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ABSTRACT

Long text understanding is important yet challenging for nat-
ural language processing. A long article or document usually
contains many redundant words that are not pertinent to its
gist and sometimes can be regarded as noise. With recent ad-
vances of abstractive summarization, we propose our Gist De-
tector to leverage the gist detection ability of a summarization
model and integrate the extracted gist into downstream mod-
els to enhance their long text understanding ability. Specifi-
cally, Gist Detector first learns the gist detection knowledge
distilled from a summarization model, and then produces gist-
aware representations to augment downstream models. We
evaluate our method on three different tasks: long document
classification, distantly supervised open-domain question an-
swering, and non-parallel text style transfer. The experimen-
tal results show that our method can significantly improve the
performance of baseline models on all tasks.

Index Terms— long text understanding, distillation, gist
detection

1. INTRODUCTION

Recently, deep learning has developed rapidly [1} 12} [3} 14}
5,16, [7, 18, 9, 110l 11, [12]. Transformer-based models are
prevalent [13| [14} [15} [16} [17, [18] across numerous NLP
tasks[[19]], but have difficulty in processing long texts due
to the quadratic complexity of input text length[20]. Unlike
short texts, long texts intrinsically contain many noisy words
irrelevant to their gist. Although recent works have achieved
promising results, few of them pay attention to measuring
whether each part of the text is salient or negligible. Ab-
stractive summarization is a classic NLP task which aims to
compress and rewrite a source text into a short version while
retaining its main information [21} 22]]. With this optimiza-
tion objective, a well-trained summarization model has the
potential to detect the gist of long texts. Figure[I]shows an ex-
ample from the CNN/Daily Mail [23]] dataset, where the blue
shading intensity represents the importance weight extracted
from a well-trained summarization model. As we can see, the
summarization model learns to focus on gist-relevant parts

Article: the brazilian cycling federation says it has| national road race champinn-
for- for- 1 virrually- her chances of in the 2016 rio olympics . the federation

says the 23-year-old fernandes , who 's also a member of spain 's bizkaia-durango cycling team ,

for-at the brazilian ct ionships in june . also suspended for failing doping tests at the event were brazil
's under-23 national road race champion , nayara gomes ramos . marcia fernandes is to in her
home- at 110 2016 , whose stadium is pictured , after testing positive for epo and having been banned
for two years by the brazilian cycling federation . two other cyclists , juliana jacobs renner and patrick gabriel

oyakaua , were suspended as well . the federation revealed on thursday that none of the athletes requested to
have their ' b' samples tested .

Reference Summary:

brazilian cyclist marcia fernandes banned for two years for doping .
fernandes tested positive for epo in brazilian cycling federation checks .
she will likely miss her home olympics which take place at rio in 2016 .

Fig. 1. An example from the CNN/Daily Mail dataset. The
shading intensity represents the importance weight extracted
from a well-trained summarization model.

while neglecting irrelevant ones. Intuitively, the gist detection
ability can improve long text understanding through making
models aware of salient parts of long texts.

In this paper, we propose to leverage the gist detection
ability of a summarization model and integrate the distilled
gist information into downstream models to enhance their
long text understanding ability. However, there remain two
challenges: First, it is time-consuming to extract salient infor-
mation from a large summarization model for each training
sample. Second, the summarization model produces salient
information at each decoding step, while long text under-
standing models produce a single representation.

To solve these challenges, we propose our Gist Detector
to transfer the gist information from a summarization model
to downstream long text understanding models. Specifically,
Gist Detector is first trained to reproduce the gist information
from the summarization model, then provides the gist-aware
representation as supplementary to augment long text under-
standing models. We train our Gist Detector with knowledge
distillation mechanism, where a summarization model with
an encoder-decoder architecture is the teacher model and Gist
Detector with a fewer-layers’ encoder is the student model.
The student model is trained with the average attention distri-
bution over all decoding steps produced by the teacher model
as ’soft target”. Since Gist Detector is a non-autogressive
model and much smaller than the summarization model, the
process of gist extraction can be significantly efficient. Then,
we integrate the gist information extracted by our distilled
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Fig. 2. Gist Detector is trained to reproduce the salient in-
formation from the teacher model, and provides the salient-
aware representations as supplementary to augment the down-
stream model.

Gist Detector into downstream models with a fuse module,
effectively enhancing their long text understanding ability.

To evaluate the effectiveness of our method, we conduct
extensive experiments on three tasks: long document classifi-
cation, distantly supervised open-domain question answering
(DS-QA) and non-parallel text style transfer. Experimental
results reveal that our method effectively augments different
baseline models with better long text understanding ability,
thus achieving significant performance improvement on all
downstream tasks.

2. METHODOLOGY

In this paper, we propose our Gist Detector to leverage the gist
detection ability of summarization model, and transfer gist in-
formation into downstream long text understanding models.
We first introduce the architecture of Gist Detector ( § [F1).
During training, we use the knowledge distillation mechanism
to transfer the gist detection ability from a well-trained sum-
marization model (teacher model) to Gist Detector (student
model) (§[2.2). Then, we integrate gist information extracted
by Gist Detector into downstream models (§ [2.3). The much
smaller model size and the non-autogressive architecture re-
duce the time-consuming problem, and the generated single
gist-aware representation overcomes the mismatch problem.

2.1. Gist Detector Architecture

As shown in middle part of Figure [2} Gist Detector has an
encoder architecture, which learns the importance weight of
each word in the source sequence from the summarization
model, and produces this information for downstream mod-
els. There are many possible network architectures for Gist
Detector. We implement our Gist Detector with several Trans-
former encoder layers [24], and show that the a simple dis-
tilled Gist Detector can successfully benefit the long docu-
ment understanding models.

Specifically, the input {z,...,zy} is firstly mapped
into embeddings {ei,...,ex}, then fed into a four-layer
transformer encoder and obtain the representations H =
{hi,...,hx}. Then, a two-layer MLP followed by a softmax
function is applied to produce the the probability distribu-
tion over the input text p = {p1,...,pn}, which reveals the
importance of each word in the source sequence.

2.2. Training with knowledge distillation

We leverage the knowledge distillation mechanism to train
Gist Detector (student model) with the salient information
extracted from the abstractive summarization model (teacher
model). Different from the typical knowledge distillation,
which uses the teacher’s predictive distribution over the tar-
get classes as the soft target, we assume the attention distri-
bution extracted from the decoding process reveals the salient
information of the source text, and use the teacher’s attention
distribution as the soft target. The student model learns to
reproduce the attention distribution for each training sample.

Specifically, the soft target g = {q1, ..., ¢N }n=1 is calcu-
lated as the geometric mean of the attention distribution over
all decoding steps:

_ >t Gnt

qn = T (D

, where T is the total decoding steps. Finally, the optimization
objective is the cross entropy between the predicted probabil-
ity distribution p of the student model and the soft target g
from the teacher model:

N
Lkp ==Y anlog(pn)) )

(z,y) n=1

2.3. Integration of salient information

To enhance the long document understanding ability of the
downstream model, we extract the salient information from
the well-trained Gist Detector, and integrate it into the down-
stream model with a fuse module.

Specifically, for each long text {z1,...,zx} as the in-
put, the Gist Detector produces the probability distribution



Methods Appeal Baby Books Camera DVD Electronics Health IMDB Kitchen Magazines MR Music Software Sports Toys Video Overall
ASP-MTL 87.0 88.2  84.0 89.2 85.5 86.8 88.2 85.5 86.2 92.2 76.7 825 87.2 85.7 88.0 845 86.1
S-LSTM 85.8 86.3 83.4 90.0 85.5 83.3 86.5 87.2 84.5 93.8 76.2 82.0 87.8 85.8 85.3 86.8 85.6
Meta-MTL 87.0 88.0  87.5 89.7 88.0 89.5 90.3 88.0 91.3 91.0 770 86.3 88.5 86.7 835 883 87.9
BiLSTM 84.8 84.5 78.8 86.3 80.7 81.9 83.0 79.8 82.1 90.5 76.1 79.6 85.4 80.3 83.9 81.1 82.4
BiILSTM+GD  87.6 88.,5  86.7 90.8 87.8 89.6 88.2 88.1 90.7 94.6 782  86.4 90.3 87.1 833 885 88.2
- w/o KD 86.8 86.4 817 89.1 82.9 82.3 84.5 81.2 85.0 91.7 76.5  82.9 87.8 84.9 854 846 84.6
Table 1. Document classification results across 16 domains of FDU-MTL datasets. GD denotes our Gist Detector method.

KD denotes the knowledge distillation training.

p = {p1,...,pn} over the input text, revealing the impor-
tance weights of each word. Given the context representation
of the long document understanding model ¢ = Zg Sn, We
fuse the context representation ¢ with the importance weights
p as:

¢ =(1=Nc+ A psi 3)

t

, where A € [0,1] is a tunable hyperparameter. As for the
downstream model that predict scores for each word of the in-
put text, such as extractive QA models, we fuse the prediction
scores {r1, ..., ry } with the importance weights {p1, ..., pnx }:

rp = (1= X)re + Apy )

Note that we use the importance weight rather than the con-
text representation as the salient information, since it contains
much less parameters and alleviates the impact of domain-
specific information.

3. EXPERIMENTS

3.1. Distillation

Firstly, We train an ensemble of 8 abstractive summariza-
tion models with Transformer-based encoder-decoder archi-
tecture as the teacher model on CNN/Daily Mail. The aver-
age ROUGE F'; scores [25] of the teacher model are 38.6,
16.3 and 35.4 for ROUGE-1, ROUGE-2 and ROUGE-L re-
spectively. We follow the same setup and use the scripts pro-
vided by [26] to pre-process the CNN/Daily Mail dataset. We
use the 100 dimensional filters with width of 5 for CNN to
capture the character embeddings. We select the 300d GloVe
pre-trained word embedding and share the same word embed-
ding weight between encoder and decoder. The hidden size
of Transformer is 512. We use the Adam optimizer [27]] with
learning rate of 0.0004, 51 = 0.9, B2 = 0.999. The dropout
rate and batch size are set to 0.35 and 16, respectively. To
avoid the gradient explosion problem, we apply the gradient
norm clipping with a maximum gradient norm of 2.0.

Then we train Gist Detector with Transformer-based en-
coder architecture using knowledge distillation mechanism.
We use 100d GloVe for word embedding, 50d for charac-
ter embedding, the hidden size for the Transformer encoder
is 256. We take the same optimization setting as that of the
teacher model.

3.2. Integration into Downstream Tasks

Finally, we transfer the salient information from the well-
trained Gist Detector to downstream models of three long text

understanding tasks: document classification, distantly super-
vised open-domain question answering (DS-QA) and non-
parallel text style transfer.

3.2.1. Document Classification:

We take the BILSTM model as our baseline model for docu-
ment classification task that concatenates the final state values
of forward and backward pass as the context representation
vector, then feeds it into a MLP to predict the label. We ini-
tialize the word embedding with the 300d GloVe. The hidden
size of BiLSTM is set as 256. The layer number of BiLSTM
and MLP are both set to 2. We take the Adam as optimizer
with Ir = 0.001, 81 = 0.9, B2 = 0.999, 0.35 dropout and train
for 6 epochs. The A in § [2.3]is set to be 0.5 while integrating
the BiILSTM model with our Gist Detector.

3.2.2. Distantly Supervised Open-Domain QA:

We use the OpenQA model[28] as our baseline model for
distantly supervised open-domain question answering task,
which applies a selector to filter passages, then a precise
reader to extract the potential answers, finally aggregates
these results to predict the final answer. We evaluate our
method on two high-quality datasets, TriviaQA (open-domain
setting)[29] and SearchQA[30] with two metrics including
ExactMatch (EM) and F1 scores. We keep the same setup
of hyper-parameters and training settings as that in OpenQA
while some important details are as follow. We combine the
passage selector with Gist Detector as introduced in § [2.3]and
the X is set as 0.5. We feed the ¢’ through a linear function
followed by multiplication with the question vector to pro-
duce the score for filtering passages and add it to the original
score produced by the OpenQA selector to predict the final
passage score. For the reader, we directly add the predicted
score of answer span with the probability distribution p pro-
duced by Gist Detector as introduced in § to produce the
final score, where the )\’ is set as 0.2.

3.2.3. Text Style Transfer:

As for the non-parallel text style transfer task, the model aims
to compress gist of texts into fixed-size vectors separated from
pure style information. We select Cross-aligned AE[31] and
Adversarially Regularized Autoencoder (ARAE)[32] as our
baseline models. We follow the setup of [31] but remain re-
views whose length are between 70 and 150 rather than not
exceeding 15, and eventually obtain 350K, 280K non-parallel
data from Amazon and Yelp reviews respectively. We keep



TriviaQA SearchQA
QA Models EM FI _EM _ FI
BiDAF [37] - - 286 34.6
AQA [38] . - 405 474
R3 [39] 47.3 53.7 49.0 55.3
Re-Ranker [40] 50.6 57.3 57.0 63.2
TraCRNet [41] - - 529 65.1
OpenQA [28] 48.7 56.3 58.8 64.5
OpenQA + GD 50.3 57.6 59.5 65.1

-w/oGD in selector 49.2 56.5 59.0 64.8
- w/o GD in reader 49.4 57.1 59.2 64.8

Table 2. EM and F1 results on the TriviaQA (open-domain
setting) and SearchQA datasets.

TriviaQA SearchQA
QAModels  —poGT Hites Hites Hit@l Hit@3 Hit@s
OpenQA 134 515 545 591 687 763

OpenQA +GD  49.1 57.7 63.1 65.3 73.4 79.6

Table 3. Performance of passage selection on TriviaQA and
SearchQA development set. Hit@N represents the proportion
of related passages being ranked in top-N.

the same setup of hyper-parameters and training settings as
that of Cross-aligned AE and ARAE. We combine the con-
tent vector with our Gist Detector as introduced in § and
the A is set to be 0.5. To evaluate the model, we use 4 auto-
matic metrics: (i) Acc: the accuracy of successfully chang-
ing the style into the target style measured by a pre-trained
classifier. Following [31], we use the TextCNN model as the
classifier that achieves the accuracy of 94.2% and 95.7% on
Amazon and Yelp respectively. (ii) Cosine: we follow the
setup of [33]] to measure the content preservation with cosine
similarity. (iii) Entity: we use the proportion of noun entities
to measure the content consistency between source and gener-
ated texts. (iv) PPL: the fluency of generated texts measured
by a pre-trained language model on corresponding datasets.

4. RESULTS AND ANALYSIS

4.1. Results on Document Classification

We evaluate our our method across 16 domains on FDU-MTL
datasets[34]]. As shown in Table E], augmented with our Gist
Detector, the baseline BILSTM model obtains significant per-
formance improvement on all of the 16 domains and out-
performs prior approaches (ASP-MTL [34], S-LSTM [35]],
Meta-MTL [36]) with 88.2 overall accuracy. An ablation
study shows that if we use Gist Detector with random ini-
tializad parameters, the overall performance drops 3.6. It in-
dicates that both the additional parameters from Gist Detector
and the gist detection ability distilled from the summarization
model contributes to the performance improvement.

4.2. Results on DS-QA

We evaluate our method on TriviaQA (open-domain setting)
[29] and SearchQA [30] datasets with ExactMatch (EM) and
F1 score metrics. As shown in Table[2} Augumented with our
Gist Detector, the baseline OpenQA model performs much

Amazon Yelp
Acc  Cosine Entity PPL Acc  Cosine Entity PPL
Cross-aligned AE  84.7%  0.46 26.13  34.67 89.5%  0.53 26.63  28.46
ARAE 86.2%  0.57 31.37  36.36 89.3%  0.61 3246  29.18
ARAE + GD 91.0% 0.71 4756 2415 934% 0.73 49.04 2143

Models

Table 4. Automatic evaluation results on Amazon and Yelp
text style transfer datasets.

Models Amazon Yelp
Acc  Correlation Fluency Acc  Correlation Fluency
Cross-aligned AE  56.4% 2.4 3.0 58.2% 2.7 3.1
ARAE 73.6% 2.8 33 74.1% 3.1 3.5
ARAE + GD 78.2% 3.7 3.5 78.6% 3.9 3.8

Table 5. Human evaluation on accuracy, content correlation
and fluency of the generated text.

better on both two datasets. An ablation study shows that in-
tegration of salient information into both the selector and the
reader leads to the best performance. Table [3shows the pas-
sage selection performance of our method. We find that with
Gist Detector, the selector filters passages much more pre-
cisely, thus our QA system can aggregate information among
fewer passages and make faster answer predictions.

4.3. Results on Text Style Transfer

We further evaluate our method on the Amazon and Yelp text
style transfer dataset [31]. The automatic evaluation results
from Table [4] shows that with our Gist Detector, the baseline
model ARAE[32]] can achieve significantly higher transfer ac-
curacy, better content preservation, better noun entity preser-
vation and much more fluency. It indicates that the Gist De-
tector helps the model detect and compress more important
information from long texts. Moreover, we conduct human
evaluation to further evaluate the quality of the style transfer
models. We randomly select 1000 examples (500,/500 posi-
tive/negative), and employ people to judge whether texts are
converted to the target style, and to evaluate content correla-
tion (0 — 5, 5 for the most correlative) and fluency (0 — 5, 5
for the most fluent). As shown in Table 5} Gist Detector can
significantly improve the baseline model’s performance on all
evaluation metrics.

5. CONCLUSION

In this paper, we propose Gist Detector to learn gist detection
ability from a summarization model with knowledge distilla-
tion mechanism. We integrate the gist information detected
by distilled Gist Detector into different downstream models
to enhance their long document understanding ability. Exper-
imental results show that our method significantly improves
the performance of all baseline models for different tasks that
require long text understanding. Future work will involve
finding better strategies to integrate our gist detector into more
tasks and processing longer sequences.
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