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Chapter 1

Stochastic spatial Lotka–Volterra predator-prey models

Uwe C. Täuber

Department of Physics & Center for Soft Matter and Biological Physics,
850 West Campus Drive (MC 0435), Faculty of Health Sciences,

Virginia Tech, Blacksburg, VA 24061, USA, tauber@vt.edu

Dynamical models of interacting populations are of fundamental in-
terest for spontaneous pattern formation and other noise-induced phe-
nomena in nonequilibrium statistical physics. Theoretical physics in
turn provides a quantitative toolbox for paradigmatic models employed
in (bio-)chemistry, biology, ecology, epidemiology, and even sociology.
Stochastic, spatially extended models for predator-prey interaction dis-
play spatio-temporal structures that are not captured by the Lotka–
Volterra mean-field rate equations. These spreading activity fronts re-
flect persistent correlations between predators and prey that can be an-
alyzed through field-theoretic methods. Introducing local restrictions on
the prey population induces a predator extinction threshold, with the
critical dynamics at this continuous active-to-absorbing state transition
governed by the scaling exponents of directed percolation. Novel features
in biologically motivated model variants include the stabilizing effect of a
periodically varying carrying capacity that describes seasonally oscillat-
ing resource availability; enhanced mean species densities and local fluc-
tuations caused by spatially varying reaction rates; and intriguing evolu-
tionary dynamics emerging when variable interaction rates are affixed to
individuals combined with trait inheritance to their offspring. The basic
susceptible-infected-susceptible and susceptible-infected-recovered mod-
els for infectious disease spreading near their epidemic thresholds are
respectively captured by the directed and dynamic isotropic percolation
universality classes. Systems with three cyclically competing species akin
to spatial rock-paper-scissors games may display striking spiral patterns,
yet conservation laws can prevent such noise-induced structure forma-
tion. In diffusively coupled inhomogeneous settings, one may observe
the stabilization of vulnerable ecologies prone to finite-size extinction or
fixation due to immigration waves emanating from the interfaces.
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1. Introduction: Stochastic spatial population dynamics

The study of living organisms, which per definition constitute complex dy-

namical systems comprising many interacting individual constituents, has

become a vast and fertile research arena for physicists and mathematicians

trained in nonequilibrium statistical mechanics and the theory of stochastic

processes. Comparing with the more traditional applications of statistical

physics to condensed matter systems, one may observe many common but

also distinct features in biological applications. While the number of degrees

of freedom for biological systems is certainly sufficiently large to render a

statistical description meaningful and productive, it is also typically much

smaller than Avogadro’s number. Hence statistical fluctuations are usually

non-neglible, become amplified owing to their being situated far away from

thermal equilibrium, and are often driven by random external influences.

Fluctuations are increasingly acknowledged to importantly contribute to

biological functionality. Consequently the thermodynamic limit may not

apply, merely studying average quantities is insufficient, finite-size effects

are crucial, and transient phenomena dominate any living entity.

Biological structures as well as dynamical processes are also charac-

teristically optimized due to evolutionary mechanisms. Thus both spatial

and temporal correlations play prominent roles, manifesting themselves in

spontaneous structure formation and the presence of history dependence

and memory effects. In addition, as opposed to atoms or molecules, cells

and individuals in a population are not identical, but carry specific traits

that affect their dynamics and may also change over time. Nevertheless,

as a theoretical physicist one hopes – almost in defiance of the astounding

complexity of the biological realm, and despite the abundant difficulties

in separating clearly distinct length and time scales that is so profoundly

important in establishing well-defined effective description levels – that ex-

haustive studies of comparatively simple fundamental models that employ

the full, powerful analytical and computational machinery developed in sta-

tistical physics may contribute a deeper understanding of both structural

and dynamical features encountered in the living world.

This chapter addresses exemplary basic models in ecology and epidemi-

ology that share a common mathematical language with chemical reactions,

namely stochastic spatially extended systems that are dominated by a bi-

nary “predation” or “infection” process A + B → A+A, where upon mu-

tual encounter an individual or particle of “prey” or “susceptible” species

B becomes replaced with a “predator” or “infectious” individual A, with
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a prescribed rate λ that will serve as the pertinent nonlinear control pa-

rameter.1–3 The corresponding mean-field rate equations are the celebrated

coupled ordinary differential equations independently proposed about a cen-

tury ago by Alfred Lotka and Vito Volterra who aimed to mathematically

capture oscillatory dynamics in the quite distinct contexts of autocatalytic

chemical reactions4 and fish populations in the Adriatic sea.5

Indeed, much of the traditional original and textbook literature on

chemical kinetics,1,2 population ecology,2,3,6,7 and closely related evolu-

tionary game theory8,9 invokes deterministic chemical rate equations or

their spatial extension, reaction-diffusion models, which constitute mean-

field type approximations that neglect stochastic fluctuations and spatio-

temporal correlations through “mass action” factorizations of higher mo-

ments, see Sec. 2.10–13 With the dramatic enhancement of computational

power since the 1970s and the accompanying development of versatile ana-

lytical tools, stochastic models for (bio-)chemical reaction kinetics, popula-

tion dynamics, and infectious spreading have become an increasingly active

research field in nonequilibrium statistical physics, with the focus often on

relevant fluctuation and correlation effects that are not captured by their

representation in terms of mere rate equations10–26 (this is merely a non-

exhaustive list of reviews, recent monographs, and textbooks; please also

see the extensive references cited therein).

As described in Sec. 3, Lotka–Volterra predator-prey systems display

many non-trivial phenomena that are strongly influenced by intrinsic dy-

namical correlations and fluctuations: The species coexistence regime is

dominated by persistent activity waves traversing the system where surviv-

ing predators necessarily pursue prey that expand into unoccupied space.

These noise-generated and -stabilized correlated spatio-temporal structures

in turn induce stochastic and resonantly amplified population oscillations

whose quantitative features are markedly renormalized relative to mean-

field theory. Through a nonlinear feedback mechanism, limited prey re-

sources encoded in a finite local carrying capacity severely affect the preda-

tor population, even causing its extinction and thus prey fixation at a crit-

ical threshold λ < λc. The ensuing stationary critical dynamics as well as

universal transient aging features that characterize the far-from-equilibrium

continuous phase transition from the active coexistence to the inactive, ab-

sorbing predator extinction state are governed by the scaling exponents of

the generic directed percolation universality class.

The biological context moreover suggests model variations that would

not usually be considered in a chemical or physical setting; some exam-
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ples are discussed in Sec. 4, namely periodic changes in the environment

and reaction rates that are specific to individual particles and whose distri-

bution may evolve under Darwinian competition with mutations. Sub-

sequently, Secs. 5 and 6 respectively provide succinct overviews of the

stochastic spatial dynamics observed in the closely related fundamental

susceptible-infected-susceptible and susceptible-infected-recovered models

for the spreading of infectious diseases, specifically their near-threshold

critical dynamics, as well as spontaneous spiral pattern formation or the

absence thereof in the May–Leonard and “rock-paper-scissors” model vari-

ants designed to describe cyclic dominance of three competing species. The

chapter concludes (Sec. 7) with the author’s brief perspective and outlook.

2. Fluctuations and correlations in reacting particle systems

We begin with a concise outline of the mathematical description of stochas-

tic reacting particle systems through master equations, highlighting the

mean-field factorization approximation that is invoked to arrive at the as-

sociated coupled rate equations. The standard setup of Monte Carlo simu-

lation algorithms to statistically sample observables is introduced as well.

2.1. Stochastic kinetics and master equation

“Chemical reactions” denote (stochastic) processes where through mutual

interactions particles representing molecules of certain chemical species,

nuclei or elementary particles, individuals in a population, etc. alter their

identity. For example, consider the reversible binary reaction

A + B
λ−⇀↽−
σ

C , (1)

where the notation “A + B” on the left-hand side implicitly expresses the

condition that one particle each of species A and B must meet at the same

location and time in order for the “forward” reaction with rate λ to occur;

in contrast, the reverse reaction with rate σ may happen spontaneously as

long as any C particles remain present. The configuration of the system at

any time t is fully characterized by specifying the (local) number of particles

nα = 0, 1, . . . of each species α = A,B,C, . . . at that instant. Since reactions

just modify these integers {nα} by the associated stoichiometric coefficients,

they represent Markovian stochastic processes in species number space. In

example (1), the reaction rates λ and σ then determine the associated
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configuration-dependent transition rates

w
(
{nA, nB, nC} → {nA − 1, nB − 1, nC + 1}

)
= λnAnB ,

w
(
{nA, nB, nC} → {nA + 1, nB + 1, nC − 1}

)
= σ nC , (2)

as there are nα possibilities to pick one of the reactant particles of type α.

To generalize the above local processes to spatially extended systems,

one merely needs to view each species α on distinct lattice or continuum

positions i as “quasi-species” that are fully characterized by integer occu-

pation numbers nα i which are in turn altered by integer values through

reactions and / or transport. Unrestricted hopping of a single particle from

site i to j with rate D is then governed by the Markovian transition rate

w
(
{nα i, nα j} → {nα i − 1, nα j + 1}

)
= Dnα i . (3)

Yet if, for example, at most only a single particle may occupy any location

i, so that all nα i = 0 or 1, the right-hand side would need to be multiplied

with the factor (1− nα j), rendering the resulting exclusion process non-

linear in nature. In biology, site restrictions that constrain local particle

occupations may be caused by limited resources for the affected species, and

the maximum sustained number is referred to as “carrying capacity”.2,3

The “chemical” master equation constitutes a deterministic evolution

equation for the configurational probability P
(
{nα}; t

)
that accounts for

the gain-loss balance due to reactive transitions,10,27,28

∂P
(
{nα}; t

)
∂t

=
∑

{n′
α ̸=nα}

[
P
(
{n′

α}; t
)
w
(
{n′

α} → {nα}; t
)

−P
(
{nα}; t

)
w
(
{nα} → {n′

α}; t
)]

. (4)

In our example (1) governed by the rates (2),
∂P (nA, nB, nC; t)

∂t
= λ (nA + 1) (nB + 1)P (nA + 1, nB + 1, nC − 1; t)

+σ (nC + 1)P (nA − 1, nB − 1, nC + 1; t)

− (λnAnB + σnC)P (nA, nB, nC; t) , (5)

with the convention that P
(
{nα}; t

)
= 0 if any nα < 0. In terms of the

varying particle numbers, Eqs. (5) represent an infinite set of coupled linear

ordinary differential equations. Any observable quantity O needs to be a

function of the particle numbers {nα}, and hence its expectation value with

respect to the ensemble of possible configurations is〈
O
(
{nα}, t

)〉
=

∑
{nα}

O
(
{nα}

)
P
(
{nα}; t

)
, (6)

with its temporal evolution instilled by the master equation (4) for the prob-

abilities P
(
{nα}; t

)
, which in principle allows us to compute characteristic

time-dependent expectation values, moments, and correlation functions.
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2.2. Mean-field rate equations

To illustrate this process, consider the average particle numbers,

∂⟨nα(t)⟩
∂t

=
∑
{nα}

nα

∂P
(
{nα}; t

)
∂t

. (7)

As the infinite particle number sums range over all allowed integers, one may

simply shift internal summation indices in the master equation gain terms

to rewrite them as multiplying P
(
{nα}; t

)
; after resulting cancellations, the

remainder can be expressed as other expectation values or moments.10,11,13

For example, with Eq. (5) one arrives at

R(t) =
∂⟨nA/B(t)⟩

∂t
= −∂⟨nC(t)⟩

∂t
= −λ

〈
[nAnB](t)

〉
+ σ ⟨nC(t)⟩ , (8)

where the identities for the net reaction rate R(t) on the left-hand side

follow directly from the scheme (1); in general stoichiometric coefficients for

the reactions would enter here. In the asymptotic long-time steady state,

the average particle numbers become constant, and the exact relationship

⟨nC(∞)⟩/
〈
[nAnB](∞)

〉
= λ/σ holds. Yet, in order to compute ⟨nα(t)⟩ for

a reaction scheme involving binary or higher-order reactions, one requires

the time evolution of nonlinear moments, which iteratively generates an

infinite hierarchy of linear coupled differential equations for all moments or

correlators. Closure towards a finite set of equations can only be achieved

by assuming certain high- order correlations to be insignificant and applying

factorizations of the associated moments in products of lower-order ones.12

The simplest, but also most drastic approximation is to neglect any two-

point and higher- order correlations, which in our above example amounts

to the mean-field decoupling
〈
[nAnB](t)

〉
≈ ⟨nA(t)⟩ ⟨nB(t)⟩ that should be

applicable when the reactants are maintained well-mixed in the system, or

for reactions in dilute gases or solutions with abundant particle numbers

where any spatial and temporal fluctuations are very small compared to

the mean reactant densities. Consequently, the reaction rate (8) reduces

to R(t) ≈ −λ ⟨nA(t)⟩ ⟨nB(t)⟩ + σ ⟨nC(t)⟩, resulting in a closed set of three

coupled (two of which are identical) but now nonlinear ordinary differential

equations for the mean particle numbers. These rate equations may sub-

sequently be analyzed by the standard methods of nonlinear dynamics.1,2

For the stationary particle number averages, the mean-field approximation

yields the ratio ⟨nA(∞)⟩ ⟨nB(∞)⟩/⟨nC(∞)⟩ = σ/λ which is just the chemi-

cal “law of mass action” applied to the reversible reactions (1) in the dilute
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reactant limit; inthermal equilibrium at temperature T , the logarithm of

this backward-to-forward reaction rate ratio (the “pK value”) can further-

more be identified as the net reaction enthalpy relative to kBT .
28,29 In order

to incorporate spatial variations, one may supplement the rate equations

by, say, diffusive spreading terms ∼ D∇2nα(x, t) for the coarse-grained lo-

cal particle densities, which generates “reaction-diffusion” equations that

are however still subject to the mass action factorization assumptions.2

More refined mean-field theories apply the factorization approximation

to higher-order correlations.18,22 A systematic approach to faifhfully in-

clude “demographic” fluctuations or “internal reaction noise” and correla-

tions as well as to properly account for the fundamentally discrete nature

of the stochastic particle interactions rests on a bosonic Fock state repre-

sentation of the basic linear master equation kinetics and a subsequent con-

struction of coherent-state path integrals in the continuum limit.10,19,30–33

The resulting Doi–Peliti field theory may subsequently be analyzed per-

turbatively, with the associated “classical field equations” recovering the

mean-field reaction-diffusion equations.34,35 For at most binary reactions,

the field theory action can be “reversely” mapped to stochastic Langevin

partial differential equations that incorporate multiplicative noise.10,34–38

Moreover, universal scale-invariant features can be extracted by means of

dynamic renormalization group methods10,19,25 (please also refer to the

original citations therein).

2.3. Individual-based Monte Carlo simulations

An efficient numerical tool to investigate fluctuation and correlation effects

in (bio-)chemical and physical reactions or ecological and epidemiologial

dynamics is to implement stochastic “individual-” or “agent-based” Monte

Carlo simulations.13 These represent an underlying Markov chain master

equation, since any configurational updates only depend on the immediate

past, with the corresponding transition rates prescribed in the same man-

ner as in the examples (2) and (3). Stochastic reaction, hopping, or other

spreading processes can be implemented on regular lattices, often with pe-

riodic boundary to eliminate boundary effects, or appropriately selected

contact networks. A typical simulation algorithm proceeds as follows:

The system is initialized by distributing particles of either species among

available sites, typically randomly, but constrained by specified local occu-

pation number restrictions, if applicable. Next, an individual is selected at

random, and depending on the presence of other particles on its site i or
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in its vicinity, possible reactions are executed with their specified probabil-

ities and subject to any pertinent conditions. For example, pair processes

require two particles to meet at the same or neighboring sites; and offspring

production to an adjacent location may be restricted by a finite local car-

rying capacity. Note that in exclusion models with nα i = 0 or 1 only, these

reactions must necessarily be implemented “off-site”, and birth processes

hence inevitably generate spatial spreading even in the absence of explicit

particle hopping or exchange processes. The particle selection and reaction

steps are then repeated N =
∑

α,i nα i times such that on average each

individual present in the system at this instant has been subject to one

of the possible stochastic processes; this completes one Monte Carlo step

(MCS) in the sequence of random updates.

Physical time is assumed to be proportional to this artificial simula-

tion clock time. The algorithm may be run sufficiently long to reach a

(quasi-)stationary configuration. To control statistical errors, adequate av-

erages must subsequently be taken over many independent initializations

and stochastic histories; these may be interpreted as direct sampling of ob-

servables subject to the time-dependent configurational probabilities evolv-

ing according to the corresponding master equation. Examples are the tem-

poral evolution of mean particle numbers or appropriate correlations that

provide quantitative mathematical insights; individual runs may be visual-

ized as illustrative simulation movies. Properly sampled Fourier transforms

of the time tracks may be utilized to detect characteristic frequencies and

attenuation time scales of associated oscillations through Fourier spectrum

peak locations and widths.

Of course, there are inevitable artifacts that manifest themselves on

short time and length scales, originating in somewhat arbitrary choices

in the algorithmic setups.13 Yet the goal is to capture generic, perhaps

emergent dynamical features on meso- or macroscopic coarse-grained scales

that do not crucially depend on microcopic details. One should thus in

principle execute distinct algorithms, and also check for the prominence of

finite-size effects, e.g., when emerging dynamical structures reach across the

entire system. It is also worth noting that in any case, macroscopic system

parameters such as effective reaction rates are usually not directly and

simply connected with the microscopic transition probabilities implemented

in the computer code but may acquire nontrivial renormalizations due to

intrinsic dynamical correlations.39
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3. Predator-prey competition and coexistence

This section discusses the simplest stochastic spatially extended model for

predator-prey competition and coexistence which reduces to the famed

Lotka–Volterra equations in the mean-field approximation. Predators

A and prey B by themselves are subject to linear death A
µ−→ ∅ and birth

(asexual reproduction) processes B
σ−→ B+ B. Here, one may also inter-

pret the parameters −µ and σ as the net reproduction (difference of birth

and death) rates for either species, which would respectively result in ex-

ponential decay ⟨nA(t)⟩ = ⟨nA(0)⟩ e−µt and growth ⟨nB(t)⟩ = ⟨nB(0)⟩ eσt.
Competition and population control is achieved through the binary preda-

tion reaction A + B
λ−→ A+A: Upon mutual encounter, a prey individual

becomes replaced with a predator with rate λ.

3.1. Lotka–Volterra model and population oscillations

The master equation associated with the above stochastic predator death,

prey birth, and predation processes reads

∂P (nA, nB; t)

∂t
= µ (nA + 1)P (nA + 1, nB; t) + σ (nB − 1)P (nA, nB − 1; t)

+λ (nA − 1) (nB + 1)P (nA − 1, nB + 1; t)

− (µnA + σ nB + λnAnB)P (nA, nB; t) . (9)

Applying the mass action factorization approximation
〈
[nAnB](t)

〉
≈

⟨nA(t)⟩ ⟨nB(t)⟩ then yields the original deterministic Lotka–Volterra model

in the form of two coupled ordinary differential equations,

∂⟨nA(t)⟩
∂t

= −µ ⟨nA(t)⟩+ λ ⟨nA(t)⟩ ⟨nB(t)⟩ ,

∂⟨nB(t)⟩
∂t

= σ ⟨nB(t)⟩ − λ ⟨nA(t)⟩ ⟨nB(t)⟩ . (10)

These mean-field rate equations permit three distinct stationary solutions:

(i) Total population extinction ⟨nA(∞)⟩ = 0 = ⟨nB(∞)⟩; (ii) another ab-

sorbing state with predator extinction ⟨nA(∞)⟩ = 0, but Malthusian prey

population explosion ⟨nB(t)⟩ → ∞; and (iii) predator-prey coexistence with

finite ⟨nA(∞)⟩ = σ/λ, ⟨nB(∞)⟩ = µ/λ. The predators of course bene-

fit from high prey fertility σ, whereas the prey strive under conditions of

high predator mortility µ and low predation efficacy λ; yet perhaps counter-

intuitively, increased λ values cause a reduction in the predator population,

too, due to a nonlinear feedback mechanism: Frequent predation events de-

plete the prey, leaving only scarce food recources for the predators.
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Fig. 1. (a) Predator (red) and prey (blue) population oscillations resulting from the

deterministic Lotka–Volterra rate equations (10): σ = 0.1, µ = 0.1, λ = 1. (b) Periodic
orbits in population number phase space. [Figures reproduced with permission from

Ref. [53], copyright (2007) by IOP Publ.]

The predator-prey coexistence state (iii) is however never reached under

the mean-field dynamics (10) if the initial configuration is even slightly

displaced from it: For small deviations δA/B(t) = ⟨nA/B(t)⟩ − ⟨nA/B(∞)⟩,
one may linearize the equations of motion to obtain ∂δA(t)/∂t ≈ σ δB(t),

∂δB(t)/∂t ≈ −µ δA(t), which combine to the harmonic oscillator differential

equation ∂2δA/B(t)/∂t
2 ≈ −µσ δA/B(t) with the oscillation frequency ω0 =√

µσ. Equivalently, one may construct the linear stability matrix

L =

(
0 σ

−µ 0

)
that dictates the time evolution ∂v(t)/∂t ≈ Lv(t) of the fluctuation vector

v = (δA δB)
T
. The eigenvalues ±iω0 of L are purely imaginary, indicat-

ing undamped oscillatory kinetics in phase space about the fixed point

(iii). These neutral cycles are indeed confirmed via eliminating time from

Eqs. (10): d⟨nA⟩/d⟨nB⟩ = [(λ ⟨nB⟩ − µ) ⟨nA⟩] / [(σ − λ ⟨nA⟩) ⟨nB⟩], which
yields, after variable separation and integration, the conserved first inte-

gral (Lyapunov function) for the mean-field dynamics l(t) = λ⟨nA(t)⟩ +
λ⟨nB(t)⟩ − σ ln ⟨nA(t)⟩ − µ ln ⟨nB(t)⟩ = l(0). Consequently, the trajectories

in the population number phase space must be periodic orbits, shown in

Fig. 1, that inevitably return to the initial configuration ⟨nA(0)⟩, ⟨nB(0)⟩.
However, the conservation of the quantity l only holds within mean-

field theory, and is not valid for the original stochastic reaction processes.

Moreover, the fine-tuned vanishing real parts in the stability eigenvalues

indicate a non-generic approximation artifact that should not remain robust
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as the model itself is altered. For example, one may implement a finite

prey carrying capacity K to prevent their population to diverge in case

the predators go extinct. On the rate equation description level, this is

captured by a logistic modification of the prey reproduction term,

∂⟨nB(t)⟩
∂t

= σ ⟨nB(t)⟩
[
1− ⟨nB(t)⟩

K

]
− λ ⟨nA(t)⟩ ⟨nB(t)⟩ . (11)

The ensuing modified stationary states are (ii’) ⟨nA(∞)⟩ = 0, ⟨nB(∞)⟩ = K

and (iii’) ⟨nA(∞)⟩ = (σ/λ) [1− µ/(λK)], ⟨nB(∞)⟩ = µ/λ, which exists for

λ > λc = µ/K and is then linearly stable. For λ < λc, the predator species

is driven to extinction (ii’), while the prey population fixates at the carrying

capacity K. At the coexistence fixed point (iii’), the eigenvalues of the

stability matrix

L =

(
0 σ (1− µ/λK)

−µ −µσ/λK

)
acquire negative real parts:

ϵ± = − µσ

2λK

[
1±

√
1− 4λK

σ

(
λK

µ
− 1

)]
. (12)

For σ ≥ σ̄ = 4λK (λK/µ− 1), both eigenvalues are real, indicating direct

exponential relaxation towards the stable node (iii’); on the other hand, if

σ < σ̄, the phase space trajectories spiral inwards to reach the stable focus

(iii’), with the imaginary part of ϵ± yielding the frequency of the resulting

damped population oscillations.

The well-mixed rate equations can be amended to allow for spatial struc-

tures by replacing the mean population numbers with local density fields

nA/B(x, t) (where ⟨nA/B(t)⟩ = ⟨nA/B(x, t)⟩) and adding diffusion terms,

∂ nA(x, t)

∂t
= DA∇2nA(x, t)− µnA(x, t) + λnA(x, t)nB(x, t) , (13)

∂ nB(x, t)

∂t
= DB∇2nB(x, t) + σ nB(x, t)−

σ

K
nB(x, t)

2 − λnA(x, t)nB(x, t) .

In one dimension, these coupled partial differential equations support trav-

eling wave solutions describing predator fronts that originate in a region

set in the coexistence state (iii’) and invade prey-occupied space.2

3.2. Stochastic lattice model: Noise-induced activity fronts

Monte Carlo simulations on sufficiently large two- and three-dimensional

regular lattices (with periodic boundary conditions) qualitatively confirm
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Fig. 2. (a) Predator population oscillations (single Monte Carlo simulation runs) in

a stochastic Lotka–Volterra model with site exclusion (nA/B i = 0, 1) on L × L square

lattices (periodic boundary conditions) of linear system sizes L = 32, 128, and 512; initial
predator and prey densities 0.3; µ = 0.025, σ = 1, λ = 0.25; DA/B = 0. The amplitude

of the (damped) stochastic oscillations for the mean particle density decreases with L.

(b) Typical phase space trajectories for single Monte Carlo runs on a 512 × 512 square
lattice with µ = 0.025, σ = 1, DA/B = 0, and different predation rates, corresponding to

the predator extinction / prey fixation state (λ = 0.0035), and two distinct predator-prey
coexistence fixed points, either nodal (λ = 0.049) or focal (λ = 0.25). Near the latter,

deep in the coexistence regime, one observes resonantly amplified oscillatory population

fluctuations. [Figures reproduced with permission from (a) Ref. [21], copyright (2007)
by Springer Science+Business Media, Inc.; (b) Ref. [26], copyright (2018) by IOP Publ.]

several salient features predicted by the mean-field rate equations, but also

display marked differences.21,26,40–54 As shown in Fig. 2(a), prominent

population oscillations are observed in the predator-prey coexistence state.

Yet their properties are actually independent of the initial configurations

and densities, at variance with the neutral centers resulting from Eqs. (10);

indeed the quantity l(t) is not constant in time, and stochastic fluctuations

induce small damping in the resulting oscillatory modes. The population

oscillation amplitudes are seen to diminish with increasing system size.

Upon implementing site occupation number restrictions, allowing at

most a single particle of either species on each lattice point (i.e., nA/B i =

0, 1), one observes three distinct regimes akin to the analysis of the Lotka–

Volterra rate equations with finite prey carrying capacity Eq. (11), depicted

in Fig. 2(b): Predator extinction and prey fixation for small predation rates

λ < λc, albeit with a critical point location that is not in agreement with

the mean-field prediction; a node-like two-species coexistence fixed point
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Fig. 3. Monte Carlo simulation snapshots of a stochastic Lotka–Volterra model on a

256 × 256 square lattice subject to periodic boundary conditions and site exclusion.

Predators (red) and prey (green) are initially randomly distributed; white: empty spaces.
Pictured are the configurations at 500 (left) and 1000 MCS (right). [Figures reproduced

with permission from Ref. [72], copyright (2016) by IOP Publ.]

with exponential relaxation of the mean population numbers towards their

steady-state values beyond the threshold λ > λc; and spiralling phase space

trajectories deep in the coexistence regime for λ ≫ λc that reflect damped

oscillatory kinetics, yet with manifest fluctuations near the focal center

that are apparent as the broad “blob” in the (green) curve for λ = 0.25 in

Fig. 2(b). Intriguingly, these fluctuations become more prominent with in-

creasing distance from the active-to-absorbing state transition point.21,26,52

For very large predation rates, even sizeable systems become vulnerable to

total population extinction.41,55 While any accessible absorbing state con-

stitutes the ultimately only stable configuration in a finite system, the typi-

cal extinction times scale exponentially with the system size Ld, whence one

typically observes species coexistence instead for sufficiently large L.56,57

Following the time evolution of individual simulation runs (Fig. 3) pro-

vides enlightening information on the origin of the erratic population os-

cillations and measured pertinent correlations in stochastic lattice Lotka–

Volterra systems.58 For large predation rates λ, deep in the two-species co-

existence region, predators may initially devour almost all the prey present

in the system. Subsequently, in the absence of food, their number decays

rapidly with rate µ and the lattice may move close to total population ex-

tinction. Yet through the branching processes at rate σ, surviving prey B

serve as randomly placed sources for invasion fronts that spread into empty

space; these are then effectively “followed” by spared predators A, leaving
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Fig. 4. Equal-time (cross-)correlation functions (a) CAA(x), (b) CBB(x), and (c)

CAB(x), inferred from Monte Carlo simulations of the site-unrestricted stochastic Lotka–

Volterra model on a 1024 × 1024 square lattice in the (quasi-)stationary regime, with
rates µ = σ = 0.1, and different predation rates λ = 0.5 (blue), 0.75 (green), 1.0 (red).

[Figures reproduced with permission from Ref. [53], copyright (2007) by IOP Publ.]

behind voids that may in turn be refilled by prey invididuals.10,21,26,52–54

As depicted in the simulation snapshots in Fig. 3, the underlying stochastic-

ity thereby generates intriguing persistent spatio-temporal structures that

may be viewed as fluctuation-driven Turing patterns.59,60 As these noise-

stabilized evasion-pursuit waves traverse the system and interact, they gen-

erate stochastic population oscillations for both species. Interestingly, al-

though correlations and cross-correlations remain short-ranged, with cor-

relation lengths typically spanning just a few lattice spacings (Fig. 4), the

associated local population fluctuations are quite large.21,26,53,54,61 Bigger

systems may however accommodate more out-of-phase activity fronts; con-

sequently the global particle number oscillations decrease in amplitude.21

On one-dimensional lattices with multiple particles permitted on each

site, the ballistically propagating evasion-pursuit fronts periodically wipe

out large spatial regions;53,54 if severe site restrictions are enforced, one

instead observes segregation into prey and predator domains, which slowly

coalesce and coarsen.21 In spatial dimensions d ≥ 4, the spontaneously gen-

erated spatio-temporal structures are not visible anymore, and the system’s

dynamics essentially attains mean-field character. This is in fact character-

istic of two-species binary reactions, exemplified by simple pair annihilation

A + B → ∅, which is known to display species segregation and hence spon-

taneous cluster formation only in low dimensions d ≤ ds = 4.10,11,25,62–65

In stark contrast to the Lotka–Volterra mean-field rate equations, the corre-

sponding stochastic spatially extended system turns out remarkably robust

with respect to model modifications. For example, one may consider

splitting the original binary reaction A + B → A+A perhaps more realis-



May 7, 2024 18:13 ws-rv9x6 Book Title 24˙34˙lsilec page 16

16 Uwe C. Täuber
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Fig. 5. (a) Measured dependence of the characteristic peak frequency in the popula-

tion number Fourier transforms |⟨nA/B(f)⟩| on the rates σ (red squares) and µ (blue

diamonds), with λ = 1 and the respective other rate held fixed at the value 0.1, ob-
tained from simulation data for a stochastic Lotka–Volterra system on 1024 × 1024

square lattices without site restrictions up to time t = 20, 000 MC; for comparison,

the dashed black line shows the (linear) mean-field oscillation frequency f0 =
√
µσ/2π.

(b) Macroscopic reaction rates µ, σ, coupling λ, and diffusivities DA/B for the stochas-

tic Lotka–Volterra predator-prey model on a square lattice with length L = 150, initial
densities a(0) = b(0) = 0.5, as function of the microscopic predation rate λ0, with fixed

µ0 = σ0 = 0.5, and K = 1; the vertical black line indicates the predator extinction / prey

fixation threshold λc. [Figure (a) reproduced with permission from Ref. [53], copyright
(2007) by IOP Publ.; (b) adapted from Ref. [39].]

tically into independent predation A + B → A and predator reproduction

A + B → A+A+ B processes, both requiring the presence of a prey in-

dividual adjacent to the predator. Whereas the mean-field scenario for

the ensuing more complicated reaction scheme differs substantially from

Eqs. (10), lattice Monte Carlo simulations for the altered stochastic reac-

tions in fact yield the same qualitative behavior for both model variants.52

3.3. Renormalized reaction rates and oscillation parameters

Computing the Fourier transforms ⟨nA/B(f)⟩ =
∫
⟨nA/B(t)⟩ e2πif t dt of the

population time tracks, the characteristic oscillation frequency may be ex-

tracted from the Fourier peak intensity, and the attenuation coefficient from

its width. Results are displayed in Fig. 5(a), showing that the oscillation

frequencies in the stochastic lattice Lotka–Volterra model are substantially

reduced (by about 1/3) relative to the linearized mean-field prediction.

This indicates strong renormalizations due to fluctuations, but the data

still approximately follow a square-root dependence on the rates µ and
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σ.53 A recent study systematically explores the deviations of the measured

coarse-grained reaction rates from the “microscopic” parameters for the

computer simulation algorithm.39 The dependences of the “macroscopic”

predation coupling λ, predator death rate µ and prey birth rate σ, as well

as both species’ diffusivites DA/B on the input reactivity λ0 are plotted in

Fig. 5(b). As one should expect, the linear stochastic death processes occur

independent of any spatial correlations, and hence µ remains unaltered un-

til the predator extinction / prey fixation absorbing state transition at λc

is reached, beyond which of course all reactions cease. As the prey begin

to fill the site-restricted square lattice with imposed local carrying capacity

K = 1, prey proliferation and hopping become diminished and tend to zero

as λ0 → λc, with constant ratio σ/DB. In contrast, the predators’ effective

reaction rates jump discontinuously at λc.
39

The Doi–Peliti formalism maps the stochastic master equation kinet-

ics to a non-Hermitean bosonic many-particle Hamiltonian and ultimately

employs coherent states, i.e., the complex eigenvalues of the annihilation

operators, to construct a continuum field theory representation.10,19,30–33

For the stochastic Lotka–Volterra predator-prey model with local site re-

strictions, the resulting action becomes10,34

S[ã, b̃; a, b] =

∫
ddx

∫
dt

[
ã

(
∂

∂t
−DA∇2 + µ

)
a+ b̃

(
∂

∂t
−DB∇2 − σ

)
b

−σ b̃2 b+
σ

K

(
1 + b̃

)
b̃ b2 − λ (1 + ã)

(
ã− b̃

)
a b

]
, (14)

where the complex fields a(x, t) and b(x, t) originate from the coherent

states, while the associated “response” fields are associated with their

shifted adjoints, ã = â − 1, and similarly for b̃. The “classical” field

equations associated with the action δS/δa = 0 = δS/δb are solved by

ã = 0 = b̃, whereupon δS/δã = 0 = δS/δb̃ recovers the reaction-diffusion

equations (13). Indeed, generally ⟨a(t)⟩ = ⟨nA(t)⟩ and ⟨b(t)⟩ = ⟨nB(t)⟩,
but similar simple correspondences do not hold beyond the mean particle

numbers.10,19

If one interprets the action (14) as the Janssen–De Dominicis func-

tional in a path integral representation of stochastic partial differential

equations,36–38 it becomes equivalent to the coupled Langevin equations

∂ a(x, t)

∂t
=

(
DA∇2 − µ

)
a(x, t) + λ a(x, t) b(x, t) + ζ(x, t) , (15)

∂ b(x, t)

∂t
=

(
DB∇2 + σ

)
b(x, t)− σ

K
b(x, t)2 − λ a(x, t) b(x, t) + η(x, t) ,
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albeit for complex fields a, b.10,34 These in effect add (complex) Gaussian

stochastic forcings with zero mean ⟨ζ⟩ = 0 = ⟨η⟩ to Eqs. (13), subject to

the noise (cross-)correlations

⟨ζ(x, t) ζ(x′, t′)⟩ = 2λ a(x, t) b(x, t) δ(x− x′) δ(t− t′) ,

⟨ζ(x, t) η(x′, t′)⟩ = −λ a(x, t) b(x, t) δ(x− x′) δ(t− t′) ,

⟨η(x, t) η(x′, t′)⟩ = 2σ b(x, t)
[
1− b(x, t)/K

]
δ(x− x′) δ(t− t′) , (16)

which entail multiplicative reaction noise terms that vanish as the particle

densities approach zero, as is appropriate for the presence of a fully ab-

sorbing extinction state at a = 0 = b. Similar Langevin equations can be

derived by means of a van Kampen system size expansion.27,59

In the predator-prey coexistence region, the mean population numbers

⟨a⟩ and ⟨b⟩ are finite. Consequently, the Langevin equations (15) describe

spatially distributed nonlinear oscillators driven by additive white noise.

The ensuing random kicks will occasionally be synchronous with the sys-

tem’s resonance frequency, causing large deviations from the coexistence

fixed point densities, followed by attenuated population oscillations. This

resonant amplification mechanism of internal stochastic fluctuations ulti-

mately generates the persistent spatio-temporal structures and associated

random oscillatory kinetics in Lotka–Volterra and related models.10,21,34,66

For a more detailed analysis, one may proceed by expanding the ac-

tion in terms of fluctuating fields, defined relative to their mean sta-

tionary values. Diagonalization of the ensuing bilinear (Gaussian) ac-

tion for equal predator and prey diffusivities DA/B = D0 yields circu-

larly polarized modes with dispersion relation iω(q) = ±iω0 + γ0 +D0 q
2,

where ω0 =
√

µσ (1− µ/λK)− γ2
0 is the “bare” oscillation frequency and

γ0 = µσ/2λK denotes the damping coefficient, see Eq. (12). In the ab-

sence of site occupation restrictions K → ∞, γ0 → 0. Through a system-

atic perturbative calculation in terms of the effective expansion parameter

g = (λ/ω0)(ω0/D0)
d/2, one may evaluate fluctuation corrections to the os-

cillation frequency, diffusivity, and attenuation.10,34 Although the param-

eter regime where perturbation theory is valid cannot easily be accessed in

computer simulations, since the predation reactions would be too rare to

generate decent statistics, the calculations confirm some of the pertinent

numerical results: At least to first order in g, the characteristic oscillation

frequency ω is shifted downward; this renormalization is particularly strong

for d ≤ 2 owing to the destructive interference of the two oppositely po-

larized eigenmodes which are almost massless due to the weak damping.
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Also, the leading fluctuation corrections are symmetric in the rates σ, µ

and are enhanced as σ ≪ µ or σ ≫ µ; these features are in accord with the

Monte Carlo data shown in Fig. 5(a). The diffusivity D is shifted upwards

by the fluctuations, resulting in faster propagation of the evasion-pursuit

fronts, while the attenuation γ is diminished compared to mean-field theory.

Both these renormalizations help to induce instabilities towards sponta-

neous pattern formation that occur for γ < 0 at wavenumbers q <
√
|γ|/D.

3.4. Predator extinction: Critical dynamics and aging

Generically, the critical behavior at continuous nonequilibrium phase

transitions from active to inactive, absorbing states is expected to

be captured by the directed percolation universality class, at least in

the absence of quenched disorder and any coupling to other conserved

fields.10,11,17–20,22,25,67,68 Since this Janssen–Grassberger conjecture also

applies to reactive particle systems that incorporate multiple interacting

species,69,70 the observed dynamic scaling properties in stochastic spatial

Lotka–Volterra models at the predator extinction threshold were imme-

diately linked to critical directed percolation.21,41,46,47,49,52 Heuristically,

when near fixation the prey almost fill the entire system, the implicit con-

dition for the predation reaction that one of the scarce predators must

locate a prey individual is essentially always satisfied, whence the Lotka–

Volterra processes reduce to the single-species (predator) reactions A → ∅
and A ⇌ A+A, where the pair coagulation reaction originates from the site

occupation restrictions or finite local carrying capacity.21 These stochastic

death, birth, and pair coagulation processes generate anisotropic directed

percolation clusters in (d+1)-dimensional space-time, depicted in Fig. 14(a)

in Sec. 5.1 below. When they all terminate after a finite time t, the sys-

tem is in the absorbing state; when they extend to t → ∞, it resides in

the active phase. More formally, for b ≈ K the Doi–Peliti action (14) can

be reduced to Reggeon field theory, which governs and in fact defines the

directed percolation universality class.10,11,21,25,26,34,67,71

As Fig. 6 demonstrates, numerically extracting the dynamic scaling ex-

ponents from simulation data near the stationary regime at the stochastic

Lotka–Volterra model’s predator extinction / prey fixation phase transition

does not produce satisfactory results even for fairly large lattices.72 Indeed,

double-logarithmic plots of the predator density decay, asymptotically to

follow the power law ⟨nA(t)⟩ ∼ t−α at λ = λc, allow a precise determina-

tion of the critical point location (here at λc = 0.0416), independent of the



May 7, 2024 18:13 ws-rv9x6 Book Title 24˙34˙lsilec page 20

20 Uwe C. Täuber
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Fig. 6. (a) Predator decay (double-logarithmic plots) for a stochastic Lotka–Volterra

model on a 1024 × 1024 square lattice with µ = 0.025 and σ = 1 at the prey fixation

threshold λc = 0.0416, for quasi-stationary (top, black) and random (lower curve, red
dotted) initial configurations (data averaged over 2000 independent simulation runs).

For comparison, the density decay data are also plotted for λ = 0.0417 (blue, active

coexistence phase) and λ = 0.0415 (orange, predator extinction regime). The inset
shows the effective decay exponent αeff(t), approaching α = 0.54± 0.007 at large t. (b)

Characteristic relaxation time tc measured near the critical point. Left inset: tc(λ2)

after the system is quenched from a quasi-steady state at λ1 = 0.25 to much smaller
values λ2 near λc = 0.0416, where the different graphs indicate tc when 128, 000, 64000,

32, 000, and 16, 000 MCS elapsed after the quench (data averaged over 500 runs). The

main panel depicts these same data in double-logarithmic form; the graphs collapse for
|τ | = |(λ2/λc) − 1| > 0.1, resulting in z ν = 1.208 ± 0.167. Right inset: associated

effective exponent (z ν)eff(τ), approaching z ν ≈ 1.3 as |τ | → 0. [Figures reproduced
with permission from Ref. [72], copyright (2016) by IOP Publ.]

lattice initialization. Yet a careful examination of the associated local slope

or (time-dependent) effective decay exponent αeff(t), displayed in the inset

of Fig. 6(a), indicates that the universal asymptotic regime has barely been

reached in these data, resulting in α ≈ 0.54; the accepted critical directed

percolation value in two dimensions is α ≈ 0.4505.10,22 Measuring the dy-

namic exponent z ν characterizing critical slowing down as obtained from

analyzing the system’s relaxation times tc ∼ |λ−λc|−z ν following quenches

near λc, depicted in Fig. 6(b), gives the satisfactory value z ν ≈ 1.3,72 in

accord with the literature exponents z ≈ 1.766 and ν ≈ 0.733.10,22

Strong finite-size corrections may be avoided through seed dynamical

Monte Carlo simulations, where initially a single active site, i.e., a predator

A, is placed in the lattice, with the remainder occupied by prey B.17,18

At the extinction critical point, the ensuing predator survival probabil-

ity and density in this seed initial-slip regime should scale as PA(t) ∼ tδ



May 7, 2024 18:13 ws-rv9x6 Book Title 24˙34˙lsilec page 21

Stochastic spatial Lotka–Volterra predator-prey models 21

0 0.002 0.004 0.006

1/t

0.18

0.20

0.22

0.24

0.26

0.28

0.30

θ

0 0.001 0.002

1/t

-0.48

-0.46

-0.44

-0.42

δ’

Fig. 7. Seed dynamical Monte Carlo simulations to estimate the predator extinction

threshold λc and critical exponents δ and ν for a stochastic site-restricted (K = 1)
Lotka–Volterra model on a 512 × 512 square lattice with µ = 0.25, σ = 1, λ =

0.1690, 0.1689, 0.1688, 0.1687 (top to bottom). The data are averaged over 3 · 106 inde-

pendent runs with duration 105 MCS. The effective critical initial slip exponents δeff(t)
for the predators’ survival probability PA(t) (left) and θeff(t) for their mean particle

number ⟨nA(t)⟩ (right) are plotted vs. 1/t, giving λc ≈ 0.1688. Extrapolation to t → ∞
yields the estimates δ ≈ 0.451 and θ ≈ 0.230. [Figures reproduced with permission from
Ref. [21], copyright (2007) by Springer Science+Business Media, Inc.]

and ⟨nA(t)⟩ ∼ tθ, where for directed percolation δ = α = β/z ν and

θ = (2− η)/z = (d/z)− 2α,10,20 with θ ≈ 0.2295 in d = 2 dimensions.10,22

Numerical analysis of the Monte Carlo simulation data displayed in Fig. 7

for a stochastic Lotka–Volterra model on a 512×512 square lattice with site

restrictions yields the accurate critical exponents δ ≈ 0.451 and θ ≈ 0.230.21

Accessing critical dynamical scaling exponents through the universal

short-time “physical aging” regime is another convenient means to avoid

running costly simulations for very large system sizes L that are required

to meaningfully reach long times t ∼ Lz.10,73–76 To this end, one may

for example suddenly switch the predation rate globally from λ1 to a dif-

ferent value λ2.
26,72 Outside the linear response regime, two-point (auto-

)correlation functions C(t, s) = ⟨n(x, t)n(x, s)⟩ − ⟨n(t)⟩⟨n(s)⟩ will then de-

pend on both involved times, often termed “waiting time” s (after the ini-

tial system preparation) and “observation time” t > s. Only if the system’s

intrinsic relaxation processes are fast, typically exponential with character-

istic time tc, the preparation configuration prior to the quench is quickly

forgotten, and time translation invariance recovered, as seen in the inset of

Fig. 8(a), where both λ1, λ2 pertain to the coexistence phase.

In contrast, near a continuous phase transition, the relaxation time di-
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Fig. 8. (a) Double-logarithmic plot of the predator density autocorrelation function

C(t, s) vs. time difference t−s for various waiting times s = 50, 500, 1500, 5000 MCS (left
to right) at the predator extinction critical point λc = 0.0416 for the same Lotka–Volterra

system as in Fig. 6 (data averaged over 100 independent simulation runs for each value
of s). The inset shows that C(t, s) decays exponentially for λ2 = 0.125, i.e., a quench

within the coexistence phase; here time translation invariance holds (data averaged over

400 simulation runs for each s = 5000, 2000, 1000, 200 MCS, top to bottom). (b) Simple
aging dynamical scaling analysis: sb C(t, s) is plotted against the time ratio t/s, with

1000 independent simulation runs for each s. The straight-slope section of the curves

with large s ≥ 1000 MCS yields Λc/z = 2.37 ± 0.19; the aging scaling exponent is
b = 0.879±0.005. The inset displays the local effective exponent −(Λc/z)eff(t). [Figures

reproduced with permission from Ref. [72], copyright (2016) by IOP Publ.]

verges according to a power law. Consequently, for t ≫ s the two-time order

parameter autocorrelation function obeys the scaling form10,20,25,73,75,76

C(t, s) = s−b fc(t/s) , fc(y) ∼ y−Λc/z , (17)

which defines the aging scaling exponent b and the autocorrelation expo-

nent Λc.
76 For critical directed percolation the scaling relations b = 2α

and Λc/z = 1 + α + (d/z) hold.10,20,72 The numerical simulation data

on a 1024 × 1024 square lattice with stochastic Lotka–Volterra kinetics

demonstrates that time translation invariance is broken in quenches to the

predator extinction / prey fixation threshold λc, c.f. Fig. 8(a), main panel.

Instead, as demonstrated in Fig. 8(b), for sufficiently large waiting times

s ≥ 1000 MCS the aging scaling form (17) applies. The best data scaling

collapse is obtained for b ≈ 0.88, and the resulting slope of the master curve

ultimately yields Λc/z ≈ 2.37, in decent agreement with the established

two-dimensional critical directed percolation exponents.26,72 Intriguingly,

the onset of shear turbulence in pipe flow displays spatio-temporal phe-

nomena akin to predator-prey kinetics; hence its threshold properties are

captured by the directed percolation universality class as well.77 Indeed,

the associated critical exponents have been most accurately measured ex-
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perimentally near the transition between two different turbulent states of

electrohydrodynamic convection in thin nematic liquid crystals.78,79

4. Biologically motivated model variants and extensions

Naturally, a large variety of possible modifications and extensions can be en-

visioned for the simple Lotka–Volterra model for prey-predator competition

and coexistence. Indeed, within the realm of coupled nonlinear mean-field

rate equations, there exists a multitude of such generalizations studied in a

vast literature encompassing different fields. Biological applications pertain

to realizations in ecology, addressing predator-prey and host-parasite sys-

tems on all scales reaching from terrestrial mammals and fish populations

to the microbiology of competing bacteria and oceanic plankton.

Stochastic spatially extended model implementations have been less fre-

quently employed, but are becoming increasingly appreciated.16 The com-

plexity of multi-species ecological systems subject to many ill-defined ex-

ternal influences may be avoided in synthetic laboratory settings that are

subject to controlled initial and environmental conditions. In that context,

simple models in the spirit of the paradigmatic Lotka–Volterra system def-

initely constitute a powerful tool to both qualitatively and quantitatively

describe experimental data; one example captures spatial range expansion

of competing bacterial colonies, one of which may acquire resistance against

toxins produced by the other species.80

On the theoretical front, the stability of multi-species systems and hence

emergence of biodiversity remains an ecological puzzle, since within a mean-

field framework, only the strongest predators or most evasive prey should

survive direct competition. This scenario is however not confirmed in the

corresponding stochastic model setups: For two distinct populations preyed

upon by a single predator species, intrinsic demographic fluctuations are

observed to prevent extinction of the weaker prey type.81 Likewise, three-

species coexistence in a system of two different predator groups competing

for a single prey population may likewise be stabilized by stochasticity, es-

pecially when subject to evolutionary optimization.82 In the following, just

three biologically motivated Lotka–Volterra model variants are described in

more detail, namely the system’s response to periodic (seasonal) switches

of the carrying capacity;39 the effect of quenched random spatial disorder

in the nonlinear predation rates mimicking environmental variability;61 and

the ensuing evolutionary dynamics upon introducing (in addition) individ-

ual demographic variability in the predation efficacy, whose distributions in
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(a) (b) (c)

Fig. 9. (a) Predator (full red) and prey (dashed blue) populations (averaged over 50

realizations) for a 256 × 256 square lattice with µ = σ = λ = 0.1, K− = 1, K+ = 10,

and Tk = 100; the shaded gray indicate the areas excluded by the switching carrying
capacity K(t). The critical predation rates associated with fixed carrying capacities

are λc(K = 1) = 0.26 and λc(K = 10) = 0.01. Long-time (b) predator and (c) prey

populations averaged over six periods Tk plotted vs. Tk/τ , where τ denotes the intrinsic
oscillation period of the equivalent static system with K = K̄; L = 256, µ = σ = λ = 0.1,

and K− = 2, K+ = 6 for the oscillating environment (black crosses), while K = K̄ = 3

for the static environment (red horizontal lines). [Figures reproduced with permission
from Ref. [55], copyright (2023) by The American Physical Society.]

both predator and prey species adjust themselves through the Darwinian

mechanisms of competition and inheritance with random mutations.26,54,83

More substantial variations of the Lotka–Volterra predation paradigm with

prominent biological relevance are briefly discussed in Secs. 5 and 6 on

stochastic models for epidemic outbreaks and cyclic competition.

4.1. Periodically varying carrying capacity

Seasonal variations in resource availabilty, especially for the prey popu-

lation, may be encoded in a periodically switching carrying capacity K;

similarly, bacterial populations thriving on agar solutions in petri dishes

may be supplied with nutrients at regular time intervals. In a stochastic

Lotka–Volterra lattice model, one may directly implement a “rectangular

time signal” for K(t), switching from K− to K+ > K− and back at full

period Tk, in the simplest symmetric scenario remaining at K± for the du-

ration Tk/2. If the entire carrying capacity range pertains to the species

coexistence phase, only a minor amplification of the periodic population os-

cilations is observed. Conversely, predator extinction would of course ensue

if λ < λc(K±). However, as shown in Fig. 9(a), the resulting time tracks for

both predators and prey display large-amplitude periodicity if the carrying

capacity oscillates between the predator extinction and species coexistence
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Fig. 10. Simulation snapshots for a 256× 256 square lattice with µ = σ = 0.5, λ = 0.1,

K− = 1, K+ = 10, and Tk = 30 MCS at t = 39 (left), 56 (middle), 72 MCS (right); red
/ blue pixels indicate predators / prey, where the brightness represents the local density,

pink pixels pertain to sites occupied by both species; black: empty sites. The system is

initialized with K(t = 0) = K− = 1. [Figures reproduced with permission from Ref. [55],
copyright (2023) by The American Physical Society.]

phases, i.e., in a static system with carrying capacity K−, the A population

would die out, but switching to K+ above the critical threshold for a suffi-

ciently long time allows the predators to recover.55 For very fast switching,

where Tk is much smaller than the characteristic intrinsic population oscil-

lation period τ , the system becomes equivalent to an effective static model.

Since in mean-field theory the stationary predator and prey populations

∼ 1/K, their densities in the rapidly oscillating system are determined by

the harmonic mean K̄ = 2K−K+/(K− + K+). In the opposite extreme

limit of very large Tk ≫ τ , both populations (in the coexistence phase) es-

sentially merely switch between their stationary values, which is described

by an equivalent static model with a rate-dependent carrying capacity K∗

that reduces to K̄ if both K± ≫ 1.55

Monte Carlo simulation results for stochastic lattice Lotka–Volterra

models with periodically switching K(t) confirm that the prey population is

indeed generally quite well described by these effective static limits, within

≈ 10% for the measured mean prey density, as seen in Fig. 9(c). Yet the

mean predator population in Fig. 9(b) displays manifest quantitative devi-

ations from the mean-field predictions, but of course approaches (slightly

different) constant limits in both fast- and slow-switching regimes. Near

Tk ≈ τ , intriguing resonances are visible. Related simulation snapshots

are depicted in Fig. 10 for a switching period Tk = 30 MCS, close to reso-

nance.55 In this simulation run, by t = 39 MCS (left) only a single predator

patch has survived, subsequently serving as the source for a spreading pop-

ulation front. At t = 56 MCS (middle) this wave expands in- and outward,
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until by t = 72 MCS (right) it returns to the source center; just then the

system is switched back to the low carrying capacity K−, whence the prey

in the front interior cannot reproduce anymore. In its later temporal evolu-

tion, the system’s kinetics continues to be dictated by the single population

oscillation source generated by the sole predator patch surviving early on.

4.2. Fitness enhancement through environmental variability

Natural environments are of course not homogeneous, and subject to spa-

tially varying resource availability, and specific to predator-prey interac-

tions, habitat features that may locally enhance or suppress the chance of

predation events. Such scenarios can be modeled through a spatially vary-

ing carrying capacity K, or site-dependent reaction rates, either smoothly

varying or distinct in different regions or “patches”. A perhaps extreme sit-

uation is to assign randomized rates to each discrete lattice site, picked for

example from a Gaussian distribution, truncated for the reaction probabil-

ities to the interval [0, 1], and centered at a prescribed mean value with an

assigned variance that indicates the “strength” for this quenched disorder.

As one would anticipate, varying rates µ, σ for the linear predator death

and prey birth processes yield negligible changes to the mean populations,

as random shifts just average out. That is not true if the predation rates are

drawn from truncated Gaussian distributions with average λ̄ and variance

σλ, since (in the mean-field approximation) both stationary coexistence

populations scale inversely with λ. Consequently, sites with low predation

rates turn out favorable for, perhaps counterintuitively, both predator and

prey species.26,61 Indeed, as shown in Fig. 11(a), Monte Carlo simula-

tions for two-dimensional Lotka–Volterra systems with quenched predation

rate site disorder yield a ∼ 25% “fitness” enhancement in the stationary

densities of predators and prey as the width σλ is increased towards an

asymptotically flat distribution. Increasing disorder strength leads to the

expected broadening of the associated Fourier peaks displayed in Fig. 11(b),

which implies shorter relaxation times to reach the (quasi-)stationary con-

figurations. Localization of the largest-amplitude local population oscil-

lators near the favored sites with small λ values additionally reduces the

(cross-)correlation lengths by ∼ 1/3 relative to the homogeneous system.

Consequently more population centers can be accommodated by a system

of fixed size, which explains the resulting enhancement in both predator

and prey numbers.26,61
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Fig. 11. (a) Predator population time evolution in a site-disordered Lotka–Volterra

model on a 512 × 512 square lattice with µ = σ = 0.5, mean predation rate λ̄ = 0.5,
for different variances σλ as indicated; data averaged over 50 independent simulation

runs. (b) Fourier transform of the time traces. [Figure reproduced with permission from

Ref. [61], copyright (2008) by The American Physical Society.]

4.3. Demographic variability, heriditary trait optimization

In contrast to physical and chemical reaction processes that involve fun-

damentally identical atoms, molecules, or similar microscopic constituents,

individuals in a biological population are usually endowed with different

propensities such as fecundity and efficacy in pursuing prey or evading

predators. We may thus affix each reacting particle with, for example, a

predation efficacy η. If a predator A and prey B encounter each other, we

can for simplicity choose the resulting predation probability for this specific

pair as the arithmetic mean λ = (ηA + ηB) / 2. These individual “hunting”

or “evasion” efficacies can be turned into random variables drawn from, e.g.,

a Gaussian distribution with width wS truncated to the interval [0, 1]: Pow-

erful predators are represented by ηA ≈ 1, whereas evasion-proficient prey

are characterized by ηB ≈ 0. In this manner, genetic make-ups and behav-

ioral features are subsumed into one “mesoscopic” phenotypical trait.26,54,83

This setup allows us to invoke rudimentary Darwinian evolutionary dy-

namics by allowing offspring to inherit their specific efficacy ηO from their

parent’s individual ηP value, with a random mutation “error”. As Fig. 12
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Fig. 12. (a) During prey reproduction, a parent particle gives birth with rate σ. The

parent’s predation efficacy ηP is set as the mean of a Gaussian distribution, truncated to
the interval [0; 1], from which the offspring’s efficacy ηO is drawn. (b) During predation, a

predator consumes a prey individual with rate λ, a function of the participating particles’

predation efficacies. An offspring predator is created and its efficacy ηO is determined
via the same mechanism as for prey reproduction. [Figure reproduced with permission

from Ref. [54], copyright (2013) by IOP Publ.]

illustrates, in the (a) prey reproduction P → P +O at fixed rate σ and

(b) predation process P + B → P +O at variable rate λ = (ηP + ηB) / 2,

ηP is set at the center of truncated Gaussian distribution with standard

deviation (prior to truncation) wP, from which ηO is selected. The param-

eter wP describes the mutation strength; for wP = 0 the offspring assumes

precisely its parent’s efficacy ηP. Since surviving prey will likely pass their

small η values to their progeny, while fertile predators will typically be

endowed by large predation efficacies, the trait distributions for the two

distinct populations will evolve in opposite directions.

Indeed, in Monte Carlo simulations of this model on a two-dimensional

lattice both species’ trait distributions settle, within a few hundred MCS

(roughly equivalent to “generations”), to their stationary distributions

shown in Fig. 13(a) and (b), respectively for a moderate mutation distri-

bution width wP = 0.1 and a flat distribution with wP → ∞. In the former

scenario, the widths of the ensuing steady-state efficacy distributions for

either species are comparable with wP. In contrast with (linear) genetic

drift models, this nonlinear evolutionary dynamics does not terminate in
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Fig. 13. Left panel: Predator (red) and prey (blue) populations in the (quasi-)steady
state of a stochastic Lotka–Volterra model (no site occupation restrictions) on a 128×128

square lattice with µ = σ = 0.5 and variable, hereditary predation effiacies η affixed to
all individuals, initially set to 0.5, as functions of η (data averaged over 104 Monte Carlo

runs) for initial truncated Gaussian standard deviations wP = 0.1 (a) and wP → ∞
(b). For finite wP, the predator / prey distributions quickly evolve towards high / low
predation efficacies. In the special flat distribution case, the predators experience no

selection bias. The predictions from an effective stochastic multiple quasi-species mean-

field model are depicted as dashed curves. Right panel: The stationary predator density
features enhancement for all values of the spatial variability influence ζ as function of

equal variabilities wW = wD = wη relative to uniform systems with wη = 0; there

appears a shallow minimum near ζ ≈ 0.3. [Figures reproduced with permission from
Ref. [83], copyright (2013) by The American Physical Society.]

fixation of the prey at η = 0 and predators at η = 1; rather, demographic

variabilities are sustained in both populations.26,54,83 The dashed graphs

indicate the numerical solutions of an effective mean-field model, wherein

the traits η are discretized and binned to define multiple “quasi-species”

that are subject to the standard Lotka–Volterra rate equations. In the

extreme case wP → ∞, the predators’ selection bias disappears, and the

stationary prey distribution ∼ 1/(1 + 2η) for the quasi-species model can

be evaluated analytically, and decently captures the simulation data.

Finally, the combined effects of environmental and demographic vari-

ability in the predation processes can be studied.26,54,83 To this end, ran-

dom reaction reaction rates λE attached to the lattice sites as well as pre-

dation efficacies ηA/B relating to individual particles are implemented, each

drawn from truncated Gaussian distributions with widths wE and wD, re-

spectively. In order to tune the relative influences of quenched spatial ran-

domness and variabilities of the predator and prey populations, which are

set to evolve in time according to the offspring hereditary selection with

mutation chance described previously, we choose the linear interpolation

λ = ζ λE + (1− ζ)λD, where λD = (ηA + ηB) / 2 as before, and 0 ≤ ζ ≤ 1.
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The ensuing Monte Carlo simulation results for the stationary predator den-

sity are displayed in the right panel of Fig.13. For ζ = 1, the ∼ 25% fitness

enhancement for exclusive site disorder described in Sec. 4.2 is recovered.

In contrast, pure demographic variability ζ = 0 increases the populations

by less than 10%, indicating that the substantial evolutionary adjustments

of both species’ predation efficacy distributions almost cancel out in their

competitive optimization leading to an almost neutral overall benefit. At

ζ ≈ 0.3, an distinct minimum with even lower population enhancement is

disernible; it can be understood in terms of straightforward error progres-

sion assuming statistical independence of environmental and demographical

variability. The data displayed here demonstrate the dominance of envi-

ronmental randomness. Yet in small systems the mean extinction time is

increased more than fourfold in the presence of demographic variability

which thus manifestly provides a major evolutionary advantage.54,83

5. Stochastic spatial models for infectious disease spreading

The basic Lotka–Volterra predation motif also appears in the fundamental

mathematical models for epidemic outbreaks and spreading, dating back to

Kermack, McKendrick, and Walker’s seminal work from 1927.2,84 Instead

of predators and prey or parasites and hosts, one considers a population

comprised of a now fixed total number N of individuals that can be grouped

into distinct states with respect to a contagious pathogen. To render these

models more versatile and realistic, such “compartments” can be elaborated

further by dividing them into additional distinct groups according to age

or social structure, etc., and by implementing spatially extended stochastic

models on appropriate contact network architectures.

5.1. SIS model and directed percolation

In the simplest scenario, healthy susceptible individuals S become infected

with rate r upon encountering sick or asymptomatic infectious agents I,

following the binary (stochastic) reaction S + I
r−→ I + I. The infected indi-

viduals may return to the susceptible group with recovery rate a, I
a−→ S.2,84

Note that these processes strictly conserve N = nS(t) + nI(t); the latter

transmutation may be regarded as number-conserving combination of the

linear predator death and prey birth reactions of the Lotka–Volterra model,
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(a) (b)

Fig. 14. (a) Critical directed percolation cluster (time runs from left to right); (b)

critical isotropic percolation cluster. [Figures reproduced with permission from Ref. [85],

copyright (1994) by The American Physical Society.]

as is evident also in the corresponding mean-field rate equations

∂⟨nS(t)⟩
∂t

= −r ⟨nS(t)⟩ ⟨nI(t)⟩+ a ⟨nI(t)⟩ ,

∂⟨nI(t)⟩
∂t

= r ⟨nS(t)⟩ ⟨nI(t)⟩ − a ⟨nI(t)⟩ . (18)

Near the epidemic threshold, there are few infected individuals nI ≪ nS; the

S species is abundant and may thus be eliminated (integrated out). Thus,

upon implementing any population-limiting mechanism such as lattice site

restrictions, this “susceptible-infected-susceptible” (SIS) model near criti-

cality reduces to the elementary death, birth, and coagulation reactions that

generate directed percolation clusters; an example is shown in Fig. 14(a).

A continuum description for “simple epidemic processes” that encom-

pass the SIS model can be formulated in terms of a Langevin stochastic

partial differential equation for the local density of infectious individuals

n(x, t) that spread diffusively and are subject to reactions which require

the presence of “active” agents,10,17–20,22,25,67

∂n(x, t)

∂t
=

(
D∇2 −R[n(x, t)]

)
n(x, t) + η(x, t) . (19)

In the threshold vicinity, i.e., near the continuous active-to-absorbing phase

transition, the deterministic reaction kernel may be expanded according

to R[n] ≈ a + un + . . ., which leads directly to the Fisher–Kolmogorov–

Petrovsky–Piskunov equation.2 The noise correlations too must obey the

absorbing-state constraint and vanish as n → 0. To leading order in the

active density field, one arrives at the “square-root” multiplicative noise

⟨η(x, t) η(x′, t′)⟩ ≈ v n(x, t) δ(x− x′) δ(t− t′) . (20)
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The Janssen–DeDominicis functional10,36–38 associated with this Langevin

kinetics (19), (20) is precisely the Reggeon field theory action.10,19,20,71

5.2. SIR model and dynamic isotropic percolation

After exposure to most infectious agents, individuals do not return to a

susceptible state, but at least for some extended time period acquire immu-

nity against renewed infection. Kermack, McKendrick, and Walker hence

introduced a “recovered” compartment that in general incorporates both

immune and deceased formerly infected populations; in this “susceptible-

infected-recovered” (SIR) model the R species does not further partake in

the system’s dynamics. In a stochastic formulation, the associated reac-

tion processes are S + I
r−→ I + I and I

a−→ R. The total population number

N = nS(t) + nI(t) + nR(t) remains fixed, but the infected fraction nI(t)

ultimately becomes depleted as it enters the R compartment. From the

associated rate equations

∂⟨nS(t)⟩
∂t

= −r ⟨nS(t)⟩ ⟨nI(t)⟩ ,

∂⟨nI(t)⟩
∂t

= r ⟨nS(t)⟩ ⟨nI(t)⟩ − a ⟨nI(t)⟩ ,

∂⟨nR(t)⟩
∂t

= a ⟨nI(t)⟩ , (21)

one obtains d⟨nS⟩/d⟨nR⟩ = −⟨nS⟩ r/a, which with ⟨nR(0)⟩ = 0 integrates

to ⟨nS(∞)⟩ = ⟨nS(0)⟩ e−⟨nR(∞)⟩ r/a ≥ ⟨nS(0)⟩ e−N r/a > 0 and hence

⟨nR(∞)⟩ = a
∫∞
0

⟨nI(t)⟩ dt = N − ⟨nS(∞)⟩ < N , since ⟨nI(∞)⟩ = 0. Un-

der the well-mixed mean-field assumption, ⟨nI(t)⟩ will initially increase and

thus induce an epidemic outbreak if ⟨nS(0)⟩ > a/r, or the (mean) “basic

reproduction number” R0 = ⟨nS(0)⟩ r/a > 1; otherwise ⟨nI(t)⟩ → 0 mono-

tonically and the infection fizzles out.2

In spatially extended stochastic SIR models one observes distinct

spreading infection fronts, similar to the activity waves in the Lotka–

Volterra predator-prey system. Figure 15 compares the numerical solutions

of the SIR rate equations for ⟨nI(t)⟩ and ⟨nR(t)⟩ with the corresponding

mean populations extracted from individual-based Monte Carlo simulations

for a stochastic model realization on a regular square lattice.86 To this end,

the effective “renormalized” rates (specifically the infectivity r) in the deter-

ministic mean-field equations were adjusted to closely fit the peak intensity

of the infection outbreak. Clear deviations between the rate equation

predictions and the simulation data that properly incorporate fluctuations
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Fig. 15. Individual-based Monte Carlo simulations for a stochastic SIR model on a

448× 448 square lattice with N = 100, 000 individuals, initially nI(0) = 100, nR(0) = 0,

infectivity r = 1, mean recovery time 1/a = 6.667 days, giving R0 = 2.4 adequate for
the original Covid-19 viral strain. The graphs show first of the infection curves from

lattice simulations (averaged over 100 independent runs) to numerical integrations of

the mean-field SIR rate equations. Left: Infectious population ⟨nI(t)⟩; right: recovered
individuals ⟨nR(t)⟩. [Figure reproduced with permission from Ref. [86], copyright (2021)

by Nature Research.]

and correlations are discernible both at the epidemic’s onset and at its late

stages: Mean-field theory consistently overestimates ⟨nI(t)⟩ (left panel),

providing a too pessimistic outlook for controlling the disease outbreak

such as enforcing regular testing protocols, quarantine of infected individ-

uals, and isolation of their contacts.87 The deterministic mean-field equa-

tions yield an initial exponential growth for the infected population at rate

a (R0 − 1); the simulation data are rather described by power laws for both

⟨nI(t)⟩ and ⟨nR(t)⟩, as shown in the insets in Fig. 15. Also, if the indidid-

uals are mobile (e.g., via nearest-neighbor hopping), the entire susceptible

population becomes infected, so ultimately ⟨nS(∞)⟩ = ⟨nI(∞)⟩ = 0 and

⟨nR(∞)⟩ = N . The mean-field approximation then drastically underesti-

mates ⟨nR(∞)⟩, by ∼ 15% for the parameters chosen here (right panel).

The SIR model represents a wider class of “general epidemic processes”

that entails the effective removal of (permanently) immune or deceased indi-

viduals, but also supposes that all previously infected agents I remain con-

tagious to adjacent susceptibles S until they transition to the R class. This

persistent infectivity introduces temporal memory; in the corresponding

continuum representation, integrating out the infectious agent field again

yields a Langevin equation of the form (19) with multiplicative noise (20),
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but with a reaction kernel R[n] ≈ a + u
∫ t

n(x, t′)dt′ + . . . that contains

the accumulated “debris”. This defines the dynamic isotropic percolation

universality class.10,17,18,20,22,25,88–90 Indeed, for t → ∞ the associated

Janssen–De Dominicis functional reduces to the stationary effective action

that governs critical isotropic percolation clusters, see Fig. 14(b). Numer-

ical simulations confirm these assertions even in the presence of lattice site

dilution, representing randomly distributed immunized individuals.91

6. Cyclic dominance of three competing species

In ecological “food networks”, there exist also cyclic competition motifs in

addition to hierarchical food chain structures.6,7,26,92 Such cyclically im-

plemented dominance akin to the popular “rock-paper-scissors” children’s

game plays a prominent role in evolutionary game theory as well,8,9 and

may be experimentally realized in microbial colonies.23,24,26 We will next

briefly discuss some pertinent features of the two probably most frequently

studied model variants for three species cyclically preying on each other.

6.1. Rock-paper-scissors or cyclic Lotka–Volterra model

The simplest rock-paper-scissors model just cyclically combines the Lotka–

Volterra predation reactions A + B
λA−−→ A+A, etc.8,9 Importantly, the

total particle number N = nA(t) + nB(t) + nC(t) is strictly conserved. If

we allow the three particle species to propagate via hopping to (or position

swaps with) adjacent sites, the corresponding continuous density field obeys

the diffusion equation. Similar to the two-species predator-prey system with

infinite carrying capacity, the associated mean-field rate equations

∂⟨nA(t)⟩
∂t

= ⟨nA(t)⟩ [λA ⟨nB(t)⟩ − λC ⟨nC(t)⟩] , (and cyclic) (22)

feature the coexistence fixed point ⟨nA(∞)⟩ = N λB/ (λA + λB + λC), etc.,

with linear stability matrix

L =
N

λA + λB + λC

 0 λA λB −λB λC

−λA λC 0 λB λC

λA λC −λA λB 0

 ,

with eigenvalues 0 (for the conserved total particle number N) and ±iω0

describing neutral cycles and hence undamped population oscillations with

frequency ω0 = N
√
λA λB λC/ (λA + λB + λC).

In a spatially extended stochastic cyclic Lotka–Volterra system, one

might thus expect the emergence of activity waves akin to the two-species
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(a) (b)

Fig. 16. Monte Carlo simulation snapshots of stochastic cyclic competition models on
256 × 256 square lattices with periodic boundary conditions, site occupation number

exclusion, and random initial particle placement: (a) Cyclic Lotka–Volterra (rock-paper-

scissors) model with conserved total particle number N ; (b) May–Leonard model with
separate predation and reproduction processes. Sites occupied by A, B, and C particles

are respectively colored in red, yellow, and blue; black: empty spaces. [Figures repro-

duced with permission from (a) Ref. [94], copyright (2010) by The American Physical
Society; (b) Ref. [99], copyright (2011) by EDP Sciences.]

predator-prey model. However, these are not actually observed; instead,

such rock-paper-scissors lattice models are characterized by mildly fluctu-

ating particle clusters of the same species,93,94 see Fig. 16(a). Evidently

the diffusive mode associated with the total particle number conserva-

tion is quite effective in eliminating any larger-scale spatio-temporal struc-

tures. Moreover, the associated species number anti-correlations prevent

synchronous local coherent oscillatory modes.35 As stochastic noise gener-

ates a marked attenuation of the population oscillations, whose frequencies

are slightly shifted downwards relative to the mean-prediction ω0, each

species reaches its stationary density comparatively fast.94 A perturba-

tive analysis based on the corresponding Doi–Peliti action qualitiatively

confirms these numerical findings. The fluctuation-induced damping coef-

ficient γ is positive, at least to first order in λ/D, which indicates that the

spatially uniform species distribution remains stable.35

Intriguingly though, in the extreme asymmetric predation rate limit

λA ≫ λB, λC, the rock-paper-scissors system effectively recovers the two-

species Lotka–Volterra model with predators A, prey B, and abundant C

population that essentially fills the system, ⟨nC(∞)⟩ ≈ N .35,95 On the

mean-field level, neglecting fluctuations in the C density yields the effective

predator death rate µ = ⟨nC(∞)⟩λC and prey birth rate σ = ⟨nC(∞)⟩λB.
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A field-theoretical analysis confirms the mapping of the strongly asymmet-

ric rock-paper-scissors Doi–Peliti action to its Lotka–Volterra counterpart

(14), or equivalently to the effective Langevin equations (15) with noise

correlations (16).35 Indeed, lattice simulations of the rock-paper-scissors

model with massive asymmety in the predation rates display the character-

istic Lotka–Volterra evasion-pursuit fronts and persistent population oscil-

lations.95

6.2. Spiral structure formation in the May–Leonard model

The cyclic three-species May–Leonard model probably more realistically

separates the predation ∼ λ and reproduction reactions ∼ σ to independent

stochastic processes,92 which lifts the constraint of total population conser-

vation and induces a much richer phenomenology than in the cyclic Lotka–

Volterra model.23,24,26 It is defined by the competing reactions A + B
λ−→ A

(and cyclic) and A
σ−⇀↽−
κ

A+A, where the reverse reaction ∼ κ is set to limit

the overall population, and where uniform rates across all three species have

been assumed here. The corresponding mean-field rate equations read

∂nA(t)⟩
∂t

= ⟨nA(t)⟩ [σ − κ ⟨nA(t)⟩ − λ ⟨nC(t)⟩] , (and cyclic) , (23)

giving the symmetric three-species coexistence fixed point ⟨nA/B/C(t)⟩ =

σ/ (κ+ λ) with associated stability matrix

L = − σ

κ+ λ

κ 0 λ

λ κ 0

0 λ κ

 .

It has a negative real eigenvalue −σ and the complex conjugate pair

−σ
(
2κ− λ± i

√
3λ

)
/2 (κ+ λ), which describe oscillations at frequency

ω0 =
√
3σ λ/2 (κ+ λ) whose amplitude decays for 2κ > λ, but blows up for

2κ < λ, indicating a Hopf bifurcation at κc = λ/2. For κ > κc, the mean-

field coexistence fixed point is a stable focus, and approached in spiralling

trajectories. Conversely in the unstable regime for κ < κc, the population

trajectories in phase space assume the form of large-amplitude heteroclinic

cycles, which in a stochastic system may reach the absorbing boundaries

where either two species become extinct. The likelihood of fixation is ex-

acerbated in strongly asymmetric stochastic May–Leonard systems.96

In a sufficiently large spatially extended May–Leonard model real-

ization, the spontaneous emergence of spiral structures as depicted in

Fig. 16(b) renders the system remarkably robust against single-species fix-

ation,97,98 even when model variations such as quenched disorder in the
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rates are introduced.99,100 Yet as with increased particle mobility the char-

acteristic spiral arm diameter approaches the linear exxtension L, the May–

Leonard kinetics is driven unstable in finite systems and becomes prone to

two-species extinction.97 Near the Hopf bifurcation at κc, critical slow-

ing down of the circularly polarized damped oscillating modes relative to

the much faster (at rate σ) relaxing total particle density field affords a

natural time scale separation in the system,98 allowing one to integrate

out the fast variable and map the rate equation model to the complex

Ginzburg–Landau equation, one of the prime paradigms for spontaneous

structure formation out of equilibrium.101 However, for the fully stochastic

May–Leonard model, the range of validity for this mapping becomes quite

limited; through the non-vanishing noise cross-correlations, the fast mode

is continously excited, and one must resort to three stochastic fields to

adequately capture the system’s kinetics.102 This can be achieved pertur-

batively via the associated Doi–Peliti path integral representation; yet the

fluctuation corrections to lowest order do not alter the conclusions from the

mean-field picture in a qualitative manner, but merely shift the Hopf bifur-

cation point and generate small oscillation parameter renormalizations.35

Generalization of the cyclic dominance motif to multiple competing

species that may also form “alliances” depending on the structure of their

interaction matrices has become a rich and intriguing research arena that

can however not be adequately covered here.26,103–114 It is worth mention-

ing though that an analysis of the associated adjacency matrix allows a

remarkably complete classification of such many-species games with sub-

structure within the mean-field theory realm, with decisive ramifications

for the expected spontaneously forming patterns and ensuing coarsening

kinetics in their spatially extended stochastic counterparts.26,113

6.3. Inhomogeneous systems: diffusively coupled patches

To conclude this discussion of stochastic spatial systems subject to binary

predation processes, consider now spatially inhomogeneous settings where

distinct “patches” controlled by different reaction rates are combined, and

become effectively coupled through diffusive particle transport across their

interfaces: As individuals cross the subsystem boundaries, they follow the

stochastic processes and rules of their new environment. An example is

illustrated in Fig. 17 for a series of successively finer-grained checkerboard

squares of two-dimensional Lotka–Volterra predator prey patches alter-
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(a) (b) (c)

Fig. 17. Simulation snapshots after 1000 MCS of the distribution of predators (red)
and prey (green) in a stochastic Lotka–Volterra model on a spatially inhomogeneous

512× 512 lattice (with periodic boundary conditions) with rates µ = 0.125, σ = 1, and

the predation rate set alternatingly in a checkerboard fashion between square patches
with values λ = 0.1 (prey fixation) and λ = 0.8 (species coexistence). The system is split

into successively smaller subdomains with linear sizes 256 (a), 64 (b), 16 (c). [Figures

reproduced with permission from Ref. [115], copyright (2017) by Elsevier B.V.]

natingly situated in the predator extinction and two-species coexistence

regimes.115 In the quasi-steady state, each subsystem has clearly evolved

to its stationary prey fixation (uniformly green) or mixed-population config-

urations. Predators from the coexisting patches enter the fixation regimes,

but the range of these immigrations remains constrained to thin boundary

layers of the extent of a few lattice sites, set by the correlation length in the

fixated region. As the number of subdivisions increases and the individual

patch sizes reach the underlying lattice constant, the measured mean popu-

lation densities approach the corresponding results for a quenched random

predation rate assignment drawn from a bimodal distribution.115

Figure 18(a) schematically shows another realization of a diffusively cou-

pled inhomogeneous setup, here for three-species cyclic rock-paper-scissors

patches, with a thinner slab evolving under the cyclic Lotka–Volterra rules

interacting with a much wider region governed by the May–Leonard reac-

tions.96,116 The small fluctuating clusters characteristic of the cyclic Lotka–

Volterra model with conserved total particle number are visible on the left-

hand side of Fig. 18(b). As the periodic population oscillations coherently

impinge on the two interfaces, they generate planar invasion fronts mov-

ing into the larger May–Leonard region, which however decay on the scale

of the characteristic correlation length ξ in that regime. In the interior of

the May–Leonard patch, therefore its typical spiralling spatio-temporal pat-

terns form, largely decoupled and independent from any influences from the
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(a) (b)

Fig. 18. Spatially inhomogeneous rock-paper-scissors model realization with three cycli-
cally competing species on a two-dimensional square lattice with periodic boundary con-

ditions and site exclusion. (a) Illustration of the torus geometry and division into a

smaller patch subject to cyclic Lotka–Volterra rules, and a larger region governed by the
May–Leonard reactions. (b) Monte Carlo simulation snapshot in the (quasi-)stationary

state for a 512×512 square lattice with the rock-paper-scissors patch of width 64 showing
its characteristic fluctuating clusters that induce plane waves at both interfaces traveling

into the seven times larger May–Leonard region (σ = λ = 1, D = 0.5). In the interior

bulk of the May–Leonard subsystem one observes its typical spiral structures [116].

rock-paper-scissors domain. In the vicinity of the interfaces, the popula-

tion densities in the May–Leonard domain are reduced relative to the bulk,

closer resembling the well-mixed mean-field values which do not account

for the fitness enhancement due to the emergence of spiral structures.116

In both previous scenarios, stable subsystems, with stationary states

that persist in the thermodynamic limit L → ∞, interacted with each

other through particle diffusion across the interfaces. The mutual influ-

ences are then limited to within a typical penetration depth set by the

correlation length ξ, and thus affect only a finite boundary region. The

situation changes drastically when one of the finite patches by itself would

be unstable with respect to extinction or fixation. This finite-size in-

stability with characteristic extinction or fixation time typically scaling

exponentially with the particle number in the system T ∼ ecN can then

be suppressed, at least in an extended parameter regime, through a coun-

termanding finite-size effect, namely the continuous supply of individuals

from diverse species through the interface of area ∼ Ld that traverse the

unstable patch in time tL ∼ L/2v with invasion front speed v. If the par-
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Fig. 19. Monte Carlo simulation snapshots of a two-dimensional inhomogeneous May–

Leonard system (periodic boundary conditions) where a (stable) 128 × 256 patch with
symmetric rates σ = λ = 0.2 and diffusivity D = 0.8 is coupled via particle transport

across the boundaries to a larger (unstable) 384× 256 region with reduced reaction rate

λ′ = 0.1 for the process A + B → A. At 100 MCS (top left), dominance of one (red)
species has developed in the asymmetric patch; at 220 MCS (top right), spiraling clusters

have formed in the smaller symmetric region; as time progesses, at 940 MCS (bottom

left) planar waves emanate from the stable patch at both interfaces into the asymmetric
area, by then fixated at the blue population; ultimately, in the quasi-stationary regime

(bottom right), stable spiral structures are continuously seeded by the particle influx

into the asymmetric area and persist throughout the simulation’s duration. [Figures
reproduced with permission from Ref. [96], copyright (2021) by EDP Sciences.]

ticle influx is periodically driven by population oscillations at frequency ω

in the stable adjacent regions, it may be roughly estimated as v ∼ ξ ω/2π.

A crude criterion for the induced stabilization of a vulnerable ecosystem

would be that the particle import happens fast compared to the extinction

time tL < T , i.e., the driving frequency should obey ω T > π L/ξ.117

A striking example is depicted in Fig. 19 which shows two May–Leonard

systems adjoined in the same geometric setting as in Fig. 18(a), where the

smaller patch on the left-hand side is governed by symmetrically set rates,

equal for all three competing species, while the three times larger subsys-

tem on the right is regulated by an asymmetric choice of the predation

rates, with λ′ = λ/2 for the process A + B → A relative to the correspond-

ing reactions for the other two species. The stable symmetric subsystem

quickly develops the characteristic spiral structures in the course of the sim-

ulation. In contrast, the region with asymmetric predation rates displays
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pronounced heteroclinic cycles apparent in Fig. 19(b,c) and moreover is suf-

ficiently small to be prone to two-species extinction. Indeed, in Fig. 19(c)

its bulk region has effectively fixated at one (blue) population. However,

planar invation fronts are simultaneously excited at both interfaces to the

stable May–Leonard subsystem, and quickly invade the entire region, even-

tually providing a sufficient supply of diverse individuals to stabilize the

vulnerable ecology as seen in Fig. 19(d) which features the spiral patterns

of the asymmetric system that would also emerge in much larger isolated

settings. For this system, one may formulate the stabilization criterion

that the induced spiral rotation frequency ω must exceed the characteristic

inverse time scale for structure disruption owing to diffusive particle trans-

port through the spiral arms, which should be proportional to the inverse

square of the average correlation length for the three species, ω > D/⟨ξ2⟩.96
Similar observations can be made in spatially inhomogeneous May–Leonard

system combinations where the asymmetry is prescribed in the diffusivity

rather than reactivity, as well as in diffusively coupled two-species Lotka–

Volterra predator models where one patch is rendered finite-size unstable

through increasing its predation rate or carrying capacity.117

7. Conclusions and outlook

The stochastic spatially extended Lotka–Volterra model for predator-prey

competition and coexistence provides a paradigmatic example for the po-

tentially severe quantitative as well as qualitative shortcomings of the (crud-

est) mean-field description in terms of deterministic coupled nonlinear rate

equations in many nonequilibrium systems. Internal fluctuations as well

as external variability in the model parameters are seen to have profound

influence on the dynamics of the system. Perhaps most strikingly, intrin-

sic randomness in conjunction with spatio-temporal correlations induced

by the binary reaction kinetics induce spontaneous pattern formation in

dimensions d ≤ 4. Hence, exploring fluctuation and correlation effects be-

yond the mean-field description constitutes an important task in physical,

chemical, biological, ecological, and sociological models, as they may cause

major changes to the dynamics and induce novel emergent phenomena.

Even when the rate equations provide a qualitatively adequate picture,

there usually will be quantitative parameter renormalizations in stochastic

nonlinear dynamical systems.

A continuum field theory representation of the stochastic master equa-

tion represents a powerful analytical tool to properly incorporate fluctu-
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ation and correlation effects, but of course, explicit calculations can be

performed only for comparatively simple models. Individual-based Monte

Carlo simulations are an extremely useful tool to understand the temporal

evolution, possible emergence of structures, and quantitative characteri-

zation of interacting stochastic many-particle systems, and may provide

helpful guidance for further mathematical analysis. However, a full scan

through the entire parameter space is rarely feasible, and aside from poten-

tial algorithmic artifacts, numerical data are naturally subject to statistical

errors and finite-size limitations that cannot always be overcome within rea-

sonable time frames and cost boundaries. The optimal strategy to enhance

our understanding of complex systems in nature will therefore always be to

utilize a combination of all state-of-the-art methods at our disposal.

Our exploration of spatial predator-prey models over the past two

decades turned out vastly more intriguing than originally anticipated, re-

vealing many unexpected phenomena and pertinent features connected to

quite distinct physical or biological systems. The summary in this chapter

inevitably focuses on our group’s contributions and likely but inadvertently

does injustice to many other researchers’ important work, for which the

author sincerely apologizes. This research topic covers a broad interdisci-

plinary area, which has been exciting to engage in, but which has also posed

its specific challenges owing to the dispersal of the relevant literature and

the distinct terminology and fundamental approaches in different scientific

fields. There still remains much to be accomplished in refining our methods

and conceptual grasp, and extending them to more complicated scenarios

and especially observational and experimental realizations. I already look

forward to seeing and learning about these novel future developments.
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temporal fluctuations in stochastic lattice Lotka–Volterra models, J. Stat.
Phys. 128, 447 (2007); arXiv:q-bio.PE/0512039.
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petition stabilize three-species predator-prey communities, Ecological Com-
plexity 36, 57 (2018); arXiv:1711.05208.

83. U. Dobramysl and U. C. Täuber, Environmental versus demographic variabil-
ity in two-species predator-prey models, Phys. Rev. Lett. 110, 048105 (2013);
arXiv:1206.0973.

84. W. O. Kermack, A. G. McKendrick, and G. T. Walker, A contribution to
the mathematical theory of epidemics, Proc. R. Soc. A 115, 700 (1927).
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