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We present a systematic study of the similarity solutions for the Marshak wave problem, in the
local thermodynamic equilibrium (LTE) diffusion approximation and in the supersonic regime. Self-
similar solutions exist for a temporal power law surface temperature drive and a material model with
power law temperature dependent opacity and energy density. The properties of the solutions in both
linear and nonlinear conduction regimes are studied as a function of the temporal drive, opacity and
energy density exponents. We show that there exists a range of the temporal exponent for which the
total energy in the system decreases, and the solution has a local maxima. For nonlinear conduction,
we specify the conditions on the opacity and energy density exponents under which the heat front
is linear or even flat, and does posses its common sharp character; this character is independent of
the drive exponent. We specify the values of the temporal exponents for which analytical solutions
exist and employ the Hammer-Rosen perturbation theory to obtain highly accurate approximate
solutions, which are parameterized using only two numerically fitted quantities. The solutions are
used to construct a set of benchmarks for supersonic LTE radiative heat transfer, including some
with unusual and interesting properties such as local maxima and non sharp fronts. The solutions are
compared in detail to implicit Monte-Carlo and discrete-ordinate transport simulations as well gray
diffusion simulations, showing a good agreement, which highlights their usefulness as a verification
test problem for radiative transfer simulations.

I. INTRODUCTION

Radiation hydrodynamics has a central role in the un-
derstating of high energy density systems, such as labora-
tory astrophysics, inertial confinement fusion and general
astrophysical phenomena [1–7]. Solutions of the equa-
tions of radiation hydrodynamics are paramount in the
analysis, design and characterization of high energy den-
sity experiments [6–10] and are frequently used in the
verification of computer simulations [11–25].

The theory of Marshak waves was developed in the
seminal work [26], and was further generalized by many
authors [27–38]. It describes the dynamics which occurs
due to an intense energy deposition in a material, leading
to a steep temperature gradient. In such circumstances,
radiative transfer plays a pivotal role in the description
of energy deposition, the subsequent thermalization of
the material, and the rapid emission and transport of ra-
diative energy. At typical high temperature scenarios,
the radiative heat wave propagates faster than the mate-
rial speed of sound, giving rise to a supersonic Marshak
wave [31, 32, 35, 39], for which the material motion is
negligible. We note that in the last decades, numerous
supersonic Marshak experiments have been carried out
in high energy density facilities (see for example, Ref. [6]
and references therein). For optically thick systems, local
thermodynamic equilibrium (LTE) between the radiation
field and the heated material is reached very quickly and
the diffusion approximation of radiation transport is ap-
plicable. Under those not uncommon circumstances, the
Marshak wave problem is formulated mathematically by
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the solutions of the planar LTE radiation diffusion equa-
tion, with a boundary condition of a time dependent sur-
face temperature drive Ts (t) and an initially cold homo-
geneous material. Hammer and Rosen in their seminal
work [31], developed a perturbative method to obtain
approximate solutions for a general time dependent tem-
perature drive, assuming power law temperature depen-
dence of the opacity k (T ) = k0T −α and total energy
density u (T ) = u0T β . For a surface temperature with
power law time dependence Ts (t) = T0tτ , the Marshak
wave problem is self-similar [28, 31–33, 35, 37] and can
be solved exactly using the method of dimensional anal-
ysis. Solutions for a constant surface temperature and
a diffusion coefficient which is not a temperature power
law, were discussed in Refs. [40–47]. Solutions for power
law opacity and energy density, were studied in Refs.
[26, 27, 34, 48–51] for a time independent surface tem-
perature, and in Refs. [28, 32, 33, 35, 37, 39] for a general
power law time dependence.

In this work we study in detail the self-similar solu-
tions for surface temperature, opacity and energy density
with power law dependence to present a unified theory of
these waves. The behavior and characteristics of the so-
lutions in both linear and nonlinear conduction regimes
are analyzed as a function of the surface temperature
drive, opacity and energy density exponents, τ , α and
β. We discuss the monotonicity of the solutions in differ-
ent ranges of τ , and relate it to the total energy balance
in the system. For nonlinear conduction, we state the
conditions on α and β for which the heat front does not
have the familiar sharp character, and point out that the
front can be linear or even flat. We specify the values of
τ for which closed form analytical solutions exist. Clas-
sical solutions found by previous authors are identified
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as special cases. We perform a detailed study of the ac-
curacy of the widely used Hammer-Rosen perturbation
theory [31], as well as for the series expansion method of
Smith [33], by comparing their results to the exact self-
similar Marshak wave solutions in a wide range of the
exponents τ, α, β. Finally, we use the similarity solutions
to construct a set of benchmarks for supersonic LTE ra-
diative heat transfer. These benchmarks are compared
in detail to numerical transport and diffusion computer
simulations.

II. STATEMENT OF THE PROBLEM

In supersonic radiation hydrodynamics flows, for which
the hydrodynamic motion is negligible in comparison to
the radiation heat conduction, the material density is
constant in time, and the heat flow is supersonic. Under
these conditions, the LTE radiation transfer problem in
planar slab symmetry is given by:

∂u

∂t
+ ∂F

∂x
= 0, (1)

where F is the radiation energy flux and

u = um + aT 4 (2)

is the total (matter+radiation) energy density, with um

the material energy density, T the material temperature
and a = 4σ

c the radiation constant with c the speed of
light and σ the Stefan-Boltzmann constant. In the diffu-
sion approximation of radiative transfer, which is appli-
cable for optically thick media, the radiation energy flux
obeys Fick’s law:

F = −D
∂

∂x

(
aT 4) , (3)

with the radiation diffusion coefficient

D = c

3k
, (4)

where k = ρκR is the opacity, defined as total (ab-
sorption+scattering) macroscopic transport cross section
with dimensions of inverse legnth, κR the Rosseland
mean opacity and ρ is the (time independent and spa-
tially homogeneous) material mass density.

In this work, we assume a material model with tem-
perature power laws for the opacity:

k (T ) = k0T −α, (5)

and the total energy density equation of state:

u (T ) = u0T β . (6)

This approximation of a single power law for the two
terms in Eq. (2) will be discussed below in Sec. VII B.
We also note that the form (5) is equivalent to the com-
mon power law representation [7, 22, 31–33, 35, 37–
39, 52] of the Rosseland opacity κR (T, ρ) = 1

g T −αρλ,
with the coefficient g = ρλ+1/k0. Similarly, the form (6)
is equivalent to the common power law representation
u (T, ρ) = FT βρ1−µ, with F = u0ρµ−1.

Using the opacity (5), the radiation energy flux (3) can
be written as:

F (x, t) = −u0K
∂

∂x
T 4+α, (7)

and by plugging Eqs. (6)-(7) into the radiation diffu-
sion equation (1), a nonlinear diffusion equation for the
temperature is obtained:

∂T β

∂t
= K

∂2

∂x2 T 4+α, (8)

where we have defined the dimensional constant:

K = 4ac

3 (4 + α) u0k0
. (9)

The generalized self-similar Marshak problem is defined
by the solution of Eq. (8) with a temporal power law for
the surface temperature:

T (x = 0, t) = T0tτ , (10)

which is applied on an initially cold medium,

T (x, t = 0) = 0. (11)

The diffusion equation (8) can be alternatively written
as a canonical nonlinear diffusion equation [47, 49, 53,
54], in terms of the total energy density:

∂u

∂t
= A

∂

∂x

(
un ∂u

∂x

)
, (12)

with the the nonlinearity index [22, 28, 37, 48, 49, 55],

n = 4 + α − β

β
, (13)

and A = (n + 1) u−n
0 K = 4ac

3βun+1
0 k0

.

III. SELF-SIMILAR SOLUTION
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conduction τc < τ < τZ τ = τZ τZ < τ < τH τ = τH τ > τH

f (ξ) nonlinear numerical solution analytic solution [Eq. (49)] numerical analytic solution [Eq. (44)] numerical
f (ξ) =

(
1 − ξ2/ξ2

0
)ν solution f (ξ) = (1 − ξ/ξ0)ν solution

linear analytic solution [Eq. (32)]

heat front nonlinear decelerates constant speed, xF (t) ∝ t accelerates
linear decelerates as t0.5

f ′ (0) f ′ (0) > 0 f ′ (0) = 0 f ′ (0) < 0
net surface flux outcoming none incoming

F (x = 0, t) < 0 = 0 > 0
total energy energy exits the system total energy is constant energy enters the system
monotonicity local maxima at 0 < ξ < ξ0 local maxima at ξ = 0 strictly monotonically decreasing

Table I. A summary of the behavior and properties of the solutions of the self-similar Marshak wave problem in different ranges
of the temporal exponent τ , which are described in the text. See also Fig. 1. Note the special similarity exponents are τH

for the Henyey case, Eq. (17), τZ for the Zel’dovich case, Eq. (25), and τc is the critical value from Eq. (20), below which no
self-similar solution exists.

The nonlinear diffusion equation (8) with the initial
and boundary conditions in Eqs. (10)-(11), can be solved
using dimensional analysis [35, 52, 55–57]. This is per-
formed in detail in Appendix A. The result is a self-
similar solution whose independent dimensionless coor-
dinate is:

ξ = x

tδ
(

KT 4+α−β
0

) 1
2

, (14)

with the similarity exponent:

δ = 1
2 (1 + τ (4 + α − β)) , (15)

and the solution is given in terms of a self-similar profile:
T (x, t) = T0tτ f (ξ) . (16)

The similarity exponent can be written as δ =
1
2 (1 + τ/τH), where we have defined the temporal ex-
ponent

τH = 1
4 + α − β

, (17)

that is always positive, which sets the Marshak wave dy-
namics in space: the propagation accelerates (δ > 1) for
τ > τH , has a constant speed (δ = 1) for τ = τH and
decelerates (δ < 1) for τ < τH . We see that for a con-
stant surface temperature drive (τ = 0), the similarity
exponent does not depend on α, β and is always δ = 1

2 .
By plugging the self-similar form Eq. (16) into the

nonlinear diffusion equation (8) and using the relations
∂ξ
∂t = − δξ

t and ∂ξ
∂x = ξ

x , all dimensional quantities are
factored out, and the following second order ordinary
differential equation (ODE) for the similarity profile is
obtained [32, 35, 37]:

f ′′ (ξ) = β [f (ξ)]β−α−4

(4 + α) (τf (ξ) − δf ′ (ξ) ξ)

− (3 + α) f ′2 (ξ)
f (ξ) . (18)

The surface temperature boundary condition [Eq. (10)],
is written in terms of the similarity profile as:

f (0) = 1. (19)

The dimensionless problem defined by Eqs. (18)-(19)
is completely defined by the exponents α, β, τ . Since the
opacity is usually lower for a hotter material, we have
α ≥ 0. Similarly, since the total energy density should
be an increasing function of temperature, we have β > 0.
Regarding the temporal exponent τ , it is evident from
Eq. (15) that in order for heat to propagate outwards
(δ > 0), we must have τ > −τH , which is reported in
Refs. [32, 37] as the minimal allowed value of τ . However,
as will be shown below, the problem is only valid for
τ > τc > −τH , where the correct minimal value is given
by:

τc = − 1
4 + α

. (20)

The solutions of the diffusion equation (12), and as a
result, the solutions of Eq. (8) and the ODE Eq. (18)
take two different forms [22, 28, 48, 49, 55, 57] depending
on the nonlinearity index n [Eq. (13)], as shown in Fig.
1. If n > 0 (that is, β < 4 + α), the problem is strictly
nonlinear, and its solutions have a well defined heat front,
that is, there exists a finite heat front coordinate ξ0, for
which f (ξ) = 0 for ξ ≥ ξ0. These nonlinear solutions are
discussed below in Sec. V. If n = 0 (that is, β = 4 + α),
the problem is linear, as the diffusion equation (8) and
the ODE Eq.(18) become linear equations in terms of T β

and fβ (ξ), respectively, with solutions which decay to
zero gradually as ξ → ∞, without a well defined front
(that is, ξ0 → ∞ when n → 0) [22, 48, 49]. These linear
solutions are discussed below in Sec. IV.

Some general characteristics of the solutions in various
ranges of the temporal exponent τ are classified in Tab. I
and presented in Fig. 1. Tab. I is one of the major results
of this study. It includes the specific values of τ for which
the ODE Eq. (18) can be solved analytically, the ranges
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[erfc( /2)]1

e 2/4

Figure 1. The temperature similarity profiles (solutions of
Eq. (18)), for various values of the temporal exponent τ . In
the figures the value of τ decreases from left to right in the
respective curves. The upper figure shows the numerical solu-
tions for the nonlinear Marshak wave problem with α = 1.5,
β = 1.6 (n = 2.4375). The analytical solutions which are
known for τ = τH [Eqs. (44)-(45)] and τ = τZ [Eqs. (49)-
(50)], are shown for comparison. The lower figure shows the
solutions for the linear Marshak wave problem (given analyt-
ically in Eq. (32)), with α = 0, β = 4 (n = 0). The special
solutions for τ = 0 [Eq. (38)] and for τ = τZ [Eq. (37)], are
also shown. It is evident that for both linear and nonlinear
conduction, the behavior of the solutions near the origin is in
accordance with Tab. I.

of τ for which the solution is monotonically decreasing
or has a maxima, and the total energy in the system is
constant, increasing or decreasing in time. These results
will be discussed below for both linear and nonlinear con-
duction in sections IV-V.

A. The total energy in the system

The total energy in the system at time t is

E (t) =
∫ ∞

0
u (x, t) dx. (21)

Using the self-similar solution (16) in the energy density
equation of state [Eq. (6)], the total energy can be writ-
ten as the following temporal power law:

E (t) =u0

(
KT 4+α+β

0

) 1
2

t
1
2 (τ(4+α+β)+1)E , (22)

where we have defined the dimensionless energy integral:

E =
∫ ∞

0
fβ (ξ) dξ. (23)

Similarly, the radiation energy flux profile is obtained by
using Eq. (16) in Eq. (7):

F (x, t) = − u0

(
KT 4+α+β

0

) 1
2

t
1
2 (τ(4+α+β)−1)

× (4 + α) f3+α (ξ) f ′ (ξ) . (24)

It is evident from Eq. (22), that for the following tem-
poral exponent:

τZ = − 1
4 + α + β

, (25)

which is always negative, the total energy is constant.
This means that for τ = τZ , the Marshak wave problem
defined in Sec. II in terms of a time dependent surface
temperature [Eq. (10)], is identical to the instantaneous
point source problem that was studied by Zel’dovich,
Barenblatt and others [22, 28, 39, 44, 45, 47, 53–55, 57–
59], which is defined in terms of the initial energy which
is deposited at a point at t = 0. Indeed, the time depen-
dence of the temperature at x = 0 of the solution of the
instantaneous point source problem in planar symmetry,
is given by T0tτZ (see for example [28, Eq. (34)] and [22,
Eqs. (38)-(41)]). This equivalence will be used below for
both linear and nonlinear conduction.

The energy balance in the system as a function of
τ results from the relations E (t) ∼ t(τZ −τ)/2τZ and
dE/dt ∼ F (x = 0, t) ∼ −f ′ (0), which hold for both lin-
ear and nonlinear conduction. For τ = τZ , the energy is
constant and we must have f ′ (0) = 0 (a local maxima
at ξ = 0), as the net surface flux is zero (the incoming
and outcoming surface fluxes are equal). When τ > τZ

the total energy in the system increases as the heat wave
propagates, due to the positive net surface flux, so we
must have f ′ (0) < 0 and a strictly monotonically de-
creasing solution, which is the familiar scenario of the
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Marshak wave. On the other hand, when τ < τZ , the en-
ergy is decreasing over time with a negative surface flux,
so that f ′ (0) > 0, which means that the solution must
have a local maxima at some finite ξ > 0. The existence
of a local maxima (as seen below in Figs. 1, 3, 5-7), ap-
pears since for τ < τZ , the drop in the energy density
at the surface (according to Eq. (10)) is faster than the
rate of heat propagation, causing the temperature at the
origin to be lower than the solution ahead. Indeed, this
condition which is δ < −βτ (see Eq. (14)), is equivalent
to τ < τZ .

This behavior of the solutions in different ranges of τ
is evident in Figs. 1, 3, 5-7, 8 and 12.

B. Marshak boundary condition

It is customary to define the Marshak wave problem in
terms of a prescribed incoming radiative flux [38, 60–72],
rather than the surface temperature boundary condition
[Eq. (10)]. The latter boundary condition is more nat-
ural to apply under the diffusion approximation, while
the former is more natural to use in the solution of the
more elaborate radiation transport equation, which has
the angular surface flux as a boundary condition (see be-
low in Sec. VII B). The net surface flux, which is known
from the analytical solution, can be used to relate these
two different boundary conditions.

In the LTE diffusion approximation, the incoming flux
boundary condition, also known as the Marshak (or
Milne) boundary condition [60, 61, 64, 73] at x = 0 is:

4
c

Finc (t) = aT 4 (x = 0, t) + 2
c

F (x = 0, t) , (26)

where Finc (t) is a given time-dependent incoming radi-
ation energy flux at x = 0. For a medium coupled to a
heat bath at temperature Tbath (t), the incoming flux is
Finc (t) = ac

4 T 4
bath (t). Since the surface temperature is

given by Eq. (10), the Marshak boundary condition (26)
can be written as:

Tbath (t) =
(

T 4
s (t) + 2

ac
F (x = 0, t)

) 1
4

, (27)

which relates the bath temperature, the surface temper-
ature and the net surface flux. Using the flux of the
similarity solution from Eq. (24) in Eq. (27), gives the
following expression for the time dependent bath temper-
ature:

Tbath (t) =
(

1 + Bt
1
2 (τ(α+β−4)−1)

) 1
4

T0tτ , (28)

where we defined the bath constant:

B = −2u0

ac

(
KT α+β−4

0

) 1
2 (4 + α) f ′ (0)

= −

(
16 (4 + α) u0

3ack0T 4−α−β
0

) 1
2

f ′ (0) (29)

It is evident that only for τ = 1
α+β−4 , the bath temper-

ature is given by a temporal power law, which has the
same temporal power τ of the surface temperature. We
see that Tbath (t) > Ts (t) for τ > τZ , Tbath (t) = Ts (t)
for τ = τZ , and Tbath (t) < Ts (t) for τ < τZ . It is also ev-
ident that B decreases as k

−1/2
0 , so that Tbath (t) ≈ Ts (t)

for opaque problems.
The results above agree with several previous works on

on supersonic [6, 36, 73] and subsonic [7] LTE Marshak
waves as well as non-LTE supersonic Marshak waves [38].

IV. LINEAR CONDUCTION

As discussed above, when

β = 4 + α, (30)

that is, n = 0, Eq. (12) is linear, and the diffusion equa-
tion (8) becomes a linear equation in terms of the total
energy density u which is proportional to T β . In this
case, the ODE (18) becomes a linear ODE in terms of
the total energy density similarity profile, fβ :[

fβ (ξ)
]′′ + 1

2ξ
[
fβ (ξ)

]′ − βτfβ (ξ) = 0. (31)

Under the boundary condition in Eq. (19) and assuming
f (ξ → ∞) = 0, this equation has the solution:

fβ (ξ) = Γ (1 + βτ)√
π

e−ξ2/4U

(
1
2 + βτ,

1
2 ,

ξ2

4

)
, (32)

where Γ denotes the Gamma function and U is the Tri-
comi confluent hypergeometric function of the second
kind (also known as the Kummer U function), which is
related to the Hermite polynomial of fractional order by
Hν (x) = 2νU

(
− ν

2 , 1
2 , x2). The U function is available in

most scientific scripting languages such as python scipy
(as scipy.special.hyperu [74]), Matlab and Mathematica.
The solution in Eq. (32) is an exact analytic solution of
the Marshak wave problem for a general τ , and was de-
rived in Ref. [75] for integer βτ and in Refs. [28, 76] for
general τ . It is evident that this solution breaks down at
τ ≤ − 1

β = τc. As expected, the linear solution does not
have a well defined heat front, and it decays according
to:

lim
ξ→∞

e−ξ2/4U

(
1
2 + βτ,

1
2 ,

ξ2

4

)
= e−ξ2/4ξ−βτ− 1

2

(
1 + O

(
1
ξ

))
. (33)
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The derivative, which gives the radiation energy flux [Eq.
(24)], can be calculated using the relation:

f ′ (ξ) = − ξ

2β
f (ξ)

U
(

1
2 + βτ, 3

2 , ξ2

4

)
U
(

1
2 + βτ, 1

2 , ξ2

4

) , (34)

and the derivative at the origin, which determines the
bath temperature [Eqs. (28)-(29)], is given by:

f ′ (0) =
{

− Γ(1+βτ)
βΓ( 1

2 +βτ) , βτ ̸= − 1
2

0, βτ = − 1
2

(35)

and switches from a positive to a negative value at τ =
τZ = − 1

2β . This means that in the range − 1
β < τ < − 1

2β ,
the solution is not monotonic and has a local maxima,
the surface flux is negative, and that the total energy in
the system is decreasing in time, as was discussed in Sec.
III A. The solutions are shown in Fig. 1 for various values
of τ .

The energy integral of the solution in Eq. (32) can be
calculated analytically, and is given by:

E =
∫ ∞

0
fβ (ξ) dξ = Γ (1 + βτ)

Γ
( 3

2 + βτ
) . (36)

As discussed in Sec. III A above, for τ = τZ = − 1
2β ,

the surface temperature is decreasing in such a way that
the total energy (Eq. (22)) is time independent, and the
solution should be identical to the Green’s function of
the (linear) diffusion equation, which is the solution of
the instantaneous point source problem [22, 55, 57, 58].
Indeed, since U

(
0, 1

2 , z
)

= 1, in this case Eq. (32) is
reduced to the well known Gaussian Green’s function:

fβ (ξ) = e− ξ2
4 . (37)

The analogous solution for nonlinear conduction is de-
scribed below in Sec. V C.

For τ = 0, using the identity U
( 1

2 , 1
2 , z
)

=√
πezerfc (

√
z), we find:

fβ (ξ) = erfc
(

ξ

2

)
, (38)

where erfc is the complementary error function. This
result is in agreement with Refs. [43, 48, 49, 75, 77, 78]
that give the linear conduction solution for τ = 0.

Finally, we note that for linear conduction we have
τH → ∞, and the similarity exponent does not depend
on α, β, τ and is always δ = 1

2 , that is, heat propagates
as t1/2 for any value of τ (in contrast to nonlinear con-
duction).

V. NONLINEAR CONDUCTION

For nonlinear conduction, n > 0 (that is, β < 4 + α),
the solution has a well defined heat front, that is, we

0 1 2 3 4
0

1

2

3

4

5

6

7
0.000

0.250

0.750

1.000

2.000 3.000

4.000

5.000 6.000

7.000

1 = n = 4 +

0

1

2

3

4

5

6

7

8

-- β=3+α
Linear front

β=4+α-- Linear Conduction

sharp front

 (no defined front)

flat front

Figure 2. A mapping of the various heat propagation modes
as a function of opacity and energy density exponents α, β
(see also Tab. II). The color represents the inverse of the
front exponent ν which is a measures the heat front steepness
(see Eqs. (40)-(41)). The dashed magenta line represents the
points β = 3 + α, for which the front is linear (ν = 1). The
points below this line (β < 3 + α) result in sharp heat fronts
(ν < 1), while the point above it (3 + α < β < 4 + α), result
in flat heat fronts (ν > 1). The dashed red line represents the
points β = 4 + α, for which heat is conducted linearly with
no defined heat front (ν → ∞), for which the solution decays
indefinitely, according to Eq. (33).

are looking for solutions which must obey f (ξ) = 0 for
ξ ≥ ξ0, where the similarity coordinate at the heat front,
ξ0, is finite. According to Eq. (14), the front position
propagates in time according to:

xF (t) = ξ0tδ
(

KT 4+α−β
0

) 1
2

. (39)

Near the front ξ ≈ ξ0, the solution has the following
asymptotic form:

f (ξ) = f0

(
1 − ξ

ξ0

)ν

, (40)

with ν ≥ 0. By plugging this ansatz into Eq. (18), one
finds the front exponent:

ν = τH = 1
4 + α − β

= 1
βn

, (41)

f0 =
[

δξ2
0

(4 + α) ν

]ν

. (42)

It is evident that the wave front is steeper for larger values
of the nonlinearity index n (smaller ν). The exponent
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0 ≤ β < 3 + α β = 3 + α 3 + α < β < 4 + α β = 4 + α

f ′ (ξ0) −∞ finite 0
ν 0 < ν < 1 ν = 1 ν > 1 ν = ∞

front sharp linear flat -
conduction nonlinear linear

Table II. Behavior of the heat front in different ranges of the energy density temperature exponent β (see also Figs. 2-4).
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Figure 3. Various forms of the heat front structure, as outlined in Tab. II and in Fig. 2. The similarity profiles are shown
for α = 1.5 and varying β: a nonlinear sharp front β = 1.6 < 3 + α (in red); a linear front β = 4.5 = 3 + α (in blue); a flat
(parabolic) front β = 5 > 3 + α (in magenta); and the linear conduction solution (undefined front) β = 4 + α = 5.5 (in green).
The profiles are shown for τ = 0 (left figure), τ = τZ (middle figure) and τ = 0.9τc (right figure). The values of the front
exponent ν [Eq. (41)] and steepness ϵ [Eq. (55)] are listed in the legend. The front locations ξ0 are marked with a circle. The
behavior of the solutions for the different values of τ agree with Tab. I.

given in Eq. (41) defines three different wave fronts, since
the derivative at the front is

lim
ξ→ξ−

0

f ′ (ξ) =


−∞ , β < 3 + α

−νf0 , β = 3 + α

0 , β > 3 + α

(43)

In the common case where β < 3 + α, we have 0 <
ν < 1, resulting in f ′ (ξ0) = −∞, and the solution has
the familiar steep heat front. If β > 3 + α, we have
ν > 1 so that f ′ (ξ0) = 0, and the solution has a flat
heat front. For the special value β = 3 + α, we have
ν = 1 so that f ′ (ξ0) is finite, and the solution has a
linear heat front. This is summarized in table II. The
various front types are mapped as a function of α, β in
Fig. 2. It is interesting to note that the front shape does
not depend on the temperature drive exponent τ . The
similarity profiles for these different cases are shown in
Figure 5.

Figure 4 shows a comparison between the exact (nu-
merical) solution of Eq. (18) to the asymptotic near-
front solution [Eq. (40)], for steep, linear and flat heat
fronts. The expected behavior of the solution f (ξ) and
its derivative f ′ (ξ) near the front is evident. Other com-
parisons are shown for various values of τ in Figs. 5-
7, showing a great agreement with the exact solution
near the front. At the origin, the asymptotic form has
f ′ (0) = −νf0ξν−1

0 which does not depend on τ , and is

always finite and negative, as opposed to the exact solu-
tion, which, as discussed above can have a positive or zero
slope at the origin. This disagreement near the origin is
evident in Figs. 5-7.

We note that the discussion above is consistent with
the numerical results in Refs. [48, 49, 79], which examine
nonlinear diffusion for a constant boundary temperature
(τ = 0). In addition, we note that Eqs. (41)-(42) are
consistent with Refs. [32, 48].

A. Numerical solution

It will be shown below that there are only two special
values of the temperature drive exponent τ for which
the ODE Eq. (18) has an exact analytic solution for the
similarity temperature profile f (ξ). For a general τ , f (ξ)
is obtained by a numerical integration of the ODE (18)
(see also Refs. [26, 27, 32, 34, 35, 38, 48, 50, 51, 80]). This
is in contrast to the linear conduction case (see Sec. IV),
which has a closed form analytic solution for a general τ .

The value of ξ0 is obtained by iterations of a “shooting
method”, which is applied on the numerical solution of
the ODE Eq. (18), which is integrated inwards from
a trial ξ0 to ξ = 0. The iterative process adjusts the
trial ξ0 until the result obeys the boundary condition
Eq. (19) at ξ = 0. Moreover, since the derivative f ′

diverges at the front, in practice, given a trial ξ0, the
integration actually starts from ξ̄0 = ξ0 (1 − ε) with ε
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Figure 4. A comparison of nonlinear solution profiles (upper figures) and derivatives (lower figures), to the near-front asymptotic
approximation [Eqs. (40)-(42)], for τ = 0. These solutions were also shown in the leftmost pane of Fig. 3.

a small number (we take ε = 10−12). The near-front
asymptotic form [Eq. (40)] evaluated at ξ = ξ̄0 (for the
current trial ξ0), is used to obtain the initial values f

(
ξ̄0
)

and f ′ (ξ̄0
)

which are then given to a standard numerical
ODE solver. Numerical results for the similarity profiles
in various cases are shown in Figs. 1,3-7.

B. The Henyey exact analytic solution

For the temporal exponent τ = τH [Eq. (17)], the
ODE Eq. (18) has an exact analytic solution, given by:

f (ξ) =
(

1 − ξ

ξ0

) 1
4+α−β

, (44)

where:

ξ0 =
√

4 + α

4 + α − β
. (45)

This result is known as the Henyey Marshak wave (see
Sec. 5.2 in Ref. [28], Sec. II-B of Ref. [31], Appendix A
of Ref. [39], Sec. III.D in Ref. [38] and Refs. [33, 36, 73,
81]). For τ = τH , the exact solution and the asymptotic
near-front approximation [Eq. (40)], are identical for all
ξ (as seen in the top left pane of Figs. 5-7). In addition,
the similarity exponent in this case is δ = 1, that is, the
front propagates at constant speed xF ∝ t.

The bath constant [Eq. (29)] can be obtained from the
derivative at the origin,

f ′ (0) = − 1√
(4 + α − β) (4 + α)

, (46)

which is always negative, since τH > τZ (as discussed in
Sec. III A). The energy integral [Eq. (23)] is given by

E = 1
ξ0

, (47)

and the total energy as a function of time is

E (t) = u0

(
KT 4+α+β

0

) 1
2 Et

4+α
4+α−β . (48)

C. The Zel’dovich-Barenblatt exact analytic
solution - the nonlinear instantaneous point source

problem

As discussed in Sec. III A, for τ = τZ [Eq. (25)],
the surface temperature is reduced in such a way that
the total energy is constant in time, and the solution to
the nonlinear diffusion problem with a prescribed sur-
face temperature drive [Eq. (10)], should be identical to
the solution of the nonlinear instantaneous point source
problem [22, 28, 55, 57], where a finite amount of energy
is deposited at at the origin at t = 0. Indeed, for τ = τZ

the ODE Eq. (18) has the exact analytic solution:
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Figure 5. Various forms of the temperature similarity profile f (ξ) for various values of τ (as listed in the titles). Shown are the
exact profile (in red) which is obtained by a numerical solution of the ODE Eq. (18) (red line), the near-front asymptotic form
(Eq. (40), blue line), the Hammer-Rosen approximation (Eqs. (57),(60),(61), magenta line) and the Smith approximation (Eqs.
(57),(62),(63), green line). The approximated form Eq. (57) with fitted parameters, are shown (in black) only for the bottom
middle and right figures, where the difference with respect to the exact solution is visible (the L∞ (maximal) error norm is
listed in the legend). All profiles shown are for α = 1.5, β = 1.6, for which ϵ ≈ 0.29, τc = − 2

11 = −0.181818..., τH = 10
39 ≈ 0.2564

and τZ = − 10
71 ≈ −0.1408. As discussed in the text (see also table I), it is evident that for τ > τZ , the solutions have a finite

negative slope at ξ = 0 (upper figures) which represents a positive net incoming flux, for τ = τZ the solution has a zero slope
at the origin (lower left plot) which represents a zero net surface flux, while for τc < τ < τZ the solution has a positive slope
near the origin, which leads to a non-monotonic behavior and the existence of a local maxima (lower middle and right figures),
with a net negative surface flux.

f (ξ) =
(

1 −
(

ξ

ξ0

)2
) 1

4+α−β

, (49)

where:

ξ0 =

√
2 (4 + α + β) (4 + α)

(4 + α − β) β
. (50)

This solution is in agreement with the nonlinear instan-
taneous point source problem (i.e. Eq. 30 in Ref. [28]
and Eq. 42 in Ref. [22]). Due to the energy preserving
nature of this solution, it has a maxima at the origin,
a zero net surface flux, and a zero bath constant which
results in a bath temperature [Eq. (29)] that is equal to
the surface temperature. The (time independent) total
energy is

E = u0

(
KT 4+α+β

0

) 1
2 E , (51)

where for the solution (49), the energy integral [Eq. (23)]
can be calculated analytically:

E = ξ0

2 B
(

1
2 ,

4 + α

4 + α − β

)
, (52)

where the Beta function is defined in terms of the Gamma
function:

B (x, y) = Γ (x) Γ (y)
Γ (x + y) . (53)

Finally, we note that looking at the linear conduction
limit of the solution (49), that is, 4 + α → β and ν → ∞,
we have ξ0 ≈

√
4βν → ∞ and

lim
ν→∞

f (ξ) = lim
ν→∞

(
1 − ξ2

4βν

)ν

= e− ξ2
4β , (54)

which agrees with the linear solution [Eq. (37)] for τ =
τZ .
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Figure 6. Same as Fig. 5, but for α = 3.5, β = 4. For these parameters we have ϵ ≈ 0.53, τc = − 2
15 = −0.133333...,

τH = 2
7 ≈ 0.2857 and τZ = − 2

23 ≈ −0.08696. The larger value of ϵ relative to Fig. 5, results in a less steep front and larger
error for the HR, Smith and fit approximations.

D. The Hammer-Rosen, Smith and fitted
approximate solutions

In Ref. [31] Hammer and Rosen (HR) introduced a
perturbative approach which results in an approximate
solution of the diffusion equation (8), for a general time
dependent surface temperature T (x = 0, t) = TS (t).
The perturbation expansion is employed through the pa-
rameter:

ϵ = β

4 + α
, (55)

which is small for steep heat fronts, since the front expo-
nent [see Eqs. (40)-(41)] is:

ν = ϵ

β (1 − ϵ) . (56)

In Ref. [33], Smith provides a more accurate analysis
based on a series expansion for which the velocity of the
heat front serves as a boundary condition, rather than
the surface temperature.

An application of either the HR or Smith approaches
to the specific case of a power law surface temperature
TS (t) = T0tτ , [Eq. (10)], gives the following approximate
form for the temperature profile (see Eq. 37 in Ref. [31],
and Eq. 23 in Ref. [33]):

f (ξ) =
[(

1 − ξ

ξ0

)(
1 + R

ξ

ξ0

)] 1
4+α−β

, (57)

where R and ξ0 are some functions of α, β and τ . This
form Eq. (57) is in fact a generalization of the exact
Henyey (for which R = 0, see Sec. V B) and Zel’dovich-
Barenblatt (for which R = 1, see Sec. V C) solutions,
which now applies to a general temperature drive expo-
nent τ . We note that since f (ξ) > 0 for ξ < ξ0, we must
have R ≥ −1 in Eq. (57).

Given the values of ξ0 and R, we can calculate some
properties of the approximate profile in Eq. (57). The
derivative at the origin, which determines the net surface
flux and the bath temperature (see Sec. III B), is is given
by:

f ′ (0) = ϵ

1 − ϵ

R − 1
βξ0

. (58)

The energy integral [Eq. (23)] can be calculated analyt-
ically:

E = 2F1

(
1, − ϵ

1 − ϵ
; 2 − ϵ

1 − ϵ
; −R

)
ξ0 (1 − ϵ) , (59)

where 2F1 is the Gaussian hypergeometric function.
We discuss three choices for the calculation of the pa-

rameters ξ0 and R in Eq. (57).

The Hammer-Rosen approximation

The first choice is to employ the HR perturbation the-
ory for a power law surface temperature drive, which
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Figure 7. Same as Fig. 5, but for α = 3.5, β = 1. For these parameters we have the same τc = − 2
15 = −0.133333... as in Fig.

6, and ϵ ≈ 0.13, τH = 2
13 ≈ 0.1538, τZ = − 2

17 ≈ −0.1176. The smaller value of ϵ relative to Fig. 5, results a steeper front and
in a much smaller error for the HR, Smith and fit approximations.

gives the following approximate expressions for ξ0 and
R (see Eqs. 35,37 in Ref. [31] and the discussion follow-
ing Eq. 3 in Ref. [39]):

ξ2
0,HR = (2 + ϵ) ϵ

(1 − ϵ) (ϵ + τβ) = 2 + ϵ

(1 − ϵ) (1 + τ (4 + α)) , (60)

RHR = ϵ

2 − βτ

2 ξ2
0,HR = ϵ (βτ (2ϵ + 1) + (ϵ − 1) ϵ)

2 (ϵ − 1) (βτ + ϵ) . (61)

We note that the HR results correctly diverge at the value
τ = τc, in agreement with the exact solution. On the
other hand, while the exact solution is valid for any τ >

τc, the HR results become invalid for τ ≥ (1−ϵ)ϵ
β(2ϵ−1) (since

R ≤ −1), which are positive for ϵ > 1
2 .

The Smith approximation

The second choice is based on formulation of Smith,
for which we find (by employing Eqs. 27,30,33 in Ref.
[33], for a power law surface temperature) the following
expressions for ξ0 and R :

ξ2
0,Sm = (2 + ϵ) ϵ

(1 − ϵ) (ϵ + βτ (1 − ϵ2)) (62)

= 2 + ϵ

(1 − ϵ) (1 + τ (4 + α − β) (1 + ϵ)) ,

RSm = 1
2

(
ϵ − βτ (1 − ϵ)2

ξ2
0,Sm

)
(63)

= ϵ

2

(
1 − βτ (2 + ϵ) (1 − ϵ)

ϵ + βτ (1 − ϵ2)

)
.

It is evident that for τ = τH the Smith solution coincides
with the exact Henyey solution (for which R = 0 and ξ0
is given by Eq. (45)), while, as discussed in Ref. [31],
the agreement of the HR results [Eqs. (60)-(61)] with the
Henyey solution is not exact but only accurate through
first order in ϵ. We also note that for τ = 0 the Smith
and HR expressions coincide, while for τ = τZ they differ,
and also do not match the exact Zel’dovich-Barenblatt
solution (for which R = 1 and ξ0 is given by Eq. (50)).

The least squares fit approximation

The third choice is to obtain the parameters ξ0 and R
numerically, by finding the best fit of the form Eq. (57)
to the exact numerical solution. This approach is differ-
ent than the HR and Smith formulations above, which
give simple, closed form but approximate expressions for
the parameters ξ0 and R to be used in the approximate
profile in Eq. (57). Since we know that the exact solu-
tion coincides with the form in Eq. (57) for τ = τH and
τ = τZ , then if the exact profile f (ξ) for a general τ does
not differ significantly from this approximate form, using
the exact value of ξ0 and calculating R by fitting Eq. (57)
to the exact numerical solution, should result in a rea-
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Figure 8. A demonstration of the numerical fit approximate
solution. The upper figure shows a comparison between the
exact solution f (ξ) (black dashed lines) and the approximate
profile form Eq. (57) (colorful lines), using a value of R (listed
in the legend) that is calculated by a fit to the exact numerical
solution. The results are shown for various values of τ and
for α = 3.5, β = 4, for which ϵ ≈ 0.53 (see also Fig. 6). The
lower figure shows the pointwise relative error as a function
of ξ/ξ0 (not shown are the results for τ = τH and τ = τZ , for
which the fit error is identically zero, since the exact solution
has the form of Eq. (57)). The resulting maximal fit errors
(L∞) are also listed in the legend.

sonably accurate solution based on just two numerically
calculated parameters: the exact ξ0 and a fitted param-
eter R. Here we use a standard nonlinear least squares
fitting method for the calculation of R. Fig. 8 shows a
comparison between the exact solution and the approx-
imated fit by Eq. (57), for ϵ ≈ 0.53 and various values
of τ . In Fig. 9 we show the error between the exact nu-
merical profile and the fit approximation, as a function
of τ . We plot the L1 and L∞ error norms, which are,
respectively, the average and maximal relative error be-
tween the profiles, at each value of τ . It is evident that,

as expected, for τ = τH and τ = τZ the error diminishes,
since in these cases the exact solution has the form (57).
It is remarkable that for τ ≳ τZ the fitted profiles are
in a very good agreement with the exact solution with
an error smaller than 10−3, even for a quite large value
of ϵ ≈ 0.53. In the range 1

2 (τZ + τc) ≲ τ ≲ τZ , where
the exact solution and the form (57) have a local max-
ima (as also seen in the bottom middle and right panes
of Figs. 5-7), the fit solution error remains reasonable,
about 10−2. When τ approaches τc, the fit approxima-
tion becomes inaccurate, as R → ∞. It is also clear that
the overall fit error decreases with ϵ, which means that
the form (57) is a better approximation for smaller ϵ, as
expected, since it is based on the HR perturbation the-
ory. We conclude that the parametrization of the exact
solution by Eq. (57), which is much more simple to use
than a full numerical solution for f (ξ), is highly accurate
in a wide range of τ and even for intermediate values of
ϵ.

In Figs. 5-7, we compare the similarity profiles result-
ing from the exact numerical solution, the asymptotic
near front approximation [Eq. (40)] and the approximate
form in Eq. (57) using the HR, Smith and numerically
fitted values for ξ0 and R. The comparisons are shown
for various values of τ and for three choices of α, β re-
sulting in ϵ ≈ 0.13, 0.29 and 0.53. In Fig. 10 we plot the
values of R as a function of τ , as obtained from the HR
and Smith approximations and from a numerical fit to
the exact solution. It is evident that the Smith approxi-
mation is closer than HR to the numerically fitted values,
especially for τ ≳ 0. For τ = τH , the Smith approxima-
tion coincides with the exact solution (and the fit). For
τ = 0 the HR and Smith approximations coincide. For
τ = τZ both the HR and Smith approximations fail to
reproduce the exact result (R = 1). From Eq. (58) we
see that the fit solutions have a local maxima at the cor-
rect range, since R ≥ 1 only for τc < τ ≤ τZ , while the
HR profiles have a maxima even at τ < τZ and on the
other hand, the Smith profiles do not have maxima at
τ > τZ . In addition, for τ < τZ , the HR values of R (τ)
diverge faster than the fitted values, but at the correct
value τ = τc, while the Smith values do not diverge at τc

but at the lower, incorrect value τ = −τH/ (1 + ϵ).
In Fig. 11 we compare the exact, HR and Smith re-

sults for the front coordinate ξ0 as a function of τ (the
fit approximation uses the exact numerical ξ0, and is not
shown). Some of these results for the front coordinate
can also be seen in the profiles shown in Figs. 5-7. As
discussed by Smith in Ref. [33], we see that for τ > 0 the
HR results underestimate the value of ξ0, while the Smith
results are accurate to less than 1%, which is better than
the HR accuracy by about an order of magnitude. For
τ < 0, the HR result overestimates the value ξ0 while
Smith underestimates it. In the range 1

2 τZ ≲ τ ≲ 0, the
HR is better than the Smith approximation, with accu-
racy of 0.1% to ~few %. For τc ≲ τ ≲ 1

2 τZ , as the exact ξ0
diverges, both approximations become increasingly inac-
curate. In Fig. 12 we compare the exact results for f ′ (0)
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Figure 9. The L1 (average) and L∞ (maximal) errors of the approximate fitted profile [Eq. (57)] and the exact solution (see
also Fig. 8), as a function of τ . The results were calculated for the three choices of α, β that were shown in Figs. 5-7, as listed
in the titles. Also shown are vertical lines for τ = τH , τ = τZ , for which the exact solution has the Form Eq. (57) (so that the
errors are zero), as well as τ = τc which is the minimal possible value of τ .
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Figure 10. The parameter R [see Eq. (57)], as a function of τ , as calculated from the Hammer-Rosen (HR) theory (Eq. (61),
blue line), from the Smith theory (Eq. (63), green line) and from a fit to the exact (numerical) similarity profile (red line). The
results were calculated for the three choices of α, β that were shown in Figs. 5-7, 9, as listed in the titles. As discussed in the
text, it is evident that the exact Henyey solution (R = 0, pink ’x’ marker) coincides with the Smith and fit results, while the
exact Zel’dovich-Barenblatt solution (R = 1, black ’x’ marker) only agrees with the fit result. Also shown are vertical lines for
τ = τH , τ = τZ , as well as τ = τc which is the minimal possible value of τ , where it is evident that the exact and HR solutions
break down.

with the HR, Smith and fit approximations, as a func-
tion of τ . A similar comparison in made in Fig. 13 for
the energy integral. As expected, it is evident that the
fit results are much better than HR and Smith, and are
relatively accurate even for τc < τ ≤ τZ . We note that
Hammer and Rosen employ a different approximation for
the total energy (Eq. 29 in Ref. [31]):

E = ξ0 (1 − ϵ) , (64)

which, as seen in Fig. 13 is mostly better than the inte-
grated HR profile (Eq. (59) using Eqs. (60)-(61)).

Finally, we note that, as expected, it is evident from
Figs 5-7 and Figs. 9-13, that both the HR, Smith and
fit approximations become increasingly better when ϵ is
decreased.

VI. THE OPTICAL DEPTH

The optical depth T , is defined as the number of mean
free paths within the heat wave (see i.e. Refs. [38, 73]):

T (t) =
∫ ∞

0
kt (T (x, t)) dx. (65)

Using the self-similar solution Eq. (16), we find

T (t) = t
1
2 (τ(4−α−β)+1)

(
4aT 4−α−β

0 ck0

3 (4 + α) u0

) 1
2
∫ ∞

0
f−α (ξ) dξ

=
[
tδ
(
KT 4+α−β

0
) 1

2
]

k (T0tτ )
∫ ∞

0
f−α (ξ) dξ. (66)

Evidently, T ∝ k
1/2
0 which shows how the optical depth

increases for opaque problems. The second form, Eq.
(66), expresses the optical depth as the ratio between the
typical heat front position (the first term) to the mean
free path evaluated at the current surface temperature
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Figure 11. A comparison between the exact value (obtained numerically, as described in Sec. V A), of the heat front coordinate
ξ0 (red lines) and the approximate Hammer-Rosen (Eq. (60), blue lines) and Smith (Eq. (62), green lines) results, as a function
of τ . Each row represents a specific choice of α and β, yielding different values of ϵ, as listed in the titles (some profiles for
these cases were shown in Figs. 5,6,7, respectively). The leftmost plots show the comparison in a wide range of τ . The middle
plots show a closed up view, which demonstrates the differences between the approximations. The rightmost plots show the
relative error between the exact and approximate results. Vertical lines are shown at the special values τ = τH , for which
the Smith and exact results coincide with the analytic Henyey solution (see Sec. V B); τ = τZ , for which the exact solution
coincides with the analytic Zel’dovich-Barenblatt solution (see Sec. V C); τ = τc which is the minimal value of τ , for which
the exact and Hammer-Rosen solutions break down (while the Smith solution breaks down at a smaller τ). It is evident that
for τ > 0, the Smith results are more accurate than HR by about an order of magnitude, and that the overall accuracy of the
both approximations decreases with ϵ.

(the second term, which is the inverse of Eq. (5)), and
corrected by the reduction of the mean free path due
to difference between the surface temperature and the
temperature across the heat wave (the integral term).

For linear conduction, the exact solution [Eq. (32)],
results in a diverging integral in Eq. (66). For nonlinear
conduction, the integral is carried from the surface to the

heat front, and Eq. (66) can be rewritten as:

T (t) =
∫ xF (t)

0
kt (T (x, t)) dx.

= xF (t) k (T0tτ )
(

1
ξ0

∫ ξ0

0
f−α (ξ) dξ

)
. (67)

The integral in Eq. (67) can be calculated analytically
by assuming the similarity profile of the form given in
Eq. (57), which, as discussed in Sec. V, represents
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Figure 12. Same as Fig. 11, but for f ′ (0) which determines the surface flux (see Eq. (24)). The results obtained by the fitted
approximate profile [Eq. (57)] are also shown (dotted green line). The approximate Hammer-Rosen, Smith and fit results are
obtained using Eq. (58). It is evident that only for the exact and fit results the derivative correctly changes its sign precisely
at τ = τZ , as the solution passes between the positive net surface flux (τ > τZ), zero surface flux (constant energy, τ = τZ)
and negative surface flux (τ < τZ) scenarios (see Tab. I). It is evident that

the Hammer-Rosen and Smith approximate profiles for
general τ , as well as the exact Henyey and Zel’dovich-
Barenblatt profiles for specific values of τ . As in the
calculation of the energy integral [Eq. (59)], the result is
given in terms of a Gaussian hypergeometric function:

1
ξ0

∫ ξ0

0
f−α (ξ) dξ =

∫ 1

0
[(1 − y) (1 + Ry)]

−α
4+α−β dy

=2F1

(
1,

α

4 + α − β
; 8 + α − 2β

4 + α − β
; −R

)
4 + α − β

4 − β
. (68)

This integral diverges, unless α
4+α−β < 1, which means

that we must have β < 4 in order for the integral to be
finite. For β = 4 the integral diverges logarithmically (a
result which was also found in Refs. [38, 73], for τ = τH).

This divergence of the optical depth integral results
from the steep temperature decrease near the heat front
for nonlinear conduction, and from the infinite extent of
the heat wave for linear conduction. Therefore, as dis-
cussed in Ref. [38], a more useful and simple estimate for
the optical depth is obtained by ignoring the temperature
variation across the wave, and using the mean-free-path
at the surface temperature. This is equivalent to replac-
ing the integral

∫∞
0 f−α (ξ) dξ with ξ0, which for non-

linear conduction is the heat front coordinate, while for
linear conduction it is the value of ξ for which the temper-
ature profile [Eq. (32)] has decayed (we take ξ0 =

√
20).

Since the average temperature across the profile is usu-
ally lower than the surface temperature, this results in a
useful lower bound for the optical depth
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Figure 13. Same as Fig. 12, but for the dimensionless energy integral E , which determines the total energy in the system (see
Eqs. (22)-(23)). The HR, Smith and fit results are obtained by an exact integration of the approximate profile [Eqs. (57),(59)].
Also shown (magenta line) is the result of Eq. (64), which does not use the exact integration. As discussed in the text, for
ϵ ≈ 0.533, the HR profile becomes invalid for τ ≥ 14

15 .

T (t) ≳xF (t) k (T0tτ ) (69)

= ξ0t
1
2 (τ(4−α−β)+1)

(
4aT 4−α−β

0 ck0

3 (4 + α) u0

) 1
2

, (70)

which can be used to estimate whether a heat wave is
opaque enough such that the diffusion approximation of
radiation transport is applicable.

VII. COMPARISON WITH SIMULATIONS

In this section we define radiation transfer benchmarks
based on the LTE diffusion problem defined in Sec. II.
We define setups for gray diffusion and transport calcu-
lations, which are non-LTE calculations that handle the

dynamics of the radiation field and material temperature
profiles.

A. Gray diffusion setup

In the absence of photon scattering, the total opacity k
(given by Eq. (5)) and the absorption opacity are equal,
and the gray diffusion equation in slab geometry reads:

∂Er

∂t
= ∂

∂x

(
c

3k

∂Er

∂x

)
+ ck

(
aT 4 − Er

)
, (71)

∂um (T )
∂t

= ck
(
Er − aT 4) , (72)
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where Er is the radiation energy density and

um (T ) = u (T ) − aT 4 = u0T β − aT 4, (73)

is the material energy density (since Eq. (2) represents
the matter+radiation energy at equilibrium). In the LTE
limit, which is reached for optically thick problems (when
the optical depth T ≫1, see Sec. VI), the material and
radiation temperatures are equal, Er = aT 4, and the
gray diffusion system (71)-(72) is reduced to the LTE
diffusion equation (1) for the total energy density u (T ) =
um (T ) + aT 4.

The boundary condition for gray diffusion is the same
as for LTE diffusion, using either a prescribed surface
temperature [Eq. (10)] or bath temperature via the Mar-
shak boundary condition [Eqs. (3), (27)-(28)].

B. Transport setup

The general one dimensional, one group (gray) radia-
tion transport equation without scattering and in slab
symmetry for the radiation intensity field I (x, µ, t) is
given by [38, 50, 51, 64, 68, 82–85]:

(
1
c

∂

∂t
+ µ

∂

∂x

)
I (x, µ, t) +k (T ) I (x, µ, t) (74)

= ac

4π
k (T ) T 4 (x, t) ,

where µ is the directional angle cosine, k (T ) the absorp-
tion opacity (given by Eq. (5)). The transport equation
for the radiation field is coupled to the material via the
material energy equation:

∂um (T )
∂t

= k (T )
[
2π

∫ 1

−1
dµ′I (x, µ′, t) − acT 4 (x, t)

]
,

(75)

where um (T ) is given in Eq. (73). The radiation energy
density is defined by the zeroth angular moment of the
intensity via:

Er (x, t) = 2π

c

∫ 1

−1
dµ′I (x, µ′, t) . (76)

The boundary condition for the transport problem is de-
fined by an incident radiation field for incoming direc-
tions µ > 0, which is given by a black body radiation
bath:

I (x = 0, µ, t) = ac

4π
T 4

bath (t) , (77)

where the time dependent bath temperature is given by
solution of the LTE diffusion problem via eq. (28), which
is obtained from the Marshak (Milne) boundary condi-
tion, as detailed in Sec. III B.

In the absence of photon scattering, the LTE diffusion
limit is reached for optically thick problems (T ≫1), so
that Er = aT 4 and the transport problem (74)-(77) is
reduced to the LTE diffusion problem defined in Sec. II.

C. Test cases

We define four benchmarks based on the self-similar
solutions of the LTE diffusion equation given in Sec. III.
We specify in detail the setups for LTE and gray radiation
diffusion as well as radiation transport computer simula-
tions. We have performed gray diffusion simulations as
well as deterministic discrete-ordinates (SN ) and stochas-
tic implicit Monte-Carlo (IMC) [62, 86] transport simu-
lations. The SN transport calculations were performed
using a numerical method which is detailed in [87], while
the IMC calculations were performed using a novel nu-
merical scheme that was recently developed by Steinberg
and Heizler in Refs. [68, 69, 88]. All benchmarks are run
until the final time t = 1ns. The benchmarks were de-
fined such that the optical depth [Eq. (69)] is larger than
unity after a short transient, so that the LTE diffusion
limit is applicable, and the gray diffusion and transport
simulation results should agree with the self-similar solu-
tions of the LTE diffusion equation.

We note that unlike LTE diffusion simulations, which
use a given total energy density function u (T ) as the
dependent variable, non-LTE simulations (gray diffusion
and transport), in which the radiation energy density
is always present explicitly, solve for the material en-
ergy density um (T ), which, according to Eq. (73), must
be given as a difference between a temperature power
law u0T β , and the radiation energy density aT 4. This
is not an issue if the material energy density has the
form um (T ) = aT 4/ε, so that the total energy density
is u (T ) =

(
1 + 1

ε

)
aT 4 (that is, β = 4, u0 =

(
1 + 1

ε

)
a).

In the more realistic case for which the material energy
density is given by a power law um (T ) = u0,mT βm with
βm ̸= 4, the total energy density can be approximated
by a power law only if either the radiation energy is neg-
ligible, so that u (T ) = u0,mT βm + aT 4 ≈ u0,mT βm or
if the material energy is negligible so that u (T ) ≈ aT 4.
The benchmarks below have either a negligible radiation
energy density (tests 1 ,3-5), or βm = 4 (tests 2, 6), so
that the total energy density obeys a power law.

TEST 1

For the first test, we take a simple Henyey wave which
has an analytical solution (see Sec. V B), for a gold-like
material model used by Hammer and Rosen [31], at a
temperature scale of 1HeV = 0.1KeV ≈ 1.160452×106K,
at which the radiation energy can be neglected. We take
α = 1.5, β = 1.6 with coefficients k0 = 104HeV1.5/cm,
u0 = 1013HeV−1.6erg/cm3 so that the opacity is:

k (T ) = 104
(

T

HeV

)−1.5
cm−1, (78)



18

0 2 4 6 8 10 12
x [ m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
T

[H
eV

]
Test 1

Transport IMC
Transport SN

Diffusion Simulation
Diffusion Analytic

Figure 14. Temperature profiles for test 1. Results are shown
at times t = 0.2, 0.6 and 1ns, as obtained from a gray diffusion
simulation and from Implicit-Monte-Carlo (IMC) and discrete
ordinates (SN ) transport simulations, and are compared to
the analytic solution of the diffusion equation [Eq. (83)].
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Figure 15. A comparison between the surface (red line, Eq.
(80)) and bath (blue line, Eq. (84)) driving temperatures, for
test 1.

and the total energy density, which is used in LTE diffu-
sion simulations, is:

u (T ) = 1013
(

T

HeV

)1.6 erg
cm3 . (79)

We define a Henyey wave, so that τ = τH = 10
39 , and

surface temperature

Ts (t) =
(

t

ns

) 10
39

HeV. (80)

At these temperatures the radiation energy density is
much smaller than the material energy density, and can

be neglected, so that for non-LTE simulations (gray diffu-
sion and transport), in which the material and radiation
energies are separated, we can take:

um (T ) = u (T ) − aT 4 ≈ 1013
(

T

HeV

)1.6 erg
cm3 . (81)

Eq. (45) gives the front coordinate ξ0 = 1.187542, which
via eq. (39) gives the heat front position, which propa-
gates linearly in time:

xF (t) = 0.00118584
(

t

ns

)
cm. (82)

The temperature profile is given analytically by using
Eqs. (44) and (16):

T (x, t) =
(

t

ns

) 10
39
(

1 − x

xF (t)

) 10
39

HeV, (83)

which is a familiar Marshak wave with a steep heat front,
shown in Fig. 14. From Eqs. (28)-(29), (46) we find the
bath temperature:

Tbath (t) =
(

1 + 0.0576603
(

t

ns

)− 8
13
) 1

4 (
t

ns

) 10
39

HeV,

(84)
which is used in transport simulations via the incoming
bath radiation flux (77) or in diffusion simulations via the
Marshak boundary condition (26). We note that diffu-
sion simulations can be run equivalently using the surface
temperature boundary condition (80). A comparison of
the surface and bath temperatures as a function of time
are shown in Figure 15. As discussed in Sec. III B, the
bath temperature is slightly larger than the surface tem-
perature, since τ > τZ . The energy integral [Eqs. (23),
(47)] is E = 0.842075, which gives the total energy as a
function of time [Eq. (22)]:

E (t) = 8.4086998 × 109
(

t

ns

) 55
39

erg. (85)

According to Eq. (69), the optical depth at the final time
is

T ≳ xF (tfinal) k (Ts (tfinal)) = 0.00118584 × 104 ≈ 11.86,

so the heat wave is optically thick and we expect the LTE
diffusion limit to hold. A comparison between the ana-
lytical profiles and the simulation results are presented
in Fig. 14, showing a good agreement.

TEST 2

As in the previous case, we define a Henyey wave, but
with a material model which gives rise to a linear front,
and with a higher temperature scale (KeV), such that the
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Figure 16. Temperature profiles for test 2. Results are shown
at times t = 0.2, 0.6 and 1ns, as obtained from a gray diffusion
simulation and from Implicit-Monte-Carlo (IMC) and discrete
ordinates (SN ) transport simulations, and are compared to
the analytic solution of the diffusion equation [Eq. (91)].

radiation energy density is not negligible. We take α = 1,
β = 4, so that according to Eq. (41) it has a linear front,
ν = 1, with coefficients k0 = 102KeV/cm, u0 = 5

4 a, so
that the opacity is:

k (T ) = 100
(

T

KeV

)−1
cm−1, (86)

and the total energy density, which is used in LTE diffu-
sion simulations, is:

u (T ) = 5
4aT 4 = 5

4 × 1.372017 × 1014
(

T

keV

)4 erg
cm3 .

(87)
For non-LTE simulations, we have the material energy
density:

um (T ) = u (T ) − aT 4 = 1
5u (T ) , (88)

which is 25% of the radiation energy density. As in the
previous case, we define a Henyey wave, τ = τH = 1, and
the surface temperature:

Ts (t) =
(

t

ns

)
KeV. (89)

Eq. (45) gives the front coordinate ξ0 = 2.236068 which
via eq. (39), gives the heat front position, which propa-
gates linearly in time:

xF (t) = 0.56548972
(

t

ns

)
cm. (90)

The temperature profile is given analytically by using
Eqs. (44) and (16):

0 10 20 30 40 50 60 70
x [ m]

0.0

0.2

0.4

0.6

0.8

1.0

T
[H

eV
]

Test 3
Transport IMC
Transport SN

Diffusion Simulation
Diffusion Analytic

Figure 17. Temperature profiles for test 3. Results are shown
at times t = 0.04ns, 0.36ns and 1ns, as obtained from a gray
diffusion simulation and from Implicit-Monte-Carlo (IMC)
and discrete ordinates (SN ) transport simulations, and are
compared to the analytic solution of the diffusion equation
[Eq. (99)].

T (x, t) =
(

t

ns

)(
1 − x

xF (t)

)
KeV, (91)

which defines a linear heat wave profile, shown in Fig. 16.
From Eqs. (28)-(29), (46) we find the bath temperature:

Tbath (t) = 1.01158627
(

t

ns

)
KeV, (92)

The energy integral [Eqs. (23), (47)] is E = 0.4472136,
which gives the total energy as a function of time [Eq.
(22)]:

E (t) = 1.939654 × 1013
(

t

ns

)5
erg. (93)

According to Eq. (69) the optical depth at the final time
is

T ≳ xF (tfinal) k (Ts (tfinal)) = 0.56549 × 100 ≈ 56.5,

so the heat wave is optically thick and we expect the
LTE diffusion limit to hold. The results are presented in
Fig. 16, showing a good agreement between the analytic
solution and numerical simulations.

TEST 3

In this case with define a non-Henyey wave with a con-
stant surface temperature, a negligible radiation energy
and a material model which results in a flat parabolic
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Figure 18. A comparison between the surface (red line, Eq.
(96)) and bath (blue line, Eq. (101)) driving temperatures,
for test 3.

front. We take the same opacity as in test 1: α = 1.5,
k0 = 104HeV1.5/cm:

k (T ) = 104
(

T

HeV

)−1.5
cm−1, (94)

while for the total energy density we take β = 5, u0 =
1013HeV−5:

u (T ) = 1013
(

T

HeV

)5 erg
cm3 . (95)

According to Eq. (41) this material model results in a
parabolic front, as ν = 2. We take a constant surface
temperature, τ = 0:

Ts (t) = 1 HeV, (96)

for which, as in test 1, the radiation energy density can
be neglected, so that for non-LTE simulations (gray dif-
fusion and transport), we can take:

um (T ) = u (T ) − aT 4 ≈ 1013
(

T

HeV

)5 erg
cm3 . (97)

Unlike the previous cases, for this value of τ , there is
no analytical solution (see Tab. I), and the ODE (18)
must be solved numerically, as detailed in Sec. V A.
The numerical solution yields the front coordinate ξ0 =
6.2167035, and via Eq. (39) we find the heat front posi-
tion:

xF (t) = 0.00620780785
(

t

ns

) 1
2

cm. (98)

The numerical similarity profile is tabulated in Tab. III.
Using the self-similar solution (16), the temperature pro-
file is

T (x, t) = f (ξ0x/xF (t)) HeV. (99)

Test 3 Test 5
ξ0 6.2167035 24.826729
R 0.7198876 36.84138

ξ/ξ0 f (ξ) exact f (ξ) fit f (ξ) exact f (ξ) fit
0 1 1 1 1

0.015 0.99004 0.99129 1.0802 1.0675
0.03 0.97966 0.98198 1.1327 1.1161
0.05 0.96514 0.96864 1.1831 1.1651
0.1 0.92548 0.93082 1.2643 1.2478
0.15 0.88107 0.88696 1.3153 1.3016
0.2 0.83207 0.83756 1.3508 1.3398
0.25 0.77876 0.78319 1.3762 1.3678
0.3 0.72153 0.7245 1.3945 1.3883
0.35 0.6609 0.66223 1.4071 1.4029
0.4 0.59748 0.59718 1.415 1.4126
0.45 0.53201 0.53023 1.4185 1.4177
0.5 0.46535 0.46236 1.418 1.4187
0.55 0.39847 0.3946 1.4135 1.4155
0.6 0.33243 0.32807 1.4048 1.4079
0.65 0.26842 0.26396 1.3915 1.3957
0.7 0.20775 0.20356 1.373 1.378
0.75 0.15181 0.14821 1.3478 1.3536
0.8 0.10213 0.09934 1.3141 1.3206
0.85 0.060326 0.05846 1.268 1.2749
0.9 0.028125 0.027156 1.2009 1.208
0.95 0.0073687 0.0070887 1.0876 1.0946
0.973 0.0021948 0.0021079 0.99261 0.99921
0.99 0.0003058 0.00029333 0.85404 0.85984
0.996 4.9197E-05 4.717E-05 0.74238 0.74746
0.998 1.2322E-05 1.1812E-05 0.66748 0.67206
0.999 3.0832E-06 2.9555E-06 0.60005 0.60417
0.9995 7.7115E-07 7.3919E-07 0.53939 0.5431
0.9999 3.0857E-08 2.9578E-08 0.42111 0.42401
0.99999 3.086E-10 2.958E-10 0.2955 0.29753
0.999999 3.086E-12 2.958E-12 0.20735 0.20878

Table III. The exact and fitted similarity temperature profiles
as a function of ξ/ξ0, for tests 3 and 5. The exact profiles
result from the numerical solution of the ODE (18). The fitted
profile is given by Eq. (57), using exact front coordinate ξ0
and the resulting fitted value R, which are also given in the
table.

which, as shown in Fig. 17, has a flat front. Alternatively,
instead of using the exact tabulated solution, one can use
the fitted closed form solution, which is discussed in Sec.
V D. A numerical fit of the exact numerical solution to
the from in Eq. (57), gives the parameter R = 0.7198876,
with a maximal error of 4% and an average error of 2%.
The fitted solution is compared to the exact solution in
Tab. III. By using Eqs. (57) and (16), we obtain the
approximate fitted temperature profile:
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Figure 19. Temperature profiles for test 4. Results are shown
at times t = 7.9126254 × 10−4ns, 0.10364448ns and 1ns, as
obtained from a gray diffusion simulation and from Implicit-
Monte-Carlo (IMC) and discrete ordinates (SN ) transport
simulations, and are compared to the analytic solution of the
diffusion equation [Eq. (108)].

T (x, t) =
[(

1 − x

xF (t)

)(
1 + R

x

xF (t)

)]2

HeV, (100)

which evidently defines a heat wave profile with a
flat parabolic front. The exact numerical solution has
f ′ (0) = −0.10447545, and using Eqs. (28)-(29), we find
the bath temperature:

Tbath (t) =
(

1 + 0.0279
(

t

ns

)− 1
2
) 1

4

HeV, (101)

which is time dependent, while the surface temperature
Eq. 96 is constant, as also shown in Fig. 18. The energy
integral [Eq. (23)] of the exact numerical profile is E =
1.14923 (the fitted profile has E = 1.1739), which gives
the total energy as a function of time [Eq. (22)]:

E (t) = 11.47585 × 109
(

t

ns

) 1
2

erg. (102)

According to Eq. (69), the optical depth at the final time
is

T ≳ xF (tfinal) k (Ts (tfinal)) = 0.0062078 × 104 ≈ 62.1,

so the heat wave is optically thick and we expect the
LTE diffusion limit to hold. The results are presented in
Fig. 17, showing a good agreement between the analytic
solution and numerical simulations.

TEST 4

In this case define a Zel’dovich-Barenblatt wave (see
Sec. V C), which has a decreasing surface tempera-
ture and an analytical solution. We take α = 1.5,

β = 1.6 with coefficients k0 = 108HeV1.5/cm, u0 =
1013HeV−1.6erg/cm3 so that the opacity is:

k (T ) = 108
(

T

HeV

)−1.5
cm−1, (103)

and the total energy density is:

u (T ) = 1013
(

T

HeV

)1.6 erg
cm3 . (104)

We define a Zel’dovich-Barenblatt wave for this material
model, that is, τ = τZ = − 10

71 . Since the flux is zero at
the origin for a Zel’dovich-Barenblatt wave, the surface
and bath temperatures are equal [see Eqs. (28)-(29)]:

Ts (t) = Tbath (t) =
(

t

ns

)− 10
71

HeV. (105)

The opacity in Eq. (103) is much higher than in the pre-
vious cases, in order to insure that even at short times
when the temperature is high, the matter and radiation
are approximately at equilibrium. In addition, the radia-
tion energy density can be neglected after a short period,
so that for non-LTE simulations, we take:

um (T ) = u (T ) − aT 4 ≈ 1013
(

T

HeV

)1.6 erg
cm3 . (106)

Eq. (50) gives front coordinate ξ0 = 3.5377995, which
via Eq. (39) gives the heat front position:

xF (t) = 3.532735 × 10−5
(

t

ns

) 16
71

cm. (107)

The temperature profile is given analytically by using
Eqs. (49) and (16):

T (x, t) =
(

t

ns

)− 10
71
(

1 −
(

x

xF (t)

)2
) 10

39

HeV (108)

which is a familiar wave for the instantaneous point
source problem with a steep heat front and decreasing
surface temperature, as shown in Fig. 19. Using Eq.
(51), the total energy is:

E = 2.8759901 × 108erg. (109)

As discussed in Sec. III A, since the total energy is time-
independent for a Zel’dovich-Barenblatt wave, instead of
using the surface/bath temperature boundary condition
(105), this test can also be run equivalently by deposit-
ing this amount of energy near the origin at t = 0, and
using a reflective boundary condition at x = 0. Alter-
natively, it can be run with twice this amount of energy
deposited at x = 0, allowing the heat wave to propagate
in both positive and negative directions. We note that in
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Figure 20. Temperature profiles for test 5. The simula-
tions are initialized with the analytic temperature profiles [Eq.
(115)] at the time t = 5.3147117×10−4ns, where the heat front
has reached 60% of its final distance. The approximated fit-
ted analytic profile [see Eq. (116)] is shown for comparison at
the initial time as well. The simulations results are compared
with the exact analytic solution at time t = 0.037118798ns at
which the front has reached 80% of the final distance, and at
the final time, t = 1ns (simulation results at the initialization
time are not shown since they are initialized with the analytic
solution).

both simulation modes for this test (surface/bath tem-
perature or energy deposition), the total energy in the
system should remain constant in time.

According to Eq. (69), the optical depth at the final
time is

T ≳ xF (tfinal) k (Ts (tfinal))
= 3.532735 × 10−5 × 108 ≈ 3532,

so the heat wave is extremely optically thick and we ex-
pect the LTE diffusion limit to hold. The results are
presented in Fig. 19, showing a good agreement between
the analytic solution and numerical simulations.

TEST 5

We define a wave with τ < τZ , for which the surface
temperature decrease faster than the heat wave propa-
gation, and as discussed in Sec. III A, results in a local
maxima in the temperature profile and a total energy
which decreases over time. We take α = 3.5 and β = 1,
with the coefficients k0 = 8.838835 × 105HeV3.5/cm and
u0 = 2 × 1013HeV−1erg/cm3 so that the opacity is:

k (T ) = 107
(

T
1
2 HeV

)−3.5
cm−1, (110)

and the total energy density is:

u (T ) = 1013
(

T
1
2 HeV

)
erg
cm3 . (111)
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Figure 21. A comparison between the surface (red line, Eq.
(112)) and bath (blue line, Eq. (117)) driving temperatures,
for test 5. The initial simulation time is also shown.
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Figure 22. The total energy in the system as a function of
time, for test 5.

We take τ = −0.133 = 0.9975τc < τZ (in this case,
τc = − 2

15 = −0.1333... and τZ = − 2
17 ) and the surface

temperature

Ts (t) = 1
2

(
t

ns

)−0.133
HeV. (112)

As in test 4, the opacity in Eq. (110) is high enough to
insure that even at short times when the temperature is
high, the matter and radiation are approximately at equi-
librium. The radiation energy density can be neglected
after a short period, so that for non-LTE simulations, we
take:

um (T ) = u (T ) − aT 4 ≈ 1013
(

T

HeV

)1.6 erg
cm3 . (113)
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As in test 3, for this value of τ there is no analytical so-
lution, and the ODE (18) must be solved numerically.
The numerical integration yields the front coordinate
ξ0 = 24.826729, which gives the heat front position [Eq.
(39)]:

xF (t) = 1.678372 × 10−4
(

t

ns

)0.06775
cm. (114)

The numerical similarity profile is tabulated in Tab. III.
Using the self-similar solution (16), the temperature pro-
file is given by:

T (x, t) = 1
2

(
t

ns

)−0.133
f (ξ0x/xF (t)) HeV, (115)

which as shown in Fig. 19, has a local maxima. As
in test 3, instead of using the exact tabulated solution,
one can use the fitted closed form solution. A numerical
fit of the exact numerical solution gives the parameter
R = 36.84138, with a maximal error of 1.5% and an
average error of 0.5%. The fitted solution is compared to
the exact solution in Tab. III. By using Eqs. (57) and
(16), we obtain the approximate temperature profile:

T (x, t) =
1
2

(
t

ns

)−0.133 [(
1 −

x

xF (t)

)(
1 + R

x

xF (t)

)] 2
13

HeV,

(116)
which is compared to the exact solution in Fig. 20.

The exact numerical solution has f ′ (0) = 0.2838745,
and by using Eqs. (28)-(29), we find the bath tempera-
ture:

Tbath (t) =
(

1 − 0.011198
(

t

ns

)−0.53325
) 1

4 1
2

(
t

ns

)−0.133
HeV.

(117)
Since the bath constant is negative (as energy flows out of
the system), the bath temperature is undefined at short
enough times (negative incoming flux), as depicted in
Fig. 21. In order to overcome this issue, which only
applies for diffusion simulations that use the Marshak
boundary condition or for transport simulations (and is
irrelevant for diffusion simulations that use the surface
temperature boundary condition), the simulations for
this test are initialized with the analytic profile at the fi-
nite time t = 5.3147117×10−4ns, for which the heat front
has reached 60% of its final distance (as shown in Fig.
20), and for which the bath temperature Eq. (117) is well
defined. As evident from Fig. 21, after a short transient,
the bath and surface temperatures become very close, as
this problem as very opaque. In contrast to all previous
cases, here the bath temperature is always lower than
the surface temperature, since τ < τZ (as discussed in
Sec. III B). We also note that due to the relatively high
accuracy of the approximate fitted profile [Eq. (116)],
the simulations can equivalently be initialized using it,
instead of the exact tabulated profile.

The energy integral [Eq. (23)] of the exact profile is
E = 32.6293 (the fitted profile has E = 32.5856), which
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Figure 23. Temperature profiles for test 6. The simulations
are initialized with the analytic temperature profiles (Eq.
(124)) at time t = 0.04ns. The simulations results are com-
pared with the exact analytic solution at time t = 0.25ns and
at the final time, t = 1ns (simulation results at the initial-
ization time are not shown since they are initialized with the
analytic solution).

give the total energy as a function of time [Eq. (22)]:

E (t) = 2.205854 × 109
(

t

ns

)−0.06525
erg, (118)

which is a decreasing function of time, which we plot in
Fig. 22. According to Eq. (69), the optical depth at the
final time is

T ≳ xF (tfinal) k (Ts (tfinal))

= 1.678372 × 10−4 × 8.838835 × 105 × 23.5

≈ 1678,

so the heat wave is extremely optically thick and we ex-
pect the LTE diffusion limit to hold. The results are
presented in Fig. 20, showing a good agreement between
the analytic solution and numerical simulations.

TEST 6

As in test 5, we define a wave with τ < τZ , but unlike
all previous cases, here we define a material model which
results in linear heat conduction. To that end, we take a
constant opacity α = 0 and β = 4. We take the dimen-
sional coefficients k0 = 50cm−1 and u0 = 3

2 a, so that the
opacity is:

k (T ) = 50 cm−1, (119)

and the total energy density reads:

u (T ) = 3
2aT 4 = 3

2 × 1.372017 × 1014
(

T

keV

)4 erg
cm3 .

(120)
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Figure 24. A comparison between the surface (red line, Eq.
(122)) and bath (blue line, Eq. (125)) driving temperatures,
for test 6. The initial simulation time is also shown.

For non-LTE simulations, we have the material energy
density:

um (T ) = u (T ) − aT 4 = 1
2aT 4 = 1

3u (T ) , (121)

which is always one half of the radiation energy density.
We take τ = −0.2375 = 0.95τc < τZ (in this case, τc =
− 1

4 and τZ = − 1
8 ) and the surface temperature:

Ts (t) =
(

t

ns

)−0.2375
KeV. (122)

As the conduction in this case is linear, the heat wave
does not have a well defined front. The heat propagates
in space via Eq. (14):

x

ξ
= 0.365022

(
t

ns

) 1
2

cm. (123)

The exact analytical linear conduction similarity profile
[Eq. (32)] was shown for this case in Fig. 1. The dimen-
sional temperature profile is obtained using Eq. (16):

T (x, t) =
(

t

ns

)−0.2375
[

Γ
(

1
20

)
√

π
e−ξ2/4U

(
− 9

20 ,
1
2 ,

ξ2

4

)] 1
4

KeV,

(124)
where ξ = ξ (x, t) is obtained from Eq. (123). The
profiles are shown in Fig. 19, and the existence of
a local maxima is evident. From Eq. (35) we find
f ′ (0) = − 1

4 Γ
( 1

20
)

/Γ
(
− 9

20
)

≈ 1.355332, which is posi-
tive as energy is leaving the system, and from Eqs. (28)-
(29), we find the bath temperature:

Tbath (t) =
(

1 − 0.19802739
(

t

ns

)−0.5
) 1

4 ( t

ns

)−0.2375
KeV,

(125)

which, as discussed in test 5, is undefined at short times,
and is always lower than the surface temperature. This is
depicted in Fig. 24. As for test 5, this issue is overcome
by initializing the simulations with the analytic profile at
a finite time. We take the initialization time t = 0.04ns
(as shown in Fig. 23), for which the bath temperature
Eq. (125) is well defined. As opposed to test 5 which is
extremely opaque, here, as evident from Fig. 24, there is
a non-negligible (~5%) difference between the bath and
surface temperatures.

From Eq. (36) we find the energy integral E =
Γ
( 1

20
)

/Γ
( 11

20
)

= 12.047394, using Eq. (22) we find the
total energy in the system as a function of time:

E (t) = 9.050299 × 1014
(

t

ns

)−0.45
erg. (126)

According to Eq. (69), the optical depth at the final time
is

T ≳ 0.365022
√

20 × 50 ≈ 81.6,

so the heat wave is optically thick and we expect the
LTE diffusion limit to hold. The results are presented in
Fig. 23, showing a good agreement between the analytic
solution and numerical simulations. .

VIII. CONCLUSION

In this work we have studied in detail the self-similar
solutions of the supersonic LTE Marshak wave problem.
We explored the behavior and characteristics of the solu-
tions in both linear and nonlinear conduction regimes as
a function of the surface temperature drive exponent τ ,
the opacity exponent α and energy density exponent β, to
present a unified theory of these Marshak wave solutions.
It was shown that there exists a range of τ for which the
solutions have a local maxima and does not have the
familiar monotonically decreasing character. For those
solutions, the total energy is decreasing in time, due to
the very rapid decrease of the surface temperature. In
addition, the values of τ for which closed form analytical
solutions exist where specified as classical solutions found
by previous authors and were identified as special cases.
The behavior of the solution as a function of τ is summa-
rized in Tab. I. For nonlinear conduction, we mapped the
values of α and β for which the heat front does not have
the familiar sharp character, and demonstrated that the
front can be linear or even flat. The character of the heat
front as a function of α and β is summarized in Tab. II
and Fig. 2.

We performed a detailed study of the accuracy of the
widely used Hammer-Rosen perturbation theory [31] and
for the series expansion method of Smith [33], by compar-
ing their results to the exact self-similar Marshak wave
solutions in a wide range of the exponents τ, α, β. It is
shown that when the surface temperature does not de-
crease too fast (τ ≳ τZ), the approximation of Smith is
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more accurate. Therefore, we believe that the method
of Smith should also be used in the analysis of Marshak
wave experiments, which typically employs the Hammer-
Rosen method for the general (non power-law) tempera-
ture drive (see i.e. [6]), as it might result in more accurate
predictions.

By using the Hammer-Rosen and Smith profile, we pa-
rameterized the solution by a numerical fit to the exact
solution, which resulted in a very accurate analytical ap-
proximation to the exact numerical solution, in a wide
range of τ , which is given in terms of just two numerical
parameters. We used the exact and approximate solu-
tions to construct a set of benchmarks for supersonic LTE
radiative heat transfer, including some which posses the
unusual and interesting properties which were demon-

strated, such as local maxima and non sharp fronts.
We compared the solutions to implicit Monte-Carlo and
discrete-ordinate transport simulations as well gray dif-
fusion simulations, showing a good agreement. This
demonstrates the usefulness of these LTE Marshak wave
benchmarks, as a set of simple but non-trivial verification
test problems for radiative transfer simulations.

Availability of data

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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Appendix A: Dimensional analysis

T T0 K x t

[T ] [T ] [time]−τ [length]2

[T ]4+α−β [time] [length] [time]

Table IV. The dimensional quantities in the problem (upper
row) and their dimensions (lower row).

In this appendix, the method of dimensional analysis
will be employed in order to find a self-similar ansatz
for the solution of the problem defined by Eqs. (8)-(10).
The dimensional quantities which define the problem are
listed in table IV. The problem is defined by M = 5 di-
mensional quantities which are composed of N = 3 differ-
ent units: time, length and temperature. Therefore, from
the theory of dimensional analysis [55–57], the problem
can be solved using M − N = 2 dimensionless variables,
which are given in terms of power laws of the dimen-
sional quantities. Since the boundary temperature T0tτ

has units of temperature, we can write the dimensionless
temperature similarity profile directly as:

f (ξ) = T (x, t)
T0tτ

. (A1)

The dimensionless independent coordinate is written as:

ξ = xt−δKηT θ
0 . (A2)

The requirement that ξ is dimensionless result in the fol-
lowing system of linear equations:

− δ − η − θτ = 0
η (β − α − 4) + θ = 0
1 + 2η = 0

which has the solution:

δ = 1
2 (1 + τ (4 + α − β)) (A3)

η = −1
2 (A4)

θ = −4 + α − β

2 (A5)

Hence, it is seen that the resulting dimensionless quanti-
ties in Eqs. (A1)-(A2) give the self-similar ansatz in Eqs.
(14)-(16).
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