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RF-based Energy Harvesting: Nonlinear Models,
Applications and Challenges

Ruihong Jiang

Abstract—So far, various aspects associated with wireless
energy harvesting (EH) have been investigated from diverse
perspectives, including energy sources and models, usage pro-
tocols, energy scheduling and optimization, and EH implemen-
tation in different wireless communication systems. However, a
comprehensive survey specifically focusing on models of radio
frequency (RF)-based EH behaviors has not yet been presented.
To address this gap, this article provides an overview of the
mainstream mathematical models that capture the nonlinear
behavior of practical EH circuits, serving as a valuable handbook
of mathematical models for EH application research. Moreover,
we summarize the application of each nonlinear EH model,
including the associated challenges and precautions. We also
analyze the impact and advancements of each EH model on RF-
based EH systems in wireless communication, utilizing artificial
intelligence (AI) techniques. Additionally, we highlight emerging
research directions in the context of nonlinear RF-based EH. This
article aims to contribute to the future application of RF-based
EH in novel communication research domains to a significant
extent.

Index Terms—Energy harvesting, radio frequency, linear and
nonlinear EH model, wireless information and power transfer,
wireless powered communication network, AI.

ABBREVIATIONS

The list of abbreviations and definitions used in this paper
are summarized in Table I.

I. INTRODUCTION

In recent years, there has been a remarkable surge in the
number of smart devices and the emergence of Internet of
Everything (IoE) applications, which has resulted in an over-
whelming burden on wireless networks, including 5G, B5G,
and upcoming 6G [1]–[3]. Meanwhile, the integration of the
Internet of Things (IoT) with cutting-edge technologies such as
artificial intelligence (AI), blockchain, cloud computing, and
big data has also been accelerated. IoT terminals now possess
enhanced sensing capabilities, while application platforms
exhibit improved data processing prowess, resulting in elevated
levels of intelligence [4]–[6]. Furthermore, the application
scenarios of IoT has expanded extensively in critical domains
like smart cities, digital villages, transportation, agriculture,
manufacturing, construction, and homes. The rapid pace of IoT
technology advancements has given rise to novel technologies,
products, and models, including AIoT—an integration of IoT,
AI, and cloud computing.
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By now, billions of IoT devices heavily rely on battery
power to sustain their operations. Depending on their com-
putational demands and the nature of their battery chemistry,
these devices can either operate steadily for short durations
or persist for several decades [7], [8]. However, there exists
a category of IoT devices that possess the capability to either
harvest energy autonomously or tap into externally collected
energy sources, granting them the ability to function almost in-
definitely. Within the realm of IoT, energy harvesting (EH) has
emerged as a promising solution to reduce or even eliminate
the reliance on batteries [9]–[11]. This holds particular ad-
vantages for devices positioned in challenging environments,
such as livestock sensors, smart buildings, remote monitoring
systems, as well as wearable electronics and mobile asset
tracking. Despite its immense potential, the utilization of EH
in IoT has remained somewhat restricted thus far [12]. Hence,
the development of efficient and compact energy harvesting
solutions remains an essential requirement for IoT devices,
especially when they are deployed in remote or inaccessible
locations that pose challenges for battery replacement.

The EH technology is gaining momentum, with an ex-
panding array of silicon products available from leading
companies like ADI, Atmosic, EnOcean, Metis Microsystems,
ONiO, Powercast, Renesas Electronics, STMicroelectronics,
and Texas Instruments [13]. Simultaneously, AI advancements
are driving smaller, lighter, smarter, and more energy-efficient
products. With continuous innovation, EH technology is ma-
turing, unlocking limitless possibilities for the future. The
exponential growth in the number of radio transmitters has
made radio frequency (RF)-based EH a ubiquitous technology,
garnering significant attention and research efforts in academia
and industry over the past decade. Global mobile phone
users have exceeded 5 billion, with over 1 billion utilizing
mobile broadband, alongside an abundance of Wi-Fi routers
and wireless devices like laptops. Even from a modest Wi-
Fi router with a transmit power of 50mW to 100mW, small
amounts of energy can be harvested over short distances. For
harvesting RF energy from mobile base stations and radio
towers across longer distances, longer antennas with higher
gain are required.

On the other hand, the RF-based EH technology also holds
great promise for applications in typical 6G scenarios, i.e.,
massive connectivity, immersive communication, ultra-reliable
low-latency communication, AI integration with communica-
tion, fusion of sensing and communication, and ubiquitous
connectivity. By harnessing ambient RF energy, RF-based EH
can enable sustainable and self-sufficient power sources for
the multitude of connected devices, ensuring uninterrupted
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Fig. 1. The value of RF-based EH in typical 6G scenarios

and efficient operation in the next generation of wireless
communication and sensing systems.

• Ubiquitous Connectivity: 6G aims to achieve comprehen-
sive connectivity across the physical, machine, human,
and digital domains. This scenario is designed to enhance
connectivity and bridge the digital divide by enabling
interoperability with other systems. Whether in urban
or rural settings, or even in diverse environments such
as air, space, land, and sea, 6G networks will establish
ubiquitous coverage, delivering high-speed and stable
communication services to users. The RF-based EH can
provide power to ensure the sustainable operation of these
connected users. This technology allows IoT devices
such as smart thermostats, security cameras, and voice
assistants to be charged wirelessly, reducing the need for
battery replacements and increasing device autonomy.

• Massive communication: This scenario includes typi-
cal use cases in smart cities, transportation, logistics,
healthcare, energy, environmental monitoring, agriculture,
and both extending and introducing new applications.
It demands support for high device density, including
a massive number of IoT devices. 6G enables the si-
multaneous connection of billions of devices. The RF-
based EH can play a crucial role by providing sustainable
energy sources for these devices, reducing the need for
battery replacements or frequent recharging. For example,
in a smart city scenario, streetlights could be equipped
with RF-based EH capability, enabling them to capture
ambient RF signals from 6G networks and convert them

into electrical energy. This harvested energy can then be
used to power LED lights, sensors, and communication
modules embedded in the streetlights.

• Hyper-reliable and low-latency Communication: This
scenario encompasses typical use cases in industrial envi-
ronments that demand high-performance communication
to achieve full automation in control and operations, in-
cluding robotic interactions, emergency services, remote
healthcare, as well as monitoring power transmission
and distribution. The RF-based EH can offer significant
potential by providing sustainable power, enhancing re-
liability, enabling low-latency communication, and sup-
porting precise positioning. For example, in smart factory
automation scenario, the collaborative robots equipped
with RF-based EH capability can harvest energy from
nearby RF sources, such as Wi-Fi, 5G and 6G networks.
This harvested RF energy can be used to supplement or
even replace traditional power sources for the robots.

• Integrated AI and communication: This scenario includes
assisting autonomous driving, enabling autonomous col-
laboration among medical assistance devices, offloading
intensive computing tasks across devices and networks,
creating and predicting digital twins, and facilitating
collaborative robots. Through the deep integration of
artificial intelligence technologies, the 6G communication
system will possess the capabilities of intelligent sensing,
decision-making, and optimization, providing users with
personalized and intelligent communication services. The
RF-based EH can provide power to AI devices, enabling
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TABLE I
LIST OF ABBREVIATION

Full name Abbreviation
Energy harvesting EH
Wireless device WD
Electromagnetic EM
Radio frequency RF

Wireless power transfer WPT
Federal Communications Commission FCC

Solar Power Satellite SPS
Fixed High Altitude Relay Platform SHARP

Massachusetts Institute of Technology MIT
Wireless sensor networks WSN

Internet of Things IoT
Simultaneous wireless information and power transfer SWIPT

Wireless information transmission WIT
Information receiver IR

Energy receiver ER
Wireless powered communication network WPCN

Hyper access point H-AP
Information decoding ID

Power splitting PS
Time switching TS

RF-Direct Current RF-DC
Multi-input multi-output MIMO

Multiple input single output MISO
Time-division multiple access TDMA
Non-orthgonal multiple access NOMA

Orthogonal frequency division multiplexing OFDM
Non-orthogonal multiple access NOMA
Rate-splitting multiple access RSMA

Cognitive radio CR
Device-to-device D2D

Unmanned aerial vehicle UAV
Point-to-Point P2P

Energy efficiency EE
Spectral efficiency SE

Intelligent reflecting surface IRS
Mobile edge computing MEC

Channel state information CSI
Decode and forward DF
Amplify and forward AF

Full Duplex FD
Rate/Information-energy R/I-E

Semidefinite relaxation SDR
Alternating direction method of multipliers ADMM

Second-order cone program SOCP
Successive convex approximation SCA

Artificial Intelligence AI
Machine learning ML

Deep learning DL
Deinforcement learning RL

Deep RL DRL
Deep deterministic policy gradient DDPG

Inverse RL IRL
Lifelong learning LL

Integrated sensing and communication ISAC
Integrated sensing, computing and communication ISCAC

Semantic communication SemCom

distributed sensing and decision-making. For example,
in autonomous agriculture with AI integration, some
autonomous drones can be equipped with RF-based EH
function to harvest energy from ambient RF signals, such
as those from 6G networks or satellite communications.
The harvested RF energy is used to power the drone’s
sensors, AI processors, and communication modules.

• Integrated sensing and communication: This scenario
includes assisting navigation, detecting and tracking ac-
tivities and movements, environmental monitoring, and
providing sensor data/information about the surrounding
environment for AI, XR, and digital twin applications.
Through 6G’s intelligent sensing capabilities, it provides
efficient solutions for smart cities and environmental
monitoring. The RF-based EH can power sensor net-
works, supporting data collection and transmission, par-
ticularly facilitating efficient solutions for smart cities and
environmental monitoring. In regions prone to natural
disasters such as earthquakes, tsunamis, or forest fires,
the RF-based EH can be employed to power a network
of environmental sensors deployed in disaster-prone ar-
eas for disaster management. These sensors can capture
ambient RF energy from 6G networks and convert it into
electrical power to keep the sensors operational.

• Immersive communication: Immersive communication is
a key feature of 6G, promising high-quality virtual and
augmented reality experiences. The RF-based EH can
power head-mounted displays, virtual reality goggles,
and augmented reality applications, extending usage time
and enhancing the user experience. This is critical for
immersive XR communication, remote multi-sensory pre-
sentation, and holographic communication. Immersive
remote healthcare scenario, the RF-based EH can be
used to power medical devices such as high-resolution
cameras, 3D scanners, vital signs monitoring equipment,
etc., which are crucial for immersive remote healthcare.

In these scenarios, RF-based EH technology’s key advantage
is its ability to capture RF energy from the environment and
convert it into usable electricity without relying on traditional
batteries or grid power. This contributes to achieving more
sustainable, self-sustaining, and efficient communication and
sensing systems. Note that as 6G technology continues to
evolve, specific application scenarios and integration methods
may change. It’s necessary to closely monitor the latest re-
search and development trends in the 6G field to better under-
stand the potential applications of RF-based EH. Additionally,
for specific application scenarios, in-depth engineering and
technical research may be required to optimize RF-based EH
systems to meet specific needs.

A. Motivation

With the growing availability of RF-based EH, it not only
eliminates the need for extensive cabling but also provides a
resilient system that is immune to environmental conditions
and hazardous substances. In the case of mesh networks,
the integration of RF-based EH with sophisticated device-
to-device (D2D) communications enables various applications
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like wireless sensor networks (WSN), wearable devices, wire-
less charging, and IoT [14]. By reducing the reliance on bat-
teries, RF-based EH contributes positively to the environment.
However, it is crucial that power-free RF receivers or RF-
based EH devices, such as Powercast’s P2110 Powerharvester
receiver [15], have a sensitivity greater than or equal to -
11 dBm. Enhanced RF sensitivity allows RF-to-DC (RF/DC)
power conversion over longer distances from the RF energy
source. Nevertheless, as the distance increases, available power
decreases, and charging time increases. Additionally, practical
EH circuits exhibit nonlinear characteristics, necessitating
proper modeling, design, and optimization of EH behavior,
whether in a linear or nonlinear state. This aspect holds sig-
nificant importance in RF-based EH networks, particularly
in scenarios involving large-scale applications, low efficiency,
and low energy density [16], [17], [43].

B. Comparison to Existing Surveys

Over the past decade, numerous surveys have been con-
ducted on the topic of RF-based EH. For the readers’ conve-
nience, we provide Table II, which summarizes the concerned
survey papers.

Specifically, in [18], [19], [27] and [35], the authors summa-
rized various aspects of EH sensor systems and various types
of EH techniques, respectively. In [22], the authors offered
an overview of EH communications and networks, covering
topics such as energy sources and models, EH and usage proto-
cols, energy scheduling and optimization, as well as the imple-
mentation of EH in cooperative, cognitive radio, multiuser and
cellular networks, among others. With regards to different EH
sources, in [23], [28] and [37], the authors overviewed wireless
charging techniques, security issues, energy and spectrum
harvesting technologies, respectively. By utilizing ambient RF
signals without requiring active RF transmission, the authors
in [24] outlined the ambient backscatter communications on
the architectures, protocols, and applications. Meanwhile, the
energy efficient (EE) techniques and optimization for green-
energy-powered cognitive radio (CR) networks using readily
available ambient energy sources were reviewed in [20].

For EH-enabled IoT, in [29] and [32], the authors surveyed
sensing, computing and communications, and the task schedul-
ing algorithms of sensor nodes, respectively. With the RF-
based EH, several works [21], [25], [26], [33] provided com-
prehensive literature reviews, discussed beamforming tech-
niques, the issues associated with simultaneous wireless infor-
mation and power transfer (SWIPT) and wireless power trans-
fer (WPT) technologies, interference for wireless EH. Given
the benefits of relay technology, the authors in [34] and [36]
outlined SWIPT with cooperative relays for next-generation
wireless networks. For the mobile charging issues, the work
in [30] provided an overview of mobile charging techniques in
empowered wireless rechargeable sensor networks, including
the network model, various WPT techniques, system design
issues and performance metrics.

Furthermore, considering the emergence of new technolo-
gies, in [31] and [38], the authors presented comprehensive
surveys on research related to green communications with

AI techniques, and wireless WPT/wireless EH systems with
the metasurface technology, respectively. In [39], the authors
reviewed the potential of multiband RF-based EH systems for
power-efficient IoT applications, covering circuitry, antenna,
rectifier, and performance improvement. In [40], the survey
summarized and analyzed existing algorithms for battery-
free WSNs, including energy management, networking, data
acquisition, and specific applications. In [41], this article com-
prehensively explored the integration of battery-free IoT with
backscatter communication, highlighting key components, pro-
totypes, and fundamental issues for practical applications. In
[42], the authors presented an overview of dielectric resonator-
based sensing elements and their applications in RF-based EH
and WPT systems, highlighting performance enhancements
and research gaps.

Above all, in [18]–[42], the inherent challenges of (RF-
based) EH were presented from several perspectives, such as
energy sources and models, usage protocols, energy scheduling
and optimization, implementation of EH in WSN, coopera-
tive, CR, multi-user, multi-antenna, and so on. However, a
comprehensive survey that offers a complete overview of
EH models, encompassing their behaviors, methods, and
associated applications/challenges, has not been conducted
yet.

C. Contributions
Considering the aforementioned analysis and to the best

of our knowledge, none of the existing surveys has provided
an overview of models on the EH behaviors, methods, and
applications/challenges of EH models. To fill the gap, the key
contributions of this survey are summarized as follows.

• In Section II, we outline some mainstream mathematical
EH models that characterize the nonlinear behavior of
practical EH circuit, which is a handbook of mathematical
models for the application research of EH.

• In Section III, we provides a brief history of EH, covering
WPT, SWPIT, and WPCN.

• In Section IV, we discusses RF-DC circuit features and
compares existing EH models.

• In Section V, we explores applications of nonlinear EH
models in various scenarios.

• In Section VI, we examines challenges of utilizing each
nonlinear EH model.

• In Section VII, we analyzes the impact and development
of each model on wireless communication EH systems
using AI. we give an analysis of the impact and devel-
opment of each EH model on wireless communication
RF-based EH systems with the help of AI. At last,
we underline some emerging research directions about
nonlinear RF-based EH.

• In Section VIII, We present the lessons learned and
design guidelines, facilitating the creation of efficient and
dependable RF-based EH systems through the utilization
of precise nonlinear models.

• In Section IX presents emerging research directions in
RF-based EH. we give an analysis of the impact and
development of each EH model on wireless communi-
cation RF-based EH systems with the help of AI. At last,



5

TABLE II
EXISTING SURVEYS ON EH (WPT, EH, SWIPT, WPCN) AND IMPROVEMENT OF OUR SURVEY

Publication Topic Main contribution

Sudevalayam, 2011
[18] Sensor networks, energy-aware systems, EH Survey on aspects of EH sensor systems

Prasad, 2014 [19] Ambient EH, WSN, energy storage, harvested network
protocols Study of various types of energy harvesting techniques

Huang, 2015 [20] CR, spectrum efficiency, energy efficiency, EH Survey on EE CR techniques and the optimization of green-
energy-powered wireless networks

Lu, 2015 [21] RF-powered CR network, SWIPT, receiver operation
policy, beamforming, communication protocols

Review on the research progresses in wireless networks with RF-
based EH capability

Ku, 2016 [22] EH, cooperative/CR/multi-user/cellular networks Overview of EH communications and networks

Lu, 2016 [23]
WPT, inductive coupling, resonance coupling,
RF/Microwave radiation, SWIPT, energy beamforming,
WPCN

Overview of wireless charging techniques (WPT, SWIPT, WPCN,
etc.), the developments in technical standards, and the advances
in network applications

Van Huynh, 2018 [24] Ambient backscatter, IoT, wireless EH, backscatter and
low-power communications

Review on the ambient backscatter communications on the archi-
tectures, protocols, and applications

Alsaba, 2018 [25] EH, beamforming, WPCN, SWIPT, WPT, physical layer
security

Survey on exploiting beamforming technique in EH-enabled wire-
less communication and its physical layer security application

Ponnimbaduge
Perera, 2018 [26] RF, WPT, SWIPT, interference exploitation, RF EH Survey on the issues associated with SWIPT and WPT assisted

technologies

Quintero, 2019 [27] MAC protocols, energy efficiency, EH, battery model,
state-of-charge

Focused on the techniques of EE developed in the medium access
control layer

Tedeschi, 2020 [28] EH security, green communications security, IoT security,
physical-layer security

Survey of security issues, applications, techniques, and challenges
arising in wireless EH networks

Ma, 2020 [29] EH communications, IoT, sensing, intermittent comput-
ing

Survey on advances in EH-IoTs from the design of sensing,
computing and communications

Kaswan, 2022 [30] Wireless rechargeable sensor networks, mobile charging
techniques, periodic/on-demand charging

Survey on mobile charging techniques in wireless rechargeable
sensor networks

Mao, 2020 [31] 6G, green communications, artificial intelligence (AI),
EH

Overview of the related research on AI-based green communica-
tions

Sandhu, 2021 [32] EH, energy prediction, IoT, sensing, task scheduling,
ubiquitous computing, wearables

Survey on task scheduling algorithms to to minimize the energy
consumption EH-based sensors in IoT.

Zhao, 2017 [33] Beamforming optimization, interference alignment and
management, SWIPT, EH Survey on exploiting interference for wireless EH

Hossain, 2019 [34] Cooperative relay, SWIPT, EH, 5G, resource allocation,
relay selection Review on the combination of cooperative relay and SWIPT

Williams, 2021 [35] EH, industry 4.0, WSN
Survey on EH technology for small-scale WSNs including EH
methods, energy storage technologies, EH system architectures,
and optimization considerations

Ashraf, 2021 [36] Cooperative relaying, 5G, MIMO, IoT, SWIPT, WPT Review of SWIPT technology with cooperative relaying networks
for 5G and B5G mobile networks

Padhy, 2021 [37] CR, cooperative sensing, EH, IoT, next generation wire-
less networks, spectrum harvesting.

Review on EH and SH technologies and protocols for next-
generation wireless networks

Ojukwu, 2022 [38] Metasurface, WPT, EH, WPCN, SWIPT, mmWave, in-
telligent surface intelligent surface (RIS)

Outline of WPT and wireless EH systems with the metasurface
technology and its applications

Lee, 2023 [39] Multiband RF EH, power conversion efficiency, Outline of multiband RF-based EH systems for power-efficient
IoT applications

Cai, 2023 [40] Battery-free, coverage, IoT, networking, sensor networks Survey on the algorithms for battery-free WSNs

Jiang, 2023 [41] Backscatter, battery-free, hardware implementation Overview of battery-free IoT and backscatter communication
integration

Halimi, 2023 [42] RF EH, WPT, rectenna, RF energy harvester Overview of dielectric resonator-based sensing elements in RF-
based EH and WPT systems

Our work EH, RF, SWIPT, WPCN, linear and nonlinear EH, AI Survey on the RF-based EH models, applications and challenges

we underline some emerging research directions about
nonlinear RF-based EH.

• In Section X summarizes the article. We give an analysis
of the impact and development of each EH model on
wireless communication RF-based EH systems with the

help of AI. At last, we underline some emerging research
directions about nonlinear RF-based EH.
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Fig. 2. Outline of this survey paper

D. Paper Organization

The rest of this article is organized as follows. Section
II provides a brief history of EH, covering WPT, SWPIT,
and WPCN. Section III discusses RF-DC circuit features and
compares existing EH models. Section V explores applications
of nonlinear EH models in various scenarios. Section VI
examines challenges of utilizing each nonlinear EH model.
Section VII analyzes the impact and development of each
model on wireless communication EH systems using AI.
Section IX presents emerging research directions in RF-based
EH, while Section X summarizes the article. Fig. 2 provides
a detailed outline for easier navigation and reading.

II. HISTORY OF EH

As wireless data services experience unprecedented growth,
the power demands placed on wireless devices (WDs) continue
to rise, resulting in a depletion problem. To address this,
EH has emerged as a promising solution, allowing WDs
to capture energy from various sources such as solar/light,
thermoelectric power, mechanical motion, and electromagnetic
(EM) radiation [21]–[23]. Particularly, EM radiation sources
can be categorized into near-field (ambient harvesting) and far-
field (dedicated harvesting) based on the distance applications.
In this context, antennas of the receivers capture EM radiation,
such as RF/microwave signals, which are subsequently con-
verted into DC power by rectifier circuits.

A. Wireless Power Transfer (WPT)

In fact, the concept of realizing wireless EH through electro-
magnetic radiation is not novel, as demonstrated by early-stage
WPT technology. The history of WPT could be traced back
to Heinrich Hertz’s early research in 1880, which aimed to
prove the existence and propagation of electromagnetic waves
in free space [44]. In the experiments, a spark gap transmitter
was employed to generate and detect high frequencies at the
receiver, resembling a WPT system. In 1890, Nikola Tesla, a
famous electrical engineer (physicist), built a large wireless
transmission station for information, telephone and wireless
power supply in the Wardenclyffe tower project, illuminating
a neon lamp 25 m away without the need for wires, thereby
validating the concept of wireless power transfer (WPT). [45].
In 1934, the Federal Communications Commission (FCC) of
the United States (US) reserved the 2.4-2.5 GHz frequency
band for industrial, scientific, and medical purposes, promot-
ing significant scientific research and enabling the progress
of WPT. During World War II, the technology of using
magnetrons to convert electric energy into microwaves was
successfully developed, while the discovery of the method to
convert microwaves back into electric current was not made
until 1964.

In 1964, William C. Brown invented the silicon rectifier
diode antenna and successfully verified the idea of converting
microwave into electric current [45]. In 1968, Peter Glaser
proposed Solar Power Satellite (SPS), using geostationary
satellites to collect and transmit solar energy via microwave
beams, addressing energy shortage and greenhouse gas emis-
sions, captivating research for over half a century [46].
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TABLE III
DEVELOPMENT OF EH

Year Main event
1880 Heinrich Hertz proved the existence and propagation of electromagnetic waves in free space.

1890 Nikola Tesla conducts WPT experiment for the first time.

1964 William C. Brown invented the silicon rectifier diode antenna.

1968 Peter Glaser proposed the concept of SPS.

1987 Canada demonstrated its first free-flying wireless-powered aircraft.

1992 Japan applied electronic scanning phased array transmitter to WPT for the first time in the MILAX experiment.

1994 Academician Weiqian Lin introduced microwave power transmission technology to domestic scholars for the first time.

2001 In the Reunion Island project, France realized the transmission of 10 kilowatts of electricity to a remote village.

2007 MIT in the United States has realized wireless energy transmission between two coils that are 2.13 m apart.

2008 Electrical energy was successfully wirelessly transmitted 148 kilometers between the two islands of Hawaii.

2015 Japan successfully transmitted 1.8 kilowatts of power to a small receiving device 55 m away.

2017 The wireless charging technology of two American companies, PowerCast and Energous, has passed the FCC certification.

2018 PowerCast has realized the function of wireless charging for wireless devices up to 80 feet away.

Energous and Dialog semiconductor company (European) produced wireless charging devices at a distance of about 4.5 meters.

2019 MIT realized that it harvests enough energy from indoor WiFi signals to light up mobile phones and activate related chips.

2020
The new Mophile wireless charging board was released, which can charge four electronic devices at the same time.

Xiaomi mobile phone announced the first 80 watt wireless second charging, setting a new global mobile phone wireless charging record.

2021

The new Mophile wireless charging board was released, which can charge four electronic devices at the same time.

Powercast won the BIG Innovation Awards 2021, enabling convenient and secure monitoring of employee temperatures in Covid-19 protocols.

Atmosic and Energous Corporation claimed “first interoperability energy harvesting” for wireless charging from up to 2 meters away.

Belgian company, e-peas introduced two PMICs to market, focused on providing more performant EH for IoT.

2022
Atmosic creates EH solutions integrated directly into the system-on- a-chip (SoC) for IoT devices directly.

researchers from the University of South Florida create “perfect EM absorption” rectenna for RF-based EH.

2023 Ossia’s Cota Real Wireless Power enables wirelessly powered IoT devices without the need for batteries or wiring, used in over 62 countries.

In 1987, Canada demonstrated its first free flying wireless
powered aircraft, called the Fixed High Altitude Relay Plat-
form (SHARP), marking a breakthrough in the International
Aviation Alliance by demonstrating the ability of a small
aircraft to sustain flight using RF beam-provided energy [47].
In 1992, Japan achieved a milestone by utilizing electronic
scanning phased array transmitter in the MILAX (Microwave
Lift-off Aircraft Experiment) experiment, enabling controlled
microwave beam tracking and wireless power supply for a
mobile fuel-free airplane model [48]. In 1994, Weigan Lin, the
pioneer of electromagnetic field and microwave technology in
China, introduced microwave power transmission technology
to domestic scholars, laying a solid foundation for subsequent
research and development of radio transmission technology in
China [49]. In 2001, G. Pignolet successfully used microwave
wireless power transmission to illuminate a 200 W light bulb
40 m away in Reunion Island, France. Subsequently, in 2003,
a 10 kW experimental microwave power transmission device
was deployed on the island, enabling a point-to-point (P2P)
wireless power supply at 2.45 GHz to the nearby Grand-Bassin
village, located 1 km away [50]. In 2007, Marin Soljacic of
Massachusetts Institute of Technology (MIT) and his team
achieved wireless energy transmission between two coils 2.13
m apart through electromagnetic resonance, successfully pow-
ering a 60 W bulb [51]. In 2008, electricity was wirelessly

transmitted over a distance of 148 km between two islands in
Hawaii, showcasing a significantly larger power transmission
range compared to previous experiments, even though only
20 W of power was received. [52]. In 2015, Japan achieved a
significant milestone by successfully transmitting 1.8 kW of
power to a small receiving device located 55 m away [53].

RF-based EH technology has garnered significant attention
as an appealing and promising solution to extend the lifespan
of energy-limited networks (e.g., WSN, IoT) and electronic
devices (e.g., sensors, low-power mobile devices) due to its
controllable and predictable nature compared to other EH
sources [23], [26], [54]. Thanks to the small size and low
deployment cost of the RF energy conversion circuit module,
it is suitable for installation on mobile device terminals and
sensor nodes. As a result, RF-based EH technology has
been widely considered as an effective means of providing
continuous and stable power for low-power devices like IoT
ones [25].

In late 2017, PowerCast and Energous, two US compa-
nies, obtained FCC certification for their wireless charging
technology. In 2018, PowerCast unveiled a long-range RF-
based wireless charging system capable of charging devices
up to 80 feet away at the Consumer Electronics Show in
Las Vegas, which offered wearable devices, smartphones,
and smart accessory manufacturers an opportunity to harness
energy through PowerCast’s wireless charging solutions [15].
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Fig. 3. SWIPT systems

In addition, Energous and Dialog Semiconductor collaborated
to develop an RF-based wireless charging system capable of
wirelessly charging devices up to approximately 4.5 m away,
eliminating the need for coils and backplanes [55]. In 2019,
MIT Microtechnology Laboratory announced the development
of a new type of silicon rectifier, which can collect enough
energy from indoor WiFi signals to light up mobile phones and
activate related chips [56]. In 2020, the new Mophile wireless
charging board was released, which can charge four electronic
devices at the same time [57]. Furthermore, Xiaomi mobile
phone announced the first 80 watt wireless second charging,
charging 100% in 19 minutes, setting a new global record for
wireless charging speed [58].

In early 2021, Powercast was awarded the BIG Innovation
Awards 2021 by the Business Intelligence Group for their in-
novative wirelessly powered RFID temperature scanning sys-
tem, enabling convenient and secure monitoring of employee
temperatures to aid in Covid-19 protocols [59]. Later, At-
mosic and Energous Corporation claimed “first interoperability
energy harvesting” for wireless charging, enabling charging
from up to 2 meters away [60]. In the same year, Belgian
company, e-peas Semiconductor introduced two PMICs for
IoT, providing enhanced EH capabilities with input voltages
ranging from 100 mV to 4.5V and output voltages up to 3.3V,
supporting 60 mA in high power mode [61]. In 2022, Atmosic
integrates EH into the system-on-a-chip (SoC) for low-power
IoT devices directly, drawing only 0.7 mA [62]. Later, Univ.
of South Florida researchers created ”perfect EM absorption”
rectenna using metamaterials for RF-based EH, capturing low-
intensity RF waves (100 µW) emitted by cell phone towers
[63], [64]. In 2023, Ossia’s Cota Real Wireless Power enables
wirelessly powered IoT devices, such as electronic shelf labels
and asset tracking systems, without the need for batteries or
wiring, approved in over 62 countries [65].

Stated thus, we summarize the major historical development
milestones of WPT by Table III in chronological order.

B. SWIPT and WPCN

In wireless communication systems, RF-based EH has
formed two popular applications. The first application is
SWIPT, as shown in Fig. 3, where WPT and wireless in-
formation transmission (WIT) are realized by transmitting
information and energy simultaneously from one or multiple
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Fig. 5. The PS and TS receiver architectures for SWIPT

transmitters to one or multiple receivers [66]. The receivers
in SWIPT systems can either be co-located or separated. In
the case of separated receivers, the energy receiver (ER) and
the information receiver (IR) are distinct devices. The ER is a
low-power device designed to receive and store energy, while
the IR is responsible for receiving information. In the case
of co-located receivers, each receiver is a single low-power
device that simultaneously receives information and charges
its battery. The second application is WPCN [67], where a
hyper access point (H-AP) transmits power to WDs in the
downlink WPT using RF signals carrying energy, and then
the WDs utilize the harvested energy to transmit information
in the uplink WIT using RF signals carrying information.

Particularly, in SWIPT systems, the power sensitivity of
practical circuits for EH and ID from RF signals differs
significantly (e.g., -10 dBm for EH versus -60 dBm for ID).
This discrepancy makes it impossible to directly decode the
carried information and power of the RF signals. In order
to enable SWIPT technology, the authors in [68] proposed
two practical receiver architectures: power splitting (PS) and
time switching (TS) receiver architectures, as illustrated in
Fig. 5. In the PS architecture, the received RF signals are
divided into two separate streams using a power splitter, with
a predetermined PS ratio. One stream is directed towards an
energy circuit for harvesting power, while the other stream
is forwarded to an information decoder for decoding the
transmitted information. In essence, the PS receiver performs
simultaneous EH and ID. In the PS architecture, the received
RF signals are alternately processed by either an energy circuit
for EH or an information decoder for ID, based on a predefined
TS ratio. In this case, the TS receiver periodically switches
between EH and ID operations.

Although theoretical possibilities exist for EH in SWIPT
systems using PS and TS receiver architectures, practical
implementation becomes challenging when it comes to har-
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vesting energy from the same received RF signals. In con-
trast, WPCN systems are relatively easier to implement since
they separate EH and information decoding (ID) functions at
dedicated receivers, without being constrained by the circuit
sensitivity of EH and ID. However, both SWIPT and WPCN
have been extensively studied in various wireless communica-
tion networks, such as WSN [69], [70], cooperative relay [71],
[72], multi-input multi-output (MIMO) [73], [74], orthogonal
frequency division multiplexing (OFDM) [75], non-orthogonal
multiple access (NOMA) [76], CR [77], [78], device-to-device
(D2D) [79], [80], and unmanned aerial vehicle (UAV) systems
[81], [82].

C. Practical EH Circuit Features

In practice, wireless transmission signals experience a
certain degree of distortion when passing through the RF
channel1, where the distortion can be categorized into linear
distortion and nonlinear distortion. The actual EH process
is shown in Fig. 6, where the transmitter transmits RF sig-
nals to the receiver, and then converts the power of the
received RF signals into direct current (i.e., RF-DC) through
a rectifier antenna for storage or use. The rectifier is mainly
composed of nonlinear circuit components such as diodes,
transistors connected with diodes, etc., in which the linear
distortion primarily arises from some passive components
like filters, whereas the nonlinear distortion mainly stems
from some active devices such as amplifiers and frequency
mixers. Consequently, the energy harvested by EH circuit
tends to exhibit nonlinear characteristics rather than linear
ones due to the influence of electronic circuit components
[16]. Furthermore, due to the saturation effect of practical EH
circuit, the amount of harvested energy at the receiver does not
always increase proportionally with the input power. Instead, it
initially increases but eventually reaches a point of saturation,
becoming stable.

Initially, it was commonly assumed that the harvested
energy could be linearly increased by increasing the power of
received RF signals. However, it was later discovered that the
linear EH model was too idealized, and practical EH circuits
exhibit nonlinear behavior instead of linear behavior. Using
the linear EH model may result in mismatching the practical
systems, yielding fault design output and causing system
performance loss and the inefficiency of SWIPT, WPCN,
WPT, and EH-enabled networks. As a result, various EH
models have been proposed by scholars in recent years to

1The so-called RF channel here refers to the RF transceiver information
channel, excluding the spatial fading channel.

address these limitations. As the EH models play a crucial
role in the design of RF-based EH wireless powered systems
and have different features in the application, this article
provides a comprehensive survey of these models, aiming to
offer valuable insights for their applications in the design
of WPT, SWIPT, WPCN and EH-enabled systems.

III. NONLINEAR EH MODELS

Notation: Q(·) is the function of the output/harvested power.
Pin is the input/received RF power. Psen is the harvester’s
sensitivity. Psat is the saturation threshold of EH. Qmax is the
maximum harvested power when practical EH circuit reaches
saturation. η/η̃(·) is the energy conversion efficiency/function.

A. Linear EH Model (Ln)

In traditional linear EH model, the harvested energy QLn is
modeled as a linear function in terms of the input RF power
Pin [18], which is given by

QLn(Pin) = ηPin, (1)

where η denotes the energy conversion efficiency, such that
0 ≤ η ≤ 1. It is seen that η is independent of Pin,
and QLn(Pin) is increment with Pin. However, the linear
EH model ignores the following: (i) the dependence of RF
harvesting efficiency on input power, (ii) the harvester cannot
operate below the sensitivity threshold, and (iii) the harvested
power saturates when the input power level is above a power
threshold.

As mentioned in section II-C, one of the significant ad-
vances in wireless EH is the rectifier, which is able to convert
RF power into DC voltage. Due to the presence of nonlinear
components such as diodes, inductors, and capacitors in prac-
tical EH circuits, the conversion of harvested energy often
shows nonlinear characteristics. Specifically, the amount of
harvested energy at the EH receiver first increases with the
increment of the input RF power Pin, reaching a maximum
value, and then decrease. This behavior can be likened to an
”S” curve [83]. Therefore, the conventional linear EH model
is inadequate to capture the nonlinear features inherent in
practical EH circuits employed in wireless communication
networks.

B. Logistic Nonlinear EH Model (Lg)

Due to the limitations of traditional linear EH model, E.
Boshkovska, et al. [84] presented a nonlinear EH model based
on empirical data obtained from practical EH circuit mea-
surements. This model incorporates a pseudo-concave logic
function (i.e., “S” shape) to approximately capture the non-
linear behavior exhibited by EH circuits. The corresponding
mathematical description is given by

QLg(Pin) =

Qmax

1+e−a(Pin−b) − Qmax

1+eab

1− 1
1+eab

, (2)

where Pin is the input RF power with a unit of Watt, Qmax,
a and b are constants. Particularly, Qmax is the maximum
harvested power when practical EH circuit reaches saturation.
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TABLE IV
PARAMETERS FOR THE LG NONLINEAR EH MODEL

Qmax (mW) a b Ref.

20 6400 0.003 [84]–[86]

24 1500 0.0014 [87]

24 150 0.0014 [88]

24 1500 0.0022 [89]

24 150 0.014 [90]

9.097 (uW) 47083 2.9uW [91]

a and b are determined by EH circuit properties. By reviewing
the existing literature, we summarize the available parameters
for Qmax, a, and b in Table IV.

C. Heuristic Nonlinear EH Model (Hr)
In traditional linear EH model, the conversion efficiency,

denoted as η, is typically assumed to be constant [70]- [82].
while, η generally varies with Pin in practice. To account for
this variability, a heuristic EH model (Hr) was proposed in
[92], wherein η was modeled as a function of Pin. That is

QHr(Pin) = η̃(Pin)Pin,

=
p2P

2
in + p1Pin + p0

q3P 3
in + q2P 2

in + q1Pin + q0
Pin,

=
p2P

3
in + p1P

2
in + p0Pin

q3P 3
in + q2P 2

in + q1Pin + q0
, (3)

where η̃(·) is the conversion efficiency function, i.e.,

η̃(Pin) =
p2P

2
in + p1Pin + p0

q3P 3
in + q2P 2

in + q1Pin + q0
, (4)

where Pin measures in milliwatt, the parameters
p0, p1, p2, q0, q1, q2 and q3 vary for different RF-DC
circuits (i.e., different EH receiver). In [92, Table II], certain
fitting parameters for p0, p1, p2, q0, q1 and q2 were provided,
where q3 is normalized to 1.

D. Two Piecewise EH Model (2-Pw)
As the mathematical expressions of the logistic (Lg) and

heuristic (Hr) EH models, i.e., (1) and (3), are highly complex,
nonlinear, and non-convex functions, they pose challenges in
using them to analyze optimization problems in wireless com-
munication networks and derive theoretical analysis results.
To address this issue and effectively capture the nonlinear
characteristics of practical EH circuits, the authors in [93]
presented a two piecewise linear EH model (2-Pw) without
considering the sensitive voltage characteristics of EH circuit,
which is

Q2-Pw(Pin) =

{
ηPin, Pin ≤ Psat

Qmax, Pin > Psat
, (5)

where Psat denotes the saturation threshold of EH, set to be 10
dBm in [93]. In this model, the harvested energy Q2-Pw(Pin)
is a constant calculated by ηPsat when the input power Pin

exceeds the threshold Psat.

E. Three Piecewise EH Model (3-Pw)

Considering both the sensitivity and saturation characteris-
tics of practical EH circuits, the authors in [94] proposed a
model that captures the EH behavior as an arbitrary nonlinear,
continuous, and non-decreasing function with respect to the
input power, i.e.,

Q3-Pw(Pin) =


0, 0 ≤ Pin ≤ Psen

η̃(Pin)Pin Psen ≤ Pin ≤ Psat

η̃(Psat)Psat Pin ≥ Psat

. (6)

where η̃(·) is modeled as a high-order polynomial in the dBm
scale, offering higher granularity over the very small input
power values. i.e.,

η̃(x) = w0 +

W∑
i=1

wi

(
10 log10(x)

)i
, x ∈ Pin, (7)

with η̃(x) being parametrized by (W + 1) real numbers (the
coefficients of the polynomial). Here, W represents the degree
of the polynomial. Additionally, the model in (6) can be
utilized to evaluate a simplified piecewise linear approximation
in the following,

Q3-Pw(Pin) =


0, Pin < Psen

η(Pin − Psen) Psen ≤ Pin ≤ Psat

Qmax Pin > Psat

. (8)

In order to better capture the actual EH circuit characteris-
tics and reduce errors, a more refined form of 3-Pw EH model
is presented in [94]–[96], which is given by

Q3-Pw(Pin) =


0, Pin < P 1

th

aiPin + bi P i
th ≤ Pin ≤ P i+1

th ,

(i = 1, ..., N − 1)

Qmax, Pin > PN
th

, (9)

where Pth = {P i
th|1 ≤ i ≤ N} (in mW) are thresholds on Pin

for (N +1) linear segments. ai and bi (in mW) are the scope
and the intercept for the i-th linear pieces, respectively. Each
linear segment is obtained through linear regression, aiming
to minimize the deviation from practical EH circuit.

F. Modified Logistic EH Model (Mlg)

This model, proposed by [97], also expresses the input
and output power as a nonlinear function, and points out
that all any nonlinear EH model should satisfy the following
properties:
(i) When Pin falls below the sensitivity threshold Psen of EH

circuit, the circuit does not work and the output power is
zero, i.e., Q(Pin) = 0.

(ii) Q(Pin) is a monotonically increasing function of Pin.
(iii) With the increment of Pin, the EH efficiency Q(Pin)

Pin
first

increases to its maximum then decreases.
(iv) When EH circuit reaches saturation, Q(Pin) ≤ Qmax for

all Pin.
Although the Lg model, i.e., (2), was presented in [84], it does
not take into account the sensitive characteristics of EH circuit
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TABLE V
PARAMETERS FOR THE MLG NONLINEAR EH MODEL

Qmax (mW) τ ν Psen Ref. [98]

4.927 274 0.29 0.064 Powercast P2110

8.2 411 2.2 0.08 Avago HSMS-286x

37.5 116 2.3 0.08 Avago HSMS-286x

0.11× 10−3 47 2.4 0.08 Avago HSMS-286x

and cannot satisfy the property (i). To address this limitation,
the authors in [97] proposed a modified logistic EH model,
which is

QMlg(Pin) =

[
Qmax

e−τPsen+ν

( 1 + eτPsen+ν

1 + e−τPin+ν
− 1

)]+
, (10)

where τ and ν reflect the steepness of this model, enabling it
to capture the nonlinear dynamics of EH circuit. The values
of these parameters can be found in Table V.

G. 2-nd Order Polynomial EH Model (2-ord)

This model was proposed in [99], which could achieve a
good fitting effect in microwatt through data fitting. It is given
by

Q2-ord(Pin) = α1P
2
in + α2Pin + α3, (11)

where α1 ≤ 0 provides a good match for EH measurements.
Typically, Q2-ord(Pin) = 0 has one root in close proximity
to 0 and another positive root with a larger absolute value,
indicating that α2 > 0. Furthermore, it is likely that EH circuit
does not work until the input power exceeds a threshold, hence
α3 ≤ 0. The values of the parameters depend on the actual
antenna design and circuitry, which can be determined by data
fitting tools.

H. Fractional EH Model (Fr)

Since the logistic and heuristic (Lg and Hr) EH models
cannot be mathematically tractable to theoretically derive
the probability density function (PDF) and the cumulative
distribution function (CDF) of the average output power of
EH circuit, a simpler fractional EH model (Fr) was presented
in [100], i.e.,

QFr(Pin) =
aPin + b

Pin + c
− b

c
, (12)

where a, b and c are constants determined by standard curve
fitting. Also, the term b

c is included to ensure that the output
power is zero when the input power is zero. The fitted
parameters of the Fr model are presented in Table VI according
to [100].

1RMSE is short for the root mean squared error.

TABLE VI
PARAMETERS FOR THE FR NONLINEAR EH MODEL

a b c RMSE 1 Ref.

2.463 1.635 0.826 0.009737
[100]0.3929 0.01675 0.04401 0.0003993

I. Error function-based EH model (Ef)

Similar to EH models mentioned above, considering two
limitations of practical EH circuit, i.e., (i) when the input
power is relatively large, the output power reaches a saturation
state; (ii) when the input power is below the sensitivity
level, the output power drops to zero, a nonlinear EH model
was proposed in [101]. This model effectively captures the
saturation and sensitivity features of practical EH circuit and
is given by

QEf(Pin) = Qmax

[
erf(a((Pin − Psen) + b))− erf(ab)

1− erf(ab)

]+
,

(13)

where a > 0, b > 0, [x]+ = max(x, 0), and erf(x) =
2√
π

∫ x

0
e−t2dt is the error function. Besides, the parameters

a, b and Qmax can be determined via a best-fit match with
experimental data, i.e., a = 0.0086, b = 11.8689µW, (a and
b are best fit [101, 21]), and Qmax = 10.219µW. Meanwhile,
when the input power is large, a asymptotic model is given by

QEf(Pin) = Qmax

[
1− e−κ(Pin−Psen)

]+
, (14)

where κ = 2 ae−a2b2

√
π(1−erf(ab))

.

J. Logarithmic nonlinear EH model (Log)

In the 900 MHz frequency band, the authors [102] presented
a logarithmic nonlinear EH model (Log). This model offers
the benefit of simplifying the optimization problem while
providing a more accurate representation of the received
power, which is

QLog(x) = a log(1 + bx), s.t. 0 ≤ x ≤ c (15)

where a, b and c are determined by detailed circuit. Specifi-
cally, a and b are obtained by minimizing the sum of squared
error between the rectifier model and the data extracted using
Engauge Digitizer [102, 18], c is determined by examining
an extracted data that represents the operational limit of the
rectifier [102]. In the specific case of [102, 27], the values are
a = 0.0319 and b = 3.6169. For [102, 20], the values are
a = 0.2411 and b = 0.4566. In both cases, c is set to 3 mW.

K. Joint Model of Nonlinear Conversion Efficiency (Jm)

Typically, the energy conversion efficiency, i.e., η, is com-
monly modeled as a function of the input power, disregarding
the influence of the operating frequency. Therefore, to account
for the impact of both input power and operating frequency,
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a joint model of the nonlinear conversion efficiency (Jm) was
introduced in [103]. That is,

ηJm(Pin, f) =
1

ηJmP (Pr)
ηJmP (Pin)η

Jm
f (f), (16)

where ηJmP (Pin) and ηJmf (f) are the conversion efficiency
functions in terms of the input power and frequency re-
spectively. Especially, ηJmP (Pin) adopts the 2-ord model in
(11); ηJmf (f) for Type-I harvester is given by ηJmf (f) =∑n

i=1 aie
[−(

f−bi
ci

)2], where f is the frequency in hertz, ηJmf
is the efficiency in percentage, n is the order of the Gaussian
model, and the parameters of a1, a2, ..., an, b1, b2, ..., bn, and
c1, c2, ..., cn are different for different harvesters, which can
be determined from the experimental data, see [103, Table
V]; ηJmf (f) for Type-II harvester is given by ηJmf (f) =
a0 +

∑n
i=1(ai cos(ifw) + bi sin(ifw)), where a0, a2, ..., an,

b1, b2, ..., bn and w are the parameters to be fit for different
harvesters, see [103, Table VIII]. Besides, ηJmP (Pr) is the value
of η at Pr with fixed frequency fr.

Similar to the Hr model, the harvested power via the Jm
model can be given by

QJm(Pin) = ηJm(Pin, f)Pin. (17)

IV. COMPARISON OF NONLINEAR EH MODELS

A. Evolution of Nonlinear EH Models

The linear EH model, which is often used for initial re-
search, fails to capture the nonlinear behavior exhibited by
practical EH circuits. Meanwhile, utilizing results obtained

with the linear EH model for the design of wireless com-
munication systems would lead to some serious bias in terms
of performance evaluations. Currently, two main branches of
RF-based EH models exist. One is the linear model, while
the other is the nonlinear model, as depicted in Fig. 7.
In 2015, the logistic nonlinear EH model was introduced,
opening up a new research path for RF-based EH. However,
the linear EH model continues to receive attention. Although
the logistic EH model aligns better with the practical EH
circuit’s characteristics, it possesses a more complex form.
The model function is typically non-convex and non-concave,
posing significant challenges and difficulties in analyzing
the performance of wireless communication systems. These
challenges encompass optimization problems and deriving
theoretical results. Consequently, various approximate forms
of nonlinear EH models have been proposed. For instance, in
2016, the two-piecewise EH model was introduced, followed
by the three-piecewise EH model in 2018. These models aimed
to better capture the nonlinear characteristics and account for
the sensitive nature of practical EH circuits. Furthermore, a
modified logistic EH model, similar to the logistic EH model,
was proposed in 2017. Additionally, several other models have
been presented, such as the heuristic, 2nd order polynomial,
fractional, error function-based, Joint model, and logarithmic
EH models. These models were proposed between 2016 and
2023, respectively.
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TABLE VII
THE SUMMARIZATION AND COMPARISON OF NONLINEAR EH MODELS

Parameters in each EH model: Q(·) is the function of the output/harvested power. Pin is the input/received RF power. Psen and Psat are the
sensitivity and saturation thresholds of practical EH circuit, respectively. Qmax is the maximum harvested power when EH circuit reaches
saturation. η/η̃(·) is the energy conversion efficiency/function.

EH models Formulations Sensitivity Saturation η

Linear (Ln) [18] QLn(Pin) = ηPin, (1) × × constant

Logistic (Lg) [84] QLg(Pin) =

Qmax

1+e−a(Pin−b) − Qmax

1+eab

1− 1
1+eab

, (2),

where a and b are constants determined by EH circuit.

×
√

–

Heuristic (Hr) [92] QHr(Pin) = η̃(Pin)Pin =
p2P 3

in + p1P 2
in + p0Pin

q3P 3
in + q2P 2

in + q1Pin + q0
, (3)

where p0, p1, p2, q0, q1, q2, q3 are constants.

×
√

η̃(Pin)

Two Piecewise (2-Pw)
[93] Q2-Pw(Pin) =

{
ηPin, Pin ≤ Psat

Qmax, Pin > Psat
, (5) ×

√
constant

Three Piecewise (3-Pw)
[94]–[96]

Q3-Pw(Pin) =


0, 0 ≤ Pin ≤ Psen

η̃(Pin)Pin Psen ≤ Pin ≤ Psat

η̃(Psat)Psat Pin ≥ Psat

, (6)

where η̃(x) = w0 +
∑W

i=1 wi

(
10 log10(x)

)i
, x ∈ Pin, (7).

√ √
η̃(x)

Q3-Pw(Pin) =


0, Pin < Psen

ηPin Psen ≤ Pin ≤ Psat

Qmax Pin > Psat

, (8)

Q3-Pw(Pin) =


0, Pin < P 1

th
aiPin + bi P i

th ≤ Pin ≤ P i+1
th ,

(i = 1, ..., N − 1)

Qmax, Pin > PN
th

, (9)

where Pth = {P i
th|1 ≤ i ≤ N} mW are thresholds on Pin for (N + 1)

linear segments. ai and bi mW are the scope and the intercept for the i-th
linear pieces, respectively.

√ √
constant

Modify Logistic (Mlg)
[97]

QMlg(Pin) =

[
Qmax

e−τPsen+ν

( 1 + eτPsen+ν

1 + e−τPin+ν
− 1

)]+
, (10)

where τ and ν are constants.

√ √
–

2-nd order polynomial
(2-ord) [99]

Q2-ord(Pin) = α1P
2
in + α2Pin + α3, (11)

where α1 ≤ 0, α2 > 0 and α3 ≤ 0.

×
√

–

Fractional (Fr) [100] QFr(Pin) =
aPin + b

Pin + c
−

b

c
, (12)

where a, b, and c are constants.

×
√

–

Error function (Ef) [101] QEf(Pin) = Qmax

[
erf(a((Pin − Psen) + b))− erf(ab)

1− erf(ab)

]+
, (13)

where a > 0, b > 0, and erf(x) = 2√
π

∫ x
0 e−t2dt is the error function.

√ √
–

Logarithmic (Log) [102] QLog(x) = a log(1 + bx), s.t. 0 ≤ x ≤ c, (15)

where a, b and c are determined by detailed circuit.

×
√

–

Joint Model (Jm) [103]

QJm(Pin) = η̃Jm(Pin, f)Pin, (17)

where η̃Jm(Pin, f) = 1
η̃Jm
P

(Pr)
η̃JmP (Pin)η̃

Jm
f (f)(16), η̃JmP (Pin) and

η̃Jmf (f) are the conversion efficiency functions of power and frequency,
respectively, η̃JmP (Pr) is the value of η at Pr with fixed frequency fr.

√ √
η̃Jm(Pin, f)
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Fig. 8. Comparison of current EH models in milliwatt domain

B. Analyzing Modeling Characteristics

For comparison, the aforementioned EH models are sum-
marized in Table VII with following conclusions:

- The sensitivity of EH circuit: Among the existing nonlin-
ear EH models, the 3-Pw, Mlg, Ef and Jm EH models
take into account the sensitivity of practical EH circuit2,
others do not.

- The saturation of EH circuit: The saturation features
should be the primary nonlinear characteristic of practical
EH circuits, so all nonlinear models reflect this point
except for the Ln EH model.

- The energy conversion efficiency η: The Lg, Mlg, 2-ord,
Fr, Ef, Log EH models do not consider the characteri-
zation of η. In the Ln, 2-Pw and 3-Pw EH models, η is
usually constructed as a constant. In order to characterize
the nonlinearity of practical EH circuit, a variant η is
described by the power or the frequency in the Hr, 3-Pw
and Jm EH models, respectively. For example, η in the Hr
and 3-Pw EH models is related to the power, and η in the
JM EH model is affected by both power and frequency.

C. Analyzing Fitting Performance

To better understand and analyze each EH model, we fit the
relationship between the input and output of EH in milliwatt
and microwatt domains respectively for all EH models3, ac-
cording to the measurement data in [104]. The corresponding
results are shown in Fig. 8 and Fig. 9, respectively. It can be
observed that

- When the input power Pin is relatively low (about 0 ∼ 20
mW, or 0 ∼ 10 µW), the output power Pout can be ap-
proximately linearly increased. That is, it can be obtained
by using the Ln EH model with an appropriate η.

- When the input power Pin is relatively large, practical
EH circuit enters a saturation state where the output
power Pout either increases slowly or remains constant.

2Since the Jm EH model is formed with both power and frequency, it can
adopt any EH nonlinear model in terms of the power (input power).

3MATLAB is used for fitting.
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Fig. 10. The application hotspots of existing nonlinear EH models

At the moment, the error caused by the Ln EH model
is relatively so large, which cannot reflect the saturation
characteristics of EH circuit. That is, the results obtained
by the Ln EH model are not imprecise, which may lead
to an incorrect evaluation of the system performance.

- The Lg, Mlg and Ef (and 3-Pw) EH models can achieve
relatively better performance compared with others4. The
Hr EH model follows closely but has a more complex
form. Although the remaining models bring some errors
to some extent, they may offer certain benefits in studying
different problems. For example, a simplified form of
the EH model can reduce the analytical complexity of
a problem and provide approximate solutions to the
situations that are otherwise difficult to analyze.

V. THE ROAD TO STUDY THE NONLINEAR EH MODELS

This section provides an overview of previous studies uti-
lizing the aforementioned nonlinear EH models, as illustrated
in Fig. 10. Almost all existing nonlinear EH models have
been employed and investigated extensively. Moreover, we
summarized the key techniques and scenarios for the optimal

4The 3-Pw EH model in (9) also can obtain good fitting results. For a
simple description, we just compare the 3-Pw EH model in (8) here.
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Fig. 11. Key techniques and scenarios for the optimal design and performance analysis of the RF-based EH systems under the nonlinear EH models

design and performance analysis of the RF-based EH systems
under the nonlinear EH models as shown in Fig. 11.

In the sequel, we delve into the specific applications of each
model for further analysis and discussion.

1) Lg: Applications: The application of the Lg nonlinear
EH model can be summarized into two branches, i.e., mainly
focusing on the SWIPT systems and the WPCN systems,
respectively, as shown in VIII. In the SWIPT systems, the Lg
model has been studied in various wireless communication
networks including multiple input single output (MISO) [85]–
[87], [90], [105]–[122], MIMO [123]–[129], relay [130]–
[141], P2P [142]–[149], multi-user [150]–[155], OFDM [156],
NOMA [158]–[168], mmWave [169], rate-splitting multiple
access (RSMA) [170], CR [171]–[174], cellular [175], [176],
HetNet [177], [178], intelligent reflecting surface (IRS) [179]–
[185], [187], UAV [186], [188]–[190], and others [191]–[193].
Meanwhile, the WPCN system also has been investigated
in many different wireless communication networks, such as
MIMO [88], [194], [195], relay [91], [196], [197], multi-user
[198]–[203], CR [204]–[208], NOMA [209]–[214], mobile
edge computing (MEC) [215], IRS [216]–[221], UAV [222]–
[227], and others [228]–[234]. The detail shall be introduced
as follows.

The SWIPT systems with the Lg EH model: The Lg EH
model has been studied in diverse communication network
scenarios such as MISO, MIMO, relay, P2P, and multi-user,
as well as with various access technologies such as OFDM,
NOMA, RSMA, and mmWave. Furthermore, the Lg EH
model has been considered in different network topologies like

CR, cellular networks, and HetNet, while also being applied
and studied with emerging technologies like IRS and UAV.
Additionally, the Lg EH model has been examined in other
specialized systems.

• MISO SWIPT Systems: In [85]–[87], [90], [109], [110],
[116] and [117], the multi-user SWIPT system was ex-
plored, where the maximization of the total harvested
power, the minimization of the total transmit power, the
multi-objective optimization, and the outage probability
and reliable throughput were involved, respectively. In
[111]–[113], [118] and [119], the secure MISO SWIPT
networks were investigated, where the minimization of
transmit power, the maximization of artificial noise power
and the global secrecy EE were involved, respectively. In
[114], the heterogeneous multi-user MISO SWIPT net-
works with coexisting PS and TS users was considered,
where the system’s required transmit power was mini-
mized by jointly optimizing the transmit beamforming
vectors, PS ratios and TS ratios. In [105], the MISO
SWIPT system was explored with the PS receiver, where
the sum harvested energy and harvested EE were maxi-
mized. In [120], the MISO SWIPT networks with mul-
tiple passive eavesdroppers eves was studied, where the
secrecy EE was involved. In [106], a multiuser downlink
MISO SWIPT network with a PS mechanism was consid-
ered, where the total harvested energy was maximized. In
[107], a multi-user full-duplex MISO SWIPT system with
imperfect channel state information (CSI) was investi-
gated, where the minimum average total harvested power
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TABLE VIII
THE APPLICATIONS OF THE LG AND HR NONLEIANR EH MODEL

Lg nonleianr EH model

Systems Scenario Goal Method

SWIPT

MISO

Harvested power/EH efficiency [85]–[87], [105]–[108], transmit power
[90], [109]–[115], multi-objective optimization [116], outage [117],
artificial noise power [118], secrecy EE [119], [120], secrecy rate [121],
throughput, energy cost and interference [122]

Convex optimization
theory, SDR, SCA,
S-procedure,
ADMM, Lagrangian,
probability theory,
mathematic

MIMO
EH efficiency [123], R-E region [124], outage-constrained secrecy
rate [125], SE and EE [126], max-min harvested energy [127], [128],
harvested energy [129]

Relay

Achievable rate [130], transmit power [131], secrecy outage [132],
[133], residual energy [134], sum rate [135], throughput [136], rate
fairness [137], ergodic secrecy capacity [138], EE [139], outage and
ergodic capacity [140], outage [141]

P2P Rate [142], [143], harvested energy [144], R-E region [145]–[147], I-E
region [148], [149],

Multi-user R-E region [150], [151], outage [152], [153], SINR [154], transmit
power minimization and the sum harvested energy maximization [155],

OFDM Achievable sum rate [156], power efficiency [157]

NOMA Harvested energy [158], [159], transmit power [160]–[162], SE/EE
[163], [164], sum rate [165]–[167], throughput [168]

mmWave Secure rate [169]

RSMA Secure EE [170]

CR Transmit power/harvested power [171]–[174]

Cellular Mean square error [175], sum rate [176]

HetNet Secure EE [177], capacity [178]

IRS-assisted Transmit power minimization [179]–[181], EE and secure [182], max-
min EE [183], energy shortage probability and bit error rate [184]

IRS-assisted RSMA Transmit power minimization [185]

IRS-empowered UAV Achievable sum rate [186], energy consumption [187]

UAV Coverage provability-constrained throughput [188], coverage perfor-
mance [189], [190]

Others Outage [191], chievable rate and region [192], sum rate [193]

WPCN

MIMO Transmit power [88], EH efficiency [194], harvested power [195]

Convex optimization
theory, probability
theory, mathematic

Relay Outage [91], transmit power [196], throughput [197]

Multi-user Energy coverage [198], throughput [199]–[201], sum-rate [202], suc-
cessful transmission probability [203]

CR Throughput [204], secrecy EE [205], [206], spectrum efficiency [207],
[208]

NOMA Rate [209], achievable computation rate [210], [211], energy consump-
tion [212], computation efficiency [213], EE [214]

MEC Energy maximization [215]

IRS-assisted Transmit power [216]–[218], weighted sum throughput [219], harvested
energy [220], outage [221]

UAV Throughput [222], [223], harvested energy [224], AoI [225], max-min
harvested power [226], sum computation bits [227]

Others
Throughput [228], AoI [229], harvested power [230], energy consump-
tion [231], logit Pearson type III distribution of WPT [232], transmit
power minimization [233], EE [234]

Hr nonleianr EH model

Network model Scenario Goal Method

SWIPT Relay Achievable rate [130] Convex optimization
theoryWPCN MIMO EE [235]
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was maximized. In [121], a millimeter-wave (MmWave)
secure MISO SWIPT system was considered with two
RF chain antenna architectures, where the secrecy rate
was maximized. In [122], the MISO cognitive SWIPT
network was considered, where the maximization of the
system throughput, and the minimization of the energy
cost and interference were explored. In [108] and [115],
the multi-cell multi-user MISO SWIPT systems were
considered, where the maximization of the EH efficiency
and the minimization of the total transmit power were
studied, respectively.

• MIMO SWIPT Systems: In [123] and [124], the
MIMO SWIPT system was considered, where the har-
vested power efficiency and the rate-energy (R-E) re-
gion were maximized, respectively. In [125], a MIMO
wiretap SWIPT network was studied, where the outage-
constrained secrecy rate was maximized. In [126], a
mMIMO SWIPT system was considered, where the spec-
tral efficiency (SE) and EE were maximized. In [127]
and [128], a secure downlink multi-user MIMO SWIPT
IoT system was considered with cooperative jamming,
where the max-min harvested energy was investigated
with norm-bounded channel uncertainties. In [129], a
distributed cell-free massive MIMO SWIPT network was
considered with the TS receiver, where the harvested
energy per-slot and the average achievable downlink rate
were studied.

• Relay SWIPT Systems: In [130], a MIMO DF relay
SWIPT system was considered, where the end-to-end
achievable rate was maximized. In [132], a secure two-
hop DF relay SWIPT system was considered, where the
secrecy outage probability was minimized. In [134], a
secure two-hop DF relay-assisted CR SWIPT system was
considered, where the residual energy was maximized
with both Hr and Lg nonlinear EH models. In [135],
the two-hop relay-assisted multi-user OFDMA SWIPT
network was studied, where the sum rate of the system
was maximized. In [131], a multi-relay assisted SWIPT
network was considered with imperfect CSI, where the to-
tal transmit power of the system was minimized. In [136],
a cooperative DF relay network with TS receiver was
studied, where the system throughput was evaluated. In
[137], a multi-pair DF relay network was considered with
a presented PS-based EH architecture, where the fairness
of end-to-end rate among user pairs was maximized. In
[138], an amplify and forward (AF) multi-antenna relay-
ing system was considered, where the ergodic secrecy
capacity was studied with the PS and TS protocols. In
[139], a secure SWIPT DF relay network was studied,
where the EE of the system was maximized with the
PS and TS schemes. In [140], the cooperative ambient
backscatter DF relay SWIPT system was considered,
where the outage probability and ergodic capacity were
discussed. Similar to [140], the authors in [133] studied
the secrecy outage probability for the cooperative ambient
backscatter DF relay SWIPT system with multiple tags
and one eavesdropper, where a tag selection scheme
was presented. In [141], the DF relaying cooperative

SWIPT system in IoT was considered, where the outage
performance was studied over Rayleigh distributed fading
channel.

• Point-to-Point SWIPT Systems: In [142], a P2P SWIPT
system was studied, where average rate of the system was
investigated. In [143]–[145], the point-to-point SWIPT
systems were considered, where the maximizations of the
average achievable rate and the average harvested energy,
and the R-E tradeoff were explored, respectively. In [146],
a P2P MIMO system was studied, where the R-E region
was involved. In [148] and [149], the information-energy
(I-E) region was studied for SWIPT system in mobility
scenarios, where a moving transmitter transmits informa-
tion and energy to a PS-based receiver. In [147], the R–E
region was maximized for a point-to-point SWIPT in an
ergodic fading channel, where the dynamic PS scheme
was presented.

• Multi-user SWIPT Systems: In [150], the R-E re-
gion was investigated for SWIPT systems over multi-
user interference SISO channels, where both TS and PS
schemes were considered. In [152] and [153], a multi-
user wireless powered SWIPT system was considered,
where the outage probability and the reliable throughput
performance were analyzed. In [151], the achievable R-
E region was studied for downlink SWIPT system with
multiple EH users, where both TS and PS protocols
were involved. In [154], a SWIPT-enabled multi-group
multicasting system with heterogeneous users was con-
sidered, where the maximization of weighted sum-SINR
and the maximization of minimum SINR of the intended
users were studied. In [155], the multigroup multicast
precoder designs were studied for SWIPT Systems with
heterogeneous users, where the total transmit power was
minimized and the sum harvested energy was maximized.

• OFDM SWIPT Systems: In [156], the achievable sum
rate was maximized for the OFDM-based SWIPT net-
works, where the cooperative transmission strategy was
presented. In [157], the power efficiency problem was
studied for a multi-user MIMO-OFDM SWIPT system,
where the beamforming design and antenna selection
were jointly optimized.

• NOMA SWIPT Systems: In [158] and [159], the down-
link NOMA CR SWIPT network was considered, where
the harvested energy of each secondary users was max-
imized. In [160], a MISO-NOMA SWIPT system was
considered, where the system transmit power was min-
imized. In [163], the downlink NOMA-assisted MISO-
SWIPT system serving multiple ID-EH and ID users
was studied, where the SE was maximized with the PS
protocol. In [165], a NOMA-based cellular massive IoT
with SWIPT was considered, where the weighted sum
rate was maximized and the total power consumption was
minimized. In [164] and [166], the multiple users MISO-
NOMA downlink SWIPT networks were considered,
where the spectral and energy efficiencies (SE and EE),
and the sum rate of the system were studied, respectively.
In [168], a UAV-aided SWIPT NOMA network with
artificial jamming was explored, where the throughput
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of the system was maximized. In [167], a multi carrier
MISO NOMA enabling SWIPT system in HetNets was
considered, where the total rate of the system was max-
imized. In [161] and [162], the MISO-NOMA CR-aided
SWIPT under both the bounded and the Gaussian CSI
estimation error mode was considered, where the system
transmit power was minimized.

• mmWave SWIPT Systems: In [169] a millimeter wave
(mmWave) IoT system with SWIPT was considered,
where the secrecy rate was maximized in different cases
of perfect and imperfect CSI.

• RSMA SWIPT Systems: In [170], a RSMA-based
secure SWIPT network under imperfect CSI was con-
sidered, where the robust EE beamforming design was
studied.

• CR SWIPT Systems: In [171], a downlink secure MISO
CR system was considered, where the transmit power of
the primary and secondary networks was minimized. In
[172] and [173], the MISO NOMA CR SWIPT networks
were considered, where the total transmit power was min-
imized. In [174], a downlink MISO CR SWIPT network
was studied, where the weighted sum of the transmit
power and the total harvested energy was maximized with
both Lg and Mlg nonlinear EH models.

• Cellular SWIPT Systems: In [175] and [176], the
cellular IoT SWIPT networks were considered, where the
mean square error was minimized and the weighted sum
rate was maximized, respectively.

• HetNet SWIPT Systems: In [177], the downlink two-
tier SWIPT-aided heterogeneous networks (HetNets) with
multiple eavesdroppers was studied, where the secure EE
was maximize over imperfect CSI. In [178], the downlink
and uplink SWIPT system in 5G dense IoT two-tier
HetNets was considered, where the total utility for user
rates was maximized and discussed.

• IRS-assisted RSMA SWIPT Systems: In [185], the
authors investigated a IRS-assisted MISO SWIPT system
by using rate-splitting multiple access (RSMA), where
the transmit power was minimized.

• IRS-assisted SWIPT Systems: In [179] and [180], the
large IRS-assisted SWIPT system was considered, where
the transmit power was minimized. In [182], a secure
IRS-assisted SWIPT network was studied, where the
EE was maximized. In [183], a multi-user MISO IRS-
aided SWIPT system was considered, where the max-
min individual EE was investigated. In [181], a IRS-aided
secure SWIPT terahertz system was investigated, where
the total transmit power was minimized with imperfect
CSI. In [184], a frequency-modulated (FM) differential
chaos shift keying (DCSK) scheme was presented for the
RIS-assisted SWIPT system, where the energy shortage
probability and bit error rate were involved over the
multipath Rayleigh fading channel.

• IRS-empowered UAV SWIPT Systems: In [186], a IRS-
empowered UAV SWIPT system in IoT was considered,
where the achievable sum-rate maximization problem was
studied. In [187], the maximum energy consumption of
all users was minimized for an IRS-enabled UAV SWIPT

system, where the user scheduling and UAV trajectory
were jointly designed.

• UAV SWIPT Systems: For UAV-assisted SWIPT net-
works, the information-energy (I-E) coverage provability-
constrained throughput was maximized in [188], and the
coverage performance was investigated in [189], [190].
Meanwhile, both PS and TS architectures were employed
at ground users in [188]–[190].

• Other SWIPT Systems: In [191], an ambient backscatter
communication network was studied, where the system
outage probability was minimized for any given backscat-
ter link. In [192], a two-user SWIPT system with multiple
access channels was considered, where the achievable
rate and maximum departure regions were involved. In
[193], the robust sum-rate of the system was maximized
for SWIPT networks with imperfect CSI, where a recon-
figurable metasurface-based transceiver was presented.

The WPCN systems with the Lg EH model: In WPCN
systems, the Lg EH model has been studied in MIMO, relay,
multi-user, CR, NOMA, MEC, IRS, UAV and other wireless
communication scenarios.

• MIMO WPCN Systems: In [88], the secure multi-user
WPCN systems were considered, where the total transmit
power was minimized. In [194], a centralized massive
MIMO WPCN system was studied, where the efficiency
and fairness of EH users were maximized with the utility
functions. In [236], a MIMO wireless powered sensors
network was studied, where the mean square error was
minimized. In [195], a new ER architecture was presented
for a P2P MIMO WPT system, where the ER’s harvested
DC power was maximized by jointly optimizing the
transmit energy beamforming and the adaptive PS ratio.

• Relay WPCN Systems: In [91], a time-slotted single-
user WPCN system was explored, where the outage
probability and the average throughput were analyzed.
In [196], a wireless powered downlink multi-relay multi-
user network was considered with imperfect CSI, where
the total transmit power was minimized by joint designing
the source and relay beamforming. In [197], a relay-based
wireless-powered communication network was studied,
where the end-to-end sum throughput was maximized by
jointly optimizing the power and time fraction for energy
and information transmission.

• Multi-user WPCN Systems: In [198], the energy cov-
erage probability, the average harvested energy, and the
achievable was analyzed for millimeter wave WPCN
networks. In [199], the buffer-constrained throughput per-
formance was studied for a multi-user wireless-powered
communication system, where the finite energy storage
capacity, finite data buffer capacity, stochastic channel
condition and stochastic traffic arrivals were considered.
In [200], the secrecy throughput was maximized from a
wireless-powered transmitter to a desired receiver with
multiple eavesdroppers for WPCN, where a secure two-
phase communication protocol was presented. In [202],
the sum rate was maximized for a WPCN system with
considering TDMA and OFDMA, where the “harvest-



19

then-transmit” protocol was involved. In [201], the min-
imum throughput among all the users was maximized
for a wireless powered communication network with a
remote access point and a group of multiple adjacent
users, where a fairness-aware intra-group cooperative
transmission protocol was proposed. In [203], the wire-
lessly powered backscatter communication network was
considered with large-scale deployment of IoT nodes,
where the the successful transmission probability was
explored under the imperfect CSI with the stochastic
geometry.

• CR WPCN Systems: In [204], a wireless powered CR
network was considered, where the sum throughput of
the secondary users was maximized. In [205], a MISO
EH CR network was studied, where the secrecy EE was
maximized under given outage probability and transmit
power constraints. In [206], a downlink EH CR network
was considered, where the outage-constrained secrecy EE
was maximized. In [207] and [208], a EH-based 5G
cooperative CR network was took into account, where
both SE and the physical layer security were studied.

• NOMA WPCN Systems: In [209], the minimum rate
of users was maximized for the uplink of wireless
powered networks, where by optimizing the allocated
time to EH and information transmission were optimized,
and NOMA is superior to time-division multiple access
(TDMA) for uses. In [210], the achievable computation
rate of the system was maximized for multi-fog servers
assisted NOMA-based wireless powered network, where
the time assignment, the power allocation and the compu-
tation frequency were jointly optimized. In [212], the total
energy consumption was maximized for an uplink M2M
enabled cellular WPCN network, where both NOMA
and TDMA were involved. In [213], the computation
efficiency (i.e., the total computation bits divided by the
consumed energy) was maximized for NOMA-assisted
wireless powered MEC with user cooperation, where the
energy beamforming, time and power allocations were
jointly designed. In [211], the multi-fog server-assisted
NOMA-based wireless powered network was considered,
where the achievable computation rate was maximized.
In [214], the EE maximization problem was studied for
massive MIMO NOMA WPCN system, where the joint
power, time and antenna selection allocation scheme was
presented.

• MEC WPCN Systems: In [215], a residual energy
maximization problem was studied for wireless powered
MEC system with mixed offloading.

• IRS-assisted WPCN Systems: In [216], the transmit
power was minimized for a IRS-assisted WPCN system
under imperfect CSI. In [219], the weighted sum through-
put of system was maximized for a IRS-aided MIMO
full duplex (FD)-WPCN system. In [217] and [218],
the transmit energy consumption was minimized for a
IRS-assisted WPCN system. In [220], the total harvested
energy was maximized of IRS-assisted multiuser wireless
energy transfer system, where the static, the dynamic and
the low complexity TDMA-based beamforming schemes

were studied. In [221], the outage probability was studied
of a double IRS-enabled wireless energy transfer system
over different channel fading scenarios, where the power
transfer efficiency was involved.

• UAV WPCN Systems: In [222], the weighted throughput
was maximized for a UAV empowered WPCN system,
where the dirty paper coding scheme and information-
theoretic uplink-downlink channel duality were exploited.
In [223], the minimum throughput of the system was
maximized for UAV-aided WPCN system, where the
UAVs’ trajectories, the uplink power control and the
time resource allocation were jointly optimized. In [224],
the sum energy harvested by ground users was maxi-
mized for UAV-enabled WPT networks, where a particle
swarm optimization algorithm was presented. In [225],
the average of AoI of the data was minimized for UAV-
assisted wireless powered IoT networks, where the UAV’s
trajectory and the transmission time were jointly opti-
mized. In [226], the UAV’s placement was optimized for
UAV-enabled WPT system, where the max-min harvested
power was involved. In [227], the resource allocation
strategy was studied for UAV-assisted MEC system,
where the sum of computation bits was maximized.

• Other WPCN Systems: In [228], a wireless powered
multimedia communication system was studied, where
the traffic throughput was maximized under statistical
data latency requirement. In [229], a WPT enabled
network was considered, where the long-term average
urgency-aware AoI was minimized. In [230], a retrodi-
rective WPT system was considered, where the average
harvested power was analyzed over Nakagami-m fading
channels. In [231], a hybrid powered communication
system was considered, where the long-term grid energy
expenditure was minimized. In [232], the logit Pearson
type III distribution was utilized in WPT, where the
statistical behavior of WPT was investigated. In [233], a
RF EH assisted quantum battery system was investigated,
where the transmit power was minimized. In [234], the
typical two-layer EH D2D multicast communication was
explored, where the EE was maximized with presenting
a joint cluster formation scheme.

2) Hr: Applications: Due to the complexity of the Hr
EH model, there may be relatively limited application in the
academic. Particularly, in [130] and [235], both the Hr and Lg
EH models were involved.

• Relay SWIPT Systems: In [130], the end-to-end achiev-
able rate was maximized for MIMO decode-and-forward
(DF) relay SWIPT system.

• MIMO WPCN Systems: In [235], the EE was maxi-
mized for wireless powered time division duplex (TDD)
MIMO WPCN system.

3) 2-Pw: Applications: The 2-Pw EH model have been
studied mainly focusing on the SWIPT and WPCN systems, as
shown in IX. The SWIPT systems include relay [237]–[246],
[248], [249], P2P [250], [251], multi-user [252], CR [253]–
[256], NOMA [257]–[261], RIS [287], and IIoT [288]. For
the WPCN system, the relay [262], [263], multi-user [264],
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TABLE IX
APPLICATIONS OF THE 2-PW AND 3-PW NONLEIANR EH MODELS

2-Pw nonleianr EH model
Network model Scenario Goal Method

SWIPT

Relay Outage [237]–[245], the source-destination mutual information [246]
security [247], bit error [248], throughput [249]

Convex optimization
theory, probability
theory, mathematic

P2P Achievable rate [250], average harvested power [251]

Multi-user Sum rate [252]

CR Outage (physical layer security) [253]–[256]

NOMA Outage [257]–[261]

WPCN

Relay The (secrecy) outage performance [262], [263]

Convex optimization
theory, Probability
theory, mathematic

Multi-user Sum-rate [264]

MIMO Weighted sum of average harvested power [265], [266]

UAV-assisted UAV’s energy consumption [267]

NOMA Outage [268]

3-Pw nonleianr EH model
Network model Scenario Goal Method

SWIPT

Relay

Capacity [262], [269], throughput [270], harvested energy [271],
EE [272], [273], outage [274], [275], secrecy rate [276], system
mutual information [277], secrecy outage probability [278], outage
and throughput [279]

Convex optimization
theory, Probability
theory, mathematic

P2P
EH efficiency [280], achievable rate [281], symbol-error rate [282],
average achievable rate [283], capacity [284], average harvested power
[285]

NOMA Outage [286]

RIS-assisted Block error rate [287]

URLLC-based IIoT Outage [288]

Others EE [289], bit error rate [290] R-E region [291]

WPCN

Relay Outage [96], AoI, end-to-end block error probability [292]

Convex optimization
theory, Probability
theory, mathematic

MISO Least-squares estimator [293]

NOMA Outage [294], computation EE [295]

Distributed WPT Harvested power maximization [296]

RIS-empowered WPT Throughput, outage probability, average harvested power [297]

WPT Outage probability, average harvested energy [298]

MIMO [265], [266], UAV-assisted [267], NOMA [268], and
WPT [298] scenarios are studied under the 2-Pw EH model.

The SWIPT systems with the 2-Pw EH model: The 2-Pw
EH model has been studied so far in many various wireless
communication systems, such as relay, P2P, multi-user, CR,
and NOMA networks.

• Relay SWIPT Systems: The relaying SWIPT systems
were considered in [237]–[241], where the system out-
age probability, the outage capacity, and the bit-error-
rate-analysis were investigated correspondingly. In [247],
for the cooperative DF multi-relay networks, the outage
probability and intercept probability of the system were
investigated. In [242] and [243], a multiuser overlay
spectrum sharing system with using TS receiver was
considered, where the outage performance of the system
was analysis over the Rayleigh fading channels. In [244],
the multi-antenna multi-relay SWIPT-WPCN system was
investigated with imperfect CSI, where the outage proba-

bility and the reliable throughput were derived. In [245],
the cooperative DF relay SWIPT system with spectrum
sensing was considered, where the system outage prob-
ability was discussed. In [246], a dual-hop AF MIMO
relay communication system was studied, where the
source-destination mutual information was maximized. In
[248], a wireless-powered dual-hop DF relaying system
was considered, where the bit error performance was
studied over the Nakagami-m fading. In [249] the two-
hop cooperative DF relay SWIPT system with the direct
link was investigated, where the expression of throughput
was derived.

• P2P SWIPT Systems: In [250], a P2P SWIPT system
was involved, where the achievable rate was maximized.
In [251], a new SWIPT and modulation classification
scheme was presented, where the average harvested
power was analyzed for different modulation formats over
Rayleigh fading channels.
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• Multi-user SWIPT Systems: In [252], a multi-user the
combination of filter bank multi-carrier based SWIPT
system was studied, where the sum rate was maximized
by jointly optimizing time, power and weight allocations.

• CR SWIPT Systems: In [253], the outage probability
and throughput were studied for CR sensor network
with SWIPT under Nakagami-m fading. In [254], the
physical layer security was studied for an underlay CR
EH network with imperfect CSI, where the secrecy outage
probability was discussed. In [255], the outage perfor-
mance was studied for a hybrid SWIPT CR system over
the Nakagami-m fading, where both PS and TS receivers
were used. In [256], the outage and throughput perfor-
mance of the secondary system were studied for three-
phase SWIPT-enabled cooperative CR networks under
Nakagami-m fading.

• NOMA SWIPT Systems: In [257], for a SWIPT-assisted
NOMA system, an impartial user cooperation mechanism
with the PS architecture was presented, which outper-
formed the traditional partial cooperation mechanism in
terms of outage probability, diversity order and diversity-
multiplexing trade-off. In [258], a downlink FD relayed
NOMA SWIPT system with the PS architecture was
considered, where the outage probability and throughput
were investigated. In [259], a wireless powered coopera-
tive NOMA system was studied, where the outage prob-
ability and the average throughput were derived with the
low-complexity antenna selection and relay selection. In
[260] and [261], a FD cooperative NOMA SWIPT relay
system was considered, where the outage probability was
derived and discussed.

The WPCN systems with the 2-Pw EH model: In WPCN
system, some works have been carried out in relay, multi-
user, MIMO, UAV-assisted scenarios so far with the 2-Pw EH
model, see. e.g., [262], [264]–[267].

• Relay WPCN systems: In [262], the outage probability
was analyzed for a two-hop FD DF relay SWIPT system
with the TS protocol. In [263], the secrecy outage proba-
bility performance was studied in multi-antenna relaying
WPCN system.

• Multi-User WPCN systems: In [264], the system sum-
rate was maximized in the uplink for multi-user TDMA
WPCN system.

• MIMO WPCN systems: In [265] and [266], authors con-
sidered multi-user multi-antenna MIMO WPT systems,
where the weighted sum of the average harvested powers
was maximized.

• UAV-assisted WPCN systems: In [267], the rotary-wing
UAV-assisted wireless powered fog computing system
was studied, where the UAV’s energy consumption was
minimized by jointly optimizing the UAV’s trajectory,
the task offloading allocation and computing resource
allocation.

• NOMA WPCN systems: In [268],the outage perfor-
mance was studied for a dual-hop free space optical-
RF communication system, where the random-maximum
and minimum-maximum antenna selection schemes were

presented.

4) 3-Pw Applications: The 3-Pw EH model have been
studied for the SWIPT and WPCN systems, as shown in IX.
The SWIPT systems include relay [262], [269]–[279], P2P
[280]–[285], NOMA [286] and others [289]–[291]. For the
WPCN system, the relay [96], [292], MISO [293], NOMA
[294], [295], distributed WPT [296], and RIS-Empowered
WPT [297] scenarios are studied with the 3-Pw EH model.

The SWIPT systems with the 3-Pw EH model:

• Relay SWIPT systems: The relaying SWIPT networks
was considered in [262], [270] and [271], where the
maximizations of the system capacity, throughput and EH
were corresponding involved, as well as the minimization
of the outage probability. In [269], the capacity of the
system was maximized for SWIPT based three-step two-
way DF relay network, where the outage probability with
the optimal dynamic PS ratios was discussed. In [272],
the EE was maximized for SWIPT enabled two-way DF
relay network by jointly optimizing the transmit powers,
the PS ratios, and the transmission time. In [273], the
reliability, goodput and EE performance were studied
for EH based FD cooperative IoT network for short-
packet communications, where the approximate closed-
form expressions of the block error rate and outage
probability were derived. In [274], the outage probability
was studied for an FD-AF relay-based system, where the
outage throughput and EE of the system were maximized
by optimizing the TS parameter. In [276], the secrecy rate
was maximized for an EH cooperative relay network with
multiple eavesdroppers, where the transmission power
was optimized with the imperfect self-interference cancel-
lation. In [275], the outage probability of the destination
node was minimized for SWIPT network with incremen-
tal DF relaying protocol, where the system throughput
was also derived. In [277], a dual-hop DF multicasting
MIMO EH-enabled relay system was considered, where
the system mutual information was maximized. In [278],
the secure decode-and-forward (DF) cooperative relay
SWIPT network was explored, where the secrecy outage
probability was investigated. In [279], the relay selection
was investigated in dual-hop DF cooperative relay SWIPT
network, where the outage and throughput performance
were involved.

• P2P SWIPT systems: In [280] and [281], to enhance
EH efficiency and achievable rate for SWIPT system, a
new heterogeneous reconfigurable energy harvester was
presented. In [282], a novel transmitter-oriented dual-
mode SWIPT with deep LSTM RNN-based adaptive
mode switching was presented for a P2P SWIPT system
over frequency-flat fading channel, where the symbol-
error rate performance was discussed for both single-tone
and multi-tone SWIPT. In [283], the average achievable
rate was maximized for a P2P SWIPT system, where
a heterogeneously reconfigurable energy harvester was
presented. In [284], the authors investigated two coherent
detection schemes for integrated SWIPT receivers, where
the fundamental capacity of the system was studied. In
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[285], a simultaneous wireless power transfer and modu-
lation classification receiver architecture were presented,
where the average harvested power was derived for six-
class of modulations over AWGN and Rayleigh fading
channels.

• NOMA systems: In [286], the outage probability and the
throughput were studied for the SWIPT based NOMA
network, where an incremental cooperative NOMA pro-
tocol was presented.

• RIS-assisted systems: In [287], the block error rate was
studied in an RIS-assisted multi-user FD communication
system, where the short packet transmission was involved.

• URLLC-based IIoT systems: In [288], the ultra-reliable
low latency communication (URLLC)-based cooperative
IIoT network was considered, where the outage probabil-
ity and block error rate were involved.

• Other SWIPT systems: In [289], the sum EE of all D2D
links was maximized for a D2D underlaid cellular net-
work by optimizing the allocation of spectrum resource
and transmit power. In [290], the bit error rate perfor-
mance of the system was investigated for FD overlay CR
network with spectrum sharing protocol. In [291], the R-
E region of the system was investigated for a monostatic
wireless powered backscatter communication system with
considering PS and TS receivers in a comprehensive way.

The WPCN systems with the 3-Pw EH model:

• Relay WPCN systems: In [96], considering a relay-
assisted FD two-hop WPCN system, the system through-
put was maximized and the system outage probability
was minimized. In [292], the age of information (AoI)
was studied for an AF relay system, where the end-to-
end block error probability was involved.

• MISO WPCN systems: In [293], the practical efficacy
of using a single RF chain at a large antenna array power
beacon was studied for MISO WPT system over Rician
fading channels, where the average harvested power at
the user was derived and further discussed.

• NOMA WPCN systems: In [294], the outage perfor-
mance of the system was studied for wireless-powered
cooperative spectrum sharing system with FD and NOMA
transmissions, where the rate of the secondary network
was maximized by joint designing beamformer and time-
split parameter. In [295], the system computation EE was
maximized for WPT enabled NOMA-based MEC net-
work, which jointly optimized the computing frequencies
and execution time of the MEC server and IoT devices,
the offloading and EH time, and the transmit power of
each IoT device and beacon.

• Distributed WPT system: In [296], the distributed
multi-antenna energy beamforming scheme was studied
for multi-antenna WPT system over frequency-selective
fading channels under joint total and individual power
constraints, where the harvested power was maximized.

• RIS-empowered WPT system: In [297], a RIS-
empowered WPT system was considered, where the
closed-formed expressions of throughput, outage prob-
ability and average harvested power were derived.

• WPT system: In [298], the average harvested energy
and outage performance were investigated for wireless
powered communication systems, where Beaulieu-Xie
fading model was presented to characterize the manifold
of channels.

5) Mlg Applications: The Mlg EH model have been studied
for the SWIPT and WPCN systems, as shown in X. The
SWIPT systems include cellular [98], [299], relay [300], CR
[174], IRS-assisted [301], [302], and cell-free massive MIMO
[303] scenarios. For the WPCN system, the MISO [304],
NOMA [305], [306], secure [307], and ambient backscatter
[308], [309] scenarios are studied with the Mlg EH model.

The SWIPT systems with the Mlg EH model:

• MISO SWIPT systems: In [98] and [299], the multi-
user MISO SWIPT systems were considered, where the
transmit power was minimized.

• Relay SWIPT systems: In [300], the multi-pair AF
relay SWIPT system was studied, where the max-min
EE fairness was involved.

• IRS-assisted SWIPT systems: In [301], an IRS-assisted
SWIPT system was considered, where the achievable
rate and harvested energy were studied with considering
the TS and PS protocols. In [302], a P2P IRS-assisted
MIMO-OFDM SWIPT system was investigated, where
the achievable data rate was maximized.

• Cell-free massive MIMO SWIPT systems: In [303],
a cell-free massive MIMO SWIPT system was consid-
ered, where the downlink harvested energy and down-
link/uplink achievable rates were studied.

The WPCN systems with the Mlg EH model:

• Cellular WPCN systems: In [304], the total transmitted
energy was minimized for wireless-powered M2M mul-
ticasting in cellular network, where the routing and the
scheduling of multicast messages and the scheduling of
EH were considered.

• NOMA WPCN systems: In [305] and [306], the com-
putation efficiency was maximized for wireless-powered
NOMA MEC networks under both partial and binary
computation offloading modes, where the energy harvest-
ing time, the local computing frequency, the operation
mode selection, the offloading time and power were
jointly optimized.

• Secure WPCN systems: In [307], authors considered
a multi-tag wireless-powered backscatter communication
network with an eavesdropper, where the max-min EE
problem was studied with imperfect CSI.

• Ambient systems: In [308], the outage probability was
investigated for the multi-tag ambient backscatter com-
munication system over time-selective fading channel,
where the effect of dynamic reflection coefficient was in-
volved. In [309], the wireless powered ambient backscat-
ter cooperative DF relay communication system was
considered, where the secrecy outage probability and EE
were studied.

6) 2-ord Applications: So far, the 2-ord EH model has been
studied in WPCN systems, see e.g., [310], [311].
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TABLE X
APPLICATIONS OF THE MLG, 2-ORD AND FR NONLEIANR EH MODELS

Mlg nonleianr EH model
Network model Scenario Goal Method

SWIPT

MISO Transmit power minimization [98], [299]

Convex optimization
theory, Lagrangian,
mathematic

Relay EE fairness [300]

CR Transmit power/harvested power [174]

IRS-assisted Achievable rate and harvested energy [301], achievable data rate [302]

Cell-free Achievable rate and harvested energy [303]

WPCN

Cellular Transmit energy minimization [304]

Convex optimization
theory

NOMA Computation efficiency [305], [306]

Secure Secure EE [307]

Ambient Outage [308], secrecy outage and EE [309]

2-ord nonleianr EH model
Network model Scenario Goal Method

WPCN WSN Signal reconstruction error [310], [311] Probability theory

Fr nonleianr EH model
Network model Scenario Goal Method

SWIPT

Relay Outage [312], capacity [312], target rate [313], instantaneous rate
[314], data rate [315] Convex optimization

theoryMISO SINR and harvested energy [316]

Secure Secrecy throughput [317]

WPCN

Relay Outage [318], throughput [319], [320], outage [321], transmission time
minimization [322]

Convex optimization
theory, probability
theory

MIMO LMMSE [323]

MEC Weighted sum computation bits [324], computational EE fairness [325]

IRS-assisted Sum throughput [326]

NOMA Outage [327]

Log nonleianr EH model
Network model Scenario Goal Method

WPCN MEC max-min energy fairness and sum power [328] Convex optimization
theory

• WPT-enabled WSN systems: In [310] and [311], the
signal reconstruction error was minimized for a wireless
sensor network by using a deep reinforcement learning
(DRL) based approach, where multi-layer neural net-
works were utilized.

7) Fr: Applications: The Fr EH model have been studied
for the SWIPT and WPCN systems, as shown in X. The
SWIPT systems include relay [312], [312]–[315], MISO [316],
and secure [317] scenarios. For the WPCN system, the relay
[318]–[322], MIMO [323], MEC [324], [325], IRS [326], and
NOMA [327] scenarios are studied with the Fr EH model.

The SWIPT systems with the Fr EH model:
• Relay SWIPT systems: In [312], the system outage

probability and throughput performance was studied in
AF relay SWIPT networks. In [329], the system capacity
was maximized in DF relay SWIPT networks. In [330],

the system capacity was maximized for a DF relay
SWIPT system with the “harvest-then-forward” scheme.
In [316], the target rate was maximized for disaster-
recovery communications utilizing SWIPT enabled DF
relay D2D network by jointly optimizing the transmit
power, the PS ratio and the location of the relay. In
[313], the instantaneous rate was maximized for wireless
powered cooperative communications system by consid-
ering multiple wireless powered AF self-energy recycling
relays and relay selection. In [315], a two-way relaying
device-to-device (D2D) model sharing the same resources
with the underlying cellular network was investigated,
where the data rate was maximized.

• MISO SWIPT systems: In [314], the optimal transmit
beamforming was designed to maximize the received
SINR and the harvested energy for MISO downlink



24

SWIPT system with specific absorption rate constraints.
• Secure SWIPT systems: In [317], the secrecy through-

put of the system was maximized for SWIPT-enabled
network, where a PS-based FD jamming scheme was
presented.

The WPCN systems with the Fr EH model:
• Relay WPCN systems: In [318], the outage probability

performance was studied for a WPCN network to explore
the problem of the k-th best relay (device) selection. In
[319] and [320], the max-min throughput was maximized
for a wireless powered IoT (relay) network to ensure
the fairness among multiple sensor nodes. In [321], the
outage performance was studied for a WPCN system with
batteryless devices, where several selection/scheduling
schemes were involved corresponding to different imple-
mentation complexities and CSI requirements. In [322],
a hybrid transmission scheme of wireless powered active
communications and passive backscatter communications
was presented, where the total transmission time was
minimized.

• MIMO WPCN systems: In [323], the uplink SE was
investigated for wireless uplink information and downlink
power transfer in cell-free massive MIMO systems with
considering Rician fading and maximum ratio process-
ing based on either linear minimum mean-squared error
(LMMSE) or least-squares channel estimation.

• MEC WPCN systems: In [324] and [325], the weighted
sum computation bits and the computational EE fairness
were respectively maximized for a backscatter assisted
wirelessly powered MEC network, where the partial
offloading scheme was considered at each users.

• IRS-assisted WPCN systems: In [326], an IRS-assisted
wireless powered IoT network was considered, where the
sum throughput was maximized.

• NOMA WPCN systems: In [327], the system outage
performance was studied for an uplink WPT-NOMA in
IoT network, where a hybrid hybrid successive interfer-
ence cancellation (SIC) scheme was presented.

8) Log Applications: So far, the Log EH model has been
studied in WPCN systems, see e.g., [328].

• MEC WPCN systems: In [328], two resource allocation
problems were studied for OFDMA-based WPT-MEC
systems, i.e., a max–min energy fairness problem and a
power sum maximization problem. The Log EH model is
used, which lead to nonconvex mixed-integer nonlinear
programming (MINLP) problems.

9) Multiple EH Models Together: Applications: For com-
parison, several EH models are explored in a SWIPT system
at the same time, see e.g., [331]–[334].

• SWIPT systems: In [331], this work compared different
linear and nonlinear EH models (i.e., the Lg, 3-Pw,
Mlg, 2-ord EH models) to study the sensitivity and the
nonlinearity of the harvester for OFDM SWIPT system,
where the probability of successful SWIPT reception was
discussed. In [332], this paper studied the optimization
of multi-tone signals for co-existing wireless power and
information transfer system with the different nonlinear

EH models (i.e., the 2-ord, Lg, Hr, 2-Pw and 3-Pw
EH models). In [333], this paper considered a two-hop
SWIPT AF MIMO relay communication system with
imperfect CSI and the nonlinear EH models (i.e., the Lg,
3-Pw and Hr EH models), where the mutual information
between the source and destination nodes was maximized.
In [334], a multi-hop clustering routing protocol was
presented for EH-enabled CR sensor networks, where the
various curvilinear EH models (i.e., the Lg, Hr, 2-ord,
Mlg, Fr EH models) were fit with the original data [334,
9], and found that the Hr nonlinear EH model was best
and used among the fitting results.

VI. CHALLENGES OF UTILIZING NONLINEAR EH MODELS

Based on the previous section, the application challenges of
each nonlinear EH model can be mainly summarized into two
aspects: the optimization of the system performance and the
analysis of the system performance, as shown in Fig. 12.

On the optimization of the system performance, the study
of RF-based EH with the nonlinear model is generally used
as an objective function or constraint in an optimization
problem, which brings different difficulties and challenges.
For example, the optimization problems, such as the harvested
power/energy, EH efficiency, SE, EE, transmit power mini-
mization, secrecy EE/rate/capacity, sum rate, throughput, R-
E/I-E region, max-min EE/harvested power, energy consump-
tion, computation efficiency, etc., are normally nonconvex and
cannot be solved directly. Correspondingly, the methods, based
on the convex optimization theory, semidefinite relaxation
(SDR), alternating direction method of multipliers (ADMM),
second-order cone program (SOCP), successive convex ap-
proximation (SCA), S-procedure, Lagrangian, approximate,
iterative algorithm, mathematics, etc., are presented and used
to solve these optimization problems.

On the analysis of the system performance, we divide
it into two parts: the system probability analysis and the
system error analysis. For the system probability analysis, the
outage/successful transmission, coverage, throughput/capacity,
mutual information, R-E region, etc. of the system are often to
be studied in academia. For the system error analysis, the re-
lated works mainly focus on the mean square error, symbol/bit-
error rate, end-to-end block error probability, least-squares
estimator signal reconstruction error, etc. Unsurprisingly, the
presence of certain nonlinear EH models, such as Lg, Mlg and
3-Pw, poses significant challenges to the theoretical derivation
and analysis of the system. To tackle these challenges, various
well-established theories are commonly employed, including
probability theory, stochastic geometry, extreme value theory,
approximation, and game theory etc.

To provide a clearer description, we first classify the non-
linear EH models into four distinct groups based on their
forms: {Lg, Mlg, Ef}, {2-Pw, 3-Pw}, {Log}, and {Jm}.
Subsequently, we shall introduce each group respectively.

A. Application Challenges: Lg, Mlg and Ef Models

1) Performance optimization: Due to the nonconvex and
nonconcave properties of the Lg, Mlg and Ef models, the
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Fig. 12. The main application challenges of the nonlinear EH models

studied optimization problems are not convex, which results
in being solved and obtaining some analytical solutions not
easily. Considering the similar form of the Lg, Mlg and Ef
models, we will take the Lg nonlinear EH model as an example
in the following introduction. In particular, since the Ef model
contains the error function, i.e., erf(x) = 2√

π

∫ x

0
e−t2dt, there

exist more challenges in practical application.
• Used in objective functions
Many works take the (sum/total) harvested energy as the

studied goal with the Lg model in (2), which is given by

max
Pin,i,...

N∑
i=1

Qmax

1+e−a(Pin,i−b) − Qmax

1+eab

1− 1
1+eab

(18)

s.t. ...

where Pin,n is an optimal variable and N is the number of
EH receivers. To address this kind of optimization problem,
the following approaches can be adopted.
(a) Function simplification: Since the term of Qmax

1+eab and(
1− 1

1+eab

)
are constant in (18), which have no effect

on the system design. Therefore, the problem in (18) can
be rewritten as

max
Pin,i,...

N∑
i=1

Qmax

1 + e−a(Pin,i−b)
(19)

s.t. ...

Then, fractional programming can be adopted to solve the
related problems. Besides, when the objective is the sum

of the harvested energy, it becomes a nonlinear sum-of-
ratios problem, which can be solved by using the iterative
algorithm presented in [84], [335].

(b) First-order approximation: The objective function can be
approximated by the first-order Taylor expansion function
of QLg(Pin,i), which is expressed as

QLg(Pin,i) ≤ Q′
Lg(Pin,i), (20)

where Q′
Lg(Pin,i) = QLg(P̄in,i) + ∂Pin,iQLg(P̄in,i)(Pin,i −

P̄in,i), with ∂Pin,iQLg(Pin,i) being the derivative of
QLg(Pin,i) w.r.t. Pin,i, and P̄in,i being a feasible point
of the problem5. Thus, the problem in (18) can be
transformed as

max
Pin,i,...

∑N

i=1
Q′

Lg(Pin,i) (21)

s.t. ...

And then, the problem can be solved by SCA-based
algorithm [336], [337].

• Used in constraint
As a constraint condition of optimization problems, the

harvested energy is usually assumed to be less than or equal
to a certain threshold. That is,

max
Pin,i,...

... (22)

s.t. QLg(Pin,i) ≤ q0,∀i = 1, 2, ..., N

5The first-order Taylor expansion function of QLg(Pin) can also be
expressed in other forms of its transformation [119].
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To deal with this type of optimization problem, the following
ways can be used.
(a) First-order approximation: Through variable substitution

and first-order approximation in (20), the corresponding
constraints can be converted into convex. So, the the
problem in (23) is transformed as

max
Pin,i,...

... (23)

s.t. Q′
Lg(Pin,i) ≤ q0,∀i = 1, 2, ..., N

Then, the problem can be solved by the SCA method.
(b) Inverse function: Let Pin(·) be the inverse function of

QLg(Pin),6 the related constraints can be transformed to
be convex. Thus, the problem in (23) is reformulated as

max
Pin,i,...

... (24)

s.t. Pin,i ≤ Pin(q0),∀i = 1, 2, ..., N

which can be efficiently solved via some optimization
tools such as CVX [338].

2) Performance analysis: For the analysis of system per-
formance, Rayleigh, Rice and Nakagami-m fading channel are
generally considered [117], [133], [152], [191], [206]. Due
to the complexity of different channel models, the difficulty
of analyzing system performance is gradually increasing.
Meanwhile, the complexity of the Lg model also can bring
even more challenges to system performance analysis, which
makes it harder to derive closed form results. Additionally,
in the different systems studied in existing works, the used
methods for theoretical derivation are not the same, including
approximation, variable substitution, some theories in special
cases, etc. For example, to address this issue, in [91], the Lg
model can be rewritten as

QLg(Pin) =
Qmax(1− e−aPin)

1 + e−a(Pin−b)
. (25)

Then, with the help of some auxiliary variables and formula
transformation, these operations can contribute to some theo-
retical derivation and analysis.

In [206], Bernstein-type inequality approach was adopted
to approximate the outage probabilistic constraints conserva-
tively. That is, suppose the chance constraint

Pr{xHAx+ 2R{xHr}+ θ ≥ 0} ≥ 1− α, (26)

where (A, r, θ) ∈ RN × CN × R,x ∼ CN(0, 1) and α ∈
(0, 1]. Introducing two slack variables ϕ and ω, the following
implication always holds

Tr(A)−
√
−2 ln(α)ϕ+ ln(α)ω + θ,∥∥∥∥∥

[
rec(A)√

2r

]∥∥∥∥∥ ≤ ϕ,

ωI +A ⪰ 0, ω ≥ 0.

(27)

In this way, the corresponding probabilistic constraint can be
transformed into a set of inequalities to solve the studied
problems.

6The inverse function of QLg(Pin) can be given by Pin(QLg) = b −
1
a
ln

(
eab(Qmax−QLg)

eabQLg+Qmax

)
.

B. Application Challenges: 2-Pw and 3-Pw Models

1) Performance optimization: In fact, the 2-Pw and 3-Pw
nonlinear EH models are piecewise linear function in terms of
the input power, i.e., Pin. Therefore, compared with the Lg,
Mlg and Ef nonlinear EH models, the difficulty on exploring
the optimization problems of the system performance is rela-
tively small. In the optimization problems, the 2-Pw and 3-Pw
models can be respectively rewritten as min(ηPin,Qmax) and
min(0, ηPin,Qmax) function, which are convex and relatively
easy to solve by using some known optimization methods such
as linear programming [336].

2) Performance analysis: Since the 2-Pw and 3-Pw non-
lieanr EH models are piecewise, the system performance
analysis can also be processed in piecewise, which can ef-
fectively perform theoretical analysis. Further, by using some
mathematical theories, some closed-form analysis results can
be obtained [238], [241], [244], [245], [262], [278], [286].

C. Application Challenges: Hr, 2-ord and Fr Models

As for the Hr model, its form (higher order polynomial)
is too complex, which brings great challenges for the system
optimization and analysis, which may be one of the reasons
why it is not widely used.

For the 2-ord model, it is a concave function, which can
avoid some non-convex troubles in optimization problems
[99]. However, it is also a second-order function, which often
leads to the optimization variables of the quadratic term, non-
convex and difficult to handle. Similarly, these bring the same
difficulty in the theoretical derivation and discussion of the
system performance analysis.

For the Fr model, it is a simplified form of the Hr one (first-
order fractional form). In optimization problems, if it is used as
the objective function, the methods of fractional programming,
Lagrangian and Dinkelbach can be adopted to solve [325],
[336]; If it is used as a constraint, it can be solved through
mathematical transformation. Compared with the Hr nonlinear
EH model, the difficulty of exploring problems is relatively
small. Meanwhile, in the aspect of the system performance
analysis, due to its relatively simple form, some good results
can be obtained through some mathematical means.

D. Application Challenges: Log Model

For the Log model, modeled by a logarithmic function, its
form seems to be similar to the Shannon formula for channel
capacity, which generally is concave in terms of the optimal
variable.

1) Performance optimization: Therefore, in an optimization
problem, as an objective function, the methods of projection
function and epigraph reformulation can be used to deal with
it, which can make the problem convex [328]. As a constraint,
if it is a constraint greater than or equal to a certain threshold,
it is directly convex and does not need to be processed; If
it is a constraint less than or equal to a certain threshold, it
needs some formula transformation or variable substitution to
convert it to convex [337].
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2) Performance analysis: Similar to the Lg, Mlg, Jm mod-
els, the system performance analysis under the Log model
needs to be explored in combination with the considered
channels, where the variable substitution, approximation and
some special theories can be adopted to deal with.

E. Application Challenges: Jm Model

In the Jm EH model, the energy conversion efficiency, i.e.,
η, is modeled as a function of the power and frequency.
Therefore, no matter the research on the optimization or
analysis of the system, there will be both the influence of the
power and frequency models. The impact of the power model
can be addressed by the corresponding strategies of different
EH models mentioned above. For the frequency model, it also
needs to be analyzed according to its specific form and the
explored problems.

VII. AI POWERED RF-BASED NONLINEAR EH SYSTEMS

A. AI-based Approaches for EH Communications

Facing complex and dynamic network environments, new
wireless communication technology is required to equip with
the ability to sense the surroundings and the ability of real-
time decisions. Traditional optimization-based methods be-
come unmanageable for sophisticated network optimizations
[339]–[341]. Recently, AI, the core force of the next indus-
trial revolution, has been referred as a notable innovative
technique for future wireless communication systems [342],
[343]. Particularly, machine learning (ML) algorithms such
as deep learning (DL), reinforcement learning (RL), deep
RL (DRL), deep deterministic policy gradient (DDPG), etc.,
have become an emerging and promising technology and has
attracted extensive attention [344]–[346].

Up to this point, various AI techniques and models have
been developed with different performances and complexity of
communication systems. Moreover, the methods, applications
and challenges of AI have been also surveyed well. For a better
description, we draw some commonly utilized AI techniques
in Fig. 13 according to the existing overviews of AI [31, Fig.
3]. Conventional AI techniques include heuristic algorithms
and ML-based methods. At present, ML-based methods are
adopted more in wireless communication optimization, partic-
ularly, DL, RL, and the combination of the two.

Since some commonly used AI algorithms have been fully
introduced and applied in the field of wireless communication
in the existing research and reviews, we shall briefly introduce
two relatively new learning algorithms applied in the field of
wireless communications, namely the inverse RL (IRL) and
the lifelong learning (LL), as follows:

- IRL: In the field of Imitation learning, there is debate
about whether the IRL method should be considered part
of imitation learning or treated as a separate category.
IRL is an algorithm that aims to determine the reward
function of MDPs by working backward from a given
strategy (whether optimal or not) or demonstration data.
By doing so, agents can learn to make decisions on
complex problems by following expert trajectories. IRL

is commonly applied in domains where accurately quan-
tifying the reward function is challenging [347].

- LL: It is also known as continuous learning, incremental
learning or never-ending learning. In typical ML, a single
model is designed to solve one or a few specific tasks.
When faced with new tasks, we usually retrain a new
model. While, LL first uses a model on task1, and then
still uses the model on task2 until taskn, which aims
to explore whether a lifelong model can perform well
on many tasks. As this continues, the model capability
becomes stronger and stronger, similar to that human
beings keep learning new knowledge and thus master
many different kinds of knowledge. LL is equivalent to
an adaptive algorithm that can learn from continuous
information flows. As time progresses, the information
becomes available. Hence, to truly achieve intelligence,
the LL-based algorithm is indispensable [348].

However, training an advanced AI model takes time, money
and high-quality labelled data, it also takes energy. AI-based
algorithms increase the energy consumption of wireless nodes
in communication networks. Between storing data in large-
scale data centers and then using the data to train an ML or
DL model, the energy consumption of AI-based algorithms is
high. Therefore, it is important to apply energy preservation
techniques. Two known energy preservation methods are en-
ergy saving and EH. Most of the energy saving techniques are
implemented through the estimate and control of the uptime of
end devices. In addition, ML-based EH techniques also have
attracted extensive attention and research so far [310], [311],
[349]–[356], summarized in Table XI.

Particularly, in [349], the system symbol error rate was
investigated for P2P SWIPT system with the Lg EH model,
where a DL-based approach was involved. In [350], the sum-
rate of the system was maximized for renewable energy
source-assisted HetNets under the Lg EH model, where a deep
unsupervised learning (DUL)-based user association scheme
and a DRL-based power control scheme were presented, re-
spectively. In [351], the capacity of femtocells was maximized
for wireless powered HetNets with the Lg EH model, where a
Q-learning (QL) based algorithm was presented. In [352], the
longterm average throughput was maximized for wireless pow-
ered communication system with the Lg EH model, where the
deep Q-learning (DQL) and actor-critic approaches were in-
volved. In [353], a multi-objective optimization problem (e.i.,
maximization of sum rate, maximization of total harvested
energy and minimization of UAV’s energy consumption) was
studied for UAV-assisted wireless powered IoT network with
the Lg EH model, where a DDPG algorithm was designed. In
[354], the average transmit rate was maximized for a wideband
wireless powered CR network with the Lg EH model, where a
DRL method was presented. In [355], the system throughput
and EE were jointly maximized for a UAV-assisted D2D
communication network with the Lg EH model, where a multi-
agent DRL algorithm was proposed. In [356], a multi-agent
RL algorithm was presented to minimize the long-term average
task delay for the D2D-assisted MEC system with the 2-Pw
EH model. Moreover, the DRL-based approaches were also
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ML models and techniquesHeuristic Algorithms

§ Particle swarm optimization

§ Genetic algorithm

§ Ant colony optimization

§ Simulated Annealing

Traditional ML

§ Shallow neural networks

§ Support vector machin

§ K-means clustering

§ Multi-arm bandit

Training manners

§ Supervised learning

§ Unsupervised learning

§ RL
- Bandit learning

- MDP-based learning

DL

§ Deep neural networks (DNN)

§ Deep Q-networks (DQN)

§ Deep convolutional neural networks (DCNN)

§ Deep Residual Networks (DRN)

§ Randomly Wired Networks (RWN)

Training strategies

§ Transfer learning

§ Federated learning

§ Imitation learning
- Inverse RL

Lifelong Learning (LL)

§ Running fast and efficiently

§ Approximate solution

§ Accurate predictions

§ Limited variables

Increased complexity and dynamics of network environment

§ Exact predictions

§ Efficient training

§ Secure data usage

§ Tolerant to dynamics

Commonly utilized AI techniques for green communications

Challenges and changes of focus

Fig. 13. Commonly utilized AI techniques for green communications

TABLE XI
APPLICATIONS UTILIZING AI-BASED ALGORITHMS UNDER NONLINEAR EH MODELS

Scenario Nonlinear EH model Goal AI-based approache

P2P SWITP [349] Lg Error rate DL

Wireless powered HetNets [350] Lg Sum rate DUL

Wireless powered HetNets [352] Lg Throughput DQL

UAV-assisted IoT [353] Lg Multi-objective DDPG

Wireless powered CR [354] Lg Transmit rate DRL

UAV-assisted D2D [355] Lg Throughput, EE Multi-agent DRL

D2D-assisted MEC [356] 2-Pw Task delay Multi-agent RL

Wireless powered WSN [310], [311] 2-ord Signal reconstruction error DRL

investigated with the 2-ord EH model for WSN in [310], [311],
as mentioned in subsection V-6.

B. Effect of Nonlinear EH Models on AI-based Methods

EH model is a description of EH behavior, and the com-
plexity of its mathematical modeling has a great impact on
the optimization-based algorithms, especially in the aspect of
mathematical theoretical analysis as mentioned above. How-
ever, AI-based algorithms can effectively avoid the difficulty
brought by the EH model without requiring some mathemati-
cal theoretical analysis of it. That is, the EH model has little in-
fluence on AI-based algorithms. In AI-based algorithm design,
the computational complexity introduced by the EH model is
generally one. This is an advantage of AI-based algorithms,
but they also have disadvantages. The results obtained by
AI-based algorithms cannot be analyzed theoretically and are

approximate. Therefore, based on some theoretical results of
convex optimization, the design of corresponding AI-based
algorithms has also been explored in many existing works
[357]–[359].

On the other hand, there are also many challenges in
designing AI-based algorithms, such as exact predictions,
efficient training, secure data usage and tolerant to dynamics,
as shown in Fig. 13. It can be summarized as follows:

- Learning framework design: Difficulties are often not
caused by mathematics, and AI-based algorithms do not
need strong mathematical ability.

- Exponential debugging: What’s unique about machine
learning is that when an algorithm doesn’t work as
expected, it’s hard to figure out why it’s wrong. Few
algorithms work the first time, so most of the time is
spent designing algorithms.
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- Computing capacity: As the complexity of the model
increases, the computational complexity also increases
generally, even exponentially.

C. RF-based EH in AI-driven Applications

The increasing global demand for wireless devices such
as mobile phones and computers underscores the importance
of wireless applications. However, these devices require a
continuous power supply or long battery life. To address safety
concerns associated with battery usage, RF-based EH systems
that provide wireless power can greatly benefit the application
market, which is projected to grow by 22% between 2020 and
2025 [59].

Several factors contribute to this growth, with AI being
the primary driver [360]. While AI-based algorithms have
achieved significant advancements, they increasingly rely on
large volumes of data to improve their effectiveness. Mean-
while, RF-based EH has demonstrated reliability and effi-
ciency, offering the potential to enhance decision-making ca-
pabilities of AI algorithms. The implementation and adoption
of RF-based EH can have substantial benefits in various AI-
related domains, such as IoT, intelligent medical applications
and smart cities [31], [361], [362]. Nevertheless, it is important
to give careful attention to key components of RF-based EH,
including the receiver antenna and power conditioning circuits.
These elements play a crucial role in ensuring the successful
implementation of this approach across different applications.

VIII. LESSONS LEARNED AND DESIGN GUIDELINES

By adhering to these lessons learned and design guidelines,
engineers can create efficient and reliable RF-based EH sys-
tems with accurate nonlinear models. These systems have the
potential to harvest energy from ambient RF signals and power
various wireless devices, sensors, and IoT applications in an
environmentally friendly and sustainable manner.

A. Lessons Learned

• Importance of Nonlinearity: One of the key lessons
learned is the significance of considering nonlinearities
in RF-based EH systems. The energy harvesting process
often exhibits nonlinear characteristics due to the behav-
ior of diodes and other nonlinear elements. Neglecting
these nonlinearities can lead to inaccurate modeling and
suboptimal system performance.

• Nonlinear Model Accuracy: Accurate representation of
nonlinear behavior in EH systems is essential for reli-
able predictions of energy harvesting performance. The
nonlinearity introduced by diodes and other components
should be carefully modeled to reflect real-world charac-
teristics.

• Importance of Efficiency: One of the key lessons learned
is the significance of optimizing the efficiency of RF-
based EH systems. Efficient energy capture and conver-
sion are crucial to maximize the amount of harvested
energy and ensure the sustainability of the system.

• Frequency Dependence: Another important lesson is the
frequency dependence of RF-based EH systems. The

efficiency of energy harvesting can vary significantly at
different RF frequencies. Understanding and accounting
for this frequency dependency is crucial for designing
efficient and reliable RF-based EH systems.

• Real-World Environment: Real-world environmental fac-
tors, such as variations in RF signal strength and inter-
ference, can impact the performance of RF-based EH
systems. Considering these factors during the design
phase is essential to ensure the system’s robustness and
adaptability to different environments.

• Validation with Experiments: Validating the performance
of RF-based EH systems and nonlinear models using
experimental data is essential for verifying their accuracy
and effectiveness. Real-world testing helps identify and
address potential issues that might not be evident in
simulations alone.

B. Design Guidelines

• Nonlinear Model Integration: Incorporate nonlinear mod-
els of diodes and other nonlinear components into the
design of RF-based EH systems. These models should ac-
curately represent the voltage-current characteristics and
other nonlinear behaviors to achieve accurate predictions
of energy harvesting performance.

• Frequency Spectrum Analysis: Perform a comprehensive
analysis of the frequency spectrum in the target envi-
ronment to determine the optimal frequency range for
energy harvesting. This analysis will aid in selecting
suitable antennas and optimizing the system’s frequency-
dependent performance.

• Efficient Antenna Design: Select antennas with high gain
and appropriate resonant frequency to maximize energy
harvesting efficiency. Proper antenna design is crucial for
capturing and converting RF energy effectively.

• Realistic Environmental Considerations: Consider real-
world environmental factors, such as temperature, inter-
ference, and RF signal fluctuations, during system design.
This will help create a more robust and reliable RF-
based EH system capable of adapting to various operating
conditions.

• Energy Storage and Management: Design efficient en-
ergy storage and management circuits to store harvested
energy and ensure a stable power supply for the target
application. Balancing energy collection and consumption
is essential for optimal system performance.

• Validation and Calibration: Validate the RF-based EH
system and nonlinear model using experimental data.
Calibration based on real-world measurements can en-
hance the accuracy of the model and ensure reliable
performance.

• Energy Harvesting Efficiency Metrics: Define appropriate
metrics to evaluate the energy harvesting efficiency of
the RF-based EH system. These metrics will assist in
assessing the system’s performance and identifying areas
for improvement.

• Integration with Target Applications: Design the RF-
based EH system with integration in mind, ensuring com-
patibility with the target application and other electronic
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components. Scalability and adaptability are crucial for
broad applicability.

IX. EMERGING RESEARCH CHALLENGES

A. Limitations of RF-based EH Applications

In the field of RF-based EH, there exist several chal-
lenges and limitations that impact its applications and ongoing
progress. Here, we present some common challenges and
limitations, including technical barriers, system performance
optimization, and the development of practical solutions. Over-
coming these issues is crucial to fully harness the benefits of
RF-based EH across various applications.

1) EH Efficiency: RF-based EH systems often face the
challenge of low EH efficiency. RF energy in the environment
is relatively scarce and weak, requiring EH devices to have
efficient energy capture and conversion capabilities. Improving
EH efficiency is an important challenge that requires opti-
mization in antenna design, rectifier performance, and energy
conversion circuits. For zero-power communications, OPPO is
working with partners across the industry to make zero-power
communications devices a core part of next-generation com-
munications technologies for greater convenience, inclusivity,
and sustainability. And, Texas Instruments has developed RF-
based EH solutions for industrial applications, such as wireless
sensors in industrial automation systems, to improve energy
efficiency and reduce battery maintenance.

2) Environmental Dependency: The effectiveness of RF-
based EH is influenced by environmental factors. RF energy
intensity and spectral distribution vary across different regions
and environments, which can lead to stability and reliability
issues in EH. Changes in environmental factors can result
in interruptions or reductions in EH, requiring strategies to
address this environmental dependency challenge. For instant,
ABB, a leading industrial technology company, is researching
RF energy harvesting for wireless sensor networks in smart
factories, where environmental variations can be effectively
managed to power various IoT devices.

3) Energy Management and Storage: Effective energy man-
agement and storage are crucial elements of RF-based EH
systems. Due to the variability and instability of RF energy, en-
ergy management circuits need to be designed and optimized
to achieve efficient energy storage and supply. Additionally,
certain applications require a balance between energy harvest-
ing and energy consumption to ensure system stability. For
instant, Schneider Electric, a multinational corporation special-
izing in energy management and automation, is exploring RF
energy harvesting for self-powered wireless sensors in building
automation systems, enabling efficient energy utilization and
reducing the reliance on batteries.

4) Miniaturization and Integration: Many RF-based EH
applications require small-sized and highly integrated EH sys-
tems. This necessitates minimizing the size, weight, and power
consumption of energy harvesting devices, circuits, and inter-
faces, while enabling close integration with other electronic
components. Achieving small size and high integration is a
technical challenge. For instant, Siemens, a global technology
company, is researching miniaturized RF energy harvesting

solutions for wireless sensors in industrial equipment, enabling
self-powered devices with reduced maintenance needs.

5) Security and Privacy: RF-based EH involves the recep-
tion and processing of wireless signals, raising concerns about
security and privacy. For example, security measures need
to be implemented to protect energy harvesting systems and
transmission processes from unauthorized access or attacks.
Additionally, for devices and sensors powered by RF energy,
ensuring data security and privacy protection is important. For
instant, Honeywell, a multinational conglomerate, is working
on secure RF energy harvesting solutions for industrial control
systems, ensuring data integrity and preventing unauthorized
access to critical infrastructure.

B. Future Directions

1) RF-based EH and IRS: IRS technology is considered as
one of the key technologies of 6G. RIS can gather the power
of RF signals in the environment, provide more accurately
focused energy beams for wireless devices, and improve EH
efficiency. Besides, RIS can realize controllable backscattering
by controlling the phase, amplitude, polarization and other
parameters of the signals, and forwarding it to the receiver,
thus improving the receiving performance. The combination of
RIS and EH in the 6G system will contribute to providing an
approach for ultra-low power IoT. How to use RIS technology
to improve the efficiency of EH and the performance of
wireless communications is an important opportunity worth
further exploration.

2) RF-based EH and Integrated Sensing and Communi-
cation: The combination of RF-based EH and integrated
sensing and communication (ISAC) can significantly improve
the EE of the system and meet the requirement of green
communications. Obtaining energy through RF-based EH can
fundamentally eliminate the dependence on batteries. At the
same time, RF-based EH also provides an effective means for
ISAC. For example, the destination is configured with an EH
unit, which can trigger EH when sending a sense signal to
it. Then, the information of the destination can be reported to
the source through the RF-based EH communication systems,
so as to achieve accurate sensing function. Meanwhile, inte-
grated sensing, computing and communication (ISCAC) also
attracts significant interest with the demands of huge-volume
data processing. Cloud computing was commonly adopted by
exploring the powerful computing capability of cloud servers.
The study with the combination of EH and ISCAC is also a
major trend.

3) RF-based EH and Semantic Communication: Semantic
communication (SemCom) techniques enable wireless edge
devices to extract and transmit the meaning of original data
(called semantic information) to reduce the heavy congestion
of current wireless networks thus improving communication
efficiency. With the growing number of IoTs with EH capabili-
ties, it is important to determine the importance of information
with the help of semantics. In an RF-based EH communication
system, users can consume the harvested energy for semantic
information transmission. At present, the application of Sem-
Com techniques in RF-based EH systems is still in the early
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phases. Many SemCom networks with EH-enabled devices are
not explored, e.g., IRS/UAV-assisted networks with SWIPT.
Therefore, the combination of RF-based EH and SemCom still
has many open problems to be studied.

4) RF-based EH and THz Communication: RF-based EH
is employed to capture and convert RF energy into usable
electrical power, which can be then utilized to support THz
communication devices and systems. By integrating RF-based
EH capabilities, THz communication devices can harvest en-
ergy from the surrounding RF signals, reducing or eliminating
the need for external power sources such as batteries or wired
connections. The RF-based EH process involves capturing
RF energy using antennas, rectifying and converting it into
DC power using rectifiers, and regulating and storing the
harvested energy for subsequent use in THz communication
systems. This enables self-sustaining and potentially battery-
free operation of THz communication devices, leading to
increased mobility and flexibility in deployment.

5) RF-based EH and AI: The performance of AI sys-
tems depends largely on sufficient data sources. RF-based
EH provides a relatively low-cost data acquisition solution,
which can promote the development of AI technology and
improve the performance of AI systems. For example, in
some intelligent plant scenarios, the RF-based EH system is
used to collect environmental information such as temperature,
humidity, dynamic frequency, etc., and then AI is used to
predict environmental changes in advance, predict the working
state changes of the system, trigger early warnings, and
provide other intelligent devices with environmental regulation
indication information.

X. CONCLUSION

This article provided a comprehensive overview of the
existing mathematical models that accurately characterize the
nonlinear characteristics of practical EH circuits. It serves as a
handbook of mathematical nonlinear EH models. Furthermore,
we summarized the application of each nonlinear EH model,
highlighting the associated challenges and precautions. Addi-
tionally, we analyzed the influence and progress of each non-
linear EH model on wireless communication systems utilizing
RF-based EH, leveraging the power of AI. Lastly, we empha-
sized emerging research directions in nonlinear RF-based EH.
This article contributes to the future application of RF-based
EH in cutting-edge communication research domains to some
extent.
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