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Abstract

The goal of this paper is to analyze the pointwise controllability properties of a one-
dimensional degenerate/singular equation. We prove the conditions that characterize ap-
proximate and null controllability. Besides, a numerical simulation based on B-splines will
be provided, in which the state u and the control function h are represented in terms of
B-spline basis functions. The numerical results obtained match the theoretical ones.
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1. Introduction

We focus in this work on the pointwise controllability for a degenerate/singular parabolic
equation, which is degenerate and singular at the boundary point x = 0. That is to say, for

α ∈ [0, 1) and µ ≤ (1− α)2/4, (1.1)

we consider the following control problem: Aα,µu = δbh(t), (t, x) ∈ ωT = (0, T )× (0, 1),
u(t, 0) = u(t, 1) = 0, t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 1),

(1.2)

where Aα,µu := ut − (xαux)x − µ
x2−αu, T > 0 fixed, u0 ∈ L2(0, 1), α and µ are two real

parameters and δb the Dirac delta function supported in a given point b ∈ (0, 1), acted upon

by a control function h(t). In this case we are talking about pointwise control at b.
The aim is to see if we can find a control force h, that acts on the system (1.2), in such a

way that we can steer (or at least approximately steer) its solution towards zero equilibrium.
In particular, the issues of approximate and null controllability will be treated. Furthermore,
we will provide numerical simulation based on B-splines of different degrees.

Nowadays, splines represent a fundamental tools in various fields, among them numerical
simulation, and particularly in the context of solving PDEs. Splines are piecewise-defined
functions that consists of polynomial segments joined together smoothly at specific points
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called knots. They serve as a flexible and efficient means of discretizing the solution space.
Their piecewise polynomial representation of functions, allowing for local control and re-
finement of the approximation. This flexibility is crucial when dealing with the spatial
discretization of PDEs, as it enables adaptive refinement in regions of interest while main-
taining a computationally efficient representation in less critical areas.

Splines are used also in the context of controllability simulation of PDEs. Indeed, the
controllability in the context of PDEs refers to the ability to manipulate the system’s state
through the application of external controls. Splines can play a significant role in achieving
controllability by providing a framework for representing control inputs and optimizing their
distribution throughout the simulation domain. The piecewise nature of splines, as well as
the non-negative partition of unity of B-splines (or basis splines) allow for the design of
control strategies that can be localized in both space and time, offering finer control over
the system’s behavior.

Now, we highlight definitions 1.1 and 1.2 of approximate controllability and null control-
lability, respectively.

Definition 1.1 (Approximate controllability). Equation (1.2) is said to be approximately
controllable at target time T > 0, if for any ε > 0 and u0, uT ∈ L2(0, 1), there exists a
control h ∈ L2(0, T ) where the solution y to (1.2) satisfies

∥u(T )− uT ∥L2(0,1) ≤ ε. (1.3)

Let us define system (1.4) as the backward adjoint problem of (1.2): φt + (xαφx)x + µ
x2−αφ = 0, (t, x) ∈ ωT ,

φ(t, 0) = φ(t, 1) = 0, t ∈ (0, T ),
φ(T, x) = φ0(x), x ∈ (0, 1),

(1.4)

where φ0 ∈ L2(0, 1) is a given initial datum. Then, it is well known in [6, Theorem 2.43]
that the last issue of approximate controllability of (1.2) can be reduced to the unique
continuation property for the adjoint equation (1.4).

Proposition 1.1. Equation (1.2) is approximately controllable at time T > 0 if and only if
its adjoint equation (1.4) satisfies the property:

For all φ0 ∈ L2(0, 1) s.t. φ(·, b) = 0 on (0, T ) ⇒ φ0 = 0 in (0, 1). (1.5)

Definition 1.2 (Null controllability). Null controllability at a given time T > 0 for equation
(1.2) holds true if, for every u0 ∈ L2(0, 1), there exists a control h ∈ L2(0, T ) such that u
the solution of (1.2) fulfills

u(T, x) = 0 for all x ∈ (0, 1). (1.6)

1.1. Background and motivations

Before going any further, let us frame the operator Aα,µ, which is purely degenerate
when µ = 0, but when α = 0, this operator becomes purely singular as shown below

Aαu := ut − (xαux)x , x ∈ (0, 1), (PD)

Aµu := ut − uxx − µ

x2
u, x ∈ (0, 1). (PS)

Null controllability of the operator Aα,µ was investigated in [15]. In particular, the authors
proved that the problem is null controllable iff: α ∈ [0, 2) and µ ≤ µ(α), where µ(α) :=
(1−α)2

4 appears in the following Hardy inequality

(1− α)2

4

∫ 1

0

z2

x2−α
dx ≤

∫ 1

0

xαz2xdx. (1.7)
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We refer to [1, 10, 11] for other situations on this theme.
Now, let us turn to the pointwise control problems. We recall that S. Dolecki has

discussed the minimal control time in [7] for the null controllability chalenge of parabolic
equations. In particular, the control was supported in a given point b in the interior of the
domain as in our system (1.2) where particularly α = µ = 0. Using the well-known moment
method [8], S. Dolecki has determined a minimal time T0 ∈ [0,+∞] such that

T0(b) = lim sup
n→∞

− log(| sin(nb)|)
n2

.

Obviously, we can remark that T0(b) depends on the position of the control, since null
controllability is guaranteed for any target time T > T0, but if T < T0, the problem (1.2)
where α = µ = 0, cannot be null controllable.

In the same direction, in [2], the pointwise null controllability for (1.2) with µ = 0 was
considered. The authors have described the minimal time for the purely degenerate operator
Aα (i.e. the (PD) case), where it depends on b (control position) and the degeneracy
parameter. In particular

T
(α)
0 (b) = lim sup

n→+∞
−
log

(∣∣Φvα,n

(
b
)∣∣)

λvα,n
,

where (λvα,k,Φvα,k)k≥1 represent the spectrum of Aα. More precisely, the authors proved

that the null controllability holds when T > T
(α)
0 , and fails when T < T

(α)
0 .

The goal of this paper is to investigate the same kind of issues, but for degenerate singular
equations and in particular to deal with both approximate and null controllability charac-
terization for our pointwise problem (1.2) with respect to the degeneracy and singularity
parameters.

The problem (1.2) considered in this manuscript, has never been treated before.

1.2. Main results

Two controllability results for the equation (1.2) will be treated in this work. We show
first the geometric condition (H1), that gives a guarantee of approximate controllability at
T > 0 for the equation (1.2). As a second step, considering the same condition, we show

T
(α,µ)
0 (b) ∈ [0,+∞] (see (1.9)) such that:

Equation (1.2) is null controllable if T > T
(α,µ)
0 (b) and is not for T < T

(α,µ)
0 (b).

To do so, Assuming (1.1) and let ν(α, µ) = 2
2−α

√
µ(α)− µ. Thus, we describe the set P as

P =

{(
jν(α,µ),k

jν(α,µ),n

) 2
2−α

, n > k ≥ 1

}
, (1.8)

where (jν(α,µ),k)k≥1 represents the Bessel functions zeros (see Section 2). Using this nota-
tions, we can give our result of approximate controllability.

Theorem 1.1. Assuming (1.1). Approximate controllability at T > 0 for equation (1.2)
holds true iff:

b /∈ P. (H1)

Moreover, the following result holds.
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Theorem 1.2. Assuming (1.1) and let u0 ∈ L2(0, 1). Assume that (H1) holds and take

T (α,µ)(b) := lim sup
k→+∞

− log(|Φα,µ,k(b)|)
λα,µ,k

, (1.9)

where (Φα,µ,k)k≥1 and (λα,µ,k)k≥1 are respectively the sequence of eigenvectors and its asso-
ciated eigenvalues for the specral problem related to (1.2) (see section 2). Then, for T > 0,
one can obtain:

(i) If T < T (α,µ)(b), equation (1.2) cannot be null controllable T .

(ii) If T > T (α,µ)(b), null controllability at T of equation (1.2) holds true.

Remark 1. By duality, the equation (1.2) is null controllable at time T is equivalent to the
observability estimate:

∥φ(0, ·)∥2L2(0,1) ≤ C

∫ T

0

φ(t, b)2dt, (1.10)

where φ is a solution of problem (1.4) and C > 0 (constant).

To demonstrate Theorem 1.2, we need to reduce null controllability issue into a moment
problem (see Section 4). To do so, we use the following result (see [4, 9]).

Theorem 1.3. Given T > 0. Assume that {Λk}k≥1 ⊂ R+ fulfills∑
k≥1

1

|Λk|
< +∞ and |Λk − Λl| ≥ ρ|k − l|, ∀k, l ≥ 1. (1.11)

for a constant ρ > 0. Then, there exists a family {qk}k≥1 ⊂ L2(0, T ) biorthogonal to
{e−Λkt}k≥1. Furthermore, we have

∀ε > 0, ∃Cε > 0, ∥qk∥L2(0,T ) ≤ Cεe
εΛk , ∀k ≥ 1. (1.12)

2. Well-posedness and spectral properties

In this section we will give some existence and uniqueness results of solutions for the
degenerate singular equation (1.2) as well as some useful spectral properties.

2.1. Functional framework
Let us assume (1.1) and consider the Hilbert space H1,µ

α with its scalar product{
H1,µ

α (0, 1) :=
{
z ∈ L2(0, 1) ∩H1

loc(0, 1] :
∫ 1

0

(
xαz2x − µ z2

x2−α

)
dx < +∞

}
,

⟨v, w⟩H1,µ
α

:=
∫ 1

0
vw + xαvxwx − µ

x2−α vwdx.

As mentioned in [15],the trace exists for any u in H1,µ
α (0, 1) at x = 1 and also for x = 0 in

the weak degenerate scenario. This enables us to define the space

H1,µ
α,0(0, 1) :=

{
z ∈ H1,µ

α (0, 1) | z(0) = z(1) = 0
}
.

Since C∞
c (0, 1) is dense both in L2(0, 1) and in H1,µ

α,0(0, 1), H
1,µ
α,0(0, 1) is dense in L2(0, 1).

Further, we define H−1,µ
α,0 (0, 1) the dual space of H1,µ

α,0(0, 1) with respect to the pivot

space L2(0, 1), with the following norm

∥f∥H−1,µ
α,0 (0,1) := sup

∥g∥
H

1,µ
α,0(0,1)

=1

⟨f, g⟩H−1,µ
α,0 (0,1),H1,µ

α,0(0,1)
.

Thanks to the generalized Hardy inequality (1.7), H1,µ
α,0(0, 1) = H1

α,0(0, 1) for the subcritical
parameter case: µ < µ(α). But, for the critical case, one has (see [16] for α = 0 ):

H1
α,0(0, 1) ⊄=

H
1,µ(α)
α,0 (0, 1).
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2.2. Well-posedness

Let us introduce the following unbounded operator

A : D(A) ⊂ L2(0, 1) → L2(0, 1)

u 7→ Au := (xαux)x +
µ

x2−α
u,

with its domain

D (A) :=
{
u ∈ H1,µ

α,0(0, 1) ∩H2
loc((0, 1]) : (x

αux)x +
µ

x2−α
u ∈ L2(0, 1)

}
.

If u ∈ D (A), then the boundary conditions u(0) = u(1) = 0 are satisfied. Moreover,
the bilinear form associated to A is coercive in H1,µ

α,0(0, 1) (see [15] for more details about
µ = µ(α) and µ < µ(α)). This allows to say that problem (1.2) is well-posed. In particular
we have the following theorem.

Theorem 2.1. [13, Theorem III.1.2] For any initial data u0 in L2(0, 1) and h in L2(0, T ),
equation (1.2) has a unique solution u, such that u ∈ L2

(
0, T ;H1

α(0, 1)
)
∩C0

(
[0, T ];L2(0, 1)

)
and

∥u∥L2(0,T ;H1,µ
α,0(0,1))

+ ∥u∥C0([0,T ];L2(0,1)) ≤ C
(
∥u0∥L2(0,1) +

∥∥δb∥∥H−1,µ
α,0

∥h∥L2(0,T )

)
,

for a constant C > 0.

2.3. Spectral analysis of A

This part will be dedicated to treat the eigenvalue problem related to the operator
u 7→ −(xαux)x − µ

x2−αu, which will be useful for the rest of this paper.
As we can see in the next proposition 2.1, the spectrum will be described in terms of

Bessel functions Jν (with order ν ∈ R+ [17]), which satisfy the following (ODE)

x2g′′(x) + xg′(x) + (x2 − ν2)g(x) = 0, x ∈ (0,+∞),

and its zeros (jν,n)n≥1 (see Figure 1) that satisfy the following lower-upper bounds ([14]):

∀ν ∈
[
0,

1

2

]
, ∀n ≥ 1,

(
n+

ν

2
− 1

4

)
π ≤ jν,n ≤

(
n+

ν

4
− 1

8

)
π, (2.1)

∀ν ≥ 1

2
, ∀n ≥ 1,

(
n+

ν

4
− 1

8

)
π ≤ jν,n ≤

(
n+

ν

2
− 1

4

)
π. (2.2)

0 5 10 15 20 25 30

-0.5

0

0.5

1

J
0

J
1

J
2

J
3

J
4

J
5

Figure 1: Bessel functions of first kind.

As in [5], we give the description of the eigenvalues and its associated eigenfunctions.
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Proposition 2.1. For any µ ≤ µ(α), the admissible spectrum (λ,Φ) related to the operator
u 7→ −(xαux)x − µ

x2−αu, are the following:

λα,µ,n =
(2− α

2

)2

(jν(α,µ),n)
2 ∀n ≥ 1, (2.3)

Φα,µ,n(x) =

√
2− α

|J ′
ν(α,µ)(jν(α,µ),n)|

x
1−α
2 Jν(α,µ)

(
jν(α,µ),nx

2−α
2

)
, n ≥ 1. (2.4)

Furthermore, (Φα,µ,n)n≥1 constitutes an orthonormal basis of L2(0, 1).

Before ending this section, we present Lemma 2.1, which will be proved in Appendix A.

Lemma 2.1. The sequence (λα,µ,k)k≥1 given by (2.3), satisfies:

•
∑
n≥1

1

λα,µ,n
is convergent.

• ∀n,m ∈ N⋆, ∃ρ > 0 (constant):

|λα,µ,n − λα,µ,m| ≥ ρ|n2 −m2|. (gap)

3. Pointwise approximate controllability

The scenario of this section will be around Theorem 1.1 and its proof. Due to Proposition
1.1, approximate controllability is equivalent to the property (1.5) for the adjoint equation
(1.4).

Before going any further, we first state the following tool result:

Theorem 3.1. [9, Lemma 3.1, Existence of biorthogonal family] Let (λα,µ,k)k≥1 as in
(2.3) and T ∈

(
0,+∞

]
fixed. Then, there exists {qα,µ,k}k≥1 in L2(0, T ) biorthogonal to

{e−λα,µ,kt}k≥1. Moreover, we have

∀ε > 0,∃Cε,T > 0 : ∥qα,µ,k∥L2(0,T ) ≤ Cε,T e
ελα,µ,k , ∀k ≥ 1. (3.1)

Proof. Sufficient condition: Suppose (H1) is valid and prove the property (1.5). To do
so, considering φ0 ∈ L2(0, 1) and suppose φ its corresponding solution of (1.4) fulfils:

φ(t, b) = 0, for all t ∈ (0, T ). (3.2)

We can expand the solution φ of (1.4) in (Φα,µ,k)k≥1, one has

φ(t, x) =
∑
k≥1

φ0
α,µ,ke

−λα,µ,k(T−t)Φα,µ,k(x).

As consequence of (3.2) and Theorem 3.1, the following identity holds true:

φ0
α,µ,kΦα,µ,k(b) = 0, ∀k ≥ 1,

thus φ0 = 0. Then equation (1.2) is approximately controllable by virtue of Proposition
1.1.

Necessary condition: We assume that hypothesis (H1) doesn’t hold. One has

∃n0 > k0 ≥ 1, for which: b =

(
jν(α,µ),k0

jν(α,µ),n0

) 2
2−α

.
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The solution φ of equation (1.4) associated to any initial data φ0 can be explicitly given by

φ(t, x) =
∑
k≥1

φ0
α,µ,ke

−λα,µ,k(T−t)Φα,µ,k(x).

Then for φ0 = Φα,µ,n0
∈ L2(0, 1), the solution of (1.4) related to this choice satisfy

φα,µ,n0(t, x) = e−λα,µ,n0
(T−t)Φα,µ,n0(x), (t, x) ∈ ωT .

this contradicts the assumption, since φ0 ̸= 0. This ends the proof.

4. Pointwise null controllability

The negative result of null controllability will be presented in the first part 4.1. On the
other hand, the second part 4.2 deals with the positive result, where the solution of the
equation (1.2) can be steered to zero with respect to the minimal time T (α,µ)(b). Then the
proof of Theorem 1.2 will be completed. To this aim, let us assume that b fulfills (H1).

4.1. Negative result

Assuming that T ∈ (0, T
(α,µ)
0 (b)), where T

(α,µ)
0 (b) is given by (1.9) and recall that condi-

tion (H1) holds. Using some ideas from [3] and arguing by contradiction, let us suppose that

equation (1.2) is null controllable at T < T
(α,µ)
0 (b), then the observability inequality (1.10)

is satisfied for any φ solution of adjoint equation (1.4) with respect to a positive constant C
(see Remark 1).

Considering φα,µ,k(t, x) = e−λα,µ,k(T−t)Φα,µ,k(x), for all k ≥ 1, the solution of (1.4)
related to φ0 = Φα,µ,k. Then, (1.10) becomes

e−2λα,µ,kT ≤ CΦα,µ,k(b)
2

∫ T

0

e−2λα,µ,k(T−t) dt

≤ C
1

2λα,µ,k

(
1− e−2λα,µ,kT

)
Φα,µ,k(b)

2

≤ C

2λα,µ,1
Φα,µ,k(b)

2, ∀k ≥ 1,

which implies

1 ≤ C ′e2λα,µ,kTΦα,µ,k(b)
2 ∀k ≥ 1, (4.1)

where C ′ does not depend on k. Moreover, from the definition of T
(α,µ)
0 (b), one has

∃{kn}n≥1 of positive integers: T
(α,µ)
0 (b) = lim

n→+∞
− log(|Φα,µ,kn(b)|)

λα,µ,kn

.

If 0 < T
(α,µ)
0 (b) < +∞, then we can obtain

∀ε > 0,∃nε ≥ 1, such that: T
(α,µ)
0 (b)− ε ≤ −

log(
∣∣Φα,µ,kn(b)

∣∣)
λα,µ,kn

, ∀n ≥ nε.

Thus (4.1) implies

1 ≤ C ′e−2λα,µ,kn (T
(α,µ)
0 (b)−T−ε), ∀n ≥ nε.

Then we obtain a contradiction with ε ∈ (0, T −T
(α,µ)
0 (b)). This confirms the negative result

of Theorem 1.2.
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4.2. Positive result

In this part, we shall find a force control h ∈ L2(0, T ), such that the null controllability

condition (1.6) holds true at T > 0 (T > T
(α,µ)
0 (b)) for any solution of (1.2) with respect to

the initial data u0 ∈ L2(0, 1). To achieve this, we transform the null controllability result of
equation (1.2) into the moment problem (MP) (see [8] for more details).

Firstly, the solution u of (1.2) associated with u0(x) =
∑
k≥1

u0
α,µ,kΦα,µ,k(x), is as follows

u(t, x) =
∑
k≥1

uα,µ,k(t)Φα,µ,k(x), where
∑
k≥1

u2
α,µ,k(t) < +∞.

Characterization (1.6) of null controllability, can be reformulated as:

uα,µ,k(T ) = 0, for all k ≥ 1. (4.2)

The following adjoint problem: (φα,µ,k)t + (xα(φα,µ,k)x)x + µ
x2−αφα,µ,k = 0, in Q,

φα,µ,k(t, 0) = φα,µ,k(t, 1) = 0, on (0, T ),
φα,µ,k(T, x) = Φα,µ,k(x), in (0, 1),

(4.3)

has the solution φα,µ,k(t, x) := e−λα,µ,k(T−t)Φα,µ,k(x). Then from (1.2) and (4.3), one has

Φα,µ,k(b)

∫ T

0
h(t)e−λα,µ,k(T−t) dt =

∫ 1

0
φα,µ,ku|T0 dx+

∫ T

0
(φα,µ,k)xux|10 dt−

∫ T

0
ux(φα,µ,k)x|10 dt

=

∫ 1

0
u(T, x)Φα,µ,k(x) dx−

∫ 1

0
u(0, x)Φα,µ,k(x)e

−λα,µ,kT dx

= uα,µ,k(T )− u0
α,µ,ke

−λα,µ,kT .

Null controllability issue for equation (1.2) can be transformed to the problem given by:

Find h ∈ L2(0, T ) : Φα,µ,k(b)

∫ T

0

h(t)e−λα,µ,k(T−t) dt = −u0
α,µ,ke

−λα,µ,kT , ∀k ≥ 1. (MP)

The following condition fulfilled by (H1), is necessary to solve (MP)

Φα,µ,k(b) ̸= 0, ∀k ≥ 1.

Considering v(t) := h(T − t) ∈ L2(0, T ), (MP) reads as follows:

Find h ∈ L2(0, T ) :

∫ T

0

v(t)e−λα,µ,kt dt = −
e−λα,µ,kTu0

α,µ,k

Φα,µ,k(b)
, ∀k ≥ 1. (4.4)

Using Theorem 3.1, then we are looking for a solution v(t) = h(T − t) to (4.4) as v(t) =∑
k≥1 ukqα,µ,k(t), for some unknown coefficients vk ∈ R (k ≥ 1). Then

vk = −
e−λα,µ,kTu0

α,µ,k

Φα,µ,k(b)
,

and thus, we define a formal solution h to the moment problem (4.4) as

h(t) := v(T − t) = −
∑
k≥1

e−λα,µ,kTu0
α,µ,k

Φα,µ,k(b)
qα,µ,k(T − t). (4.5)
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We have now to prove that h ∈ L2(0, T ). For any ε > 0 fixed, by definition of T
(α,µ)
0 (b) (see

(1.9)), one has

∃Cα,µ,ε > 0, such that:
1

|Φα,µ,k(b)|
≤ Cα,µ,εe

λα,µ,k(T
(α,µ)
0 (b)+ε), ∀k ≥ 1.

Using this last inequality and taking into account the bound (3.1), we get∥∥∥∥∥e−λα,µ,kTu0
α,µ,k

Φα,µ,k(b)
qµ,k

∥∥∥∥∥
L2(0,T )

≤ Cα,µ,ε,T ∥u0∥L2(0,1)e
−λα,µ,k(T−T

(α,µ)
0 (b)−2ε),

where Cα,µ,ε,T > 0. Choosing ε =
T−T

(α,µ)
0 (b)
4 in the estimate above, then

∃C ′
α,µ,T > 0,

∥∥∥∥∥e−λα,µ,kTu0
α,µ,k

Φα,µ,k(b)
qα,µ,k

∥∥∥∥∥
L2(0,T )

≤ C ′
α,µ,T ∥u0∥L2(0,1)e

−λα,µ,k(T−T
(α,µ)
0 (b))/2.

Since we have∑
k≥1

e−λα,µ,k(T−T
(α,µ)
0 (b))/2 =

2

T − T
(α,µ)
0 (b)

∑
k≥1

(
λα,µ,k

T − T
(α,µ)
0 (b)

2
e−λα,µ,k(T−T

(α,µ)
0 (b))/2

) 1

λα,µ,k
< +∞.

One has∑
k≥1

∥∥∥∥∥e−λα,µ,kTu0
α,µ,k

Φα,µ,k(b)
qα,µ,k

∥∥∥∥∥
L2(0,T )

≤ Cα,µ,T ∥u0∥L2(0,1)

∑
k≥1

e−λα,µ,k(T−T
(α,µ)
0 (b))/2 < +∞.

Theorem 1.2 is therefore proved, since the last inequality ensures that h ∈ L2(0, T ).

5. Finite element scheme for the state equation based on B-splines

In this part, we review some results around spline spaces [18] and spline collocation
framework [19], providing necessary background to make the paper self-contained.

Consider the set of breakpoints x := {0 = x0 < x1 . . . < xn = 1}. Let Sd,x denote the
space of piecewise polynomial functions of degree less than or equal to d associated with
the partition of the interval [0, 1] induced by x. Let m := {mi}n−1

i=1 be a set of values with
entries mi ≤ d + 1. We define the subspace Sd,x,m as the set of functions in Sd,x that are
Cmi−1-smooth at xi, for i = 1, . . . , n− 1. The dimension of Sd,x,m is equal to

N := n(d+ 1)−
n−1∑
i=1

mi

We denote by t := {ti}N+d+1
i=1 the breakpoint sequence formed by the breakpoints xi repeated

d+1−mi times, where t1 ≤ t2 ≤ . . . ≤ td+1 ≤ x0 and xn ≤ tN+1 ≤ . . . ≤ tN+d+1. Here, the
entries d+1−mi and mi−1 represent the knot multiplicity of xi and the spline smoothness
order at xi, respectively.

A normalized B-spline (e.g. non-negative partition of unity) of degree d associated with
t, is defined as:

Bk,d,t := (tk+d+1 − tk) [tk, . . . , tk+d+1] (.− x)d+,

where [y0, . . . , yd] f stands for the divided difference of the function f at the points y0, . . . , yd,
and y+ = max(0, y).

The B-splines Bk,d,t, k = 1, . . . , N , possess interesting properties. In the following result,
we summarize some of them [18].
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Proposition 5.1. The basis functions Bk,d,t, k = 1, . . . , N meet the following properties.

1) Non-negativity: Bk,d,t(x) ≥ 0, ∀x ∈ R.

2) Local support: Bk,d,t is non-negative in [tk, tk+d+1] and equal to zero outside.

3) Partition of unity:
∑

k Bk,d,t = 1.

4) The B-splines Bk,d,t, k = 1, . . . , N are linearly independent on R.

In addition, the B-splines Bk,d,t can be computed by means of Cox-Boor recurrence for-
mula. In fact, The k-th B-spline Bk,0,t of degree 0 for the knot sequence t is the characteristic
function of the half-open interval [tk, tk+1), i.e., the function given by

Bk,0,t(x) :=

{
1, tk ≤ x < tk+1,

0, otherwise.

And,

Bk,d,t(x) :=
x− tk

tk+d − tk
Bk,d−1,t(x) +

tk+d+1 − x

tk+d+1 − tk+1
Bk+1,d−1,t(x), d > 0,

and by convention the value 0 is assigned when the term 0/0 appears.
It holds,

Sd,t,m = span {Bk,d,t(x), x ∈ [td, tN+1]}

Every spline s ∈ Sd,t,m can be expressed as:

s(x) =

N∑
k=1

ckBk,d,t(x),

where the real coefficients ck are called the control coefficients.

5.1. A discrete spline quasi-interpolants of degrees d = 2, 3

In this subsection, we propose two discrete spline quasi-interpolation schemes, Qn
2 and

Qn
3 , reproducing quadratic and cubic polynomials, respectively. That is,

Qn
dp = p, for all p ∈ Pd, d = 2, 3. (5.1)

Then, we will write the both schemes in the quasi-Lagrange form. For a sake of simplicity we
consider a uniform partition, i.e., t = {x0[d+ 1], x1, . . . , xi, . . . , xn−1, xn[d+ 1]}, by xj [d+1],
j = 0, n, we mean that xj , j = 0, n, are repeated d+ 1 times, and then we omit t from the
B-spline definition, i.e, Bi,d = Bi,d,t.

Define,

Qn
d (f) =

n+d−1∑
i=0

λi,d (f)Bi,d, (5.2)

where the functionals λi,d (f) are selected to ensure that (5.1) holds. These functionals vary
depending on the nature of the information available about the function f to be approxi-
mated. Typically, they take the form of point, derivative, or integral linear forms. In this
work, the first case is considered, wherein λi,d (f) represents a finite linear combination of
discrete values of f .
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5.1.1. Quadratic spline quasi-interpolation schemes

Define,

σ :=

{
σ0 = x0, σi =

1

2
(xi + xi−1) , 1 ≤ i ≤ n, σn+1 = xn+1

}
.

With σ we can associate the so-called Schoenberg operator [20], i.e, λi,2 (f) = f(σi). How-
ever, this operator only reproduce linear polynomials, and then is only of convergence order
equal to 2. For this, we define the functionals λi,2 (f) as follows [21],

λ0,2 (f) = f(σ0),

λi,2 (f) = −1

8
f(σi−1) +

5

4
f(σi)−

1

8
f(σi+1), 1 ≤ i ≤ n (5.3)

λn+1,2 (f) = f(σn+1), .

Let τ := xi+1 − xi stands for the space step-length. The result below holds.

Theorem 5.1. Let Qn
2 be the spline scheme defined by (5.2) and (5.3), the for any f ∈ C3,

we have
∥f −Qn

2 (f) ∥∞ ≤ Cτ3∥f (3)∥∞,

where C represents a positive constant independent of τ .

The spline scheme Qn
2 can be writing in quasi-Lagrange form:

Qn
2 (f) =

n+1∑
i=0

f (σi) B̃i,2.

where the basis functions B̃i,2 are defined as follows. For 3 ≤ i ≤ n− 2 we have

B̃i,2 := −1

8
Bi−1,2 +

5

4
Bi,2 −

1

8
Bi+1,2,

and for i = 0, 1, 2 we define,

B̃0,2 := B0,2 −
1

3
B1,2,

B̃1,2 :=
3

2
B1,2 −

1

8
B2,2,

B̃2,2 := −1

6
B1,2 +

5

4
B2,2 −

1

8
B3,2.

Similarly, we define,

B̃n−1,2 := −1

8
Bn−2,2 +

5

4
Bn−1,2 −

1

6
Bn,2,

B̃n,2 := −1

8
Bn−1,2 +

3

2
Bn,2,

B̃n+1,2 := −1

8
Bn,2 +Bn+1,2.

Next, we will provide a cubic spline quasi-interpolation scheme.
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5.1.2. Cubic spline quasi-interpolation schemes
Following the same strategy as for quadratic case, we define [22],

B̃0,3 := B0,3 +
7

18
B1,3 −

1

6
B2,3,

B̃1,3 := B1,3 +
4

3
B2,3 −

1

6
B3,3,

B̃2,3 := −
1

2
B1,3 −

1

6
B2,3 +

4

3
B3,3 −

1

6
B4,3,

B̃3,3 :=
1

9
B2,3 −

1

6
B3,3 +

4

3
B4,3 −

1

6
B5,3,

B̃i,3 := −
1

6
Bi−1,3 +

4

3
Bi,3 −

1

6
Bi+1,3, 4 ≤ i ≤ n− 2

B̃n−1,3 := −
1

6
Bn−3,3 +

4

4
Bn−2,3 −

1

6
Bn−1,3 +

1

9
Bn,3,

B̃n,3 := −
1

6
Bn−2,3 +

4

3
Bn−1,3 −

1

6
Bn,3 −

1

2
Bn+1,3,

B̃n+1,3 := −
1

6
Bn−1,3 +

4

3
Bn,3 +Bn+1,3,

B̃n+2,3 := −
1

6
Bn,3 +

7

18
Bn+1,3 +Bn+2,3.

The cubic quasi-interpolation schemes Qn
3 is defined in quasi-Lagrange form as follows,

Qn
3 (f) =

n+2∑
i=0

f(xi)B̃i,3. (5.4)

The following result holds.

Theorem 5.2. For any f ∈ C4, we have

∥f −Qn
3 (f) ∥∞ ≤ Cτ4∥f (4)∥∞.

where C represents a positive constant independent of τ .

5.2. Numerical solving of the state equation

Now, a collocation method based on the spline quasi-interpolation schemes described
above will be used to numerically solve the differential equation (1.2) on [0, 1]× [0, T ].

To obtain an approximate solution of the time-dependent problem (1.2), we approximate
the solution u(x, t) and the control function h(x, t) in terms of B-spline as follows:

u(x, t) =

n+d−1∑
i=0

ui(t)B̃i,d, h(x, t) =

n+d−1∑
i=0

hi(t)B̃i,d, d = 2, 3, (5.5)

where ui(t) = u(xi, t), hi(t) = h(xi, t) are unknowns functions to be determined. The
boundary conditions in (1.2) yields

u0(t) = 0, un+d−1(t) = 0, t ∈ [0, T ].

While at the interior points xi, i = 1, . . . , n− 1, the condition in (1.2) are of the form,

∂u

∂t
(xi) =

n+d−1∑
j=0

uj(t)x
α
i B̃

′′
j,d(xi) +

n+d−1∑
j=0

uj(t)αx
α−1
i B̃′

i,d(xi) +

n+d−1∑
j=0

uj(t)
µ

x2−α
i

B̃i,d(xi)−
ℓ1∑

i=ℓ0

hi(t)B̃i,d(xi)

=

n+d−2∑
j=1

uj(t)

(
xα
i B̃

′′
j,d(xi) + αxα−1

i B̃′
i,d(xi) +

µ

x2−α
i

B̃i,d(xi)

)
−

ℓ1∑
j=ℓ0

hj(t)B̃j,d(xi)

+
∑

j∈{0,n+d−1}
uj(t)

(
xα
i B̃

′′
j,d(xi) + αxα−1

i B̃′
i,d(xi) +

µ

x2−α
i

B̃i,d(xi)

)
.
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Using the boundary conditions, one can get

∂u

∂t
(xi) =

n+d−2∑
j=1

uj(t)

(
xα
i B̃

′′
j,d(xi) + αxα−1

i B̃′
i,d(xi) +

µ

x2−α
i

B̃i,d(xi)

)
−

ℓ1∑
j=ℓ0

hj(t)B̃j,d(xi).

(5.6)

The indices ℓ0 ≤ i ≤ ℓ1 stand for the indices of the B-splines B̃i,d that have non-zero value
at b.

We should determine the n + d − 2 unknowns ui(t), i = 1, . . . , n + d − 2. To this end,
(5.6) can reformulated in matrix form as

U′(t) = AU(t)−BH(t),

whereAi,j =
(
xα
i B̃

′′
j,d(xi) + αxα−1

i B̃′
i,d(xi) +

µ

x2−α
i

B̃i,d(xi)
)
,U = [u1(t), . . . , un+d−2],Bi,j =

B̃j,d(xi), and H = [0, . . . , hℓ0(t), . . . , hℓ1(t), . . . , 0] ∈ Rn+d−2.
We will apply the control at b = 1/2, the midpoint of the interval [0, 1]. We consider the

following sets of knots:

x1 :=
1

10
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ,

x2 :=
1

10
{1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10} ,

x3 :=
1

10
{1, 2, 3, 4, 5, 5, 5, 6, 7, 8, 9, 10} .

In these sets, the boundary knots 0 and 1 are repeated degree +1, where ”degree” refers
to the spline degree. We will examine both quadratic and cubic splines. Figure 2 shows, the
quadratic and cubic B-splines defined on the sets xi, i = 1, 2, 3, respectively.
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Figure 2: Plots of the quadratic (top) and the cubic (bottom) B-splines associated with the sets x1 (left),
x2 (center) and x3 (right).

The finite element matrix A is sparse and has good shapes, thanks to the B-spline basis
functions having minimum possible supports. Figure 3 illustrates schematic representations
of the matrix A for quadratic B-splines associated with the knot sets xi, i = 1, 2, 3, and for
(α, µ) =

(
1
2 ,

1
16

)
.
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Figure 3: Plots of the matrix A generated by using quadratic B-splines associated with the knot sets xi,
i = 1, 2, 3 (from left to right) and for (α, µ) =

(
1
2
, 1
16

)
.

In what follows, we will provide some numerical tests based on the spline quasi-interpolation
schemes proposed here and the collocation method described above. In the following ex-
amples, we assume that T = 1, and ∆t = 1

50 denotes the time step used for the time
discretization.

In the following, we present two examples. In the first example, we utilize the quadratic
quasi-interpolating scheme Qn

2 , while in the second one, we employ the cubic scheme Qn
3 .

Example 5.1. In this example, we consider the initial state u0(x) = 3 sin(2πx). We provide
numerical tests for (α, µ) =

(
1
2 ,

1
16

)
.

Figure 4 shows the results obtained for the state u(x, t) (left) at t = 1 and the control
h(x, t) (right) at different time instants.

Example 5.2. In this example, we take the initial state u0(x) = sin(3πx) cos
(
1
2π(1− x)

)
.

We provide numerical tests for (α, µ) =
(
1
8 ,

49
256

)
.

Figure 5 illustrates the results obtained for the state u(x, t) (left) at t = 1 and the control
h(x, t) (right) at different time instants.

It is evident from the two examples that the support of the B-splines used affects the
behaviour of the control and also defines the support of the control. Indeed, we observe
that when the point b̄ lies within the intersection of more splines, the simulation becomes
more efficient. Meaning that for a fixed degree, the B-splines with maximal smoothness are
highly suitable for numerical solution of point-wise control problems.

Appendix A. Proof of Lemma 2.1

In this appendix we will provide the asymptotic behavior of the sequence of eigenvalues
(λα,µ,k)k≥1. To be precise, we will give the sketch of the proof for Lemma 2.1.

Proof. 1. Depending on the case of ν(α, µ), the first point of Lemma 2.1 can be easily
deduced from (2.1) and (2.2) together with the description of the eigenvalues in (2.3).

2. For the second point, it can be obtained as in [1]. Thanks to [12, Proposition 7.8] and
(2.1) or (2.2) (depending on the case of ν(α, µ)). One has (gap) holds true with

ρ =

{
7
64π

2(2− α)2, if 0 ≤ ν(α, µ) ≤ 1/2

( 2−α
2 )2π2, if ν(α, µ) ≥ 1/2.
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Figure 4: Example 1, the state at t = 1 (left) and the control (right) at different time instants for quadratic
splines associated with the knot sets xi, i = 1, 2, 3 from top to bottom, respectively.

Appendix B. Additional result on the minimal time T
(α,µ)
0 (b)

This appendix will be dedicated to prove that the minimal time T
(α,µ)
0 (b) associated to

the null controllability of the equation (1.2) is well-defined and T
(α,µ)
0 (b) ∈ [0,+∞]. One

has

Theorem Appendix B.1. Let µ ≤ µ(α) and y0 ∈ L2(0, 1). Assume that (H1) holds and

let T
(α,µ)
0 (b) be the quantity given in (1.9). One has

T
(α,µ)
0 (b) ∈ [0,+∞].

Proof. We can deduce from condition (H1) that Φα,µ,k(b) ̸= 0, for all k ≥ 1. Thus,

0 < |Φα,µ,k(b)| ≤ ∥δb∥H−1,µ
α,0

∥Φα,µ,k∥H1,µ
α,0

= ∥δb∥H−1,µ
α,0

√
λα,µ,k.

Then,
∃ξ > 0, 0 < |Φα,µ,k(b)| ≤ ξλα,µ,k, ∀k ≥ 1.

and therefore

− log(|Φα,µ,k(b)|)
λα,µ,k

≥ − log(ξλα,µ,k)

λα,µ,k
, ∀k ≥ 1.

Since λα,µ,k → +∞ as k → +∞, then T
(α,µ)
0 (b) ∈ [0,+∞].
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Figure 5: Example 2, the state at t = 1 (left) and the control (right) at different instants for cubic splines
associated with the knot sets xi, i = 1, 2, 3 from top to bottom, respectively.
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[5] U. Biccari, V. Hernández-Santamaŕıa, J. Vancostenoble, Existence and cost of boundary controls for a
degenerate/singular parabolic equation, Mathematical Control and Related Fields, 2022, 12(2): 495-530.

[6] J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Math-
ematical Society, Providence, RI, 2007.

[7] S. Dolecki, Observability for the one-dimensional heat equation, Studia Math. 48 (1973), 291-305.
[8] H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one

space dimension, Arch. Ration. Mech. Anal. 43 (1971) 272-292.
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