
ar
X

iv
:2

40
5.

05
08

2v
1 

 [
m

at
h.

C
O

] 
 8

 M
ay

 2
02

4 On linear-combinatorial problems associated with

subspaces spanned by {±1}-vectors

Anwar A. Irmatov

Abstract

A complete answer to the question about subspaces generated by
{±1}-vectors, which arose in the work of I. Kanter and H. Sompolinsky
on associative memories, is given. More precisely, let vectors v1, . . . , vp,

p ≤ n − 1, be chosen at random uniformly and independently from
{±1}n ⊂ Rn. Then the probability P(p, n) that

span 〈v1, . . . , vp〉 ∩ {{±1}n \ {±v1, . . . ,±vp}} 6= ∅

is shown to be

4

(

p

3

)

(

3

4

)n

+O

((

5

8
+ on(1)

)n)

as n → ∞,

where the constant implied by the O-notation does not depend on p.
The main term in this estimate is the probability that some 3 vectors
vj1 , vj2 , vj3 of vj , j = 1, . . . , p, have a linear combination that is a {±1}-
vector different from ±vj1 ,±vj2 ,±vj3 .

Keywords. {±1}-vector, Threshold function, singular Bernoulli matrices,
η⋆-function.

1 Introduction.

In the paper [11], A.M.Odlyzko gave a partial answer to the following question
that arose in the paper [8] on associative memories. Let vectors v1, . . . , vp be
chosen at random uniformly and independently from {±1}n ⊂ Rn. What is the
probability P(p, n) that the subspace spanned by v1, . . . , vp over reals contains
a {±1}-vector different from ±v1, . . . ,±vp, i.e.

span 〈v1, . . . , vp〉 ∩ {{±1}n \ {±v1, . . . ,±vp}} 6= ∅ ?

G.Kalai and N.Linial conjectured (see [11]) that this probability is dominated
by the probability P3(p, n) that some 3 vectors vj1 , vj2 , vj3 of vj , j = 1, . . . , p,
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have a linear combination that is a {±1}-vector different from ±vj1 ,±vj2 ,±vj3 ,
where

(1.1) P3(p, n) = 4

(
p

3

)(
3

4

)n

+O

(

p4
(
5

8

)n)

as n → ∞,

for 3 ≤ p ≤ n. In the paper [11] this conjecture was proven for

(1.2) p ≤ n−
10n

lnn
.

Theorem 1.1 (A.M.Odlyzko [11]) If p ≤ n − 10n
lnn and vectors v1, . . . , vp are

chosen at random uniformly and independently from {±1}n ⊂ Rn, then the
probability P(p, n) that the subspace spanned by v1, . . . , vp over reals contains a
{±1}-vector different from ±v1, . . . ,±vp equals

(1.3) P(p, n) = P3(p, n) +O

((
7

10

)n)

as n → ∞.

The constants implied by the O-notation in (1.1) and (1.3) are independent of
p.

The paper [11] made a significant contribution to estimating the number of
threshold functions P (2, n). Namely, in the paper [17], as a corollary of Theo-
rem 1, T.Zaslavsky’s formula [16] and G.-C.Rota’s theorem on the inequality
of the Möbius function of a geometric lattice to zero (Theorem 4 [12], p.357),
the asymptotics of the logarithm of P (2, n) was obtained. In [3], the Theorem 1
was used together with the original (A,B,C)-construction to improve the lower
bound of P (2, n) obtained in [17] by a factor of ∼ P (2,

⌊
7n ln 2
lnn

⌋
). In [4], the The-

orem 1 was generalized to the case of EK-vectors, where EK = {0,±1, . . . ,±Q}
if K = 2Q + 1, and EK = {±1,±3, . . . ,±(2Q − 1)} if K = 2Q, to obtain the
asymptotics of the logarithm of the number of threshold functions of K-valued
logic.

In [11], A.M.Odlyzko noted that removing constraint (1.2) is an open and
hard problem. The hardness of this problem is manifested in the fact (see [7],
p. 238), that if P(n− 1, n) tends to zero as n → ∞, then one could obtain the
asymptotics of P (2, n) :

(1.4) P (2, n) ∼ 2

(
2n − 1

n

)

, n → ∞.

We will show this fact (see Corollary 2.3) using the properties of η⋆n function
from the paper [5].
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Also, in [14], one can see an implicit connection between estimates of the
probability P(n − 1, n) and the probability Pn that a random Bernoulli n × n
{±1}-matrix Mn is singular:

Pn
def
= Pr(detMn = 0).

In this work, T. Tao and V. Vu investigate the properties of the combinatorial
Grassmannian Gr, consisting of hyperplanes V in an n-dimensional space over
a finite field F, |F| = p > n

n
2 , where p is a prime number, such that V =

span 〈V ∩ {±1}n〉, and estimate Pn based on the formula

Pn = 2o(n)
∑

V ∈Gr, V is a non−trival hyperplane in Fn

P(AV ).

Here AV denotes the event that vectors v1, . . . , vn, chosen at random uniformly
and independently from {±1}n, span V , and P(AV ) denotes the probability of
this event. We can essentially improve the upper bound of P(AV ) in the Small
combinatorial dimension estimate Lemma from [7] (see inequality (6) in Lemma
2.3. from [14]) if we substitute the probability P(v1, . . . , vn−1 span V ) by the
probability

P({v1, . . . , vn−1 span V } ∧ {V ∩ {{±1}n \ {±v1, . . . ,±vn−1}} 6= ∅}).

On the other hand, J. Kahn, J. Komlós, and E. Szemerédi in [7], relying on
a technique developed to estimate Pn, showed (corollary 4, [7]) that there is a
constant C such that the Theorem 1 is true for p ≤ n− C.

In this paper, using the asymptotics of the probability Pn (Theorem 6, [5])

(1.5) Pn ∼ (n− 1)221−n, n → ∞

and the lower bound for P (2, n) (inequality (139) of the Theorem 7 [5])

(1.6) P (2, n) ≥ 2

[

1−
n2

2n

(

1 + o

(
n3

2n

))](
2n − 1

n

)

,

we remove in the Theorem 1 the restriction (1.2) and prove the conjecture of
G.Kalai, N.Linial, and A.M.Odlysko for p ≤ n− 1.

Theorem 1.2 (Main theorem) If p ≤ n−1 and vectors v1, . . . , vp are chosen
at random uniformly and independently from {±1}n ⊂ Rn, then the probability
P(p, n) that the subspace spanned by v1, . . . , vp over reals contains a {±1}-vector
different from ±v1, . . . ,±vp equals

(1.7) P(p, n) = P3(p, n) +O

((
5

8
+ on(1)

)n)

as n → ∞.

The constants implied by the O-notation in (1.1) and (1.7) are independent of
p.
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2 Interdependence between η⋆n -function, P(n, n+
1), and the fraction of singular (n+1)× (n+1)-

{±1}-matrices with different rows.

Let 〈H〉 = {〈w1〉, . . . , 〈wT 〉} ⊂ RPn be a subset of the n-dimensional projective
space, where points 〈wi〉, i = 1, . . . , T, are represented by lines twi ⊂ Rn+1 and
wi ∈ Rn+1, i = 1, . . . , T. Let KH be a simplicial compex defined as follows. The
set of vertices of KH coincides with the set 〈H〉. A subset {〈wi1 〉, . . . , 〈wis 〉} of
〈H〉 forms a simplex of KH iff

span 〈wi1 , . . . , wis〉 6= span 〈w1, . . . , wT 〉.

We define on the set 2RP
n

fin of finite subsets of RPn the function η⋆n : 2RP
n

fin →
Z≥0 by the following formula (see [5]):

(2.1) η⋆n (〈H〉) = rank H̃n−1(K
H ;F), 〈H〉 ⊂ RPn,

if
span 〈w1, . . . , wT 〉 = Rn+1,

and

(2.2) η⋆n (〈H〉) = 0,

if
span 〈w1, . . . , wT 〉 6= Rn+1.

Here H̃n−1(K
H ;F) denotes the reduced homology group of the complex KH

with coefficients in an arbitrary field F.
Let us denote by 〈H〉×s, s = 1, . . . , T , the set of ordered collections

(〈wi1 〉, . . . , 〈wis〉) of different s elements from 〈H〉 and 〈H〉×s
6=0 ⊂ 〈H〉×s, 〈H〉×s

=0 ⊂

〈H〉×s be the subsets

(2.3) 〈H〉×s
6=0

def
= {(〈wi1〉, . . . , 〈wis〉) ∈ 〈H〉×s | dim span 〈wi1 , . . . , wis〉 = s}.

(2.4) 〈H〉×s
=0

def
= {(〈wi1〉, . . . , 〈wis〉) ∈ 〈H〉×s | dim span 〈wi1 , . . . , wis〉 < s}.

For any W = (〈wi1 〉, . . . , 〈win〉) ∈ 〈H〉×n and l = 1, . . . , n, let

Ll(W )
def
= span 〈win−l+1

, . . . , win〉 ⊂ Rn+1;

qWl (H)
def
= |Ll(W ) ∩ 〈H〉|.

(2.5)

Definition 2.1 For any W ∈ 〈H〉×n, the ordered set of numbers

(2.6) W (〈H〉)
def
= (qWn (H), qWn−1(H), . . . , qW1 (H))

is called a combinatorial flag on 〈H〉 ⊂ RPn of the ordered set W .
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For the sake of simplicity, we will use the following notation:

(2.7) W [H ]
def
= qWn (H) · qWn−1(H) · · · qW1 (H).

In [5], it was proven the following theorem.

Theorem 2.2 ([5], [6]) For any p = (p1, . . . , pT ), pi ∈ R, i = 1, . . . , T ,

such that
∑T

i=1 pi = 1, and subset 〈H〉 = {〈w1〉, . . . , 〈wT 〉} ⊂ RPn, such that
span 〈H〉 = Rn+1, the following equality is true:

(2.8) η⋆n (〈H〉) =
∑

W∈〈H〉×n

6=0

1− pi1 − pi2 − · · · − pi
qWn

W [H ]
.

Here, the indices used in the numerator correspond to elements from

Ln(W ) ∩ 〈H〉 =
{

〈wi1 〉, . . . , 〈win〉, . . . , 〈wi
qWn

〉
}

.

Let

(2.9) En = {(1, b1, . . . , bn) | bi ∈ {±1}, i = 1, . . . , n}

and

(2.10) {En}
p = En × · · · × En

︸ ︷︷ ︸

p

.

We say that an ordered collection W = (w1, . . . , wp), wi ∈ {±1}n+1, i =
1, . . . , p, satisfies to KSO-condition, and we write W ∈ KSO(p, n+ 1), iff

(2.11) span 〈w1, . . . , wp〉 ∩
{
{±1}n+1 \ {±w1, . . . ,±wp}

}
6= ∅.

Then

P(n, n+ 1) =
|KSO(n, n+ 1)|

2n(n+1)
=

|{W ∈ {En}n | W ∈ KSO(n, n+ 1)}|

2n2 ,

and

|KSO(n, n+ 1) ∩ 〈En〉
×n
6=0 | =

= |{W ∈ 〈En〉
×n
6=0 | W ∈ KSO(n, n+ 1)}| < 2n

2

P(n, n+ 1).
(2.12)

Corollary 2.3 If limn→∞ P(n, n+ 1) = 0, then P (2, n) ∼ 2
(
2n−1

n

)
, n → ∞.

Proof. Let us apply Theorem 2.2 to the set H = En ⊂ Rn+1 and the collection
of weights p = (1, 0, . . . , 0), where w1 = (1, . . . , 1) ∈ Rn+1. Then

(2.13) η⋆n (〈En〉) = Σ1 +Σ2 − Σ3 − Σ4,
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where

Σ1 =
∑

W∈〈En〉
×n

6=0
, W /∈KSO(n,n+1)

1

W [En]
,

Σ2 =
∑

W∈〈En〉
×n

6=0
, W∈KSO(n,n+1)

1

W [En]
,

Σ3 =
∑

W∈〈En〉
×n

6=0
, w1 /∈{W}, w1∈span〈W 〉

1

W [En]
,

Σ4 =
∑

W∈〈En〉
×n

6=0
, w1∈{W}

1

W [En]
.

From (2.12), we have

Σ1 =
|〈En〉

×n
6=0 | − |KSO(n, n+ 1) ∩ 〈En〉

×n
6=0 |

n!
>

>
2n · · · (2n − n+ 1)− 2n

2

Pn − |KSO(n, n+ 1) ∩ 〈En〉
×n
6=0 |

n!
>

>

(
2n

n

)

−

(
2n

n

)
2n

2

2n(2n − 1) · · · (2n − n+ 1)
(Pn + P(n, n+ 1)),

(2.14)

(2.15) Σ3 < Pn({0, 1})
2n

2

2n(2n − 1) · · · (2n − n+ 1)

(
2n

n

)

,

(2.16) Σ4 < n
(2n − 1)(2n − 2) · · · (2n − n+ 1)

n!
=

(
2n − 1

n− 1

)

.

Here Pn({0, 1}) denotes the probability that a (0, 1)-n× n-matrix, with entries
chosen at random, uniformly, and independenly from {0, 1}, is singular. It follows
from (2.13), (2.14), (2.15), and (2.16) that

η⋆n (〈En〉) >

(
2n − 1

n

)

(1− cn)) ,(2.17)

where

cn =
2n

2

(2n − 1) · · · (2n − n)
(Pn + P(n, n+ 1) + Pn({0, 1})).

Taking into account the inequality (see the formulas (19) and (25) of [5])

P (2, n) ≥ 2η⋆n (〈En〉),
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L. Schläfli’s upper bound (see the formula 2 in [5] and [13])

P (2, n) ≤ 2

n∑

i=0

(
2n − 1

i

)

,

the given fact that P(n, n+ 1) → 0, and the well known results Pn({0, 1}) → 0,
and Pn → 0 as n → ∞ (see [9], [10], [7], [14], [1], [15], [5]), we can conclude that

cn → 0 as n → ∞,

and

P (2, n) ∼ 2

(
2n − 1

n

)

, n → ∞.

Q.E.D.

We define δn,k, k = 1, . . . , n+ 1, as

δn,k
def
=

|〈En〉
×k
=0 |

|〈En〉×k|
, k = 1, . . . , n+ 1.

For W = (〈wi1 〉, . . . , 〈win〉) ∈ 〈En〉
×n
6=0 , we use the following notations:

Ln(W )
def
= span 〈wi1 , . . . , win〉 ⊂ Rn+1;

qWn
def
= |Ln(W ) ∩ En|;

Em
n

def
=
{

W ∈ 〈En〉
×n
6=0 | qWn = n+m

}

, m = 0, 1, . . . , 2n−1 − n.

Theorem 2.4 For sufficiently large n, we have

(2.18)
|KSO(n, n+ 1) ∩ 〈En〉

×n
6=0 |

2n2 ≤
n2

2n−1
.

Proof. Let us take a vector w ∈ Rn+1 in general position to the set En, i.e. for
any vectors wi1 , . . . , win ∈ En ⊂ Rn+1,

w /∈ span〈wi1 , . . . , win〉.

From the Theorem 2.2 applyed to the set H = 〈En〉 ∪ 〈w〉 ⊂ RPn and the
collection of weights p(w) = 1 and p(wi) = 0 for wi ∈ En, i = 1, . . . 2n, we get

η⋆n (〈En〉 ∪ 〈w〉) =
∑

W∈〈En〉
×n

6=0

1

W [En]
=

=

2n−1−n∑

m=0

∑

W∈Em
n

1

W [En]
=

1

n!

2n−1−n∑

m=0

|Em
n | −

2n−1−n∑

m=1

∑

W∈Em
n

(
1

n!
−

1

W [En]

)

≤

(
1

n!
−

1

W [En]
≥

1

n!
−

1

(n− 1)!(n+m)
=

m

n!(n+m)

)

≤
1

n!

(

|〈En〉
×n|(1− δn,n)−

1

n+ 1

∣
∣
∣∪2n−1−n

m=1 Em
n

∣
∣
∣

)

,
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or

η⋆n (〈En〉 ∪ 〈w〉) ≤

(
2n

n

)

(1 − δn,n)−

−
1

n!(n+ 1)

∣
∣
∣KSO(n, n+ 1) ∩ 〈En〉

×n
6=0

∣
∣
∣ .

(2.19)

From the Theorem 5 of the paper [5], we have (see the formula (135) in [5]):

(2.20) η⋆n (〈En〉 ∪ {〈w〉}) ≥

(
2n

n

)[

1− δn,n −
n− 1

2n−1

(

1 + o

(
n3

2n

))]

.

Combining inequalities (2.19) and (2.20), we get

(2.21)
∣
∣
∣KSO(n, n+ 1) ∩ 〈En〉

×n
6=0

∣
∣
∣ ≤ 2n · · · (2n − n+ 1)

n2 − 1

2n−1

(

1 + o

(
n3

2n

))

.

The Theorem 2.4 follows from the inequality (2.21).

Q.E.D.

3 Proof of the Main Theorem.

Let Pm(p, n), m ≤ p ≤ n− 1, denote the probability that in the set of p vectors
v1, . . . , vp ∈ {±1}n ⊂ Rn, chosen at random uniformly and independently, there
are some m vectors vj1 , . . . , vjm such that

α1vj1 + · · ·+ αmvjm ∈ {±1}n for some α1, . . . , αm ∈ R \ {0}.

LetMm(p, n) denote the set of (p×n)-{±1}-matricesM with linear independent
rows w1, . . . , wp ∈ {±1}n satisfying the following property. There are a subset
of m rows wi1 , . . . wim and some nonzero coefficients α1, . . . , αm ∈ R \ {0} such
that

α1wi1 + · · ·+ αmwim ∈ {±1}n.

Let Q(p, n) be the the set of (p × n)-{±1}-matrices M with rank less than p
(< p). Denote by Rm(p, n) the probability that a (p×n)-{±1}-matrixM chosen
at random belongs to Mm(p, n) and by Pp,n the probability that a (p×n)-{±1}-
matrix M chosen at random has rank less than p (< p). Then

KSO(p, n) ⊂

p
⋃

m=3

Mm(p, n)
⊔

Q(p, n),

(3.1) Rm(p, n) ≤

(
p

m

)

Rm(m,n),

8



(3.2) Pm(p, n) ≤ Rm(p, n) + Pp,n ≤

(
p

m

)

Rm(m,n) + Pp,n,

and

(3.3) P(p, n) ≤

p
∑

m=3

Rm(p, n) + Pp,n ≤

p
∑

m=3

(
p

m

)

Rm(m,n) + Pp,n,

It follows from [5] (see Lemma 5 and the proof of the Theorem 6) that for
p = 1, . . . , n

(3.4) Pp,n ≤
(p− 1)2

2n−1
(1 + on(1)).

The proof of the Theorem 1.2 is divided into 3 cases of evaluation Rm(p, n) :

Case 1. 5 ≤ m ≤
n

a(ǫ)
, a(ǫ) =

1

ǫ2
, 0 < ǫ <

1

100
, m ≤ p ≤ n− 1;

Case 2.
n

a(ǫ)
< m ≤ n−

cn

log2 n
, c ≥ 7.36, m ≤ p ≤ n− 1;

Case 3. n−
cn

log2 n
< m ≤ n− 1, c ≥ 7.36, m ≤ p ≤ n− 1.

It was shown in the paper [11] that

(3.5) P2(p, n) = O(p22−n) as n → ∞, for 2 ≤ p ≤ n− 1;

(3.6) P3(p, n) = 4

(
p

3

)(
3

4

)n

+O

(

p4
(
5

8

)n)

as n → ∞, for 3 ≤ p ≤ n− 1;

(3.7) P4(p, n) = O
(
p42−n

)
as n → ∞, for 4 ≤ p ≤ n− 1.

The proofs of cases 1 and 2 repeat some arguments of the papers [11] and [4].
Here we present the proofs of cases 1 and 2 for completeness of presentaton and
clarification of some constants. The proof of case 3 is based on Theorem 2.4.

3.1 Case 1 : 5 ≤ m ≤ n

a
, m ≤ p ≤ n− 1.

Lemma 3.1 For any ǫ, m, p, such that 0 < ǫ < 1
100 , 5 ≤ m ≤ n

a , where
a = a(ǫ) = 1

ǫ2 , and m ≤ p ≤ n− 1, we have

Rm(p, n) <

(
5

8

)n

(1 + ǫ)n as n → ∞.
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Proof. Let M ∈ Mm(m,n). Denote by w1, . . . , wm the rows of M. If columns
1 ≤ j1 < · · · < jm ≤ n of the matrix M are linearly independent, then for
each choice of β1, . . . , βm ∈ {±1}, there will be a unique set of coefficients

α1, . . . , αm with jsth coordinate of the vector αM = ((αM)1, . . . , (αM)n)
def
=

α1w1 + · · · + αmwm equals to βs, s = 1, . . . ,m. Hence, there are at most 2m

sets α1, . . . , αm ∈ R \ {0} such that (αM)j = +1 or − 1 for j = j1, . . . , jm. For
each fixed vector α = (α1, . . . , αm), αi ∈ R \ {0}, i = 1, . . . ,m, probability that
(αM)j = +1 or − 1 for j 6= j1, . . . , jm, is at most

2 · 2−m

(
m
⌊
m
2

⌋

)

by Erdös-Littlewood-Offord lemma (see [2]). Since all columns j, j 6= j1, . . . , jm,
we choose independently of each other, we have

Rm(m,n) ≤ 2m
(
n

m

)[

2 · 2−m

(
m
⌊
m
2

⌋

)]n−m

=

= 2n
(
n

m

)[

2−m

(
m
⌊
m
2

⌋

)]n−m

.

(3.8)

Taking into account (3.1) and (3.8), we get

Rm(p, n) ≤2n
(
p

m

)(
n

m

)[

2−m

(
m
⌊
m
2

⌋

)]n−m

.(3.9)

For 5 ≤ m ≤ n
a , m ≤ p ≤ n− 1, we have

2n
(
p

m

)(
n

m

)

≤ 2n
(
n

m

)2

≤ 2n
(
n
n
a

)2

≤ 2n(a · e)
2n
a = 2n(1+

2
a
log2 a·e);

[

2−m

(
m
⌊
m
2

⌋

)]n−m

≤

(
5

16

)n(1− 1
a )

;

Thus, we have

Rm(p, n) ≤ 2n(1+
2
a
log2 a·e) ·

(
5

16

)n(1− 1
a )

=

(
5

8

)n
(

2
2
a
log2 a·e

(
16

5

) 1
a

)n

.

For any ǫ, 0 < ǫ < 1
100 , if we take a = a(ǫ) = 1

ǫ2 , we get
(

2
2
a
log2 a·e

(
16

5

) 1
a

)

< 1 + ǫ.

Hence, for any ǫ, m, p, such that 0 < ǫ < 1
100 , 5 ≤ m ≤ ǫ2n, m ≤ p ≤ n − 1,

we have

(3.10) Rm(p, n) <

(
5

8

)n

(1 + ǫ)n as n → ∞.

Q.E.D.
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3.2 Case 2 : ǫ2n < m ≤ n − cn

log
2
n
, 0 < ǫ <

1
100

, c ≥ 7.36, m ≤
p ≤ n− 1.

Lemma 3.2 For any ǫ, m, p, such that 0 < ǫ < 1
100 , ǫ

2n < m ≤ n − cn
log2 n ,

where c ≥ 7.36, and m ≤ p ≤ n− 1, we have

Rm(p, n) = o

((
5

8

)n)

as n → ∞.

Proof. Using arguments from the first case, we have:

Rm(m,n) ≤ 2m
(
n

m

)[

2 · 2−m

(
m
⌊
m
2

⌋

)]n−m

≤ 22n
[

2−m

(
m
⌊
m
2

⌋

)]n−m

≤

≤ 22n

[√

2

πǫ2
n− 1

2

] cn
log2 n

= 22n−
cn
2

[(
2

πǫ2

) c
2 log

2
n

]n

.

Then,

Rm(p,m) ≤

(
p

m

)

Rm(m,n) ≤

(
p

m

)

22n−
cn
2

[(
2

πǫ2

) c
2 log2 n

]n

≤

≤ 23n−
cn
2

[(
2

πǫ2

) c
2 log2 n

]n

= o

((
5

8

)n)

for c ≥ 7, 36.

(3.11)

Q.E.D.

3.3 Case 3 : n− cn

log
2
n
< m ≤ n−1, c ≥ 7.36, m ≤ p ≤ n−1.

Lemma 3.3 For any m, n − cn
log2 n < m ≤ n − 1, where c ≥ 7.36, and p,

m ≤ p ≤ n− 1, we have

Rm(p, n) =

(
1

2
+ on(1)

)n

as n → ∞.

Proof. Let M ∈ Mm(m,n) and M(j1, . . . , jm+1) be its m× (m+1)-submatrix
with columns j1 < . . . < jm+1. Denote by Mm(m,n; j1, . . . , jm+1) the set

Mm(m,n; j1, . . . , jm+1)
def
=

def
= {M ∈ Mm(m,n) | M(j1, . . . , jm+1) ∈ Mm(m,m+ 1)}.

Then

(3.12) Mm(m,n) ⊂
⋃

1≤j1<...<jm+1≤n

Mm(m,n; j1, . . . , jm+1).

11



On the other hand, by Theorem 2.4 we have:

Rm(m,m+ 1) =
|Mm(m,m+ 1)|

2m(m+1)
=

=
|KSO(m,m+ 1) ∩ 〈Em〉×m

6=0 |

2m2 ≤
m2

2m−1
.

(3.13)

From (3.12), (3.13), and (3.1), we get

Rm(p, n) ≤

(
p

m

)(
n

m+ 1

)

Rm(m,m+ 1) ≤

(
n

m

)2
m2

2m−1
≤

≤

(
n
cn

log2 n

)2
m2

2m−1
≤

(
e log2 n

c

) 2cn
log2 n

·
n2

2n−
cn

log2 n

=

(
1

2
+ on(1)

)n

.

Q.E.D.

Now Theorem 1.2 follows from (3.3), (3.4), (3.5), (3.6), (3.7), Lemma 3.1,
Lemma 3.2, and Lemma 3.3.

Q.E.D.
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