SFE [14]. An in situ XRD method to measure
the critical stress in the early stage of plastic deforma-
tion provides another way of estimating SFE experimen-
tally [15, 16].
The experimental methods mentioned above have one

limitation - SFE at any unstable point (lying between
perfect and faulted crystal) cannot be estimated. Such
curves with SFE values at multiple points between per-
fect and faulted crystals are known as the generalized
stacking fault energy (GSFE) profile or γ surface. Com-
putational methods like DFT or classical molecular dy-
namics (MD) are used to calculate the γ surface [4, 17–
21]. The γ surface represents the potential energy land-
scape between adjacent planes in a slip system. Simu-
lated γ surface acts as an input for calculating the Peierls
stresses via the Peierls-Nabarro model (P-N model) for
studying dislocations [22–30], plastic deformation in high
entropy alloys [31, 32] and phase transitions [33, 34]. Due
to its ab initio nature, γ surface predicted by DFT is be-
lieved to be very accurate, and the SFE values are in rea-
sonable agreement with experimental findings. However,
DFT calculation predicts negative SFEs for some ma-
terials like metastable alloys, which are experimentally
reported to have small but positive SFE [35–41]. Several
attempts have been made to understand the reasons be-
hind the discrepancy, further establishing the reliability
of DFT for SFE prediction [14, 42].
Accuracy and reliability of DFT for SFE prediction

lies in its ability to accurately incorporate the effect of
electronic contributions [43–49]. For example, I. R. Har-
ris et al. showed the connection between the electronic
structure (empty d-states) and SFE [50]. Datta et al.
found that the electronic density of states (DOS) plots
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FIG. 1. Workflow for physics based accelerated generalized stacking fault energy (GSFE) calculation: ab initio electronic
density of states (DOS) calculation, followed by machine learning based prediction of stacking fault energy and GSFE curve.

for the faulted structures are considerably smoother com-
pared to the pristine materials [51]. A study on the in-
fluence of solute substitutions in Ni on its GSFE found a
correlation between density of state (DOS) and intrinsic
stacking fault (ISF) energy [52]. The energy barriers for
both deformation slip and twinning formation decrease
with the increased electron concentrations in ZnS, ZnTe,
and CdTe [53]. A recent study also revealed a direct cor-
relation of SFE with the width of the d-band of FCC
transition metals [4]. As suggested by the previous stud-
ies, a deep connection exists between the electronic band
structure and SFE, which we would like to explore in
detail in the present work.

In contemporary times, machine learning (ML) algo-
rithms have emerged as practical tools capable of achiev-
ing robust predictive outcomes for a given input dataset.
Recent reports highlight the application of ML in several
domains of materials science and engineering, like poten-
tial development [54], microstructure modeling [55], and
structure-property correlation [56, 57]. In alloy develop-
ment, ML has been employed for predicting phase stabil-
ity, glass forming ability, and properties as a function of
alloy composition [58–60]. Stacking fault energy, the sub-
ject matter of this paper has also been predicted using
ML models using local composition, atomic size, elec-
tronic structure, physical, thermomechanical, and elastic
properties as descriptors [61–66]. However, it is notewor-
thy that the values of these fundamental properties for
alloys are often estimated using the rule of mixture, in-
troducing potential discrepancies in the results. A few
studies have attempted to predict SFE using charge den-
sity obtained from DFT calculations [67, 68].

The novelty of the present work lies in its use of the
physics-based Friedel model for deriving the features for
machine learning. The physics-based model helps us to
uncover the connection between the SFE and electronic
band structure of FCC transition metals and alloys. A
schematic diagram is illustrated in Figure 1. First, we
calculate the electronic density of states (DOS), a rou-
tine job for DFT packages. Using the electronic DOS
data, we calculate some parameters like the width of the

d-band (Wd), energy at the band center (εd), electrons
in the d-orbital (zd), and electrons in the s-orbital (zs).
Using various machine learning models [Gaussian process
regression (GPR), support vector regression (SVR), deep
neural network (DNN), and random forest], we are able
to predict the stacking fault energy and shear modulus
of transition metals and alloys using the parameters ob-
tained from DOS. Values predicted by the ML models
agree with the experimental data. We are also able to
predict the GSFE curve with reasonable accuracy, and
our combined ab initio-ML approach can accelerate the
GSFE calculation 80x faster compared to solely ab ini-
tio based approach in the case of alloys. Our work paves
the way for fast and accurate computational prediction of
transition metal alloys with desired SFE values, provid-
ing a valuable understanding of the deformation mecha-
nism and mechanical behavior.

II. METHODOLOGY

Density functional theory (DFT) calculations, as im-
plemented in the Vienna Ab-initio Simulation Package
(VASP) [69], are performed using a plane wave basis
set (with a 400 eV kinetic energy cut-off) and projec-
tor augmented wave (PAW) potentials [70]. The general-
ized gradient approximation (GGA), applying Perdew,
Burke, and Ernzerhof (PBE) as exchange-correlation
functional [71], is used. The unit cell parameters and
atomic coordinates are fully relaxed until the energy con-
verges to within 10−6 eV and the atomic force dips below
0.01 eV/Å. Further details about the supercell size and
k-point mesh used for Brillouin zone sampling are given
in the respective sections.
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TABLE I. Comparison of SFEs obtained from DFT using two approaches (supercell and ANNNI model), predicted SFEs (using
deep neural network or DNN) and experimental data [72]a, [73]b, [74]c. A similar comparison for shear modulus values obtained
through DFT, predicted using DNN and experimental values [75]d. Both DFT and ML-predicted values are in good agreement
with the experimental values.

Metals DFT Predicted Exp.

Supercell ANNNI
G γISF γESF G γISF Gd

γISF γESF γISF γESF

Ag 16.9 16.3 17.5 18.4 22.0 18.1 23.2 22.8 25.0a 27.0

Au 32.6 31.7 23.6 23.3 15.4 32.8 37.5 19.2 45.0a 27.7

Cu 42.4 44.6 48.7 53.3 49.8 43.8 56.3 39.6 55.0b 48.3

Ir 357.2 333.1 348.3 334.3 214.4 359.6 400.3 216.1 480.0c 210.0

Ni 136.6 133.9 140.8 135.0 95.1 138.5 162.7 95.1 125.0c 75.0

Pd 139.5 134.3 146.6 139.5 44.4 137.1 148.3 45.1 130.0a 43.6

Pt 309.1 299.5 277.0 282.6 48.6 299.8 315.6 50.6 322.0c 61.0

Rh 203.4 194.3 190.2 188.2 146.8 207.0 240.4 150.5 330.0a 150.0

Pd-Pt 190.8 180.9 176.0 172.0 45.8 172.2 186.5 47.0 - -

Ir-Pt 359.5 342.9 328.5 326.2 163.5 326.6 371.5 150.5 - -

Pd-Au 131.4 128.2 118.0 112.0 37.4 116.0 123.9 37.5 - -

III. RESULTS AND DISCUSSION

A. Stacking fault energy calculations

1. SFE using periodic supercell

We consider an ideal FCC structure composed of 9
layers stacked in an ...ABCABCABC... pattern [Fig-
ure 2(a)]. Two of the cell vectors, 1

2 [110] and
1
2 [101], lie

on the (111) plane, while the third one is perpendicular
to the (111) plane and aligned along the [111] direction.
An intrinsic stacking fault (ISF) has a stacking sequence
of ...ABCABABCABC..., as shown in Figure 2(a).

An ISF is created by fixing the bottom five layers and
displacing each of the top four layers by the Burgers vec-

tor b⃗ = 1
6 [211]. Simultaneously, we shift the out-of-the-

plane cell vector (oriented initially along the [111] di-

rection) by the same vector b⃗ to preserve the unit cell’s
periodicity. This approach enables us to compute the
stacking fault energy using periodic cells, eliminating the
need for introducing surface layers [76]. We define the
intrinsic stacking fault energy γISF as the energy differ-
ence between the faulted and ideal structures per unit
area:

γISF =
EISF − EFCC

A
. (1)

To get the energy values for metals from DFT calcula-
tions, we use 21× 21× 2 k-point mesh.

An extrinsic stacking fault (ESF) has a stacking se-
quence of ...ABCABACABC..., as shown in Figure 2(a).
Starting with the ISF structure, we now fix the bottom

six layers and displace the top three layers by b⃗ = 1
6 [211].

The out-of-the-plane cell vector is also shifted by b⃗, yield-
ing the ESF stacking sequence [Figure 2(a)]. Notably, in
the case of ESF, the top 3 layers and the out-of-the-plane

cell vector are displaced by 2⃗b relative to the ideal FCC
configuration. To determine the γESF value, we employ
an expression similar to Equation 1.
Apart from the γISF and γESF , we compute stack-

ing fault energies at various displacements, ranging from
0 to 2b, with a step size of 0.1b to delineate the entire
GSFE curve, as shown in Figure 3. Two significant peaks
along the GSFE curve are noteworthy—one situated at
approximately the middle of ideal FCC and ISF (referred
to as the unstable stacking fault or USF), and the other
located at approximately the middle of ISF and ESF (re-
ferred to as the unstable twinning fault or UTF). These
peaks represent the energy barriers for forming ISF and
ESF, respectively.
We illustrate the GSFE curves of all the transition and

noble metals having FCC ground state in Figure 3. The
symbols in the figure represent the values calculated from
DFT. The curves are drawn using the following expres-
sions:

γ =

{
cG sin2(πx) + γISF · x, 0 ≤ x ≤ 1

cG sin2(πx) + γISF · (2− x) + γESF · (x− 1), 1 ≤ x ≤ 2

(2)

where γISF , γESF and shear modulus G are calculated
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FIG. 2. (a) Supercell method: side view (first row) and top
view (second row) of the supercell of the face centered cubic
or FCC (left), intrinsic stacking fault or ISF (center) and ex-
trinsic stacking fault or ESF (right). Starting from the FCC
structure, all the atoms located above the dotted line and

the out-of-plane cell vector are displaced by b⃗ (2⃗b) to go from
the FCC to ISF (ESF) structure. (b) ANNNI model: FCC,
hexagonal closed packed or HCP and double hexagonal closed
packed or DHCP cells used for the stacking fault energy calcu-
lations. In both (a) and (b) the A, B and C stacking sequence
of atoms along the closed packed direction are represented in
red, blue and green colors respectively.

from DFT, c is a constant, and x is the fractional dis-

placement in terms of Burgers vector b⃗. The values of c
are 5.01 for Ag, 5.67 for Au, 3.43 for Cu, 3.74 for Pd, 2.96
for Pt, 2.61 for Ni, 3.04 for Rh, and 2.81 for Ir. We cal-
culate the shear modulus via strain-energy approach [77]
by using VASPKIT tool [78], details of which are given
in Section I, Supplemental Material (SM) [79]. In con-
clusion, one can generate the entire GSFE curve with
reasonable accuracy by calculating three numbers: γISF ,
γESF , and G from DFT. Such an approach is computa-
tionally cheaper than calculating the entire GSFE curve
from DFT, particularly when dealing with alloys.
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FIG. 3. Generalized stacking fault energy (GSFE) curves for
FCC metals, illustrated along the [211] direction. Energy val-

ues are plotted from 0 to 2⃗b, where Bergers vector b⃗ = 1
6
[211].

Symbols depict DFT values, while the curves are fitted using
Equation 2.

2. SFE using ANNNI model

Axial-next-nearest-neighbor ising (ANNNI) model is
an alternate route for finding SFEs. Although the model
is computationally less expensive, one can get only the
ISF and ESF values instead of the entire GSFE curve.
ANNNI model uses specific combinations of energies cor-
responding to different short-period stacking sequences
of close-packed (111) planes. For example, the second-
order approximation to obtain the ISF and ESF energies
is given by the following combinations:

EISF =
EHCP + 2EDHCP − 3EFCC

A
, (3)

EESF =
4(EDHCP − EFCC)

A
.

In the above equation, A =
√
3
4 a2, where a is the lat-

tice parameter of a conventional FCC unit cell. Energies
of the face-centered cubic (ABCABC stacking), hexago-
nal close-packed (ABAB stacking), and double hexagonal
close-packed (ABACABAC stacking) structures are de-
noted by EFCC, EHCP, and EDHCP, respectively. FCC,
HCP, and DHCP unit cells used for the SFE calculation
using the ANNNI model are illustrated in Figure 2(b). To
get the energy values for metals from DFT calculations,
we use 12×12×12, 21×21×5, and 21×21×5 k-point mesh
for FCC, HCP, and DHCP, respectively. SFE values cal-
culated from the supercell method and ANNNI model are
compared in Table I. Besides Au, values obtained from
both models are in remarkable agreement.
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(c) Schematic s-band and d-band electronic density of states, according to the Freidel model.

B. Friedel model

Understanding electronic structure is the primary
building block for a comprehensive study of the mate-
rial’s properties. Electrons serve as the quantum glue
that keeps the nuclei of a solid together and influences
the mechanical, electrical, optical, and magnetic proper-
ties of materials. It is well known that d-electrons play a
significant role in transition metals’ electronic and mag-
netic properties. Figures 4(a)-(b) illustrate the DOS of
s-electrons and d-electrons of Ag and Ir, respectively. Un-
like the DOS of s-states, the DOS of d-states is sharply
peaked, which indicates that d-states are relatively local-
ized compared to the s-states. Although the DOS curves
are quite intricate, Friedel proposed a significant simpli-
fication. The DOS of s-states, denoted by gs(ε), is ap-
proximated to be free electron like, obeying gs(ε) ∝

√
ε

[Figure 4(c)]. The DOS of d-states, denoted by gd(ε),
is approximated to be a step function [Figure 4(c)], ex-
pressed as,

gd (ε) =
10

Wd
, εd −

Wd

2
< ε < εd +

Wd

2

= 0. otherwise.

(4)

The center of the d-band and its width are denoted by
εd and Wd, which are related to the projected density of
states (PDOS) of the d-band. The first moment of DOS
with respect to the Fermi energy (εF ) is,

µ =

∫
(ε− εF )g

DFT
d (ε)dε, (5)

where gDFT
d (ε) is the PDOS of d-band, obtained from

the ab initio calculations. The number εd = (εF − |µ|)
corresponds to the center of the d-band. Further, we
calculate the second moment of the DOS with respect to
εd,

σ2 =

∫
(ε− εd)

2gDFT
d (ε)dε. (6)

We define the width of the d-band as Wd = 2σ. As
shown in Figure S1 and S2 in SM, the periodic trend of
calculated εd andWd agree with the solid-state table [80].

It is evident that, unlike s-states, d-states can not be
treated using free electron theory, and a tight binding-
like description would be more appropriate. In a tight
binding description, bandwidth is an important parame-
ter that depends on the overlap of atomic orbitals. For
example, core states have zero width because of no over-
lap. Valence d-states have a finite width, leading to some
energy gain, depending on Wd. Using the DOS expres-
sion in Equation 4, one can illustrate that the energy gain
is,

Ed = 5Wd

[
− zd
10

+
( zd
10

)2
]
, (7)

where zd is the number of electrons in the d-band. We
compute zd from the ab initio calculations by integrating
the d-band PDOS up to the Fermi energy. We obtain Wd

from ab initio calculations using Equation 6. We define
Ed as the cohesive energy due to the overlap of adjacent
d-bands. The term within the square bracket in Equa-
tion 7 has a minimum at zd = 5 (middle of the transition
metal series), and it is zero at zd = 10 (noble metal).
Our ab initio calculations confirm that zd increases as
we move from left to right of a row in the periodic table
[Figure S3 in SM]. However, zd is slightly less than 10
in noble metals, as some electrons are transferred to the
free electron-like band. Interestingly, we also find a peri-
odic trend in Wd along a particular row; values increase
from the left to the center and decrease from the center
to the noble metal. In other words, Wd has a maximum
near the middle of the transition metal series [Figure S2
in SM]. According to the Friedel model, the binding en-
ergy [Equation 7] of transition metals is maximum near
the middle of a row [Figure S4 in SM]. This trend is
in reasonably good agreement with experimental values.
For example, the melting point is higher near the middle
of the transition metal series [Figure S4 in SM]. Such a
correlation makes the Friedel model credible despite its
simplicity.
We calculate the Wigner-Seitz radius r0 by equating

volume per atom (obtained from ab initio) to 4πr30/3.
Values of r0 obtained from ab initio agree well with the
ones reported in the solid state table [Figure S5, SM].
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Since d-band overlap decreases with increasing distance
between the atoms, we assume bandwidth Wd ∝ r−α

0 . As
a result, volume dependence of Ed, denoted by κd, can
be expressed as,

κd =
∂Ed

∂r0
=

5αWd

r0

[
zd
10

−
( zd
10

)2
]
. (8)

Similar to Ed, κd also peaks near the middle of the tran-
sition metal series [Figure S6, SM].

In summary, the Friedel model defines binding among
d-electrons in terms of specific material parameters,
which can be computed from the electronic density of
states obtained from ab initio calculations. In the fol-
lowing section, we use these parameters to fit a machine
learning model, which can predict SFE values of transi-
tion metals and binary alloys.

C. Machine learning

Wd d zs zd r0 Ed d ISF ESF G

W
d

d
z s

z d
r 0

E d
d

IS
F

ES
F

G

1.0 0.6 0.8 -1.0 -0.0 1.0 1.0 0.9 0.9 0.8

0.6 1.0 0.3 -0.5 -0.6 0.5 0.6 0.6 0.6 0.6

0.8 0.3 1.0 -0.6 0.4 0.7 0.7 0.7 0.7 0.3

-1.0 -0.5 -0.6 1.0 0.2 -1.0 -1.0 -0.9 -0.9 -0.9

-0.0 -0.6 0.4 0.2 1.0 -0.1 -0.2 -0.2 -0.2 -0.4

1.0 0.5 0.7 -1.0 -0.1 1.0 1.0 0.9 0.9 0.8

1.0 0.6 0.7 -1.0 -0.2 1.0 1.0 0.9 0.9 0.9

0.9 0.6 0.7 -0.9 -0.2 0.9 0.9 1.0 1.0 0.7

0.9 0.6 0.7 -0.9 -0.2 0.9 0.9 1.0 1.0 0.7

0.8 0.6 0.3 -0.9 -0.4 0.8 0.9 0.7 0.7 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50
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FIG. 5. Heatmap of Pearson correlation coefficient matrix:
target variables are γISF , γESF , G and feature variables are
Wd, εd, zs, zd, r0, Ed, κd. Values close to black (white) indicate
strongly positive (negative) correlations.

1. Data generation using ANNNI model

We use the ANNNI model to generate an extensive
database of γISF and γESF values for Au-Pd, Pd-Ag,
Ag-Au, Rh-Pd, Ir-Pd, Pd-Pt, Cu-Pt, Ir-Pt, Ni-Ag, Ni-
Au, Ni-Pd, Ni-Pt, Ni-Rh and Ni-Cu binary alloys. These
alloys are selected because of the solid solubility of the
two elements throughout the composition range, span-
ning from 12.5% to 87.5%, with intervals of 12.5%, en-
compassing seven compositions for each alloy. Using
the ATAT package [81], we generate special quasirandom

structures (SQS) to describe the random arrangement of
constituent atoms in a binary alloy. We generate three
types of supercells, each containing 32 atoms: a conven-
tional 2×2×2 FCC supercell, a 2×2×4 HCP supercell,
and a 2× 2× 2 DHCP supercell. We use a k-point mesh
of 12× 12× 12 for FCC, 21× 21× 5 for HCP and DHCP
supercell. The complete dataset for training and testing
the ML model contains γISF , γESF and G values for 8
metals and all the binary alloys mentioned above. We
also calculate the d-band PDOS and related parameters
[Figure 4(c)] using the FCC supercell of the metals and
alloys.

2. Feature and model selection

We aim to train a model to predict γISF , γESF and
G of a material from its DOS, such that one can gener-
ate the GSFE curves using Equation 2. For the purpose
of prediction, we use εd,Wd, zd, r0, and zs (number of s-
electrons) as feature variables. Except r0, the rest of the
features have moderate to high values of correlation co-
efficients [Figure 5]. Notably, zd (number of d-electrons)
has a very high negative correlation with SFEs, which
implies lower SFE for a material with higher zd. This
observation agrees with the experimental facts that no-
ble metals (Au, Ag, Cu) have low SFEs, as they have the
highest d-electrons. Bandwidth Wd has a very high posi-
tive correlation with SFEs, which is again consistent with
the fact that noble metals have narrow bands compared
to others [Figure 4 and Figure S7, S8 in SM], resulting
in low SFEs.
Although some features have high correlation coeffi-

cients, a multivariable linear regression fails to predict
the target variables accurately. Thus, we use other re-
gression methods like deep neural network (DNN), sup-
port vector regression (SVR), Gaussian process regres-
sion (GPR), and random forest. We split the data set
for training and testing (80:20). The latter is used to
test the trained model and compute the test error. The
mean absolute error between the actual and predicted
values gives the loss. We select the model that exhibits
the highest coefficient of determination for total average
R2 for the test set and the highest total R2 for the train-
ing set as the optimal one for each approach. The fol-
lowing discussion covers DNN and random forest, while
SVR and GPR are given in Section II and Figure S9, SM.

3. Deep neural network

DNNs can capture highly non-linear relationships and
complex patterns because of their highly flexible and
expressive interconnected architecture [82]. We evalu-
ate the performance of different activation functions, like
rectified linear unit (ReLU), leaky ReLU, and paramet-
ric ReLU (PReLU). PReLU demonstrates superior over-
all performance, achieving the highest accuracy among
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FIG. 6. Panels (a), (c) and (e) illustrate the comparison between actual and predicted values from DNNs for G, γISF and
γESF , respectively. Panels (b), (d), and (f) depict the same for selected features using Equations 9, 10 and 11, while the insets
illustrate the outcomes of random forest regression with all the features.

the tested activation functions with a test R2 of 0.995
for γISF prediction, compared to leaky ReLU (0.993)
and traditional ReLU (0.988). The neural network with
PReLU activation showcases enhanced resistance to sam-

ple bias because of its adaptive nature to effectively mod-
ulate activation for negative inputs and minimize out-
liers’ impact while promoting superior generalization for
a more reliable and stable predictive model than leaky
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ReLU and ReLU counterparts. Figure 6 (a), (c), (e)
shows the predicted vs. actual values for the best mod-
els of DNN, which we train with 5-7 dense layers with a
learning rate of 10−3 with around 200-500 epochs for it-
erations. We evaluate the model’s performance based on
the test error and the change in loss with the iterations.
Convergence with the number of iterations is shown in
Figure S10, SM. The test R2 values of G, γISF andγESF

are 0.973, 0.995 and 0.993, respectively. The mean abso-
lute errors (MAEs) of G, γISF andγESF are 2.69 GPa,
3.24 mJ/m2 and 2.65 mJ/m2, respectively.

4. Random forest
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FIG. 7. Feature importance plot for G, γISF , and γESF .

While the DNN exhibited impressive accuracy in pre-

dicting, it is not possible to understand how γISF , γESF ,
and G depend on the feature variables. Our next ob-
jective is to predict the expression for γISF , γESF and
G in terms of the feature variables. For this purpose,
one must perform high-order polynomial regression, such
as quadratic regression. This method expands the sam-
ple space from the initial five parameters (εd,Wd, zd, r0,
and zs) to twenty parameters by incorporating quadratic
combinations. However, employing this approach may
introduce redundant parameters, potentially leading to
overfitting.
A strategy to mitigate overfitting is to utilize a random

forest regressor, incorporating the quadratic terms. The
advantage of employing random forest lies in its ability
to perform regression and simultaneously provide insights
into the minimum number of terms essential for optimal
prediction without the issue of overfitting by perform-
ing a search using its randomly ensembled decision trees.
This process is called feature importance analysis. De-
tails of feature importance analysis using random forest
are given in Section III, SM. After feature importance
analysis, we select only six terms for shear modulus pre-
diction and ten terms for SFE prediction [Figure 7]. Fi-
nally, we do a multivariable linear regression with the se-
lected features to obtain the following expressions, which
can be directly used for prediction.

G = 51.07z2d − 63.21r20 + 25.82εd

−876.15zd + 33.80Wdzs − 60.14εdzs + 3877.91.
(9)

γISF = −22.66W 2
d − 579.36z2s − 522.06r20 − 220.46εd

+27.77zd + 64.57Wd + 18.51Wdεd + 278.81Wdzs

−49.31εdzs + 74.77εdr0 + 996.58.
(10)

γESF = −21.29W 2
d − 730.97z2s − 453.58r20 − 178.69εd

+31.77zd + 78.59Wd + 16.30Wdεd + 249.45Wdzs

+0.80εdzs + 41.06εdr0 + 781.64.
(11)

Note that, before applying the feature importance selec-
tion analysis, the mean absolute error obtained by includ-
ing all the twenty terms are 6.38 GPa, 9.28 mJ/m2, and
7.62 mJ/m2 for G, γISF and γESF [insets of Figure 6 (b),
(d), (f)], which reduces to 3.99 GPa, 7.03 mJ/m2, and
6.44 mJ/m2 [Figure 6 (b), (d), (f)], respectively. The test
R2 values of G, γISF andγESF also improve from 0.928,
0.963, and 0.973 (with all twenty features) to 0.983, 0.987
and 0.989 (with selected features), respectively. The im-
provement can be attributed to keeping only essential
features, thus reducing the problem of overfitting.

Figure 7 illustrates all the selected features that are
utilized in predicting the formula [Equation 9, 10, 11]
in descending order in terms of their importance. Two
features are dominant for shear modulus G: linear and
quadratic terms of the number of d-electrons (zd), fol-
lowed by r20. Stacking fault energies γISF and γESF

depend on multiple features, the linear and quadratic
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term of d-band width (Wd) being the most important
among them. The list also contains some cross terms like
Wdεd,Wdzs, εdzs with non-negligible weight, highlight-
ing the highly non-linear nature of the problem, which
requires a combined approach involving state-of-the-art
ab initio calculations and machine learning methods for
complete understanding.

D. GSFE curve prediction

So far, we have focused on training ML models for pre-
dicting γISF , γESF and G. Finally, we take up the most
challenging task of predicting the entire GSFE. Conven-
tionally, one should calculate the GSFE curves for sev-
eral alloys using DFT and use them to train ML mod-
els. However, calculating the GSFE curves for alloys is
computationally very expensive. Instead, we use the pre-
dicted G, γISF and γESF values from the previous sec-
tion and construct the GSFE curves using Equation 2.
For a binary alloy, we use the rule of mixture to get the
value of c (listed after Equation 2), which is the weighted
average of the pure element’s values. The following dis-
cussion shows that our method makes GSFE prediction
80X faster for alloys.

Figure 8 compares the predicted GSFE curves with ac-
tual DFT values, illustrated for binary Pd-Pt, Ir-Pt, and
Pd-Au alloys. We use the same technique as described
earlier (Figure 2), but with a nine times larger supercell,
having cell vectors 3

2 [110],
3
2 [101], [111]. Such a supercell

contains eighty-one atoms, nine each in 9 different layers
[Figure 8(a)]. We generate SQS to describe the random
arrangement of constituent atoms in a binary alloy and
use a k-point mesh of 9× 9× 3. Because of the random-
ness, each layer has a different composition [Figure 8(a)],
and the GSFE curve depends on the specific choice of
layers during the deformation. For example, we start by
fixing layer 1 and displacing layers 2 to 9, followed by fix-
ing layers 1-2 and displacing layers 3 to 9, etc., as shown
in Figure 8(a). Thus, we have to repeat the calculation
eight times, and the average value yields one single DFT
data point on a GSFE curve [Figure 8(b)]. The error
bars show the lowest and highest among the eight DFT
values calculated. Since there are 10 data points on a
GSFE curve, we need to perform 80 calculations to get
the entire GSFE curve from DFT directly.

Considering the large number of atoms in the super-
cell, predicting GSFE directly from DFT is computation-
ally expensive for alloys. As an alternative, the pro-

posed ML approach requires only one DFT calculation
to get the DOS and compute relevant parameters like
εd,Wd, zd, zs, and r0. Using these parameters, one can
predict γISF , γESF , and G using the ML model and fi-
nally predict the GSFE curve using Equation 2. Fig-
ure 8(b) illustrates that the ML-predicted GSFE curves
are in good agreement with the actual DFT points (based
on eighty DFT calculations). As shown in Figure 8(c),
γUTF /γUSF scales linearly with γISF /γUSF . Predicted
values agree reasonably well with the DFT results.

IV. CONCLUSIONS

In conclusion, we have proposed a combined ab ini-
tio and ML-based model that can accelerate the compu-
tational prediction of GSFE curves for alloys by a fac-
tor of 80. The training dataset is generated using DFT
calculations to find the SFE values of 106 metals and
alloys using the ANNNI model. The features used for
training the ML algorithms come from the physics-based
Friedel model. The features are obtained from the elec-
tronic DOS, calculated using DFT. Other than acceler-
ating the process of GSFE calculation, the present work
also highlights a deep connection between the physics of
d-electrons and the deformation behavior of transition
metals and alloys. Our study reveals a highly non-linear
dependence of shear modulus and stacking fault ener-
gies on the electronic features, which requires a combined
approach involving state-of-the-art ab initio calculations
and machine learning methods for complete understand-
ing. The present model can accelerate alloy designing
with targeted mechanical behavior by providing a fast
method of screening materials in terms of stacking fault
energies.
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I. ESTIMATION OF SHEAR MODULUS

Energy depends on strain via1,

∆E(V, εi) = E(V, εi)− E(V0) =
V0

2

6∑

i,j=1

Cijεjεi, (1)

where E(V, εi) and E(V0) are the energies of distorted and ideal lattice respectively. During

the application of strain the lattice vectors transform like



a′

b′

c′


 =




a

b

c


 (I + ϵ). (2)

Here, I represents the identity matrix, a, b, c and a′, b′, c′ are the lattice vectors of the

undeformed and deformed structure respectively. The above equation requires strain matrix

ϵ, which is given by

ϵ =




ε1 ε6/2 ε5/2

ε6/2 ε2 ε4/2

ε5/2 ε4/2 ε3


 . (3)

For cubic material, three types of strain matrix is required each for estimating C44, C11+C12

and C11 + 2C12. The matrices are obtained by utilizing the values given in the following

table.

ε1 ε2 ε3 ε4 ε5 ε6

C44 0 0 0 δ δ δ

C11 + C12 δ δ 0 0 0 0

C11 + 2C12 δ δ δ 0 0 0

Also, we know that for cubic material the elastic stiffness matrix is given by

Cij =




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44




. (4)
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Using Cij and the strain matrix of all three cases, equation 1 change to

∆E =
3

2
C44V δ2, (5)

∆E = (C11 + C12)V δ2 (6)

and

∆E =
3

2
(C11 + 2C12)V δ2. (7)

Using above three equation we can estimate C11, C12 and C44. These values can then be

used to estimate the Voigt bound for shear modulus(G). This is the upper bound2, given by

GV =
C11 − C12 + 3C44

5
. (8)

The Reuss bound is the lower bond3, given by

GR =
5

4(S11 − S12) + 3S44

. (9)

Sij values can be obtained using the following equations,

S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)
, (10)

S12 =
−C12

(C11 − C12)(C11 + 2C12)
, (11)

S44 =
1

C44

. (12)

Based on the Voigt and Reuss bounds, we can estimate the Voigt-Reuss-Hill average, which

corresponds to the values for poly-crystalline material4. This is given by

GV RH =
GV +GR

2
. (13)

We use VASPKIT5, which implements the above algorithm. Strain values are taken to be

-0.004, -0.002, 0.000, 0.002, and 0.004. We use 14 × 14 × 14 k-point mesh for both metals

and alloys to estimate energies for G calculation.
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FIG. S1. A comparison of d-band center εd between reported values6 and DFT values for 3d, 4d

and 5d elements.
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FIG. S2. A comparison of d-band width Wd between reported values6 and DFT values for 3d, 4d

and 5d elements.
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FIG. S3. A comparison of valance d-electrons zd between reported values6 and DFT values for 3d,

4d and 5d elements.
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FIG. S4. A comparison of d-electrons cohesive energy Ed between reported values6 and DFT values

for 3d, 4d and 5d elements. Higher cohesive energy leads to higher melting point (experimental

values).
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FIG. S5. A comparison of Wigner seitz radius ro between reported values6 and DFT values for 3d,

4d and 5d elements.
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FIG. S6. A comparison of d-electrons bulk modulus κd between reported values6 and DFT values

for 3d, 4d and 5d elements.
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row). The solid black line indicates the center of the d-band (εd), and the dashed line represents

the Fermi energy level (EF ).
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solid black line indicates the center of the d-band (εd), and the dashed line represents the Fermi

energy level (EF ).
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II. PREDICTION OF SHEAR MODULUS AND SFE

A. Gaussian Process Regression

Gaussian process regression (GPR) is a robust statistical model designed to learn the

underlying function and its associated uncertainty. Gaussian process models estimate un-

certainty that increases as one moves away from the training points. This feature quantifies

uncertainty when using the surrogate model in future design tasks. To find the best model,

we examine and compare three kernels: Radial Basis Function (RBF), Matern, and Ex-

ponential. We set RBF to set specific bounds with regulation parameters. An additional

parameter is introduced by the Matern kernel, an extension of the RBF, to modify the func-

tion’s smoothness. The Exponential kernel, which is comparable to the RBF but has a more

straightforward shape, is also considered. Finding the best kernel for the model is the goal

of the comparison, which considers factors like smoothness, adaptability, and performance

in oversampled regions of the space. The Matern kernel produced the best model and the

most consistent results out of the three kernels tested for GPRs, with test R2 of 0.982, 0.992,

and 0.992 for G, γISF and γESF .

B. Support vector regression

Support vector regression (SVR) uses a subset of training data, that is, support vectors,

in the final regression model by finding the optimal hyperplane. As a result, SVR models

have improved memory efficiency and are less vulnerable to biases in the sampling of the

training set. However, using these models makes quantifying uncertainty more difficult.

Additionally, we test and compar four kernels, the polynomial, linear, sigmoid, and RBF,

to choose the optimum SVR model with the help of grid search cross-validation. SVRs aim

to maintain the residuals of all training data below a certain threshold, which lessens the

temptation to sacrifice residuals on the minority of data, which results in RBF kernel being

less prone to sample biasing and thus gives better results than GPR. The best SVR uses the

RBF kernel and is trained with similar data points using Grid Search CV to estimate the

best parameters, using which we obtain an R2 score of 0.984, 0.994, and 0.996 for G, γISF

and γESF .
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FIG. S9. From left to right, the panels illustrate G, γISF , and γESF . Top row (Gaussian Process

Regression) and bottom row (Support Vector Regression) represents the comparison of predicted

vs actual values for training and test datasets.
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FIG. S10. Epoch vs. loss plots depict the training process of DNNs for G, γISF , and γESF . The

accuracy increases with the number of epochs, reaching a saturation point thereafter.
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III. FEATURE IMPORTANCE ANALYSIS

One thousand random trees with a maximum depth ranging from 1 to 100 terms are

analyzed to understand the importance of features in a random forest. During the hyper-

parameter tuning process, we investigate each combination of hyperparameters using Grid-

Search Cross-Validation, with different combinations of the number of estimators (random

arrangement of parameters) and different maximum depths of branches (selected terms) of

random forest trees. Then, we train the model using cross-validation on the different subsets

of a combination of randomly selected parameters from the available data to minimize the

mean square error of prediction. The feature importance is determined based on the con-

tribution of each feature to the reduction in impurity (reduction in disorder or uncertainty

in a data collection attained by decision tree splitting), i.e., minimizing the entropy along

with minimizing the mean square error when branches of a random forest tree are split, as

quantified by the formula:

Importance(j) =
∑

t I(j is used to split in tree t)× improvement in impurity
Number of trees

. (14)

Here, j represents the index of the feature, which takes the sum of over 1000 trees in the

forest. The resulting importance scores provide insights into the relevance of each feature

in making accurate predictions. The grid search identifies the best hyperparameters and

the features contributing most to the model’s accuracy. The selected terms include the first

feature with the overall highest feature importance and other features from the decision tree

that minimize the total number of terms and mean square error of predicting terms.

∗ bsomnath@iitk.ac.in

1 Y. Le Page and P. Saxe, “Symmetry-general least-squares extraction of elastic coefficients from

ab initio total energy calculations,” Phys. Rev. B, vol. 63, p. 174103, Mar 2001.

2 W. Voigt, Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik), vol. 34. BG Teubner,

1910.

3 S. Chandrasekar and S. Santhanam, “A calculation of the bulk modulus of polycrystalline mate-

rials,” Journal of Materials Science, vol. 24, pp. 4265–4267, Dec 1989.

10



4 R. Hill, “The elastic behaviour of a crystalline aggregate,” Proceedings of the Physical Society.

Section A, vol. 65, p. 349, may 1952.

5 V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng, “Vaspkit: A user-friendly inter-

face facilitating high-throughput computing and analysis using vasp code,” Computer Physics

Communications, vol. 267, p. 108033, 2021.

6 W. A. Harrison, Electronic structure and the properties of solids: the physics of the chemical

bond. Courier Corporation, 2012.

11


