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Abstract. The aim of this paper is to illustrate both analytically and numer-
ically the interplay of two fundamentally distinct non-Hermitian mechanisms
in a deep subwavelength regime. Considering a parity-time symmetric sys-
tem of one-dimensional subwavelength resonators equipped with two kinds of
non-Hermiticity — an imaginary gauge potential and on-site gain and loss

— we prove that all but two eigenmodes of the system decouple when going
through an exceptional point. By tuning the gain-to-loss ratio, the system
changes from a phase with unbroken parity-time symmetry to a phase with
broken parity-time symmetry. At the macroscopic level, this is observed as a
transition from symmetrical eigenmodes to condensated eigenmodes at one edge
of the structure. Mathematically, it arises from a topological state change. The
results of this paper open the door to the justification of a variety of phenomena
arising from the interplay between non-Hermitian reciprocal and non-reciprocal
mechanisms not only in subwavelength wave physics but also in quantum
mechanics where the tight binding model coupled with the nearest neighbour
approximation can be analysed with the same tools as those developed here.
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1. Introduction
In this paper, we study the interplay of two fundamentally distinct non-Hermitian

wave mechanisms in a deep subwavelength regime using first-principles mathemat-
ical analysis. The ultimate goal of subwavelength wave physics is to manipulate
waves at subwavelength scales. Recent breakthroughs, such as the emergence of
the field of metamaterials, have allowed us to do this in a way that is robust,
possibly non-reciprocal, and that beats diffraction limits. Spectacular properties of
metamaterials such as super-focusing, super-resolution, waves with exponentially
growing amplitudes, Anderson-type localisation at deep subwavelength scales, unidi-
rectional invisibility and cloaking, single and double near-zero effective properties
have been recently rigorously explained; see, for instance, [1, 2, 4, 7, 8, 9, 20, 21,
23, 25]. A variety of Hermitian, non-Hermitian, and time-modulated systems of
subwavelength resonators have been considered. Phase transitions and degeneracies
in the mathematical structures of those models which are responsible for exotic
phenomena have been identified. Here, we consider one-dimensional systems of
high-contrast subwavelength resonators as a demonstrative setting to develop a
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TUNABLE LOCALISATION IN NON-HERMITIAN RESONATOR ARRAYS

mathematical and numerical framework for the interplay of reciprocal gain-loss and
non-reciprocal mechanisms in the subwavelength regime.

The concept of non-Hermitian physics, originally developed in the context of
quantum field theory [14], has been investigated on distinct classical wave platforms
and created a plethora of counter-intuitive phenomena [12, 15]. In subwavelength
wave physics, non-Hermiticity can be obtained via either a reciprocal mechanism
by adding gain and loss inside the resonators [22], or via a non-reciprocal one by
introducing a directional damping term, which is motivated by an imaginary gauge
potential [27].

On the one hand, introducing gain and loss inside the resonators, represented by
the imaginary parts of complex-valued material parameters, can create exceptional
points. An exceptional point is a point in parameter space at which two or more
eigenstates coalesce [9, 11, 17, 22]. A degeneracy of this nature gives rise to
structures with remarkable properties such as high sensitivity [10, 18, 26]. As is
common in the field of non-Hermitian physics, we will consider structures with
parity–time (PT -) symmetry, which forces the spectrum of the governing operator to
be conjugate-symmetric. Exceptional points are then the transition points between
a real spectrum and a non-real spectrum which is symmetric around the real axis.
They are a consequence of balanced symmetries in the system, which cause the
eigenvectors to align. So that the system already has some underlying symmetry,
exceptional points are often sought in structures with parity–time symmetry.

On the other hand, for systems that are non-Hermitian due to non-reciprocity,
the wave propagation is usually amplified in one direction and attenuated in the
other. This inherent unidirectional dynamics is related to the non-Hermitian skin
effect, which leads to the accumulation of modes at one edge of the structure [16,
24, 27]. Recently, it was proved in [2] that the spectrum is real and the exponential
decay of eigenmodes and their accumulation at one edge of the structure are induced
by the Fredholm index of an associated Toeplitz operator. Moreover, it was shown in
[19] that a tunnelling-like phenomenon occurs when connecting two non-Hermitian
chains with mirrored non-reciprocity.

The aim of this paper is to consider a mirrored system with two imaginary gauge
potentials (opposite to each other) and study the phase change of the spectrum
from purely real to complex when gain and loss are introduced in a balanced way
into the system as a function of the gain to loss ratio. This ensures that parity–time
symmetry is preserved as this ratio is increased. Using asymptotic methodology
that was developed in [2], we can approximate the subwavelength resonant modes by
the eigenvalues of a so-called gauge capacitance matrix. Crucially, the parity–time
symmetry of the system is reflected in the gauge capacitance matrix C, ensuring
it is pseudo–Hermitian, that is there exists some invertible self-adjoint matrix M
so that the adjoint C∗ of C is given by C∗ = MCM−1. Our main contribution
in this work is to prove that the eigenmodes of the parity–time symmetric system
decouple when going through an exceptional point. Tuning the gain-to-loss ratio,
we change the system from a phase with unbroken parity-time symmetry to a phase
with broken parity-time symmetry where the condensed eigenmodes at one edge
are decoupled from the ones at the opposite edge of the structure. To understand
this behaviour we extend the standard Toeplitz theory to encompass symmetrical
parameter changes across an interface. We show that the intrinsic nature of this
switch from unbroken to broken PT -symmetry is due to a change in the topological
nature of the mode. Furthermore, we are able to show that as the number of
resonators is increased, the amount of tuning required for exceptional points and
the corresponding decoupling to occur goes to zero. This leads to an increasingly
dense concentration of exceptional points. As the tight-binding model in quantum
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mechanics when coupled with the nearest neighbour approximation reduces to the
study of a tridiagonal Toeplitz matrix, the tools developed in this paper lead to
similar results for non-Hermitian quantum systems.

The paper is structured as follows. In Section 2, we introduce the physical setup
in all due details, recall what is known in the literature for similar systems, and fix
the notation. Crucially, eigenfrequencies and eigenmodes can be approximated by
eigenpairs of a finite-dimensional linear operator. Section 3 gives a first characteri-
sation of the eigenpairs in terms of Chebyshev polynomials. This gives sufficient
and necessary conditions for the eigenvalues and eigenvectors of the aforementioned
matrix; nevertheless the conditions are not explicit. In Section 4, we study the
eigenvalues more closely, characterise them precisely, and show the existence of
exceptional points. Building on understanding of the eigenvalues, Section 5 analyses
the eigenvectors and proves a complete characterisation of their macroscopic nature
(exponential decay/growth) based on the Toeplitz index of a related operator. In
Appendix A, we recall some well-known results on matrix symmetries. In Appen-
dix B, we reduce the problem of finding the eigenfrequencies in the case where there
is no gain or loss introduced into the system to finding the spectrum of a tridiagonal
almost Toeplitz matrix. Appendix C and Appendix D are dedicated to the proofs
of some technical results.

2. Setup
Here, we assume the same setting as in [2, 4]. We consider a one-dimensional chain

of N disjoint identical subwavelength resonators Di := (xL
i , xR

i ), where (xL,R
i )1≤i≤N ⊂

R are the 2N extremities satisfying xL
i < xR

i < xL
i+1 for any 1 ≤ i ≤ N . We fix the

coordinates such that xL
1 = 0. We also denote by ℓi = xR

i − xL
i the length of each of

the resonators, and by si = xL
i+1 − xR

i the spacing between the i-th and (i + 1)-th
resonators. We use

D :=
N⋃

i=1
(xL

i , xR
i )

to symbolise the set of subwavelength resonators. In this paper, we only consider
systems of equally spaced identical resonators, that is,

ℓi = ℓ ∈ R>0 for all 1 ≤ i ≤ N and si = s ∈ R>0 for all 1 ≤ i ≤ N − 1.

This will simplify the formulas in our subsequent analysis and is sufficient to
understand the fundamental mechanisms behind the non-Hermitian effects we are
interested in.

In this work, we consider the following one-dimensional damped wave equation
where the damping acts in the space dimension instead of the time dimension:

− ω2

κ(x)u(x) − γ(x) d
dx

u(x) − d
dx

(
1

ρ(x)
d

dx
u(x)

)
= 0, x ∈ R, (2.1)

for a piecewise constant damping coefficient

γ(x) =
{

γi, x ∈ Di,

0, x ∈ R \D.
(2.2)

The parameters γi extend the usual scalar wave equation to a generalised Strum–
Liouville equation via the introduction of an imaginary gauge potential [27]. The
material parameters κ(x) and ρ(x) are piecewise constant

κ(x) =
{

κi, x ∈ Di,

κ, x ∈ R \D,
and ρ(x) =

{
ρb, x ∈ D,

ρ, x ∈ R \D,
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where the constants ρb, ρ, κ, ∈ R>0 and κi ∈ C. The wave speeds inside the resonators
D and inside the background medium R \D, are denoted respectively by vi and v,
the wave numbers respectively by kb and k, the frequency by ω, and the contrast
between the densities of the resonators and the background medium by δ:

vi :=
√

κi

ρb
, v :=

√
κ

ρ
, ki := ω

vi
, k := ω

v
, δ := ρb

ρ
. (2.3)

We are interested in the resonances ω ∈ C such that (2.1) has a non-trivial
solution in a high-contrast, low-frequency (subwavelength) regime. This regime is
typically characterised by letting the contrast parameter δ → 0 and looking for
solutions which are such that ω → 0 as δ → 0. One consequence of this asymptotic
ansatz is that it lends itself to characterisation using asymptotic analysis [8]. Note
that this limit recovers subwavelength resonances, while keeping the size of the
resonators fixed.

In [2], an asymptotic analysis in the subwavelength limit was performed on the
system of non-Hermitian, non-reciprocal, one-dimensional subwavelength resonators.
The setup considered there was simpler: all resonators had the same imaginary
gauge potential and real material parameters. For such a system, it was shown
that the resonances are given by the eigenstates of the gauge capacitance matrix Cγ .
This is a modified version of the conventional capacitance matrix that is often used
to characterise many-body low-frequency resonance problems; see, for instance, [8].
Theorem 2.1 summarises the main result of [2].

Theorem 2.1. Consider a system of N identical and equally spaced resonators all
with the same imaginary gauge potential γ and the wave speed vi = vb =

√
κb/ρb

for all 1 ≤ i ≤ N . Let the gauge capacitance matrix Cγ = (Cγ
i,j)N

i,j=1 be defined by

Cγ
i,j :=



ℓγ

s

1
1 − e−γℓ

, i = j = 1,

ℓγ

s
coth(γℓ/2), 1 < i = j < N,

±ℓγ

s

1
1 − e±γℓ

, 1 ≤ i = j ± 1 ≤ N,

−ℓγ

s

1
1 − eγℓ

, i = j = N,

0, else.

(2.4)

Then,
• The N subwavelength eigenfrequencies ωi of (2.1) associated to this system

satisfy, as δ → 0,

ωi =
√

δλi + O(δ),

where (λi)1≤i≤N are the eigenvalues of the eigenvalue problem

V L−1 Cγ ai = λiai

with V = v2
b IN and L = ℓIN . Furthermore, let ui be a subwavelength

eigenmode corresponding to ωi and let ai be the corresponding eigenvector
of V L−1 Cγ . Then,

ui(x) =
∑

j

a
(j)
i Vj(x) + O(δ),
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where Vj(x) are defined by


− d2

dx2 Vi(x) = 0, x ∈ R \
N⋃

i=1
(xL

i , xR
i ),

Vi(x) = δij , x ∈ (xL
j , xR

j ),
Vi(x) = O(1), as |x| → ∞.

(2.5)

• All the eigenvalues of V L−1 Cγ are real. They are given by

λ1 = 0,

λk = γ

s
coth(γℓ/2) + 2 |γ|

s

e
γℓ
2

|eγℓ − 1|
cos
( π

N
k
)

, 2 ≤ k ≤ N. (2.6)

Furthermore, for 2 ≤ k ≤ N , the associated eigenvectors ak satisfy the
following inequality:

|a(i)
k | ≤ κke−γℓ i−1

2 for all 1 ≤ i ≤ N, (2.7)

for some κk ≤ (1+e
γℓ
2 )2. Here, a(i)

k denotes the i-th entry of the eigenvector
ak.

In this paper, we consider the following setup:

vi =
{

e
1
2 iθ, 1 ≤ i ≤ N,

e− 1
2 iθ, N + 1 ≤ i ≤ 2N,

and γi =
{

γ, 1 ≤ i ≤ N,

−γ, N + 1 ≤ i ≤ 2N,

for some fixed γ > 0 and 0 ≤ θ ≤ 2π. By the periodicity of e
1
2 iθ, it will be sufficient

to focus on the range 0 ≤ θ ≤ π
2 . Because the resonator length ℓ can be absorbed

into γ we may also assume s = ℓ = 1 without loss of generality. The system is
illustrated in Figure 1. The matrix associated to this structure is slightly different

D1

s

D2

. . .

DN−1

s

DN

1
2 s

γ

vi = e
1
2 iθ

1
2 s

DN+1

s

DN+2

. . .

D2N−1

s

D2N

−γ

vi = e− 1
2 iθ

Figure 1. A chain of 2N one-dimensional identical and equally
spaced resonators. Material parameters and sign of the
imaginary gauge potentials depend on the resonator’s
position.
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form the one defined in (2.4). On one side, the gauge capacitance matrix is given by

Cγ =



α + β η

β α
. . .

. . .
. . .

α η
β α η

η α β

η α
. . .

. . .
. . .

α β
η α + β



∈ R2N×2N (2.8)

with

α = γ

1 − e−γ
− γ

1 − eγ
= γ coth(γ/2), η = −γ

1 − e−γ
, β = γ

1 − eγ
, (2.9)

because of the sign change of the imaginary gauge potential. On the other side, we
have to model the complex (and varying) material parameters. Thus, we consider
the generalised gauge capacitance matrix

Cθ,γ = V θCγ with V θ =
(

eiθIN 0
0 e−iθIN

)
∈ R2N×2N . (2.10)

The same result as the one stated in the first point of Theorem 2.1 holds for the
system described by Figure 1 when considering the generalised gauge capacitance
matrix from (2.10) (generalising the proof presented in [2] is easily achieved by
the same procedure used in [4]). Throughout the paper, Cθ,γ and Cγ are 2N × 2N
matrices.

This paper will extensively study non-diagonalisability of Cθ,γ .
Definition 2.2. A setup for which Cθ,γ is not diagonalisable is called an exceptional
point.

Specifically, we will study setups where the geometry and the imaginary gauge
potentials remain fixed and the material parameters (here modelled by θ) lay in a
specific range.

2.1. Properties of the gauge capacitance matrix

We will conclude this section by giving some basic but important properties of
the gauge capacitance matrix. Let P ∈ R2N×2N be the anti-diagonal involution, i.e.,
Pij = δi,2N−i+1 and Dγ = diag(1, eγ , . . . , (eγ)N−1, (eγ)N−1, . . . , eγ , 1) ∈ R2N×2N .
We refer to Appendix A for the precise definitions of pseudo-Hermitian and quasi-
Hermitian matrices. Here and elsewhere in the paper, M∗ denotes the adjoint of
M : (M∗)i,j = Mj,i.
Proposition 2.3. The generalised gauge capacitance matrix has the following
symmetry:

PCθ,γP = Cθ,γ . (2.11)
For the unmodified gauge capacitance matrix Cγ , we have

PCγP = Cγ . (2.12)
Proof. Equation (2.12) follows from noticing that P is symmetric and conjugation
by P corresponds to flipping Cγ along its diagonal and anti-diagonal. Equation
(2.11) follows from equation (2.12), PV θ = V −θP = V θP , and the fact that P and
Cγ have real entries. ■
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Proposition 2.4. Let Mθ,γ = PV θDγ. Then, Mθ,γ is invertible and Hermitian
and we have,

Mθ,γCθ,γ = (Cθ,γ)∗Mθ,γ . (2.13)

In line with Definition A.1, Cθ,γ as in (2.10) is pseudo-Hermitian, and its spectrum
must be invariant under complex conjugation, that is,

σ(Cθ,γ) = σ(Cθ,γ).

For the case θ = 0, the matrix C0,γ = Cγ satisfies an even stronger notion of
Hermiticity.

Proposition 2.5. Let Cγ = Cθ=0,γ as in equation (2.8). Then, Cγ is quasi-
Hermitian with metric operator D, that is,

D−1Cγ = (Cγ)∗D−1. (2.14)

From Corollary A.5, we can then immediately see that Cγ is diagonalisable with
real spectrum.

Finally, we characterise the kernel of Cθ,γ .

Lemma 2.6. For any γ > 0 and θ ∈ [0, 2π), we have (1, . . . , 1) ∈ ker Cθ,γ ⊂ R2N .

Proof. This follows immediately from the fact that α + β + η = 0. ■

As we will see in the proof of Theorem 3.1, the eigenspaces of Cθ,γ are always
one-dimensional. Consequently, the kernel of Cθ,γ is also one-dimensional and is
exactly the span of (1, . . . , 1).

3. Characterisation of eigenpairs of the generalised gauge
capacitance matrix

In this section, we will exploit the partially Toeplitz structure of Cθ,γ to find the
general form of its eigenvectors and a characterisation of its eigenvalues in terms of
Chebyshev polynomials. The fact that Cθ,γ is tridiagonal allows us to determine
the eigenvectors recursively. The symmetry of Cθ,γ across the interface in the
middle will yield very similar forms for the first and second half of its eigenvectors.
The eigenvalues will then be characterised by a compatibility condition across this
interface.

Theorem 3.1. Let the affine transformation µθ : C → C be defined by

µθ(λ) := e−iθλ − α

2
√

βη
= e−iθλ

1
γ

sinh γ

2 − cosh γ

2 . (3.1)

For λ ∈ C an eigenvalue of Cθ,γ, the corresponding eigenvector is given by v =
(x,y)⊤ where

x =
(

P0(µθ(λ)),
(

e− γ
2

)
P1(µθ(λ)), · · · ,

(
e− γ

2

)N−1
PN−1(µθ(λ))

)⊤

,

y = C

((
e− γ

2

)N−1
PN−1(µ−θ(λ)), · · · ,

(
e− γ

2

)
P1(µ−θ(λ)), P0(µ−θ(λ))

)⊤

.

(3.2)

Here, Pn(x) = Un(x) + e− γ
2 Un−1(x) is the sum of two Chebyshev polynomials of

the second kind, with P0 = 1. Specifically, Un+1(x) := 2xUn(x) − Un−1(x) for n ≥ 1
with U0(x) = 1 and U1(x) = 2x. Furthermore, we have

C = e− γ
2

PN (µθ(λ))
PN−1(µ−θ(λ)) = e

γ
2

PN−1(µθ(λ))
PN (µ−θ(λ)) , (3.3)

7
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which yields the following characterisation of the spectrum of Cθ,γ :
PN (µθ(λ))PN (µ−θ(λ))

PN−1(µθ(λ))PN−1(µ−θ(λ)) = eγ . (3.4)

Namely, λ ∈ C is an eigenvalue of Cθ,γ if and only if it satisfies (3.4). Moreover,
its corresponding eigenspace is always one-dimensional.

Proof. We will prove the theorem by showing that (Cθ,γ − λI)v = 0. We consider
the equation

eiθ(α + β) eiθη
eiθβ eiθα eiθη

. . .
. . .

. . .

eiθβ eiθα eiθη
e−iθη e−iθα e−iθβ

. . .
. . .

. . .

e−iθη e−iθα e−iθβ
e−iθη e−iθ(α + β)



(
x
y

)
= λ

(
x
y

)
.

(3.5)
We write x as

x =

x0,

√
β

η
x1,

(√
β

η

)2

x2,

(√
β

η

)3

x3, · · · ,

(√
β

η

)N−1

xN−1

⊤

,

and y as

y =

(√β

η

)N−1

yN−1, · · · ,

(√
β

η

)3

y3,

(√
β

η

)2

y2,

√
β

η
y1, y0

⊤

.

From the first row in (3.5), we can choose

x0 = 1, x1 = −α + β − e−iθλ√
βη

.

For the second to the (N − 1)-th row in (3.5), we have

β

(√
β

η

)j

xj+(α−e−iθλ)
(√

β

η

)j+1

xj+1+η

(√
β

η

)j+2

xj+2 = 0, j = 0, · · · , N−3.

This gives

xj+2 = −(α − e−iθλ)√
βη

xj+1 − xj , j = 0, 1, · · · , N − 3. (3.6)

Thus
xj = Pj(µθ(λ)), j = 0, · · · , N − 1.

Now we consider the last N rows. As we have chosen x0 = 1, y0 should be a
constant C. Then by the last row in (3.5), we have

y0 = C, y1 = −α + β − eiθλ√
βη

C.

By the (2N − 1)-th to the (N + 2)-th row in (3.5), we have

yj+2 = −(α − eiθλ)√
βη

yj+1 − yj , j = 0, 1, · · · , N − 3.

Thus
yj = CPj(µ−θ(λ)) j = 0, · · · , N − 1.

8
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By the above representations, from the N -th and N + 1-th rows in (3.5), we have
the equation (√

β

η

)N

PN (µθ(λ)) = C

(√
β

η

)N−1

PN−1(µ−θ(λ)),

(√
β

η

)N−1

PN−1(µθ(λ)) = C

(√
β

η

)N

PN (µ−θ(λ)),

(3.7)

where we have used the N -th row and relation (3.6) for j = N − 2 to compute the
first element of y (the treatment to the N + 1 row is similar).

Based on (2.9), we can now replace all the β
η above by e−γ . Then solving the

above equations for C yields (3.3) and (3.4). As we did not introduce any additional
constraints when constructing the eigenvector form (3.2), equation (3.4) must be
the only condition on the eigenvalues λ ∈ C of Cθ,γ and is thus satisfied if and
only if λ is an eigenvalue. Furthermore, from equations (3.2) and (3.3), we can see
that for a given eigenvalue λ the corresponding eigenvector is uniquely determined
(up to constant factor). Hence, the eigenspace corresponding to λ must always be
one-dimensional. ■

These final two facts immediately yield the following characterisation for the
exceptional points of Cθ,γ .
Corollary 3.2. An exceptional point occurs when (3.4) has less than 2N distinct
solutions.

We aim to use this Corollary to show that for a given θ > 0, any nonreal eigenvalue
λ ∈ C \R of Cθ,γ must have passed through an exceptional point. However, we must
first formalise the notion of an eigenvalue “having passed through” an exceptional
point. To that end, we would like to associate each eigenvalue λi of Cθ,γ with
some corresponding continuous path λi(θ) such that λi(θ) is an eigenvalue of Cθ,γ

for all values of θ and all i = 1, . . . , 2N . However, precisely because exceptional
points occur, we cannot choose these paths in a canonical fashion, as at these
exceptional points, two eigenvalue paths λi(θ) and λj(θ), i ̸= j, meet and cannot
be distinguished. What we can do however, is the following: Let 0 < θ′ < π

2 be
fixed. For any simple eigenvalue λ of Cθ′,γ , we can then define the maximal unique
continuous eigenvalue path λ : θ ∈ [θ0, θ′] → C such that λ(θ) is always an eigenvalue
of Cθ,γ for any θ ∈ [θ0, θ′] and λ(θ′) = λ. θ0 is chosen to be either the largest θ < θ′

such that λ(θ) is an exceptional point, or zero - whichever is greater.
For some 0 < θ′ < π

2 and λ ∈ C eigenvalue of Cθ′,γ , we can then say that λ has
passed through an exceptional point if any only if θ0 is greater than zero. Note also
that because Cγ is diagonalisable, λ(0) is never an exceptional point.

We can now state the following result.
Corollary 3.3. Let 0 < θ′ < π

2 and λ ∈ C an eigenvalue of Cθ,γ . If λ is in C \R,
it must have passed through an exceptional point.
Proof. We consider the eigenvalue path λ : θ ∈ [θ0, θ′] → C as above and aim to
prove that θ0 > 0. We assume by contradiction that θ0 = 0. Because Cγ has real
spectrum we must have λ(0) ∈ R, and there must exist some largest θr such that
λ([0, θr]) ⊂ R. Because λ(θ′) ∈ C \R we know that θr < θ′. But now because of the
conjugation symmetry of the spectrum of Cθ,γ , λ(θr) must be a double eigenvalue
and thus an exceptional point by the previous corollary. Because λ(0) cannot be
an exceptional point we must have 0 = θ0 < θr < θ′, which yields a contradiction.
Therefore, we must at least have θ0 = θr > 0 and λ must have passed through the
exceptional point λ(θr). ■

9
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This corollary is very useful because it allows us to prove the existence of
exceptional points merely from the fact that some eigenvalues are nonreal.

The final result of this section characterises the relation between the factors Cλ

and Cλ for complex conjugate pairs λ, λ of Cθ,γ .

Corollary 3.4. Let λ, λ, ∈ C be a pair of eigenvalues of Cθ,γ and Cλ, Cλ the
corresponding factors as defined in (3.3). Then, we have

CλCλ = 1. (3.8)

In particular, we have |Cλ| = 1 for λ ∈ R.

Proof. Because Pn has real coefficients, we have

Pn(µθ(λ)) = Pn(µ−θ(λ)).

This fact, together with (3.3), yields the desired result. ■

4. Eigenvalue of the generalised gauge capacitance matrix
In this section, we will study the eigenvalues of the generalised gauge capacitance

matrix Cθ,γ for the system described in Figure 1. In Section 4.1, we prove that
for a small θ all the eigenvalues of Cθ,γ are real, which corresponds to the coupled
regime. In Section 4.2 and Section 4.3, we prove existence and density of exceptional
points. Finally, in Section 4.4 we will approximate the locations of eigenvalues.
Understanding the movement of eigenvalues will prove to be a crucial prerequisite
to understand the decoupling behaviour of the eigenvectors in the next section.

4.1. Coupled regime

This subsection is dedicated to the case where all eigenvalues of Cθ,γ are real. We
will show that for small θ the eigenvalues behave similarly to the ones of the gauge
capacitance matrix Cθ=0,γ . Consequently, as will be shown in Section 5, also the
eigenvectors of Cθ,γ will have a similar form to the ones of Cθ=0,γ .

Proposition 4.1. For any N ∈ N and γ > 0 there exists a ε > 0 such that for
0 ≤ θ < ε all the eigenvalues of Cθ,γ are real. For a real eigenvalue λ of Cθ,γ the
eigenvector = (x,y)⊤ decomposed as in Theorem 3.1, has the following symmetry:

y = eiϕPx (4.1)

for some ϕ ∈ [0, 2π). In particular we have
∣∣x(j)

∣∣ =
∣∣y(2N+1−j)

∣∣ for j = 1, . . . N .

Proof. For θ = 0, we have Cθ,γ = Cγ which is quasi-Hermitian (see Appendix A)
and thus diagonalisable with real spectrum. From Theorem 3.1, we know that the
eigenspace for any eigenvalue is one-dimensional. Therefore, Cγ must have 2N
distinct eigenvalues to be diagonalisable.

Now, because the eigenvalues of a matrix depend continuously on its entries, the
map θ 7→ σ(Cθ,γ) must be continuous and there exists some ε > 0 such that the
eigenvalues remain distinct for 0 ≤ θ < ε. Because Cθ,γ is pseudo-Hermitian (see
Definition A.1), its spectrum must be invariant under complex conjugation and real
eigenvalues can only become complex pairwise, after meeting on the real line. Thus,
for θ small enough, no two real eigenvalues of Cθ,γ could have met and become
complex, ensuring that σ(Cθ,γ) ⊂ R.

The last part follows by the same argument as Corollary 3.4 together with
λ ∈ R. ■

10
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4.2. Existence of exceptional points

In this subsection, our aim is to show that regardless of N and γ, all eigenvalues
must pass through an exceptional point as θ is increased from 0 to π

2 .

Theorem 4.2. Let γ > 0 and N ∈ N. Then, all but two eigenvalues λ ∈ C of
Cθ,γ for θ = π

2 must have passed through an exceptional point. The remaining two
eigenvalues experience an exceptional point at θ = π

2 .

In line with Corollary 3.3, in order to show that an eigenvalue λ of Cθ,γ for
θ = π

2 has passed through an exceptional point, it is sufficient to show that λ lies in
C \R. Indeed, for θ = π

2 we will show that the spectrum of Cθ,γ lies entirely on the
imaginary axis. All nonzero eigenvalues must thus have gone through an exceptional
point. Two eigenvalues will turn out to be zero, yielding another exceptional point
exactly at θ = π

2 .
We will proceed by giving a useful characterisation of the purely imaginary

eigenvalues of Cθ,γ for θ = π
2 , which is based on the characteristic equation (3.4):

Lemma 4.3. Let γ > 0 be fixed and θ = π
2 . Then, λ̃ ∈ iR is a purely imaginary

eigenvalue of Cθ,γ if and only if

S(λ) := PN (µ(λ))PN (µ(−λ)) − eγPN−1(µ(λ))PN−1(µ(−λ)) = 0, (4.2)

where
iλ = λ̃ and µ(λ) = λ − α

2
√

βη
.

Proof. Suppose that λ̃ is an eigenvalue of Cθ,γ for θ = π
2 . The result then follows

immediately from the characteristic equation (3.4) and realising that µ± π
2 (λ̃) =

µ(±λ). ■

Thus, every real zero λ of (4.2) corresponds to a purely imaginary eigenvalue iλ
of C π

2 ,γ . Note that because S(λ) is invariant under λ 7→ −λ, it must be even and
its zeros must be symmetric about the origin.

In Appendix C we prove the following result:

Proposition 4.4. S(λ) has exactly 2N − 2 distinct real zeros and a double zero
λ = 0.

The main idea of the proof is to exploit the heavily interlaced nature of the
Chebyshev polynomials, which will prove to be a robust source of zeros of their
composites. This will allow us to guarantee and bound N real zeros for PN and
N − 1 real zeros for PN + PN−1. The evenness of S(λ) will then allow us to use
these results to guarantee zeros of S as well.

We can then combine the arguments of this subsection to prove Theorem 4.2.

Proof of Theorem 4.2. For θ = 0, all the eigenvalues are real and for θ = π
2 all

but two eigenvalues are purely imaginary by Proposition 4.4. The two not purely
imaginary eigenvalues are both zero, causing an exceptional point by Corollary 3.2.
By Corollary 3.3, all the purely imaginary, nonzero eigenvalues must have passed
through an exceptional point by θ = π

2 . Furthermore, these eigenvalues are distinct,
which ensures that they passed through that exceptional point before θ = π

2 . ■

4.3. Asymptotic density of exceptional points

We are now interested in showing that exceptional points do not only occur (as
shown in the previous subsection) but also cluster creating a parameter region with
high density of such points. Many of the results developed in this subsection will also

11
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1014× 100 6× 100 2× 101 3× 101

N

10−2

10−1

100

θ e
p

eN−1

Figure 2. Distribution of the exceptional points for varying N .
For any N , the system exhibits a trivial exceptional
point at θ = π

2 . All other exceptional points concentrate
in the interval [0, e/N ] and become increasingly dense
as N grows.

be used in Section 4.4 and Section 5 as they enable the asymptotic characterisation
of the eigenvalue locations and eigenvector growth.

The main aim of this subsection will be to prove the following result.

Theorem 4.5. Let 0 < θ < π
2 and γ > 0 be fixed. Then, there exists an N0 ∈ N

such that for every N ≥ N0, the corresponding Cθ,γ has exactly two real eigenvalues.

By Corollary 3.3, this ensures that all other 2N − 2 eigenvalues in C \R must
have already passed through an exceptional point before θ.

We start by stating a helpful reformulation of the characterisation (3.4) for real
eigenvalues.

Proposition 4.6. λ ∈ R is a real eigenvalue of Cθ,γ if and only if∣∣∣∣ PN (µθ(λ))
PN−1(µθ(λ))

∣∣∣∣ = e
γ
2 . (4.3)

Proof. Because PN has real coefficients and λ ∈ R is real, we have

PN (µ−θ(λ)) = PN (µθ(λ)) = PN (µθ(λ)).

Plugging this into the characteristic equation (3.4) yields the desired result. ■

The transformation µθ(λ) = e−iθλ 1
γ sinh γ

2 − cosh γ
2 maps the real line R onto

a line µθ(R) in C rotated by −θ around the point − cosh γ
2 . This provides a very

geometric view of the zeros of equation (4.3). In fact, the real spectrum of Cθ,γ

corresponds to intersections of the line µθ(R) and a level set of µ 7→
∣∣∣ PN (µ)

PN−1(µ)

∣∣∣:
σ(Cθ,γ) ∩ R = µθ(R) ∩

{
µ ∈ C :

∣∣∣∣ PN (µ)
PN−1(µ)

∣∣∣∣ = e
γ
2

}
.

Thus, in order to understand the real eigenvalues of Cθ,γ , it is crucial to understand
the level sets of

∣∣∣ PN (µ)
PN−1(µ)

∣∣∣. We begin by recalling a well-known equivalent definition
of the Chebyshev polynomials:

Un(µ) = a(µ)n+1 − a(µ)−(n+1)

2
√

µ + 1
√

µ − 1
,

where a(µ) = µ +
√

µ + 1
√

µ − 1.
12
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(a) Graph of C ∋ µ 7→
∣∣∣ PN (µ)

PN−1(µ)

∣∣∣ cut off by

the plane C×{e
γ
2 }.

−2 −1 0 1 2

−1/2i

0

1/2i

0 1

i

eiθ

(b) Intersection of µθ(R) (in blue dashed)
with the level set {µ ∈ C :

∣∣∣ PN (µ)
PN−1(µ)

∣∣∣ =

e
γ
2 } (in black). The latter can be seen

in Figure 3a. Intersection points are
shown in red. The preimage of these
are the real eigenvalues of Cθ,γ .

Figure 3. Geometrical interpretation of the eigenvalues of Cθ,γ

as given by Proposition 4.6. In this view, we can
also clearly see the exceptional points, where two real
eigenvalues meet and become complex. Namely, this
happens exactly when µθ(R) goes from passing through
one of the inner regions in (B) to moving past them
and two red crosses meet.

The following two lemmas allow us to characterise the map a(µ) : C → C in
terms of its inverse as well as the convergence of PN

PN−1
to a as N → ∞. For the

sake of brevity the proofs of these results have been moved to Appendix D.
Lemma 4.7. The map a : C \[−1, 1] → {z ∈ C | |z| > 1} is a bijective holomorphic
map with holomorphic inverse given by

a−1 : {z ∈ C | |z| > 1} → C \[−1, 1]

z = reiφ 7→ 1
2(z + 1

z
) = r2 + 1

2r
cos φ + i

r2 − 1
2r

sin φ.
(4.4)

Although a can be defined on all of C, it fails to be regular at [−1, 1]. This region
is characterised by a−1({z ∈ C | |z| = 1}) = [−1, 1]. In particular, the level sets of a
are empty for |a| < 1, ellipses for |a| > 1 and a line segment for |a| = 1.

The following result allows us to approximate PN (µ)
PN−1(µ) in terms of a(µ) with an

asymptotically small error as N → ∞.
Lemma 4.8. Let µ ∈ C \[−1, 1]. We have∣∣∣∣ Pn(µ)

Pn−1(µ) − a(µ)
∣∣∣∣ ≤ |a(µ)|−2n+2

(
2 1 + e− γ

2

1 − |a(µ)|−1
e− γ

2 − 2 |a(µ)|−2n+1

)
for all n ∈ N large enough such that |a(µ)|−2n+2

< eγ

2 . In particular,
Pn(µ)

Pn−1(µ)
unif.−→ a(µ)

as n → ∞ outside any ε-neighbourhood of [−1, 1], i.e. Bε([−1, 1]) := {z ∈ C : ∃y ∈
[−1, 1] : |z − y| < ε}.

13
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By an analogous argument, we can find that(
Pn

Pn−1

)′

(µ) unif.−→ a′(µ) as n → ∞

away from [−1, 1].
Now that we have a solid understanding of the properties of a and the convergence

of Pn(µ)
Pn−1(µ) to a, we can return to proving the matter at hand. We are looking for

solutions λ ∈ R of
∣∣∣ PN (µθ(λ))

PN−1(µθ(λ))

∣∣∣ = e
γ
2 , since they correspond to the real eigenvalues

of Cθ,γ . To simplify notation we introduce

F θ
n(λ) :=

∣∣∣∣ Pn(µθ(λ))
Pn−1(µθ(λ))

∣∣∣∣− e
γ
2 and F θ

∞(λ) :=
∣∣a(µθ(λ))

∣∣− e
γ
2 .

Note that In this notation, the results of the previous two lemmas can be summarised
and extended as follows.

Proposition 4.9. For a given 0 < θ < π
2 and γ > 0, we have

(i) F θ
n(0) = 0 for all n ∈ N∪{∞};

(ii) F θ
n(λ) → ∞ as |λ| → ∞ for all n ∈ N∪{∞};

(iii) F θ
n

unif.−→ F θ
∞ and (F θ

n)′ unif.−→ (F θ
∞)′ as n → ∞;

(iv) (F θ
∞)−1(0) = {0, p} for some 0 < p ∈ R and (F θ

∞)′(0) < 0 < (F θ
∞)′(p).

Proof. (i) follows from the fact that 0 is an eigenvalue of Cθ,γ for F θ
n and a straight-

forward calculation for F θ
∞. Similarly, (ii) follows from the fact that Pn has degree

n and from Lemma 4.7. (iii) is the consequence of Lemma 4.8 together with the
fact that the derivative of the absolute value exists and is continuous away from
zero. Finally (iv) follows from (i) and the fact that by Lemma 4.7 the level sets of a
are ellipses, which are convex. ■

Armed with these facts, we can now prove that all but two trivial eigenmodes go
through exceptional points for arbitrarily small θ’s as N → ∞.

Proof of Theorem 4.5. In our notation, we are looking for zeros of F θ
N and aim to

prove that there exist exactly two for N large enough. By Proposition 4.9 (ii), we
know that F θ

N can have no zeros for λ large. We can thus restrict our search to
some large, closed and thus compact set K ⊂ R. Using Proposition 4.9 (iii) and
the fact that a is continuously differentiable, we can find an open neighbourhood
U := (−ε, ε) ∪ (p − ε, p + ε) ⊂ K of 0 and p such that |a′| > c1 > 0 on U . We can
now use the fact that (F θ

N )′ unif.−→ (F θ
∞)′ to find a N1 ∈ N such that

∣∣(F θ
N )′
∣∣ > c1

2 > 0
on U for all N ≥ N1. For such N , F θ

N thus has at most two zeros in U .
By Proposition 4.9 (iv), we know that F θ

∞ ≠ 0 outside U . Because it is continuous
and K is compact there must be some c2 such that

∣∣F θ
∞
∣∣ > c2 > 0 on K \ U . By

Proposition 4.9 (iii) we can now find some N2 such that
∣∣F θ

N

∣∣ > c2
2 > 0 on K \ U .

For such N , F θ
N thus has no zeros in K \ U .

Finally, to prove that F θ
n actually has two zeros as well we note that by Propo-

sition 4.9 (iv) there must be some 0 < q < p such that F θ
∞(q) < c3 < 0. By

Proposition 4.9 (iii) there must exist some N3 such that F θ
N (q) < c3

2 < 0 for all
N ≥ N3. Proposition 4.9 (ii) and the intermediate value theorem then guarantee
that F θ

N (q) has two zeros. We can now pick N0 = max{N1, N2, N3} and we are
done. ■

4.4. Eigenvalue locations

In this subsection, we aim to understand the position of the eigenvalues in the
complex plane. This will prove crucial in understanding the behaviour of the

14
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eigenvectors in Section 5. As we will observe, for a fixed θ and increasing N , they
move arbitrarily close to the two line segments (µθ)−1([−1, 1]) ∪ (µ−θ)−1([−1, 1]).

The following result holds.

Proposition 4.10. Let 0 < θ < π/2 and γ > 0 be fixed. For any ε > 0 small enough,
there exists an N0 ∈ N such that for any N ≥ N0, all but exactly two eigenvalues of
Cθ,γ lie in an ε-neighbourhood of K := (µθ)−1([−1, 1]) ∪ (µ−θ)−1([−1, 1]). Indeed,
because of the conjugation symmetry of eigenvalues, we have∣∣σ(Cθ,γ) ∩ Bε((µσ·θ)−1([−1, 1]))

∣∣ = N − 1, (4.5)

for σ = ±1.

Proof. We recall that λ ∈ C is an eigenvalue of Cθ,γ if and only if it solves the
characteristic equation (3.4):

PN (µθ(λ))
PN−1(µθ(λ))

PN (µ−θ(λ))
PN−1(µ−θ(λ)) = eγ . (4.6)

Using Lemma 4.8, we find that

PN (µθ(λ))
PN−1(µθ(λ))

PN (µ−θ(λ))
PN−1(µ−θ(λ))

unif.−→ a(µθ(λ))a(µ−θ(λ))

as N → ∞ outside an ε-neighbourhood of K := (µθ)−1([−1, 1]) ∪ (µ−θ)−1([−1, 1]).
The same holds for the derivative by an analogous argument.

Claim: a(µθ(λ))a(µ−θ(λ)) = eγ has exactly two solutions and they both lie on
the real line.

We begin by proving that such solutions must be real, i.e., λ ∈ R. The fact that
the product a(µθ(λ))a(µ−θ(λ)) = eγ ∈ R must be real implies that a(µ±θ(λ)) must
have arguments differing only in sign. We note that by Lemma 4.7 the set of all
µ ∈ C with Arg a(µ) = ±φ is given by{

r2 + 1
2r

cos φ ± i
r2 − 1

2r
sin φ

∣∣∣∣ r ∈ [1, ∞)
}

.

These sets form the upper and lower part of the right branch of a hyperbola in the
right half complex plane, with focal point 1. The characteristic equation of this
hyperbola is

ℜ(µ)2

cos2 φ
− ℑ(µ)2

sin2 φ
= 1.

Any solution of a(µθ(λ))a(µ−θ(λ)) = eγ must thus have µ1 := µθ(λ) and µ2 :=
µ−θ(λ) on opposite branches of this hyperbola. We assume without loss of generality
that µ1 is in the upper branch.

By definition we must also have (µθ)−1(µ1) = λ = (µ−θ)−1(µ2). Note that the
inverse of µθ is given by

(µθ)−1(µ) = eiθγ

sinh γ
2

(µ + cosh γ

2 ).

The next step in showing the claim is to prove that for µ1, µ2 on opposite branches
on the parabola µ2 = µ1 must hold. We argue by contraposition and assume that
µ2 ̸= µ1 for some µ1, µ2 as above. Because µ1 is the only other point with the same
absolute value as µ1 on this branch of the hyperbola, we must have |µ1| ≠ |µ2|. We
assume without loss of generality that |µ1| < |µ2|. Because µ1 and µ2 lie on the
branch in the right half plane this implies |ℜ(µ1)| < |ℜ(µ2)| and |ℑ(µ1)| < |ℑ(µ2)|.
But then also

∣∣µ1 + cosh γ
2
∣∣ <

∣∣µ2 + cosh γ
2
∣∣ and thus,

∣∣(µθ)−1(µ1)
∣∣ <

∣∣(µ−θ)−1(µ2)
∣∣.

Therefore, (µθ)−1(µ1) ̸= (µ−θ)−1(µ2), proving the contrapositive as desired.
15
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It remains to show that for µ1 and µ2 = µ1 on the hyperbola, λ = (µθ)−1(µ1) =
(µ−θ)−1(µ2) is real. We note

(µθ)−1(µ1) = (µ−θ)−1(µ1) = (µ−θ)−1(µ2) = (µθ)−1(µ1),
which proves that λ = (µθ)−1(µ1) ∈ R, and the first part of the claim is shown.

We have thus shown that any solution λ of a(µθ(λ))a(µ−θ(λ)) = eγ must be real.
But for real λ this equation simplifies to∣∣a(µθ(λ))

∣∣ = e
γ
2 ,

and by the previous section, we know that there exist exactly two solutions {0, p} ⊂ R,
which concludes the proof of the claim.

We now know that a(µθ(λ))a(µ−θ(λ)) = eγ has exactly two solutions. Since the left-
hand side of the characteristic equation (3.4) and its derivative converge uniformly
to a(µθ(λ))a(µ−θ(λ)) outside any small ε-neighbourhood of K, we can use a similar
argument to the one in the previous section to find that, for N large enough, (3.4)
must have exactly two solutions outside of this neighbourhood.

Because the equation is equivalent to a polynomial of degree 2N , it must have
exactly 2N solutions in total. But because only exactly 2 of these solutions may
lie outside the small ε-neighbourhood of K, the remaining 2N − 2 must lie in
this neighbourhood, as desired. Because the solutions are invariant under complex
conjugation they distribute symmetrically into N − 1 each in the the upper and
lower half of K. The proof is then complete. ■

0 2 4

−1/2i

0

1/2i

0 1

i
eiθ

σ(Cθ,γ2N )

(µθ)−1[−1, 1]

(µ−θ)−1[−1, 1]

Figure 4. Eigenvalue locations close to the two line segments
(µθ)−1([−1, 1]) ∪ (µ−θ)−1([−1, 1]) for θ = 0.2, γ = 1
and N = 60.

5. Eigenvectors of the generalised capacitance matrix
Systems with an imaginary gauge potential are known for the presence of skin

effect, i.e., the condensation of the eigenvectors at one edge of the system. This
condensation has been shown to be exponential [6]. The system studied here has a
much more peculiar property. The symmetric change of sign in the gauge potential
implies that the condensation happens on both edges of the system for small values
of θ or N . Nevertheless, the non-Hermiticity introduced by θ can change this
symmetry. The exponential nature of the modes has been shown to be caused by
the Freedholm index of the Toeplitz operator associated to the system. The system
studied here presented in Figure 1 does not yield a Toepliz matrix, nevertheless we
will show that the same theory can be modified to be used in this situation as well.
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5.1. Exponential decay and growth

As our matrix Cθ,γ is split into two parts by an interface we define the upper and
lower symbols of Cθ,γ as

fθ
± : S1 → C

eiϕ 7→ e±iθ(βe±iϕ + α + ηe∓iϕ). (5.1)
We further define the upper and lower regions of topological convergence as

Eθ
± = {z ∈ C : ± wind(fθ

±, z) < 0}, (5.2)

where wind(fθ
±, z) denotes the winding number of fθ

± around z.
These concepts are closely linked to our formalism based on Chebyshev polyno-

mials. The following result holds.

Lemma 5.1. We have
Eθ

± = {(µ±θ)−1(a−1(reiϕ)) for r ∈ [1, eγ/2), ϕ ∈ [0, 2π)}.

Proof. We will focus on the upper case Eθ = Eθ
+ and fθ = fθ

+ as the lower case
follows analogously. Algebraic manipulation then yields the following form for the
symbol:

fθ(eiϕ) = eiθ
(

−γ coth γ

2 cos ϕ + iγ sin ϕ + γ coth γ

2

)
.

Thus fθ(eiϕ) moves clockwise around an ellipse as ϕ goes from 0 to 2π and Eθ must
be the interior of this ellipse, by the definition of the winding number.

We now turn to (µθ)−1(a−1(reiϕ)) for r ∈ [1, eγ/2), ϕ ∈ [0, 2π) and aim to show
that this also fills out the same ellipse. It is sufficient to show that g := ϕ 7→
(µθ)−1(a−1(reiϕ)) traces the same ellipse as above for r = eγ/2. This follows from
Lemma 4.7, as letting r vary from 1 to eγ/2 amounts to filling up the interior of the
ellipse drawn out by g. Algebraic manipulation once again yields

g(ϕ) = eiθ
(

γ coth γ

2 cos ϕ − iγ sin ϕ + γ coth γ

2

)
.

This traces the same ellipse as above, with the sole difference that the parametrisation
is shifted by π, concluding the proof. ■

By Lemma 5.1 it makes thus sense to lighten the notation and use Eθ = Eθ
+ and

E−θ = Eθ
−.

Lemma 5.1 also justifies calling E±θ “regions of topological convergence”. Namely,
for an eigenpair (λ,v) of Cθ,γ Theorem 3.1 gives the following form for the eigenvector:

v = (x(1), . . . ,x(N),y(1), . . . ,y(N))⊤

with x(j) = (e− γ
2 )j−1Pj−1(µθ(λ)) and y(j) = (e− γ

2 )N−jPN−j(µ−θ(λ)).
The rates of growth for the left and right parts of this eigenvector are then given

by
x(j+1)

x(j) = e− γ
2

Pj(µθ(λ))
Pj−1(µθ(λ)) ,

y(j+1)

y(j) = e
γ
2

Pj−1(µ−θ(λ))
Pj(µ−θ(λ)) .

We focus on the left part we notice its asymptotic growth behavior is deter-
mined by whether

∣∣∣ Pj(µθ(λ))
Pj−1(µθ(λ))

∣∣∣ is smaller or larger than e
γ
2 . Furthermore, we have

Pj(µθ(λ))
Pj−1(µθ(λ)) → a(µθ(λ)) by Lemma 4.8. x thus decays or grows asymptotically
exactly if

∣∣a(µθ(λ))
∣∣ is smaller or larger that e

γ
2 respectively. But by Lemma 5.1 we

can see that λ lies in Eθ if and only if
∣∣a(µθ(λ))

∣∣ < e
γ
2 , justifying our naming.

For y the rate of growth is exactly the inverse of the rate of growth of x with
µθ(λ) replaced by µ−θ(λ). The above reasoning thus also holds for y with “growth”
and “decay” as well as the sign of θ flipped.
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By Proposition 4.10 we know the approximate locations of the eigenvalues of
Cθ,γ . We will now make use of that and the topological convergence to formally
prove the above intuition.

Theorem 5.2. Let 0 < θ < π/2, γ > 0 and let N be large enough1. Fix, furthermore,
a 0 < σ ≪ 1. Consider an eigenpair (λ,v) of Cθ,γ fulfilling Theorem 3.1. Then, one
of the following three cases realises:

(1) If λ ∈ Bσ(∂Eθ ∪ ∂E−θ) =: Θ, then either λ = 0 and v = 1 or no conclusion
is made;

(2) If λ ∈ Eθ ∩ E−θ \ Θ, then there exist some B1, B2, C1, C2 > 0 independent
of N so that

|v(j)| < C1e−B1
jγ
2 and |v(2N+1−j)| < C2e−B2

jγ
2 ,

for 1 ≤ j ≤ N . In particular, if also λ ∈ R, then C1 = C2 and B1 = B2.
(3) If λ ∈ Eθ△E−θ \ Θ, then there exits some B, C > 0 independent of N so

that
|v(j)| < Ce−B jγ

2 if λ ∈ Eθ,

|v(2N+1−j)| < Ce−B jγ
2 if λ ∈ E−θ,

for 1 ≤ j ≤ 2N .
In particular, for π

4 ≤ θ ≤ π
2 case (2) never realises for N large enough.

Proof. Consider the x part of the eigenvector as described in Theorem 3.1. We have
x(j+1)

x(j) = e−γ/2 Pj(µθ(λ))
Pj−1(µθ(λ)) .

Thus, x presents an exponential decay if∣∣∣∣ Pj(µθ(λ))
Pj−1(µθ(λ))

∣∣∣∣ < e
γ
2 . (5.3)

The same argument for y shows exponential growth if∣∣∣∣ Pj(µ−θ(λ))
Pj−1(µ−θ(λ))

∣∣∣∣ < e
γ
2 . (5.4)

We distinguish now two cases and assume without loss of generality that λ lies in
the upper branch Bε((µθ)−1([−1, 1])), and thus λ ∈ Eθ.
Case 1: λ ∈ E−θ.
Let 0 < ε < σ, then for max{N1, N2} < j < N with N1 as in Lemma 4.8 and N2 as
in Proposition 4.10 the following estimate holds∣∣∣∣ Pj(µθ(λ))

Pj−1(µθ(λ))

∣∣∣∣ ≤
∣∣∣∣ Pj(µθ(λ))
Pj−1(µθ(λ)) − a(µθ(λ))

∣∣∣∣+
∣∣a(µθ(λ))

∣∣
≤ ε + 1 + ε < eγ/2

where the second to last inequality follows from Lemma 4.8 and Proposition 4.10.
For y we observe∣∣∣∣ Pj(µ−θ(λ))

Pj−1(µ−θ(λ))

∣∣∣∣ ≤
∣∣∣∣ Pj(µ−θ(λ))
Pj−1(µ−θ(λ)) − a(µ−θ(λ))

∣∣∣∣+
∣∣a(µ−θ(λ))

∣∣
≤ ε + (eγ/2 − σ) < eγ/2,

where the second to last inequality makes additional use of the fact that for λ ∈
E−θ \ Θ we must have

∣∣a(µ−θ(λ))
∣∣ < eγ/2 − σ.

1Specifically so that ε from Proposition 4.10 is smaller than
√

α + β −
√

β + η and thus
Bε((µ±θ)−1([−1, 1])) ⊂ E±θ
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Case 2. λ ̸∈ E−θ.
Let the constants as in Case 1, but ensure additionally ε + (eγ/2 + σ)−1 < e−γ/2.
Then x still presents exponential decay∣∣∣∣ Pj(µθ(λ))

Pj−1(µθ(λ))

∣∣∣∣ ≤
∣∣∣∣ Pj(µθ(λ))
Pj−1(µθ(λ)) − a(µθ(λ))

∣∣∣∣+
∣∣a(µθ(λ))

∣∣
≤ ε + 1 + ε < eγ/2

because of λ ∈ Eθ. On the other side for y we have∣∣∣∣Pj−1(µ−θ(λ))
Pj(µ−θ(λ))

∣∣∣∣ ≤
∣∣∣∣Pj−1(µ−θ(λ))

Pj(µ−θ(λ)) − 1
a(µ−θ(λ))

∣∣∣∣+
∣∣∣∣ 1
a(µ−θ(λ))

∣∣∣∣
≤ ε + (eγ/2 + σ)−1 < e−γ/2.

Note that Case 1 proves point (2) and Case 2 proves point (3). It is clear that
λ = 0 falls into case (1) and that the corresponding eigenvector is given by 1 (see for
example [2]). For λ ∈ R, by Corollary 3.4 and the argument in its proof, we conclude
that the absolute value of the entries of the eigenvector v must be symmetric with
respect to the index N .

The last statement of the theorem follows from a geometrical argument. For
θ = π

4 the major axis of the ellipse E−θ and the line (µθ)−1(R) lay perpendicular
to each other and intersect at 0 while |(µθ)−1(−1)| > 0. Therefore there exists a
ε-neighbourhood of (µθ)−1([−1, 1]) not intersecting E−θ and Proposition 4.10 shows
the statement. ■

The implications of Theorem 5.2 are important as it shows that the eigenvectors
of Cθ,γ are not only exponentially decaying or growing but also that the non-
Hermiticity introduced by θ manifests itself at a macroscopic level as a decoupling
of the eigenvectors. While for θ = 0 the eigenvectors always present symmetric
exponential decay, the non-Hermiticity introduced by θ > 0 brings the eigenvalue to
eventually migrate to the complex plane and out of one of the two regions Eθ or E−θ.
As a consequence of this, the symmetry is broken. It is also interesting to notice
that this process happens pairwise. Since Cθ,γ is pseudo-Hermitian, the eigenvalues
come in complex conjugated pairs and, as θ is varying, they meet pairwise at an
exceptional point. After the exceptional points, one of the eigenvectors will be
decaying while the other will be increasing. The decoupling of the eigenvectors is
illustrated in Figure 5.

From the proof of Theorem 5.2 we can read out the decay or growth rate of the
eigenvectors.

Upper branch Lower branch
λ ∈ E−θ λ ̸∈ E−θ λ ∈ Eθ λ ̸∈ Eθ

x e−γ/2 e−γ/2 < 1 > 1
y > 1 < 1 eγ/2 eγ/2

Table 1. Approximated decay and growth rate of the left and
right part of an eigenvectors of the capacitance matrix
depending of the location of the corresponding eigenval-
ues. Values greater than 1 correspond to growth and
lower than 1 correspond to decay. Here upper and lower
branch refer respectively to λ ∈ Bε((µ±θ)−1([−1, 1])) as
in Proposition 4.10.
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Remark 5.3. A natural question not discussed by Theorem 5.2 is the behaviour
of eigenvectors about their middle, where they cross the interface. To answer this
question we consider a nontrivial eigenpair (λ,v) of Cθ,γ . As in Theorem 3.1 we
decompose v = (x,y)⊤ and inspect the ratio y(1)/x(N). Using Theorem 3.1 we can
find

y(1)

x(N) = C
PN−1(µ−θ(λ))
PN−1(µθ(λ)) = e− γ

2
PN (µθ(λ))

PN−1(µ−θ(λ))
PN−1(µ−θ(λ))
PN−1(µθ(λ))

= e− γ
2

PN (µθ(λ))
PN−1(µθ(λ)) .

This mirrors the relation x(j+1)

x(j) = e− γ
2

Pj(µθ(λ))
Pj−1(µθ(λ)) we have for the growth of x and

thus the characteristic equation (3.4) takes exactly the form needed to ensure that
the growth behaviour of v stays continuous across the interface.
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Figure 5. Decoupling of the eigenvectors of the gauge capacitance
matrix. The macroscopic behaviour of the eigenvectors
(exponential decay/growth) is predicted by the location
of the eigenvalues in the complex plane with respect to
the region of topological convergence defined in (5.2)
displayed here as trace of (5.1). Looking at the two
highlighted eigenvalues (red and blue), Figure (A-C)
correspond to point (2) in Theorem 5.2 while (D) cor-
responds to point (1).

5.2. Topological origin

This section is devoted to illustrating the topological origin of the specific conden-
sation properties of Cθ,γ ’s eigenvectors that were shown in Theorem 5.2. Especially,
in Theorem 5.2 we demonstrate the condensation properties by the specific be-
haviours of a(µ), while here we concentrate on the Fredholm index theory of the
symbol of the Toeplitz operator, which directly leads to considering E±θ in (5.2)
defined by symbols fθ

±. Instead of considering the eigenvector of a Toeplitz operator,
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we analyse the pseudo-eigenvector of the corresponding matrix Cθ,γ to keep the
boundary of the system. We first present the topological origin of the case (2) in
Theorem 5.2.

Theorem 5.4. Suppose that λ ∈ Eθ ∩ E−θ. For some 0 < ρ < 1 and sufficiently
large N , there exists a pseudo-eigenvector v of Cθ,γ satisfying

∥(Cθ,γ − λ)v∥
∥v∥

≤ max(C1, NC2)ρN−1

such that { |vj |
maxi |vi| ≤ C3Nρj−1, j = 1, · · · , N,

|vj |
maxi |vi| ≤ C3Nρ2N−j , j = N + 1, · · · , 2N,

where C1, C2, C3 are constants independent of N .

Proof. We first consider the pseudo-eigenvectors of
eiθTl and e−iθTr,

where

Tl =


α + β η

β α η
. . .

. . .
. . .

β α η
β α

 , Tr =


α β
η α β

. . .
. . .

. . .

η α β
η α + β

 .

(5.5)
Since Tl is a Toeplitz matrix with only a perturbation on the first element, by the
theory for the pseudo-eigenvector of Tl in [5], we have that for each λ ∈ Eθ, there
exist nonzero pseudo-eigenvectors x satisfying

∥(eiθTl − λ)x∥
∥x∥

≤ max(C4, NC5)ρN−1

such that
|xj |

maxi |xi|
≤ C6Nρj−1, j = 1, · · · , N, (5.6)

where C4, C5, C6 are constants independent of N . On the other hand, observing
that

Tr = PTlP

where P is the anti-diagonal involution. Therefore, by the same theory, for λ ∈ E−θ,
there exist nonzero pseudo-eigenvectors y satisfying

∥(e−iθTr − λ)y∥
∥y∥

≤ max(C7, NC8)ρN−1

such that
|yj |

maxi |yi|
≤ C9NρN−j , j = 1, · · · , N, (5.7)

where C7, C8, C9 are constants independent of N . Now, we construct the pseudo-

eigenvector of Cθ,γ as v =
(
x
y

)
. Note that the only difference between

Cθ,γ ,

(
eiθTl

e−iθTr

)
are two elements in the centre of the matrix. Together with (5.6) and (5.7), we can
conclude that for λ ∈ Eθ ∩ E−θ, the pseudo-eigenvector v satisfies that

∥(Cθ,γ − λ)v∥
∥v∥

≤ max(C1, NC2)ρN−1
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such that { |vj |
maxi |vi| ≤ C3Nρj−1, j = 1, · · · , N,

|vj |
maxi |vi| ≤ C3Nρ2N−j , j = N + 1, · · · , 2N,

where C1, C2, C3 are constants independent of N . This completes the proof. ■

Now, we present the topological origin of the case (3) in Theorem 5.2.

Theorem 5.5. Suppose that λ ∈ Eθ△E−θ. For some 0 < ρ < 1 and sufficiently
large N , there exists a pseudo-eigenvector v of Cθ,γ satisfying

∥(Cθ,γ − λ)v∥
∥v∥

≤ max(C1, NC2)ρN−1

such that { |vj |
maxi |vi| ≤ C3Nρj−1, j = 1, · · · , 2N, if λ ∈ Eθ,

|vj |
maxi |vi| ≤ C3Nρ2N−j , j = 1, · · · , 2N, if λ ∈ E−θ,

where C1, C2, C3 are constants independent of N .

Proof. We consider the pseudo-eigenvectors of eiθTl, e−iθTr, where Tl, Tr are defined
by (5.5). For λ ∈ Eθ△E−θ and λ ∈ Eθ, there exist nonzero pseudo-eigenvectors x
satisfying

∥(eiθTl − λ)x∥
∥x∥

≤ max(C4, NC5)ρN−1

such that
|xj |

maxi |xi|
≤ C6Nρj−1, j = 1, · · · , N, (5.8)

where C4, C5, C6 are constants independent of N . On the other hand, since λ ∈
Eθ△E−θ and λ ̸∈ E−θ, we have

λ ∈ {z ∈ C : − wind(fθ
−, z) < 0}

for fθ
− defined in (5.1). Therefore, by theory in [5] there exist nonzero pseudo-

eigenvectors y satisfying
∥y⊤(e−iθT ⊤

l − λ)∥
∥y∥

≤ max(C7, NC8)ρN−1 (5.9)

such that
|yj |

maxi |yi|
≤ C9Nρj−1, j = 1, · · · , N, (5.10)

where C7, C8, C9 are constants independent of N . Thus, by (5.9),
∥(e−iθTl − λ)y∥

∥y∥
≤ max(C4, NC5)ρN−1.

Now, we construct the pseudo-eigenvector of Cθ,γ as v =
(

x
ρNy

)
. Note that the

only difference between

Cθ,γ ,

(
eiθTl

e−iθTr

)
are two elements in the centre of the matrix. By all the above arguments, one can
justify that

∥(Cθ,γ − λ)v∥
∥v∥

≤ max(C1, NC2)ρN−1

and
|vj |

maxi |vi|
≤ C3Nρj−1, j = 1, · · · , 2N,
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where C1, C2, C3 are constants independent of N . This proves the theorem for the
case when λ ∈ Eθ△E−θ and λ ∈ Eθ. For the case when λ ∈ Eθ△E−θ and λ ∈ E−θ,
the justification is similar. ■

6. Concluding remarks
This paper extensively studies both qualitatively and quantitatively parity-time

symmetric structures of one-dimensional subwavelength resonators equipped with
two kinds of non-Hermiticity: an imaginary gauge potential (leading to a directional
decoupling) and complex material parameters (on-site gain and loss). Our results
are multifold. First, we have used Chebyshev polynomials to give formulas for the
eigenvalues and eigenvectors of the generalised gauge capacitance matrix, which
has been shown to approximate the resonance problem at subwavelength scales.
Then we have studied the phase change of the spectrum, varying from purely real
to complex as a function of the on-site gain and loss parameter θ. Parallel to the
spectral change, the eigenvectors go through a decoupling procedure.

Similar systems have been analysed in the quantum mechanical setting [19]. The
framework presented there differs from ours as no edge effects are considered. Our
results can be easily generalised to include these simpler systems by replacing the
polynomials Pn(z) = Un(z) + eγ/2Un−1(z) with the Chebyshev polynomials Un(z).
Furthermore, our analysis presents deep insights into both the phenomenological
landscape of effects and crucially also into the mathematical foundations of the
studied systems and associated physical phenomena.

Our work lends itself to a number of generalisations. On one hand, more exotic
PT -symmetric structures might be analysed. On the other hand, the explicit theory
we have developed in the current work relied on the rather simple structure of the
generalised gauge capacitance matrix that in one dimension takes a tridiagonal form.
Higher-dimensional systems do not enjoy this property, having a dense capacitance
matrix [3]. Nevertheless, since we were able to relate the decoupling of the eigenvalues
to the winding numbers presented in Section 5 and since these topological magnitudes
can similarly be computed in higher dimensions, we conjecture that very similar
results can also be obtained in those setups.
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Appendix A. Matrix symmetries
This appendix recalls some helpful and well-known results about matrix symme-

tries [13, Chapter 2].

Definition A.1 (Pseudo-Hermitian). A matrix A ∈ Cn×n is said to be pseudo-
Hermitian if there exists a Hermitian matrix M = M∗ ∈ GLn(C) such that MA =
A∗M .

Importantly pseudo-Hermitian matrices can be characterised in numerous ways.

Lemma A.2. For A ∈ Cn×n the following properties are equivalent:
(i) A is pseudo-Hermitian with A∗ = MAM−1;

(ii) A = Gη where G = G∗, η = η∗ and η ∈ GLn(C) invertible;
(iii) A is similar to a matrix with real entries;
(iv) A has an involutive antilinear symmetry;
(v) A has an invertible antilinear symmetry;
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Figure 6. The nontrivial eigenvectors ṽ± of CU
+ and CU

− for N = 2,
respectively (as in Proposition B.4). We can see that
ṽ+ is symmetric and ṽ− is anti-symmetric.

(vi) A is similar to A∗;
(vii) A is weakly pseudo-Hermitian;

(viii) σ(A) = σ(A) and dim ker(λ1 − A)l = dim ker(λ1 − A)l for every l ∈ N and
λ ∈ C.

Corollary A.3. The coefficients of the characteristic polynomial of a pseudo-
Hermitian matrix are real.

Definition A.4 (Quasi-Hermitian). A matrix A ∈ Cn×n is said to be quasi-
Hermitian if there exists a positive-definite Hermitian matrix S of full rank (called
metric operator) such that SA = A∗S.

Corollary A.5. We have

(i) A is quasi-Hermitian if and only if it is diagonalisable and has a purely real
spectrum;

(ii) Every quasi-Hermitian matrix is pseudo-Hermitian.

Appendix B. Zero gain and loss case
In this appendix, we specifically investigate the case θ = 0, where there is no

gain or loss introduced into the system. We have Cθ,γ = Cγ and will see that the
spectrum of Cγ splits evenly into monopole and dipole modes which are either
symmetric or antisymmetric about their middle.

We exploit the rich symmetry of Cγ to reduce the problem of finding the spectrum
of Cγ to finding the spectrum of the tridiagonal almost-Toeplitz matrices CU

± . This
is significantly easier as the spectral theory of tridiagonal Toeplitz matrices with
perturbed edges is well-understood (see, for instance, [28]).

The central idea is to investigate the following matrix, which will turn out to
have the same eigenvalues and eigenvectors as Cγ .
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Definition B.1. We define the modified capacitance matrix Ĉ± as follows:

Ĉ± =



α + β η

β α
. . .

. . .
. . .

α η
β α ± η 0

0 α ± η β

η α
. . .

. . .
. . .

α β
η α + β



∈ R2N×2N .

(B.1)
We will refer to the top-left block of Ĉ± as CU

± and the bottom-left block as CL
±.

Remark B.2. Note that CU
± as well as CL

± are tridiagonal Toeplitz matrices with
perturbed edges. We can see that these matrices are similar by

PCU
±P = CL

±,

which means that they must share the same spectrum. Furthermore, any eigenvector
v of CU

± directly corresponds to an eigenvector of CL
±:

CU
±v = λv ⇐⇒ CL

±Pv = λPv for λ ∈ R,v ∈ RN . (B.2)

Furthermore, analogously to Proposition 2.5 CU
± , CL

± are diagonalisable with real
spectrum.

Lemma B.3. Let ṽ± = (v1, . . . , v2N ) ∈ R2N . We have vN+1 = ±vN if and only if

Ĉ±ṽ± = Cγ ṽ±. (B.3)

Proof. We will prove that ker(Ĉ± − Cγ) = {v ∈ R2N | vN+1 = ±vN }. To that end,
we notice that for any v ∈ R2N

(Ĉ± − Cγ)v =


±η −η
−η ±η

v =



0
...
0

±ηvN − ηvN+1
−ηvN ± ηvN+1

0
...
0


,

which implies that v ∈ ker(Ĉ± − Cγ) if and only if vN+1 = ±vN . ■

Proposition B.4. Let v± ∈ RN and λ ∈ R. We define ṽ± := (v±, ±Pv±) ∈ R2N .
Then, the following statements are equivalent:

(i) v± is an eigenvector of CU
± with eigenvalue λ;

(ii) ṽ± is an eigenvector of Ĉ± with eigenvalue λ;
(iii) ṽ± is an eigenvector of Cγ with eigenvalue λ.

Proof. “(i) ⇐⇒ (ii)”: (ii) =⇒ (i) follows directly from the fact that Ĉ± is
block-diagonal with upper-left block CU

± . (i) =⇒ (ii) holds because by Remark B.2,
v± being an eigenvector of CU

± associated to the eigenvalue λ implies that Pv± is
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an eigenvector of CL
± with eigenvalue λ. This fact remains unchanged if we possibly

change the sign of Pv±. (ii) then follows from the fact that Ĉ± is block-diagonal
with blocks CU

± and CL
±.

“(ii) ⇐⇒ (iii)”: Follows directly from Lemma B.3. ■

Lemma B.3 establishes the connection of the spectrum of CU
± with the spectrum

of Cγ . Because both CU
+ and CU

− are diagonalisable with N eigenvalues each we
can find all 2N eigenvalues of Cγ and obtain the following result.

Corollary B.5. We have
σ(Cγ) = σ(CU

+ ) ⊔ σ(CU
−). (B.4)

Hence, we can split the spectrum of Cγ into N monopole modes which are
symmetric and N dipole modes which are anti-symmetric about the middle (see
Figure 6).

We can now use [28, Theorem 3.1] to explicitly find the monopole eigenvalues
and eigenvectors.

Lemma B.6. The eigenvalues of CU
+ are λ1 = 0 with corresponding eigenvector

u1 = (1, . . . , 1) ∈ R2N or

λk = α + 2
√

βη cos
( π

N
(k − 1)

)
, 2 ≤ k ≤ N

with corresponding eigenvector

u
(j)
k =

(
β

η

) j−1
2
(

β sin
(

j(k − 1)π
N

)
− β

√
β

η
sin
(

(j − 1)(k − 1)π
N

))
,

for 2 ≤ k ≤ N and 1 ≤ j ≤ N .

Appendix C. Polynomial interlacing
This appendix complements Section 4.2 providing a proof for the following

proposition.

Proposition C.1. S(λ) has exactly 2N − 2 distinct real zeros and a double zero
λ = 0.

We will exploit the heavily interlaced nature of the Chebyshev polynomials in
order to find a robust source of zeros of their composites. This will allow us to
guarantee and bound n real zeros for Pn and n − 1 real zeros for Pn + Pn−1. The
evenness of S(λ) will then allow us to use these results to guarantee zeros of S as
well.

We begin with the following facts about such interlaced polynomials.

Definition C.2. For a differentiable function f : [a, b] → R with a simple zero
x ∈ R, we define the sign of x to be positive if p′(x) > 0 and negative if p′(x) < 0,
and write sign x = ±1.

Remark C.3. Multiplying f by some positive differentiable function g > 0 has no
impact on the sign or locations of the zeros of gf .

Furthermore, for a polynomial with positive leading coefficient and only simple
zeros, the largest zero has positive sign and every smaller zero has alternating signs.

Lemma C.4. Let p and q be polynomials with real coefficients. Then, the following
can be said about the zeros of p − q:

(i) Let x and y be zeros of p and q respectively with no other zeros between
them. If they have opposing signs, then p − q must have zero between x and
y.
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Furthermore, if deg p > deg q, then we also have the following results:
(ii) Let x and y be the smallest zeros of p and q respectively. If x < y and they

have equal sign, then p − q must have a zero z < x < y;
(iii) Let x and y be the largest zeros of p and q respectively. If y < x and they

have equal sign, then p − q must have a zero y < x < z.

Proof. (i) We assume without loss of generality that x has positive sign and y has
negative sign. Because neither p nor q have other zeros between x and y, we know
that q(x) > 0 and p(y) > 0. Because p(x) = q(y) = 0, we get p(x) − q(x) < 0 and
p(y) − q(y) > 0. Thus, p − q has a sign flip in (x, y) and by the intermediate value
theorem, there must exist a z ∈ (x, y) such that p(z) − q(z) = 0.

For (ii) we assume without loss of generality that the signs of x and y are
negative. Since by assumption y is the smallest zero of q, we have q(y′) > 0 for
all y′ < y including y′ = x. Thus, we have p(x) − q(x) = 0 − q(x) < 0. Now
because both x and y have negative sign and are the smallest zeros, we know that
limz′→−∞ p(z′) = limz′→−∞ q(z′) = ∞. But because p has higher degree than q,
there must exist some z′ < x such that p(x) − q(x) > 0. Hence, p − q has a sign
flip and by the intermediate value theorem, there must exist some z < x with
p(z) − q(z) = 0, as desired. The proof of (iii) is analogous to (ii). ■

Remark C.5. Because Lemma C.4 only relies on the sign and locations of the zeros
of p and q as well as their asymptotic growth, any zero guaranteed by Lemma C.4
continues to be guaranteed after multiplying either of them by some positive function.
We can state this as follows. Let p, q be as above and f, g > 0 be positive continuous
functions with g(x) = O(f(x)) as |x| → ∞. Then, Lemma C.4 guarantees the same
number of zeros for p − q and fp − gq, with the same bounds.

We can now use this machinery to find the zeros of Pn as well as those of
Pn + Pn−1.

Lemma C.6. For any γ > 0, Pn has n real zeros in (−1, 1).

Proof. We first recall that Pn = Un + e−γ/2Un−1. We will now use the previous
lemma to look for zeros of Un − (−e−γ/2Un−1). We will denote respectively the
roots of Un and −e−γ/2Un−1 as

xk = cos
(

n + 1 − k

n + 1 π

)
, k = 1, . . . , n, yk = cos

(
n − k

n
π

)
, k = 1, . . . , n − 1,

and have −1 < x1 < y1 < x2 < y2 < · · · < xn−1 < yn−1 < xn < 1. We assume
without loss of generality that n is even and we have

sign xk = (−1)k, sign yk = (−1)k,

because Un has positive leading coefficient and −e−γ/2Un−1 has negative leading
coefficient. Hence, the zeros of Un and −e−γ/2Un−1 are fully interlaced and we can
use Lemma C.4(i) 2n − 1 times to get 2n − 1 zeros, (zi)2n

i=2, of Un − (−e−γ/2Un−1):

−1 < x1 < y1 < z2 < x2 < y2 < z3 < · · · < zn−1 < xn−1 < yn−1 < zn < xn < 1,

which are already bounded in (−1, 1). Furthermore, we can use Lemma C.4(ii) to
get another zero of Un − (−e−γ/2Un−1), z1 < x1 < y1.

It remains to show that also −1 < z1. We use

Uk(−1) = (−1)k(k + 1),

and the fact that n is even to get

Un(−1) = n + 1 > e−γ/2Un−1(−1) = e−γ/2n.
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Figure 7. Illustration of the result in Lemma C.6. The Chebyshev
polynomials of the second order, U4 and U3, are shown
in blue and red with their respective zeros marked by
triangles. The orientation of these triangles marks the
sign of the corresponding zero. The polynomials P4 for
different values of γ are drawn in dashed lines for various
values of γ, with their zeros marked in purple dots. For
γ = 0, the zeros of P4 are exactly the intersections of
U4 and −U3. We can see that, independently of γ, the
zeros of P4 always occur between two zeros of U4 and
U3 of opposite signs, or to the left of the smallest zero
of U4 — as predicted by Lemma C.4.

By the same argument as the one in Lemma C.4, the sign of Un − (−e−γ/2Un−1)
must have flipped between −1 and x1 and thus, z1 ∈ (−1, x1). This concludes the
proof. ■

Lemma C.7. Pn + Pn−1 has at least n − 1 real zeros in (−1, 1) for any γ > 0.

Proof. We use the definition of Pn and the recursion formula for the Chebyshev
polynomials to get

Pn + Pn−1 = 0 ⇐⇒ Un + e−γ/2Un−1 + Un−1 + e−γ/2Un−2 = 0

⇐⇒ (2x + e−γ/2 + 1)Un−1 − (1 − e−γ/2)︸ ︷︷ ︸
>0

Un−2 = 0.

It is thus equivalent to look for intersections of S1 := (2x+e−γ/2 +1)Un−1 and S2 :=
(1−e−γ/2)Un−2. We know that the zeros of S1 are xk = cos

(
n−k

n π
)

, k = 1, . . . , n−1
and x∗ = − 1+e−γ/2

2 , while the zeros of S2 are yk = cos
(

n−1−k
n−1 π

)
, k = 1, . . . , n − 2.

We note that the zeros xk and yk do not depend on γ. Hence, only x∗ depends
on γ and moves from −1 to − 1

2 as γ → ∞. For γ > 0 small enough, we have
x∗ < x1 < y1 < · · · < xn−2 < yn−2 < xn−1.

We assume without loss of generality that n is even and use the fact that S1 and S2
have positive leading coefficients to get

sign xk = (−1)k+1, sign yk = (−1)k.

This allows us to use Lemma C.4(i) in order to find n − 2 zeros of S1 − S2,
z1, . . . , zn−2 ∈ (−1, 1). Furthermore, we use deg S1 > deg S2 together with the fact
that yn−2 < xn−1 both have positive sign to get another zero yn−2 < xn−1 < zn−1
of S1 − S2 by Lemma C.4(iii). The results thus hold for γ > 0 small enough.
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It remains to show that increasing γ > 0 leaves the number of such zeros
unchanged. If we gradually increase γ from zero to infinity, then x∗ moves from
−1 to − 1

2 and only one of the three following statements hold for a small enough
change in γ:

(i) x∗ does not cross any zero xk or yk;
(ii) x∗ passes through a zero xk of S1;
(iii) x∗ passes through a zero yk of S2.

In the first case, no zero changes sign and the order of zeros is unaffected. Because
of this, the conditions for Lemma C.4 remain exactly the same and we continue to
find n − 1 zeros of S1 − S2, although possibly at slightly different locations.

For the second case, we move from x∗ < xk to xk < x∗. We assume without loss
of generality that sign x∗ = −1, sign xk = 1 for x∗ < xk. Because the signs of zeros
alternate, xk and x∗ change sign after this interaction. But the big picture remains
unchanged as S1 continues to have a zero of negative sign followed by a zero of
positive sign and thus leaving the number of zeros the same.

Finally, in the third case, we move from x∗ < yk < xk+1 to yk < x∗ < xk+1. We
assume without loss of generality that sign x∗ = −1 which by the above argument
makes sign xk+1 = 1 and sign yk = 1. Lemma C.4(i) then delivers a zero z of S1 −S2
with x∗ < z < yk. As x∗ passes through yk no sign change occurs, since x∗ and yk

belong to different polynomials. We can thus continue to apply Lemma C.4(i) to
get a zero z of S1 − S2 with yk < z < x∗ and the total amount of zeros of S1 − S2
remains unchanged.

This concludes the proof. We refer to Figure 8 for an illustration of second and
third kind transitions. ■

−1 0 1 2
−1

0

1

2

(A)
−1 0 1 2

(B)
−1 0 1 2

(C)

Figure 8. Illustration of the main proof idea in Lemma C.7. The
two polynomials in solid blue and dashed red symbolise
(2x+e−γ/2 +1)Un−1 and (1−e−γ/2)Un−2, respectively.
Their zeros are marked by triangles with orientation
determined by their signs. Intersections of these poly-
nomials then correspond to zeros of Pn + Pn−1 and are
marked as purple circles. As we move from (A) to (B)
to (C), γ is increased and the special zero x∗, marked
in green moves to the right while the other zeros re-
main stationary. From (A) to (B), a transition of the
second kind occurs, and from (B) to (C), a transition
of the third kind occurs, as described in the proof of
Lemma C.7. Notably, both transformations leave the
total number of zeros unchanged.
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We can now combine the results of this subsection to finally prove the desired
statements.

Proof of Proposition 4.4. Recall that

S(λ) = PN (µ(λ))PN (µ(−λ)) − eγPN−1(µ(λ))PN−1(µ(−λ)) = 0.

As mentioned above, S(λ) is even and its zeros must be symmetric about the origin.
This allows us to focus on λ ≥ 0 without loss of generality. Furthermore, because
ker Cθ,γ ̸= ∅, we know that λ = 0 must be a zero of S. Moreover, because S(λ) is
an even polynomial, λ = 0 must be a double zero.

It thus remains to show that S(λ) has N − 1 real, distinct and positive zeros. We
will assume that λ > 0 for the rest of this proof.

We now aim to prove that PN (µ(−λ)) and −eγPN−1(µ(−λ)) are always positive
for λ > 0. Later, Remark C.5 will allow us to ignore these factors. Recall that

µ(λ) = λ − α

2
√

βη
= λ

1
γ

sinh γ

2 − cosh γ

2 . (C.1)

Because cosh γ
2 > 1 for all γ > 0, we have µ(−λ) < − cosh γ

2 < −1. But, from the
previous corollary, we know that all zeros of PN and PN−1 lie in (−1, 1). If we
assume that N is even, then, without loss of generality, we can conclude that

PN−1(µ(−λ)) < 0 < PN (µ(−λ)) for λ > 0.

This ensures that PN (µ(−λ)) and −eγPN−1(µ(−λ)) are positive for λ > 0.
On the other hand, by the same argument we can see that Lemma C.7 guarantees

N − 1 positive zeros λ > 0 for PN (µ(λ)) + PN−1(µ(λ)). More concretely, by
Lemma C.7 there are N − 1 roots µ ∈ (−1, 1) of PN (µ) + PN−1(µ). By (C.1), this
corresponds to N − 1 positive λ.

Finally, because the N − 1 distinct zeros as well as the bounds that Lemma C.7
guarantees for PN (µ(λ)) + PN−1(µ(λ)) stem from Lemma C.4, Remark C.5 states
that they are also guaranteed for S(λ), and we find the desired N − 1 distinct
positive zeros of S(λ). ■

Appendix D. Technical proofs
Proof of Lemma 4.7. The fact that a is holomorphic away from [−1, 1] follows from
the fact that for µ outside [−1, 1] the two square roots incur their branch cuts
simultaneously which cancels them out.

We now investigate the inverse and set a(µ) equal to some z = reiφ. We have

a(µ) = µ +
√

µ + 1
√

µ − 1 = reiφ =⇒ µ2 − 1 = r2ei2φ − 2reiφµ + µ2

⇐⇒ µ = 1
2(reiφ + 1

r
e−iφ).

The first implication occurs because we move over µ and then square both sides of the
equation. We have thus identified a potential inverse in µ(reiφ) := 1

2 (reiφ + 1
r e−iφ).

Therefore,

ℜµ(reiφ) = r2 + 1
2r

cos φ, ℑµ(reiφ) = r2 − 1
2r

sin φ.

Now, we plug this potential inverse µ(reiφ) into a to check if it is actually one. We
assume that 0 < φ < π

2 and treat the cases r > 1, r < 1 and r = 1, separately. In
the first case, µ(reiφ) lies in the first quadrant which ensures that

a(µ(reiφ)) = µ(reiφ) +
√

µ(reiφ) + 1
√

µ(reiφ) − 1 = µ(reiφ) +
√

µ(reiφ)2 − 1.
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We then plug in the definition of µ(reiφ) to get

a(µ(reiφ)) = 1
2(reiφ + 1

r
e−iφ) +

√
(1
2(reiφ − 1

r
e−iφ))2.

Analogous arguments as above show that 1
2 (reiφ − 1

r e−iφ) is again in the first
quadrant as long as r > 1. This allows us to cancel the root with the square and to
get a(µ(reiφ)) = 1

2 (reiφ + 1
r e−iφ) + 1

2 (reiφ − 1
r e−iφ) = reiφ, as desired.

We now move to the second case where r < 1. This gives a negative sign to
r2−1

2r < 0 and shows that µ(reiφ) lies in the fourth quadrant as a consequence. The
first consolidation of roots then works the same as above. However, once we get to
1
2 (reiφ − 1

r e−iφ) we see that it now lies in the second quadrant. Thus, we incur a
negative sign when eliminating the root and get to a(µ(reiφ)) = 1

2 (reiφ + 1
r e−iφ) −

1
2 (reiφ + 1

r e−iφ) = 1
r e−iφ ̸= reiφ. Hence, in this case, µ(reiφ) is not an inverse.

Because this was the only candidate, we can conclude that there exists no µ ∈ C
such that a(µ) has absolute value less than one.

In the case where r = 1, we have ℜµ(reiφ) = cos φ, ℑµ(reiφ) = 0. After plugging
this into a, analogous arguments as above show that a(µ) = eiφ for some µ ∈ C if
and only if µ = cos φ and 0 ≤ φ ≤ π.

For a defined as above, the case r > 1 shows that it is injective, r < 1 shows it is
surjective and r = 1 characterises the degenerate region.

The fact that the inverse is holomorphic can be seen immediately from its form
z 7→ 1

2 (z + z−1) because we are away from zero. ■

Proof of Lemma 4.8. Recall that we can write the Chebyshev polynomials as follows

Un(µ) = a(µ)n+1 − a(µ)−(n+1)

2
√

µ + 1
√

µ − 1
.

Using this fact and Pn = Un + e
−γ

2 Un−1, we find that

Pn(µ)
Pn−1(µ) = a(µ)n+1 − a(µ)−(n+1) + e

−γ
2 a(µ)n − e

−γ
2 a(µ)−n

a(µ)n − a(µ)−n + e
−γ

2 a(µ)n−1 − e
−γ

2 a(µ)−(n−1)
,

which after some algebraic manipulation yields∣∣∣∣ Pn(µ)
Pn−1(µ) − a(µ)

∣∣∣∣ = |a(µ)|−2n+2
∣∣1 − a(µ)−2

∣∣ ∣∣a(µ)−1 + e− γ
2
∣∣∣∣1 + a(µ)−1e− γ

2 − a(µ)−2n+1(a(µ)−1 + e− γ
2 )
∣∣ .

By Lemma 4.7, we know that |a(µ)| ≥ 1 which we can use in the above inequality
to obtain that∣∣∣∣ Pn(µ)

Pn−1(µ) − a(µ)
∣∣∣∣ ≤ |a(µ)|−2n+2

(
2 1 + e− γ

2

1 − |a(µ)|−1
e− γ

2 − 2 |a(µ)|−2n+1

)
.

The condition |a(µ)|−2n+2
< eγ

2 ensures that the denominator in the above fraction
is always larger than zero.

We can now use this inequality to prove uniform convergence. By Lemma 4.7, for
any ε > 0, Uε := {µ ∈ C | |a(µ)| < 1 + ε} is an arbitrarily small neighbourhood of
[−1, 1]. We now fix ε > 0 arbitrarily small and look at the complement Dε = C \Uε.
By definition, we know that |a(µ)| ≥ 1 + ε on Dε. Therefore, we get∣∣∣∣ Pn(µ)

Pn−1(µ) − a(µ)
∣∣∣∣ ≤ (1 + ε)−2N+2

(
2 1 + e− γ

2

1 − (1 + ε)−1e− γ
2 − 2(1 + ε)−2n+1

)
if we choose n ∈ N large enough such that (1 + ε)−2n+2 < eγ

2 . This bound is
independent of µ and goes to zero as n → ∞. Hence, the convergence must be
uniform. ■
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