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KISELMAN MINIMUM PRINCIPLE AND ROOFTOP

ENVELOPES IN COMPLEX HESSIAN EQUATIONS

PER ÅHAG, RAFAŁ CZYŻ, CHINH H. LU, AND ALEXANDER RASHKOVSKII

Abstract. We initiate the study of m-subharmonic functions with respect
to a semipositive (1, 1)-form in Euclidean domains, providing a significant
element in understanding geodesics within the context of complex Hessian
equations. Based on the foundational Perron envelope construction, we prove
a decomposition of m-subharmonic solutions, and a general comparison prin-
ciple that effectively manages singular Hessian measures. Additionally, we es-
tablish a rooftop equality and an analogue of the Kiselman minimum principle,
which are crucial ingredients in establishing a criterion for geodesic connectiv-
ity among m-subharmonic functions, expressed in terms of their asymptotic
envelopes.
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1. Introduction

Since the German mathematician Oskar Perron introduced his celebrated en-
velope construction in 1923 to solve a boundary value problem for the Laplace
equation [40], the method has not only stood the test of time but has also gained
prominence in contemporary mathematical analysis. In this paper, given a non-
negative regular Borel measure µ, we consider m-subharmonic solutions to the
complex Hessian equation:

Hm(u) = µ,

where 1 ≤ m ≤ n. Here, the Hessian operator is defined by Hm(u) = (ddcu)m ∧
(ddc|z|2)n−m for smooth u, and extends for bounded m-subharmonic functions by
Bedford-Taylor theory [9], as presented by Błocki. These equations, which inter-
polate between the Laplace and Monge-Ampère equations, have been intensively
studied over the past twenty years by Li [33], Błocki [12], and many others. We
refer the reader to Section 2 for the necessary background.
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This paper aims to introduce, develop, and employ rooftop envelopes for m-
subharmonic functions, thus carrying forward the enduring legacy of Perron’s orig-
inal envelope construction. Our inspiration comes from the pluricomplex counter-
part, the plurisubharmonic rooftop envelopes, recently utilized in multiple papers,
including [22, 28–30,36, 46].

In classical potential theory, the decomposition of subharmonic functions into
regular and singular parts corresponds uniquely to the decomposition of their
associated Laplace measures, ∆u = µr + µs. Here, µs is carried by the polar set
{u = −∞}, and µr vanishes on these sets. Such a decomposition highlights the
linearity of the Laplace operator, allowing for a straightforward decomposition of
the function u = ur + us, where ∆ur = µr and ∆us = µs.

However, the complex Hessian operator’s non-linearity precludes a direct anal-
ogous decomposition for m-subharmonic functions. To address this, we develop
an adapted approach, presented in the following result:

Theorem A. For any u ∈ Nm, there exist unique functions ur, us ∈ Nm satisfy-
ing the following conditions:

(1) u ≤ ur, u ≤ us;
(2) Hm(ur) = µr(u) = 1{u>−∞}Hm(u);
(3) Hm(us) = µs(u) = 1{u=−∞}Hm(u).

Moreover, ur + us ≤ u.

The proof of Theorem A relies on the rooftop techniques developed in Sec-
tion 4. The most valuable and surprising implication of these techniques is the
general comparison principle articulated in Theorem 5.5, which allows us to han-
dle singular Hessian measures satisfactorily for the first time. Building on this
comparison principle, we are able to adapt our argument in the Monge-Ampère
case [8] to obtain the following result.

Theorem B. Assume H1,H2 ∈ Em, and

P[H1](H2) = P(gH1
,H2).

Then P[u](v) = P(gu, v) for all u ∈ Nm(H1) and v ∈ Nm(H2).

We direct the reader to Section 5.3 for the definition of the rooftop envelope.
The theorem under discussion states that the rooftop equality holds for a pair of
m-subharmonic functions if it is valid for their boundary functions. Specifically,
this condition is met for functions in Nm, as the boundary function vanishes.

Rooftop envelopes have recently emerged as a fundamental tool in constructing
plurisubharmonic geodesics within geometry. These geodesics are defined as the
upper envelopes of sub-geodesics, an idea that builds upon Mabuchi’s seminal
work [37] and the findings of Semmes [47] and Donaldson [25]. This approach has
been further developed and adapted to local contexts by Berman and Berndtsson
[10, 11], among others. A comprehensive overview of these developments can be
found in [43] (see also [42]).

However, the construction of m-subharmonic geodesics when 1 ≤ m < n
presents significant challenges, a longstanding problem that has notably hindered
progress in this field, as discussed in [6]. The geodesic equation for plurisubhar-
monic functions reveal that for m-subharmonic functions, one should replace the
standard Kähler form by its pull back to the product of the domain with the an-
nulus in C. This observation leads us to introduce the concept of m-subharmonic
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functions with respect to semipositive (1, 1)-forms. Using this concept we have suc-
cessfully overcome the formidable difficulties encountered in [6], thereby allowing
us to extend our previous results [8] to the Hessian setting.

Theorem C. Assume H0,H1 ∈ Em are connectable by an m-subharmonic geodesic
segment. Let u0 ∈ Nm(H0), u1 ∈ Nm(H1). Then u0 and u1 are connectable by an
m-subharmonic geodesic if and only if

gu0
≥ u1 and gu1

≥ u0.

In particular, if gH0
= gH1

, then the above condition is equivalent to gu0
= gu1

.

An essential ingredient in the proof of Theorem C is the following minimum
principle for m-subharmonic functions, which extends the renowned result by
Kiselman in the case when n = m [32].

Theorem D. Let (ut)t∈(0,1) be an m-subharmonic sub-geodesic in Ω. Then the
function inft∈(0,1) ut is m-subharmonic in Ω.

The infimum of a family of m-subharmonic functions is often not m-subharmonic
(not even upper semicontinuous), as it already fails for plurisubharmonic functions.
A crucial property of m-subharmonic sub-geodesics is that it is S1-invariant in
the annulus variable.

The paper is organized as follows. Section 2 provides the necessary definitions
related to Hessian operators and the Cegrell classes. In Section 3, we discuss key as-
pects of the decomposition of complex Hessian measures, which are critical for the
discussions in Sections 4 and 5. The concept of the rooftop envelope is introduced
in Section 4. Subsequently, in Section 5, we employ our rooftop techniques to es-
tablish the comparison principle (Theorem 5.5) that effectively manages singular
Hessian measures. This forms the basis for presenting the proofs of Theorem A and
Theorem B. We conclude this paper by introducing the concept of m-subharmonic
functions with respect to semipositive (1, 1)-forms and utilize this to establish the
geodesic connectivity criterion, proving Theorem D and Theorem C in Section 6.

Acknowledgements. The third named author acknowledges partial support
from the PARAPLUI ANR-20-CE40-0019 project and the Centre Henri Lebesgue
ANR-11-LABX-0020-01. The fourth named author is grateful to Jagiellonian Uni-
versity and Université d’Angers for their support.

2. Hessian operators and definitions of the Cegrell classes

This section introduces the necessary definitions and summarizes some basic
facts. For additional details, we refer the reader to [5, 38, 44, 45].

We begin by defining m-subharmonic functions and the complex Hessian op-
erator. Consider a bounded domain Ω ⊂ C

n, where n ≥ 2, and let 1 ≤ m ≤ n.
Define C(1,1) as the set of (1, 1)-forms with constant coefficients. We then define
the set

Γm =
{

α ∈ C(1,1) : α ∧ (ddc|z|2)n−1 ≥ 0, . . . , αm ∧ (ddc|z|2)n−m ≥ 0
}

.

The real counterpart of m-subharmonic functions was first introduced by Caf-
farelli, Nirenberg, and Spruck [15]. The origin of these functions in the complex set-
ting, which is our focus here, was established by Vinacua [48,49]. Later, Błocki [12]
extended this concept to unbounded functions, as seen in Definition 2.1, and he
introduced pluripotential methods.
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Definition 2.1. Let n ≥ 2 and 1 ≤ m ≤ n. Assume that Ω ⊂ C
n is a bounded

domain, and let u be a subharmonic function defined on Ω. We say that u is
m-subharmonic if it satisfies the following inequality

ddcu ∧ α1 ∧ · · · ∧ αm−1 ∧ (ddc|z|2)n−m ≥ 0,

in the sense of currents, for all α1, . . . , αm−1 ∈ Γm. The set of all m-subharmonic
functions defined on Ω is denoted by SHm(Ω).

If u is bounded and m-subharmonic, then the current ddcu ∧ (ddc|z|2)n−m is
positive, and therefore, it has measure coefficients. Following Bedford and Taylor
[9], one can inductively define

ddcu1 ∧ . . . ∧ ddcum ∧ (ddc|z|2)n−m,

as a positive Radon measure in Ω.
The properties of general m-subharmonic functions significantly diverge from

those of n-subharmonic functions. A primary concern is their integrability; whereas
all plurisubharmonic functions are locally Lp integrable for any p > 0, m-subharmonic
functions do not necessarily share this property. Błocki has conjectured that m-
subharmonic functions should be locally Lp integrable for p < nm

n−m , a conjecture

that has received partial confirmation in [4, 24].
From Definition 2.1 it follows

PSH = SHn ⊂ · · · ⊂ SH1 = SH .

Definition 2.2. Let n ≥ 2, and 1 ≤ m ≤ n. A bounded domain Ω ⊂ C
n is said

to be m-hyperconvex if it admits a non-negative, continuous, and m-subharmonic
exhaustion function, i.e., there exists an m-subharmonic function ϕ : Ω → (−∞, 0)
such that the closure of the set {z ∈ Ω : ϕ(z) < c} is compact in Ω for every
c ∈ (−∞, 0).

For example Hartogs’ triangle is 1-hyperconvex, but not 2-hyperconvex. For
further information on m-hyperconvex domains see [7]. Next, we shall recall the
function classes that are of our interest.

A function ϕ, which is m-subharmonic on an m-hyperconvex domain Ω, be-
longs to the class E0

m(Ω) if ϕ is bounded, satisfies

lim
z→ξ

ϕ(z) = 0 for every ξ ∈ ∂Ω,

and fulfills
∫

Ω
Hm(ϕ) < +∞.

Definition 2.3. Let n ≥ 2, and 1 ≤ m ≤ n. Assume that Ω is a bounded m-
hyperconvex domain in C

n. We say that u ∈ Fm(Ω) if u is an m-subharmonic
function defined on Ω and there exists a decreasing sequence {ϕj}, where each
ϕj ∈ E0

m(Ω), such that ϕj converges pointwise to u on Ω as j → +∞, and
supj

∫

ΩHm(ϕj) < +∞. Furthermore, if for every z ∈ Ω there exists a neighbor-
hood V ⊂ Ω of z and uV ∈ Fm(Ω) such that uV = u on V , then we say that
u ∈ Em.

In [34,35], it was proved that for u ∈ E , the complex Hessian operator, Hm(u),
is well-defined as

Hm(u) = (ddcu)m ∧ (ddc|z|2)n−m,

where d = ∂ + ∂̄, and dc =
√
−1(∂̄ − ∂).
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Let [Ωj] denote a fundamental sequence in the sense that it is an increasing
sequence of m-hyperconvex subsets of the bounded m-hyperconvex domain Ω,
such that Ωj ⋐ Ωj+1 for every j ∈ N, and

⋃∞
j=1Ωj = Ω. Then, if u ∈ E , and [Ωj]

is a fundamental sequence, we define

uj = sup
{

ϕ ∈ SHm(Ω) : ϕ ≤ u on Ω̄j

}

,

and

ũ =

(

lim
j→+∞

uj
)∗

,

where ( · )∗ denotes the upper-semicontinuous regularization. The function ũ is
the smallest maximal m-subharmonic majorant of u. Set

Nm = {u ∈ E : ũ = 0} .
For Cegrell’s fundamental work on these classes for m = n, see [17–19].

Next, we introduce the Cegrell classes with generalized boundary values.

Definition 2.4. Let K ∈ {E0
m,Fm,Nm, Em}. A plurisubharmonic function u on

Ω belongs to the class K(Ω,H)(= K(H)), H ∈ SH−(Ω), if there exists a function
ϕ ∈ K such that

H ≥ u ≥ ϕ+H.

Further information about Nm(H) can be found in [26, 39]. For any subset
K ⊆ E(Ω), we introduce the notation

Ka = {ϕ ∈ K : (ddcϕ)n vanishes on all m-polar sets in Ω}.
On several occasions, we shall use the following maximum principle.

Lemma 2.5. (1) Let u1, . . . , um−1 ∈ Em and v ∈ SH−. Then

ddcmax(u, v) ∧ ddcu1 ∧ · · · ∧ ddcum−1 ∧ (ddc|z|2)n−m|{u>v}

= ddcu ∧ ddcu1 ∧ · · · ∧ ddcum−1 ∧ (ddc|z|2)n−m|{u>v}.

In particular

1{u>v} Hm(max(u, v)) = 1{u>v} Hm(u).

(2) Let u, v ∈ Em be such that Hm(u)({u = v = −∞}) = 0, then

Hm(max(u, v)) ≥ 1{u≥v} Hm(u) + 1{u<v} Hm(v).

Proof. Part (1) was proved in [31].
To prove (2), let us define the following sets for t > 0, Kt = {u+ t = v}\{u =

v = −∞}. Note that Kt1 6= Kt2 , for t1 6= t2, so there exists a sequence tj → 0,
such that Hm(u)(Ktj ) = 0, and therefore Hm(u)({u + tj = v}) = 0. Now we can
apply point (1) to get

Hm(max(u, v − tj))

≥ 1{u>v−tj} Hm(max(u, v − tj)) + 1{u<v−tj} Hm(max(u, v − tj))

= 1{u≥v−tj} Hm(u) + 1{u<v−tj}Hm(v)

≥ 1{u≥v} Hm(u) + 1{u<v−tj} Hm(v). (2.1)

Observe that max(u, v − tj) and 1{u<v−tj} are increasing sequences, therefore

passing with j → +∞ in (2.1) we prove (2).
�
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3. Cegrell decomposition of measures

Here, we discuss some aspects of the decomposition of complex Hessian mea-
sures.

First, recall the Cegrell-Lebesgue decomposition theorem [35]: A non-negative
Radon measure µ can be decomposed into a regular (non m-polar) and a singular
(m-polar) part,

µ = µr + µs,

such that
µr = f Hm(ϕ),

where ϕ ∈ E0
m, f ≥ 0, and f ∈ L1

loc(Hm(ϕ)). The measure µs is carried by an
m-polar subset of Ω. Furthermore, if µ is a Hessian measure of some u ∈ Em, i.e.,
µ = Hm(u), then µs is carried by {z ∈ Ω : u(z) = −∞} and

µs(u) = 1{u=−∞}(dd
cu)n and µr(u) = 1{u>−∞}(dd

cu)n.

We will now demonstrate that the regular part can be described alternatively, us-
ing the standard approximation uj = max(u,−j) of the m-subharmonic function
u.

Lemma 3.1. Let u ∈ SHm, and let uj = max(u,−j), j > 0. Then

(1) the sequence of measures 1{u>−j}Hm(uj) is increasing and hence we can
define

µr(u) = lim
j→+∞

1{u>−j}Hm(uj);

(2) and for any k > 0 holds

1{u>−k} Hm(uk) = 1{u>−k}µr(u). (3.1)

(3) If in addition u ∈ Em, then

µr(u) = 1{u>−∞} Hm(u).

Proof. To prove the first part of the lemma fix j > k > 0 and observe that
uk = max(uj ,−k) and

{uj > −k} = {u > −k} ⊂ {u > −j}.
Therefore using Lemma 2.5, we get

1{u>−k}Hm(uk) = 1{uj>−k}Hm(max(uj,−k)) = 1{uj>−k}Hm(uj)

= 1{u>−k} Hm(uj) ≤ 1{u>−j}Hm(uj). (3.2)

To prove (2) note that

1{u>−k} Hm(uk) = 1{u>−k}Hm(uj) = 1{u>−k}1{u>−j}Hm(uj),

and to get (3.1) it is enough to put j → +∞.
Finally we shall prove point (3) which says that the measure obtained in point

(1) is the regular part of the Hessian measure in the sense of Cegrell. It is enough
to show that for any Borel set E ⊂ Ω \ {u = −∞} holds

lim
j→+∞

Hm(uj)(E ∩ {u > −j}) = Hm(u)(E).

Without lost of generality we can assume that u ∈ Fm. For j > 0 define m-
subharmonic function by vj = max(j−1u,−1) + 1 and note that vj ր 1{u>−∞},

j → +∞, and vj = 0 on the set {u ≤ −j}. We shall prove that

vj Hm(uj) = vj Hm(u). (3.3)
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By [7] there exists decreasing sequence of continuous functions uk ∈ E0
m converging

pointwise to u, as k → +∞. Then it follows from [31] that

lim
k→+∞

vj Hm((uk)j) = vj Hm(uj), and lim
k→+∞

vj Hm(uk) = vj Hm(u).

Recall that (uk)j := max(uk,−j) and we have (uk)j = uk on the open set {uk >
−j} containing {u > −j}, so (3.3) holds.

Note that by monotone convergence theorem and by (3.1)

vj Hm(uj) = 1{u>−j}v
j Hm(uj) = 1{u>−j}v

jµr(u) ր 1{u>−∞}µr(u),

as j → +∞. On the other hand

vj Hm(u) ր 1{u>−∞}Hm(u), j → +∞.

By (3.3) the proof is finished. �

Remark 3.2. Note that Lemma 3.1 implies that the regular (or non m-polar)
part µr(u) of the complex Hessian measure can be defined for any m-subharmonic
function u as a limit of an increasing sequence of measures 1{u>−j}Hm(uj). How-
ever, in a general situation, it may not be a regular Borel measure, as it can
become unbounded near the set {u = −∞}.

We shall prove the following maximum principle concerning the regular part.
A total mass version of Theorem 3.3 is documented in Lemma 2.5.

Theorem 3.3. If u, v ∈ Em, then

µr(max(u, v)) ≥ 1{u≥v}µr(u) + 1{u<v}µr(v).

If, in addition, u ≤ v then

1{u=v}µr(v) ≥ 1{u=v}µr(u).

Proof. Let uj = max(u,−j), vj = max(v,−j), j > 0. From the maximal principle
Lemma 2.5 we get

Hm(max(uj , vj)) ≥ 1{uj≥vj} Hm(uj) + 1{uj<vj}Hm(vj). (3.4)

Note that for k < j we get

{min(u, v) > −k} ⊂ {u > −k} ⊂ {u > −j}
(and the same inclusions hold for the function v) and on the set {min(u, v) > −k}
holds uj = u and vj = v. Therefore multiplying (3.4) with 1{min(u,v)>−k}, and
using (3.1), we obtain

1{min(u,v)>−k}µr(max(u, v)) ≥ 1{min(u,v)>−k}1{u≥v}µr(u)

+ 1{min(u,v)>−k}1{u<v}µr(v).

To finish the proof it is enough to let k → +∞, since regular parts of Hessian
measures vanish on m-polar sets. �

We next recall the maximum principle for the singular parts, see [31].

Theorem 3.4. If u, v ∈ Em, u ≤ v then

µs(v) ≤ µr(u).

We shall end this section with the following remark concerning the weak con-
vergence of regular and singular parts of the Hessian measure.
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Remark 3.5. It is well known that monotone convergence of m-subharmonic
functions implies weak convergence of corresponding Hessian measures. Now the
question is: Does similar convergence hold for regular and singular parts of Hessian
measures? The answer is quite surprising. Arguing as in [8], one can prove that
for increasing sequences uj ր u, one has:

µr(uj) → µr(u) and µs(uj) → µs(u).

Note that a similar result does not hold for decreasing sequences, as indicated in
the following example of plurisubharmonic functions uj(z) = max(log |z|,−j) ց
u(z) = log |z| in the unit ball in C

n. Instead, we have only that

lim inf
j→+∞

µr(uj) ≥ µr(u) and lim sup
j→+∞

µs(uj) ≤ µs(u).

4. Rooftop envelopes

Envelope constructions have been central to classical potential theory since
the foundational work by Oskar Perron [40]. This line of research was further
advanced by Wiener in his series of articles [50–52] and was later expanded by
Brelot [13]. Additionally, the concept of envelope constructions has proved to be
even more crucial in pluripotential theory since 1959, when Bremermann adapted
the methodologies of Perron and Carathéodory to the pluricomplex setting [14,16].
The publication of [9] established envelope constructions as a fundamental tool
in pluripotential theory.

In our study of m-subharmonic functions, the perspectives of both potential
and pluripotential theories are relevant. As Definition 2.1 implies there is an in-
clusion hierarchy among these function spaces:

PSH = SHn ⊂ · · · ⊂ SH1 = SH .

Here, PSH is the space of plurisubharmonic functions, and SH the space of
subharmonic functions.

Typically, the envelope P(h), defined later, is considered for functions that are
either continuous or lower semi-continuous. However, in our approach, we use the
function h either as the minimum or the difference between two m-subharmonic
functions. Consequently, we introduce the following definition for the rooftop en-
velope.

Definition 4.1. For a function h : Ω → R∪{−∞}, which is bounded from above,
we define the envelope P(h) as

P(h)(z) = (sup{u(z) : u ∈ SHm(Ω), u ≤ h quasi-everywhere in Ω})∗ ,
with the convention that sup ∅ = −∞. If no m-subharmonic function is below h
quasi-everywhere, then P(h) is defined to be identically −∞.

Here, quasi-everywhere means outside an m-polar set. Recall that a subset
E ⊂ Ω is m-polar if for every z ∈ Ω, there exists a neighborhood U of z and a
function u ∈ SHm(U) such that E ∩ U ⊆ {u = −∞}.

We shall also consider the Hessian capacity:

Capm(E) = sup

{
∫

E
Hm(u) : u ∈ SHm(Ω),−1 ≤ u ≤ 0

}

.

A function h is said to be quasi-continuous if, for each ε > 0, there exists an
open set U such that Capm(U,Ω) < ε, and h is continuous on Ω \ U . Similarly, a
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set E is quasi-open if, for each ε > 0, there exists an open set U such that

Capm(U \ E ∪ E \ U) ≤ ε.

If a function u ∈ SHm(Ω) is below h quasi-everywhere, then P(h) ∈ SHm(Ω), and
Choquet’s lemma implies that there exists an increasing sequence [uj ] ⊂ SHm(Ω)
such that uj ≤ h quasi-everywhere in Ω and (limj→+∞ uj)

∗ = P(h). Furthermore,
the set

{z ∈ Ω : lim
j→+∞

uj(z) < P(h)(z)}

is m-polar, and P(h) ≤ h quasi-everywhere in Ω.

Theorem 4.2. If h is quasi-continuous in Ω and P(h) 6≡ −∞, then
∫

{P(h)<h}
µr(P(h)) = 0.

Proof. Note that there exists a sequence [hj ] of bounded from below and lower
semi-continuous functions in Ω such that hj ց h quasi-everywhere in Ω. Now we
can adapt well known balayage procedure to conclude that (cf. [35, Lemma 4.9]),

∫

{P(hj)<hj}
Hm(P(hj)) = 0, for all j ∈ N.

Now fix k < j, and note that {P(hk) < h} ⊂ {P(hj) < hj}, so
∫

{P(hk)<h}
Hm(P (hj)) = 0.

Let t > 0, we can use Lemma 2.5 to get
∫

{P(hk)<h}
1{P(h)>−t} Hm(max(P(hj),−t))

≤
∫

{P(hk)<h}
1{P(hj)>−t} Hm(max(P(hj),−t))

=

∫

{P(hk)<h}
1{P(hj)>−t} Hm(P(hj)) = 0.

The set {P(hk) < h}∩{P(h) > −t} is quasi-open and the sequence max(P(hj),−t)
is uniformly bounded, therefore corresponding sequence of the Hessian measures
is uniformly bounded by Capm and then

0 = lim inf
j→+∞

∫

{P(hk)<h,P(h)>−t}
Hm(max(P(hj),−t))

≥
∫

{P(hk)<h}
1{P(h)>−t} Hm(max(P(h),−t)).

To finish the proof it is enough to let k → +∞, and then t → +∞. �

Now, we shall introduce the definition of the rooftop envelope of m-subharmonic
functions, originated from [20], [23], [21]. The rooftop envelope P(u, v), for any
two m-subharmonic functions u and v, is defined as the m-subharmonic envelope
of min(u, v). This represents the largest m-subharmonic function that lies below
min(u, v), e.g., P(u, v) = P(min(u, v)). The rooftop envelope is always well-posed
for u, v ∈ Em. Since u+v ≤ min(u, v), it follows that u+v ≤ P(u, v) and therefore
P(u, v) ∈ Em.

We now describe the behavior of the Hessian measure of the rooftop envelopes.
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Theorem 4.3. Let u, v ∈ Em then

µr(P(u, v)) ≤ 1{P(u,v)=u}µr(u) + 1{P(u,v)=v,P(u,v)<u}µr(v).

In particular, if µ is a positive measure such that µr(u) ≤ µ and µr(v) ≤ µ, then
µr(P(u, v)) ≤ µ.

Proof. It follows from Theorem 4.2, that µr(P(u, v)) is supported on the contact
set K = Ku ∪Kv, where

Ku = {P(u, v) = u} and Kv = {P(u, v) = v} ∩ {P(u, v) < u}.
Theorem 3.3 then yields

1Kuµr(P(u, v)) ≤ 1Kuµr(u),

1Kvµr(P(u, v)) ≤ 1Kvµr(v),

which finish the proof. �

The above theorem was proved for m-subharmonic functions from the Cegrell
class with finite energy in [6].

5. Decomposition of m-subharmonic functions

The objective of this section is to establish a novel decomposition theorem
for m-subharmonic functions within the class Nm, as outlined in the introduction
(Theorem A). As a consequence of the rooftop techniques developed in Section 4,
we establish in Theorem 5.5 a general comparison principle in the Cegrell class
Nm(H). This principle will serve as the foundational tool in Theorem A, and later
also in Theorem B as well as in Theorem C.

5.1. Comparison principle. We begin by defining two relations, � and ≃,
among m-subharmonic functions. These relations relate to the singularities of
m-subharmonic functions.

Definition 5.1. For m-subharmonic functions u and v defined in Ω, we say u is
more singular than v if, for any compact subset K ⋐ Ω, there exists a constant
CK such that u ≤ v + CK throughout K. This relation is denoted by u � v. If u
is more singular than v and v is more singular than u, we say that u and v share
identical singularities, we denote this by u ≃ v.

We proceed with the following lemma, whose counterpart for plurisubharmonic
functions was proved in [3]. It asserts that two m-subharmonic functions sharing
identical singularities also share identical singular Hessian measures.

Lemma 5.2. If u, v ∈ Em and w ∈ Ea
m are such that |u− v| ≤ −w, then µs(u) =

µs(v). In particular if u ≃ v, then µs(u) = µs(v).

Proof. The proof is the direct adaptation for m-subharmonic function of the proof
of Lemma 4.12 in [3]. �

The converse result is not true, two m-subharmonic functions with different
type of singularities can have the same singular Hessian measure. However if we
assume that u � v then it turns out that the difference u− v is not very singular.

Lemma 5.3. Let u, v ∈ Em and u � v.

(1) If in addition 1{u=−∞} Hm(u) = 1{v=−∞} Hm(v), then Hm(P(u− v, 0)) ≤
µr(u). In particular, P(u− v, 0) ∈ Ea

m.
(2) If in addition Hm(u) ≤ Hm(v), then Hm(P (u− v, 0)) = 0.
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Proof. Part (1). Define ϕj = max(u, v− j) for any j > 0. The function ϕj belongs
to Em and ϕj ≃ v. By Lemma 5.2, we have:

1{ϕj=−∞}Hm(ϕj) = 1{v=−∞} Hm(v) = 1{u=−∞} Hm(u).

As ϕj ց u, it follows from [35] that Hm(ϕj) converges weakly to Hm(u). Conse-
quently, by the Cegrell decomposition:

Hm(ϕj) = µr(ϕj) + 1{u=−∞} Hm(u) → µr(u) + 1{u=−∞}Hm(u),

implying that µr(ϕj) converges weakly to µr(u).
Next, define wj = P(ϕj − v, 0), observing that wj belongs to Em ∩L∞(Ω) and

satisfies wj + v ≤ ϕj , with equality on the contact set Kj = {wj + v = ϕj}. By
Theorem 3.3 and Theorem 4.2, we obtain:

Hm(wj) = 1Kj
Hm(wj) ≤ 1Kj

µr(wj + v) ≤ 1Kj
µr(ϕj) ≤ µr(ϕj).

Since wj ց w = P(u−v, 0) ∈ Em, and given the weak convergence µr(ϕj) → µr(u)
from [31], it follows that Hm(w) ≤ µr(u), ensuring w ∈ Ea

m.
Part (2). Given that Hm(u) ≤ Hm(v) and u � v, we derive from [31] the

following:

1{v=−∞} Hm(v) ≤ 1{u=−∞}Hm(u) ≤ 1{u=−∞}Hm(v)

= 1{u=−∞}(1{v=−∞}µs(v) + µr(v))

= 1{u=−∞}1{v=−∞}µs(v) = 1{v=−∞} Hm(v).

The final equality follows because µr(v) does not put mass on the m-polar set
{u = −∞}. Therefore, we have

1{u=−∞} Hm(u) = 1{v=−∞} Hm(v),

implying that
µr(u) ≤ µr(v).

Define w = P(u − v, 0) and defining K = {w + v = u}. From Part (1), we know
w ∈ Ea

m. Given that w + v ≤ u with equality on K, application of Theorem 3.3
yields

1Kµr(w) + 1Kµr(v) ≤ 1Kµr(u) ≤ 1Kµr(v),

leading to 1Kµr(w) = 0. Moreover, according to Theorem 4.2, µr(w) is supported
on K, hence µr(w) = 0. This completes the proof. �

Before establishing the general comparison principle, let us start by examining
a special case.

Proposition 5.4. If u ∈ Nm and (ddcu)n = 0, then u = 0.

Proof. This is a particular case of a result established in [39], where the author
adapted arguments used in the Monge-Ampère scenario. Below, we present an
alternative proof employing the envelope technique.

Initially, we assume that u ∈ Fm. We fix φ ∈ E0
m and define ut = max(u, tφ)

for each t > 0. According to [35, Theorem 3.22], we have
∫

ΩHm(ut) = 0. Since

ut ∈ E0
m, the comparison principle implies ut = 0, and consequently, u = 0.

To address the general case, we consider a fundamental sequence [Ωj] of Ω
and define uj := P(1Kj

u), where Kj = Ω \ Ωj. By the definition of Nm, uj ր 0.

The function P(u − uj) is in Fm because P(u − uj) ≥ P(1Ωj
u) ∈ Fm, and by

Lemma 5.3, we find Hm(P(u− uj)) = 0. It therefore follows that P(u− uj) = 0,
leading to u ≥ uj . As this holds for all j and uj ր 0, we conclude that u = 0. �
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The most cherished implication of our rooftop techniques so far is the following
general comparison principle.

Theorem 5.5. Let H ∈ Em, and let u, v ∈ Nm(H) with u � v. If Hm(u) ≤ Hm(v),
then u ≥ v. In particular, if Hm(u) = Hm(v), then u = v.

Proof. Directly from the definition there exists ϕ ∈ Nm such that ϕ+H ≤ u ≤ H.
Then we have u−v ≥ ϕ which implies P(u−v, 0) ∈ Nm. From Lemma 5.3 we get
that Hm(P(u − v, 0)) = 0. It follows from Proposition 5.4 that P(u − v, 0) = 0,
and therefore u ≥ v.

The second statement directly follows from the first. If Hm(u) = Hm(v), then
u ≥ v, implying u ≃ v. Changing the roles of u and v one gets v ≥ u, thus
concluding u = v. �

Theorem 5.5 was previously established under the condition that
∫

Ω
(−w)Hm(u) < +∞

for some w ∈ E0
m with w < 0; see [39]. However, as demonstrated in [19, Example

5.3], there exists a function u ∈ Nn ∩ L∞ such that
∫

Ω
(−w)Hn(u) = +∞

for all w ∈ SH−
n with w < 0.

5.2. Decomposition of m-subharmonic functions. Thanks to Theorem 5.5,
we are now prepared to present a proof of Theorem A, as highlighted in the
introduction.

Theorem A. For any u ∈ Nm, there exist unique functions ur, us ∈ Nm satisfy-
ing the following conditions:

(1) u ≤ ur, u ≤ us;
(2) Hm(ur) = µr(u) = 1{u>−∞}Hm(u);
(3) Hm(us) = µs(u) = 1{u=−∞} Hm(u).

Moreover, ur + us ≤ u.

Proof. It follows from Theorem 6.3 (2) in [39] that there exists ur, us ∈ Em satisfy-
ing the three conditions in the theorem. By Lemma 5.3 we get that P(u−us, 0) ∈
Ea
m and

Hm(P(u− us, 0)) ≤ Hm(ur).

By [39, Corollary 5.8] we obtain the uniqueness of ur and we also have ur ≤
P(u− us, 0), hence ur + us ≤ u.

Now we prove the uniqueness of us. Assume now that v ∈ Nm is such that
u ≤ v and Hm(v) = Hm(us) = 1{u=−∞} Hm(u). Then w = P(us, v) ∈ Nm and,
by [31], since u ≤ w ≤ min(us, v), we get

1{w=−∞}Hm(w) = 1{v=−∞} Hm(v) = 1{us=−∞}Hm(us).

Therefore we obtain Hm(w) = Hm(v) = Hm(us) because these measures are
supported by m-polar sets. Theorem 5.5 then ensures that v = w = us. This ends
the proof. �
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5.3. Rooftop equality.

Definition 5.6. For u, v ∈ SH−
m(Ω), the asymptotic rooftop envelope P[u](v) is

defined as follows

P[u](v) =

(

lim
C→+∞

P(u+ C, v)

)∗

.

In the case where v = 0, we denote gu = P[u](0) and call it the Green-Poisson
residual function of u, or simply the residual function of u.

The condition gu = 0 means that the m-subharmonic function u lacks strong
singularities within the domain Ω and on its boundary ∂Ω. We say that the rooftop
equality holds for m-subharmonic functions u, v, if the following holds:

P[u](v) = P(gu, v). (5.1)

The main result, Theorem B, of this section is to prove that the rooftop equality
holds for all u ∈ Nm(H1), v ∈ Nm(H2) if it holds for H1,H2. In particular, the
rooftop equality holds in Nm. We start with following result.

Theorem 5.7. Let u ∈ Em. Then

(1) µr(gu) = 0;
(2) Hm(P(u− gu)) ≤ µr(u), so P(u− gu) ∈ Ea

m;
(3) Hm(gu) = µs(u).

Proof. Part (1). Define vj = P(u + j, 0) for j > 0. The sequence {vj} is increas-
ing almost everywhere in Ω, and converges to gu (vj ր gu). Consequently, the
regular part of the measure, µr(vj), weakly converges to µr(gu), as indicated by
Remark 3.5. From Corollary 4.3, we have

µr(vj) ≤ 1{vj=u+j}µr(u) ≤ 1{u≤−j}µr(u) → 0

as j → +∞. This leads to µr(gu) = 0.
Part (2) and (3). Define wj = P(u − vj) = P(u − vj , 0). Each wj belongs to

SH−
m ∩L∞(Ω) and decreases to P(u− gu). Utilizing the argument from the proof

of Lemma 5.3, we find that

Hm(wj) ≤ µr(u),

and Hm(P(u− gu)) ≤ µr(u). Specifically, P(u− gu) ∈ Ea
m. Considering

gu + P(u− gu) ≤ u ≤ gu,

and referencing Lemma 5.2, we conclude that µs(gu) = µs(u). �

Remark 5.8. It can be proved, in a similar manner as in [8], that for any u ∈
SH−

m, µr(gu) = 0. See Theorem 5.7 point (1).

The following technical lemma in the case of plurisubharmonic functions was
proved in [8].

Lemma 5.9. If u, v ∈ Em, then

Hm(P(P[u](v)−P(gu, v))) = 0.

Theorem B. Assume H1,H2 ∈ Em, and

P[H1](H2) = P(gH1
,H2).

Then P[u](v) = P(gu, v) for all u ∈ Nm(H1) and v ∈ Nm(H2).
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Proof. Define the function

ϕ = P (P[u](v) − P(gu, v)) ,

and observe that since P[u](v) ≤ P(gu, v), it follows that ϕ ≤ 0. We aim to
demonstrate that ϕ ∈ N a

m.
Given the assumptions u ∈ Nm(H1) and v ∈ Nm(H2), we find that P(u−H1) ∈

Nm and P(v −H2) ∈ Nm. Consequently, we have:

P(u+C, v) ≥ P(P(u−H1) +H1 + C,P(v −H2) +H2)

≥ P(u−H1) + P(v −H2) + P(H1 + C,H2).

If C ր +∞, this leads to:

P[u](v) ≥ P(u−H1) + P(v −H2) +P[H1](H2)

= P(u−H1) +P(v −H2) + P(gH1
,H2)

≥ P(u−H1) + P(v −H2) + P(gu, v).

From the above inequality, we see that ϕ ≥ P(u−H1)+P(v−H2), so ϕ ∈ Nm.
We now prove that the Hessian measure of ϕ does not put mass on m-polar sets.
Noting that

P[u](v) ≥ P(u, v) ≥ P(u− gu) + P(gu, v),

we deduce that ϕ ≥ P(u − gu). It follows from Theorem 5.7 that P(u − gu) ∈
Ea
m, and thus ϕ ∈ N a

m. By Lemma 5.9, we have Hm(ϕ) = 0, and according to
Theorem 5.5, ϕ = 0. This concludes the proof. �

Let us note that the equality P[H1](H2) = P(gH1
,H2) in Theorem B holds if

there exists w ∈ Em such that H2 + w ≤ H1 and gw = 0. We then observe the
following:

P[H1](H2) ≥ P[H2 +w](H2) ≥ H2 + gw = H2 ≥ P(gH1
,H2) ≥ P[H1](H2).

This confirms the rooftop equality under the specified conditions.

6. Geodesic connectivity

Fix Ω, an open set in C
n, n ≥ 2, and let A = {w ∈ C : 1 < |w| < e} denote the

annulus in C with radii 1 and e. Define π : D = Ω× A → Ω to be the projection
mapping (z, w) ∈ Ω×A to z in Ω. Set θ = π∗(ddc|z|2), and ω = ddc(|z|2 + |w|2).
6.1. m-subharmonic functions with respect to a semipositive form.

Definition 6.1. A (1, 1)-form α is (θ,m+ 1)-positive in D if

αk ∧ ωm+1−k ∧ θn−m ≥ 0, for all 1 ≤ k ≤ m+ 1,

pointwise in D.

In particular, any semipositive (1, 1)-form is (θ,m + 1)-positive. From the
definition, it follows that any (θ,m+ 1)-positive form α satisfies

(α+ tω)m+1 ∧ θn−m > 0, t > 0.

This observation is useful in the following version of Gårding’s inequality.

Lemma 6.2. A (1, 1)-form β is (θ,m+ 1)-positive if and only if

β ∧ α1 ∧ ... ∧ αm ∧ θn−m ≥ 0, (6.1)

for all (θ,m+ 1)-positive (1, 1)-forms α1, . . . , αm.
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Proof. We apply Gårding’s theory of hyperbolic polynomials, with a detailed dis-
cussion available in [27]. Due to the form θ not being strictly positive, an ap-
proximation argument is necessary. Given that the inequality is pointwise, we can
assume all (1, 1)-forms involved have constant coefficients. These are identifiable

with Hermitian matrices in C
n+1, which correspond to R

(n+1)2 .
A homogeneous polynomial P of degree m is hyperbolic with respect to a (1, 1)-

form β if for any (1, 1)-form α, the equation P (α+ tβ) = 0 has m real solutions.
If dV denotes the standard Euclidean volume forme, then the polynomial Q(α) =
αn+1/dV is hyperbolic with respect to any strictly positive (1, 1)-form, and the
cone C(Q) consists of those forms (see Example 4 and page 960 in [27]). Let M
be the completely polarized form of Q, defined as

M(α1, ..., αn+1) =
α1 ∧ ... ∧ αn+1

dV
.

For each ε > 0, by [27, Theorem 4], the polynomial Pε(α) := M(α, ..., α, θ +
εω, ..., θ + εω) (with α repeated m + 1 times), is hyperbolic with respect to any
strictly positive (1, 1)-form, particularly ω. Consequently, the equation Pε(α +
tω) = 0 has m + 1 real solutions. As ε → 0, it follows that P (α + tω) = 0 also
has m+1 real solutions, establishing that P (α) = αm+1 ∧ θn−m/dV is hyperbolic
with respect to ω.

Recall from [27] that the cone C(P, ω) comprises all β such that P (β+ tω) > 0
for all t ≥ 0 (since P (ω) > 0). Consequently, any (θ,m+ 1)-positive form resides
within the closure of C(P, ω). Hence, by [27, Theorem 5], M(β, α1, ..., αm) ≥ 0 if
β, α1, ..., αm are (θ,m+ 1)-positive, where M is the completely polarized form of
P , expressed by the wedge product:

M(β, α1, . . . , αm) =
β ∧ α1 ∧ · · · ∧ αm ∧ θn−m

dV
.

Suppose β satisfies (6.1) for all (θ,m + 1)-positive forms α1, ..., αm, yet by
contradiction, β is not (θ,m+1)-positive. Let t be the infimum of s > 0 such that
β+ sω is (θ,m+1)-positive. Then t > 0 and there exists 1 ≤ k ≤ m+1 such that

(β + tω)k ∧ ωm+1−k ∧ θn−m = 0.

For, if they are all positive, then for some t1 > 0 slightly smaller than t, the form
β + t1ω is still (θ,m + 1)-positive, contradicting the definition of t. Expanding
this equality as

β ∧ (β + tω)k−1 ∧ ωm+1−k ∧ θn−m + tω ∧ (β + tω)k−1 ∧ ωm+1−k ∧ θn−m = 0,

and using (6.1) we infer that the two terms above, which are non-negative, must
be zero. In particular, looking at the second term, and using t > 0, we arrive at
(β+tω)k−1∧ωm+2−k∧θn−m = 0. Repeating this argument, we arrive at P (ω) = 0,
which is a contradiction. �

Corollary 6.3. Let α be a (1, 1)-form in Ω. Then the (1, 1)-form π∗α is (θ,m+1)-
positive in D if and only if α is m-positive in Ω.
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Proof. Let α =
∑n

j,k=1 αj,kdzj ∧ dz̄k be a (1, 1)-from in Ω. Observe that

(π∗α)k ∧ ωm+1−k ∧ θn−m = (π∗α)k ∧ (θ + ddc|w|2)m+1−k ∧ θn−m

=

m+1−k
∑

l=0

(

m+ 1− k

l

)

(π∗α)k ∧ θn+l−m ∧ (ddc|w|2)m+1−k−l

=

(

m+ 1− k

l

)

(π∗α)k ∧ θn−k ∧ (ddc|w|2).

Here we use that the term corresponding to m+ 1− k − l = 0 is zero because an
(n+1, n+1)-form involving only dzj terms is zero, while the term corresponding
to m+ 1− k − l ≥ 2 is zero because (ddc|w|2)2 = 0. Thus,if α is m-positive in Ω,
then from the expansion above, we see that it is non-negative for k ≤ m, while
(π∗α)m+1 ∧ θn−m vanishes.

If π∗α is (θ,m + 1)-positive then, in Lemma 6.2, taking α1 = ddc|w|2 and
α2, ..., αm m-positive forms in Ω, we see that α is m-positive. �

Definition 6.4. A function u is (θ,m+1)-subharmonic in D if it is subharmonic
in D and

ddcu ∧ α1 ∧ . . . ∧ αm ∧ θn−m ≥ 0

in the weak sense of currents, for all (θ,m+ 1)-positive (1, 1)-forms α1, . . . , αm.

We impose subharmonicity here to ensure that two (θ,m + 1)-subharmonic
functions coinciding almost everywhere are equal everywhere.

Remark 6.5. Utilizing Lemma 6.2, we see that a C2-function u is (θ,m + 1)-
subharmonic if and only if the (1, 1)-form ddcu is (θ,m+ 1)-positive.

Remark 6.6. Taking α1 = ddc|w|2 and α2, . . . , αm as m-positive (1, 1)-forms in
Ω in the above definition, we observe that the slice z 7→ u(z, w) is m-subharmonic
in Ω for each fixed w. Similarly, by taking αj = θ for all j, we deduce that
w 7→ u(z, w) is subharmonic in A for any fixed z. In particular, if u is S1-invariant
in w, then the function t 7→ u(z, et) is convex in [0, 1].

Below, we summarize the basic properties of (θ,m+1)-subharmonic functions,
the proofs of which are straightforward adaptations from the case when m = n.

Proposition 6.7.

(1) If u, v are (θ,m+1)-subharmonic in Ω then max(u, v), au+bv are (θ,m+
1)-subharmonic in Ω for any a, b > 0.

(2) If u is (θ,m+ 1)-subharmonic then the standard regularization u ⋆ χε are
also (θ,m+ 1)-subharmonic and u ⋆ χε ց u.

(3) If (uj)j∈J is a family of (θ,m + 1)-subharmonic functions which are lo-
cally uniformly bounded from above then (supj∈J uj)

∗ is also (θ,m + 1)-
subharmonic. Here ∗ stands for the upper semicontinuous regularization.

(4) If m = n then (θ, n+ 1)-subharmonic means plurisubharmonic.

6.2. m-subharmonic geodesics. Since the influential publication of Mabuchi’s
seminal work on constant scalar curvature Kähler metrics [37], which introduced
the concept of plurisubharmonic geodesics, there has been vigorous activity in the
mathematical community. From our viewpoint, it is critical to represent geodesics
as the upper envelopes of sub-geodesics. For n = m, this approach has been
adopted in a local context by Berman-Berndtsson [11], Abja [1], Abja-Dinew [2],
and Rashkovskii [41]. In the subsequent discussion, we introduce an analogous
concept of sub-geodesics for m-subharmonic functions.
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Definition 6.8. A curve ut ∈ SHm(Ω), for t ∈ (0, 1), is an m-subharmonic
sub-geodesic if the function U(z, w) = ulog |w|(z) is (θ,m+ 1)-subharmonic in D.

Any function u ∈ SHm(Ω), when viewed as a function in D, is (θ,m + 1)-
subharmonic. The mappings (z, t) 7→ ±t are (θ,m+1)-subharmonic because their
associated functions U(z, w) = ± log |w| are plurisubharmonic in D, and thus also
(θ,m + 1)-subharmonic. In particular, if u0, u1 ∈ SHm(Ω) and C is a constant,
then the function

vt = max(u0 − Ct, u1 + Ct− C)

is an m-subharmonic sub-geodesic. If C ≥ supΩ |u0 − u1|, then vt connects u0 to
u1, in the sense that

lim
t→0

vt = u0 and lim
t→1

vt = u1,

pointwise in Ω. We define S(u0, u1) as the set of all m-subharmonic sub-geodesics
vt that lie below u0 and u1 in the sense that

lim sup
t→0

ut(z) ≤ u0(z), lim sup
t→1

ut(z) ≤ u1(z),

for almost every z ∈ Ω. The non-emptiness of the set S(u0, u1) is ensured, as
u0 + u1 itself is a member. Each m-subharmonic sub-geodesic vt is subharmonic
and S1-invariant in w = et, thus the map t 7→ vt is convex. If vt ∈ S(u0, u1), then
it satisfies vt ≤ (1− t)u0 + tu1.

Definition 6.9. Given u0, u1 ∈ SHm(Ω), we define the m-subharmonic geodesic
between u0 and u1 as

ut(z) = sup{vt(z) : v ∈ S(u0, u1)}.
Since ut ≤ (1− t)u0+ tu1, the upper semicontinuous regularization of (z, t) 7→

ut(z) also belongs to S(u0, u1), confirming that ut is indeed an element of S(u0, u1).
The convexity of ut further implies that for bounded functions u0, u1 ∈ SHm(Ω),
the m-subharmonic geodesic ut satisfies

lim
t→0

ut(z) = u0(z), and lim
t→1

ut(z) = u1(z),

for all z ∈ Ω. For unbounded functions u0, u1, it is preferable to permit con-
vergence almost everywhere. We say that u0 can be connected to u1 by an m-
subharmonic geodesic if these limits hold almost everywhere in Ω.

Remark 6.10. Given negative functions u0, u1 ∈ SHm(Ω), we consider their

approximants uj0, u
j
1 ∈ SHm(Ω) ∩ L∞, which decrease to u0 and u1 respectively.

Let ujt denote the m-subharmonic geodesics connecting uj0 to uj1. As j increases, ujt
decreases and converges to ut = limj→+∞ ujt . This limit ut represents the largest
m-subharmonic sub-geodesic lying below u0 and u1; notably, it is independent of

the specific approximants uj0, u
j
1. Indeed, if vt denotes the m-subharmonic geodesic

between u0 and u1, then vt ≤ ujt for all j, and consequently, vt ≤ ut. Conversely,

since ujt ≤ (1 − t)uj0 + tuj1 for all j due to convexity, taking the limit as j → ∞
implies that ut belongs to S(u0, u1) and thus satisfies ut ≤ vt.

6.3. The Kiselman minimum principle.

Theorem D. Let (ut)t∈(0,1) be an m-subharmonic sub-geodesic in Ω. Then the
function inft∈(0,1) ut is m-subharmonic in Ω.
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Just as in the scenario where m = n, the infimum of a family of m-subharmonic
functions is often not m-subharmonic. The importance of the sub-geodesic as-
sumption, particularly the S1-invariant property, will become evident in the proof
presented below.

Proof. We begin by assuming that (t, z) 7→ ut(z) is smooth and consider the
function

v(z, t) = ut(z) − ε log(t(1 − t)),

for a fixed ε > 0. Note that v(z, t) → +∞ as t(1 − t) → 0. Due to the strict
convexity of t 7→ v(z, t), we infer that for each z ∈ Ω, there exists a unique
t(z) ∈ (0, 1) such that v(z, t(z)) = inft∈(0,1) v(z, t). Furthermore, we have

∂v

∂t
(z, t(z)) = 0.

Since, ∂2v
∂t2

(z, t(z)) > 0, the implicit function theorem implies that z 7→ t(z) is

smooth. Utilizing ∂v
∂t (z, t(z)) = 0, the Hessian of z 7→ w(z) = v(z, t(z)) is given

by
∂2w(z)

∂zj∂z̄k
(z, t(z)) =

∂2v

∂zj∂z̄k
(z, t(z)).

Since the slice z 7→ v(z, t) is m-subharmonic, w is also m-subharmonic. As ε → 0+,
we conclude that inft∈(0,1) ut(z) is m-subharmonic, being the decreasing limit of
such functions.

To address the general case, we approximate (z, w) 7→ ulog |w|(z) by convolution
in Ω × A, yielding a decreasing sequence uj of smooth (θ,m + 1)-subharmonic
functions defined in a slightly smaller domain Ω′×A′, which remain S1-invariant in
w = et. The function ϕj,ε = inft∈(ε,1−ε) uj(z, e

t) is thus m-subharmonic in Ω′. As

j → +∞, ϕj,ε ց ϕε = inft∈(ε,1−ε) u(z, e
t), confirming ϕε as m-subharmonic in Ω′.

Finally, as ε → 0+ and Ω′ → Ω, we confirm the result since ϕε ց inft∈(0,1) ut. �

Corollary 6.11. If ut is an m-subharmonic geodesic between u0 to u1, then

inf
t∈(0,1)

ut = P(u0, u1).

Proof. Applying the Kiselman minimum principle, we establish that v = inft∈(0,1) ut
is an m-subharmonic function that lies below ut for any t ∈ (0, 1). Given the as-
sumption lim supt→a ut ≤ ua for a = 0, 1, almost everywhere in Ω, it naturally
follows that v ≤ P(u0, u1) (a.e., and hence everywhere). Moreover, since curve
wt = P (u0, u1), t ∈ (0, 1) is a candidate defining ut, we infer that P (u0, u1) ≤
ut. �

6.4. Geodesic connectivity. In our previous work [8], we prove that given
H0,H1 ∈ Em that are connectable by a plurisubharmonic geodesic, and u0 ∈
Nm(H0), u1 ∈ Nm(H1) (with m = n), then u0 and u1 can be connected by a
plurisubharmonic geodesic segment if and only if

u0 ≤ gu1
and u1 ≤ gu0

,

where gui
, i = 0, 1, is the residual function of ui as defined in Definition 5.6. The

goal of this section is to extend this result to the case where m < n.

Theorem 6.12. Assume u0, u1 are m-subharmonic functions in Ω. Then u0 can
be connected to u1 by an m-subharmonic geodesic if and only if

P[u0](u1) = u1 and P[u1](u0) = u0. (6.2)
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Proof. The proof adapts the argument presented by Darvas for the case m = n,
made possible by the successful application of the Kiselman minimum principle
(Theorem D). For clarity, we briefly recall Darvas’ approach from [21].

Assume that (6.2) is satisfied. For each C > 0, consider the curve vt =
P(u0, u1 + C) − Ct, which serves as an m-subharmonic sub-geodesic connecting
v0 ≤ u0 to v1 ≤ u1. Consequently, we have vt ≤ ut, and specifically for t = 1/C2,
it follows that

P(u0, u1 + C)− 1/C ≤ u1/C2 .

As C → +∞, this results in P[u1](u0) ≤ lim inft→0 ut almost everywhere. The
convexity of ut gives ut ≤ (1− t)u0+ tu1, leading to lim supt→0 ut ≤ u0 and hence
limt→0 ut = u0, almost everywhere. A similar argument applies for the limit at
t = 1.

Conversely, assume ut connects u0 to u1. Fix a constant C > 0, and consider
the curve vt = ut + tC, which is an m-subharmonic geodesic connecting u0 to
u1+C. By Corollary 6.11, P(u0, u1+C) = inft∈(0,1)(ut+Ct). Due to the convexity
of t 7→ ut (referenced in [21, Lemma 5.1]), we find that

lim
C→+∞

inf
t∈(0,1)

(ut + Ct) = lim inf
t→0

ut,

outside the m-polar set {min(u0, u1) = −∞}. Since lim inft→0 ut = u0 almost
everywhere, allowing C → +∞ confirms that P[u1](u0) = u0 almost everywhere,
hence everywhere. The equality P[u0](u1) = u1 follows by reversing the role of u0
and u1. This concludes the proof. �

Building on Theorem 6.12 and the rooftop equality (Theorem B), we can adapt
the proof of [8] to the m-subharmonic setting.

Theorem C. Assume H0,H1 ∈ Em are connectable by an m-subharmonic geodesic
segment. Let u0 ∈ Nm(H0), u1 ∈ Nm(H1). Then u0 and u1 are connectable by an
m-subharmonic geodesic if and only if

gu0
≥ u1 and gu1

≥ u0. (6.3)

In particular, if gH0
= gH1

then (6.3) is equivalent to gu0
= gu1

.

Proof. From Theorem B and Theorem 6.12, it is established that the rooftop
equality holds for u0 and u1. Consequently, (6.2) is equivalent to both P (gu0

, u1) =
u1 and P (gu1

, u0) = u0, which in turn is equivalent to (6.3). We confirm the first
statement by applying Theorem 6.12 again.

Assuming that (6.3) holds, let us consider v = P(gu0
, gu1

). Theorems 5.7 and
4.3 ensure that µr(v) = 0. Utilizing Lemma 5.2 and again Theorem 5.7, we de-
duce that µs(v) ≥ µs(gu0

) and µs(v) ≥ µs(gu1
). The application of the general

comparison principle (Theorem 5.5) then establishes that v = gu0
= gu1

, thereby
completing the proof. �
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