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On linear-combinatorial problems associated with
subspaces spanned by {+1}-vectors

Anwar A. Irmatov

Abstract

A complete answer to the question about subspaces generated by
{+£1}-vectors, which arose in the work of I. Kanter and H. Sompolinsky
on associative memories, is given. More precisely, let vectors vi, ..., vp,
p < n — 1, be chosen at random uniformly and independently from
{£1}" C R". Then the probability P(p,n) that

span (v1,...,vp) N{{X1}" \ {xv1,...,Lvp}} #0

is shown to be

(2) Q) +o(Grot)) = nme

where the constant implied by the O-notation does not depend on p.
The main term in this estimate is the probability that some 3 vectors
Vjy,Vjy, V55 Of v, j =1,...,p, have a linear combination that is a {+1}-
vector different from +wvj,, +vj,, £vj,.

Keywords. {+1}-vector, Threshold function, singular Bernoulli matrices,
n*-function.

1 Introduction.

In the paper [11], A.M.Odlyzko gave a partial answer to the following question
that arose in the paper [§] on associative memories. Let vectors v1,...,v, be
chosen at random uniformly and independently from {+1}"™ C R™. What is the
probability P(p,n) that the subspace spanned by v, ..., v, over reals contains
a {£1}-vector different from vy, ..., £vp, Le.

span (v1,...,vp) N{{E1}" \ {£v1,..., 20, }} #0 7

G.Kalai and N.Linial conjectured (see [I1]) that this probability is dominated
by the probability P3(p,n) that some 3 vectors vj,,vj,,v;, of v;, j =1,...,p,
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have a linear combination that is a {£1}-vector different from +v;,, £v,, +vj,,
where

(1.1) P5(p, n) :4@) (%)nu) (p4 (g)n) as n— oo,

for 3 < p < n. In the paper [11] this conjecture was proven for

1.2 <n-——.
(1.2) p=n Inn

Theorem 1.1 (A.M.Odlyzko [11]) If p < n — 2 and vectors vy, ..., v, are
chosen at random uniformly and independently from {+1}™ C R"™, then the
probability P(p,n) that the subspace spanned by v1,...,v, over reals contains a
{£1}-vector different from £uvn,. .., v, equals

(1.3) ]P’(p,n)—]P’g(p,n)—FO(<1—7O)n> as n— oo.

The constants implied by the O-notation in (1) and [I.3) are independent of
P.

The paper [11] made a significant contribution to estimating the number of
threshold functions P(2,n). Namely, in the paper [17], as a corollary of Theo-
rem 1, T.Zaslavsky’s formula [16] and G.-C.Rota’s theorem on the inequality
of the Mdbius function of a geometric lattice to zero (Theorem 4 [12], p.357),
the asymptotics of the logarithm of P(2,n) was obtained. In [3], the Theorem 1
was used together with the original (A, B, C')-construction to improve the lower
bound of P(2,n) obtained in [I7] by a factor of ~ P(2, LTH—I;‘L?J ). In [], the The-
orem 1 was generalized to the case of Ex-vectors, where Ex = {0,+1,...,+Q}
if K =2Q +1, and Fx = {£1,£3,...,£(2Q — 1)} if K = 2Q, to obtain the
asymptotics of the logarithm of the number of threshold functions of K-valued
logic.

In [11], A.M.Odlyzko noted that removing constraint (I.2)) is an open and
hard problem. The hardness of this problem is manifested in the fact (see [7],
p. 238), that if P(n — 1,n) tends to zero as n — oo, then one could obtain the
asymptotics of P(2,n) :

(1.4) P(2,n) ~ 2(2n B 1), n — co.

n

We will show this fact (see Corollary 2.3)) using the properties of nX function
from the paper [5].



Also, in [I4], one can see an implicit connection between estimates of the
probability P(n — 1,n) and the probability P,, that a random Bernoulli n x n
{£1}-matrix M, is singular:

P, % Pr(det M, = 0).
In this work, T. Tao and V. Vu investigate the properties of the combinatorial
Grassmannian Gr, consisting of hyperplanes V in an n-dimensional space over
a finite field F, |[F| = p > n%, where p is a prime number, such that V =
span (V N {£1}"), and estimate P, based on the formula

P, = 2° > P(Ay).

VeGr, V is a non—trival hyperplane in F™

Here Ay denotes the event that vectors v1, ..., v,, chosen at random uniformly
and independently from {£1}", span V, and P(Ay) denotes the probability of
this event. We can essentially improve the upper bound of P(Ay ) in the Small
combinatorial dimension estimate Lemma from [7] (see inequality (6) in Lemma
2.3. from [I4]) if we substitute the probability P(vy,...,v,—1 span V) by the
probability

P({v1,...,vn—1 span V} A {V N {{E£1}"\ {Fv1,...,Fv,_1}} # 0}).

On the other hand, J. Kahn, J. Komlés, and E. Szemerédi in [7], relying on
a technique developed to estimate P,,, showed (corollary 4, [7]) that there is a
constant C such that the Theorem 1 is true for p < n — C.

In this paper, using the asymptotics of the probability P,, (Theorem 6, [5])

(1.5) P, ~ (n—1)%22'"" n— oo

and the lower bound for P(2,n) (inequality (139) of the Theorem 7 [5])

(1.6) P(2,n) > 2 {1—;—721 (1—!—0(;—2))] (an_ 1),

we remove in the Theorem 1 the restriction ([2)) and prove the conjecture of
G.Kalai, N.Linial, and A.M.Odlysko for p < n — 1.

Theorem 1.2 (Main theorem) If p < n—1 and vectors v1, ..., v, are chosen
at random uniformly and independently from {£1}"™ C R™, then the probability
P(p, n) that the subspace spanned by vi, ..., v, over reals contains a {£1}-vector
different from £vq,...,£v, equals

8

The constants implied by the O-notation in (I1) and (I.7) are independent of
p.

A7) P(p.n) = Ps(p,n) + O ((5 + on(1))"> as n— oo.



2 Interdependence between n*-function, P(n,n+
1), and the fraction of singular (n+1) x (n+1)-
{£1}-matrices with different rows.

Let (H) = {(w1),...,{wr)} C RP" be a subset of the n-dimensional projective

space, where points (w;), i = 1,..., T, are represented by lines tw; C R"*! and

w; € R i =1,...,T. Let K¥ be a simplicial compex defined as follows. The

set of vertices of K coincides with the set (H). A subset {(w;,), ..., (w;,)} of

(H) forms a simplex of K*# iff

span (w;,, ..., w; ) # span (wi, ..., wr).

We define on the set 2%57@ of finite subsets of RP"™ the function nX : 2%5:” —
Z>q by the following formula (see [3]):

(2.1) n*((H)) = rank H,_(K";F), (H)c RP",
if
span (w1, ..., wr) = R,
and
(2.2) nx((H)) =0,
if
span (wy, ..., wp) # R

Here H,,_1(K";F) denotes the reduced homology group of the complex K%
with coeflicients in an arbitrary field F.

Let us denote by (H)*®, s = 1,...,T, the set of ordered collections
((wiy )y -+ s (wi,)) of different s elements from (H) and (H)%g C (H)**, (H)Z5 C
(H)*® be the subsets

(2:3)  (H)55 E {((wiy), -, (wi,)) € (HY® | dimspan (w, ..., w;,) = s}.
(2.4) (H)X§ def {({wiy), -y (wyi,)) € (H)*® | dim span {(w;,,...,w;, ) < s}.

For any W = ((w;, ), ..., (w;,)) € (H)*" and I =1,...,n, let
Ly (W) def span (w;, ,,,,...,w;,) C R"

gV (H) < | L(W) n (H)].

(2.5)

Definition 2.1 For any W € (H)*", the ordered set of numbers

(2.6) W((H)) < (oW (H),qV ,(H),....q)" (H))

is called a combinatorial flag on (H) C RP" of the ordered set W.



For the sake of simplicity, we will use the following notation:
def

(2.7) WIH]'= g, (H) - 41 (H) -~ i (H).

In [5], it was proven the following theorem.

Theorem 2.2 ([B], [6]) For any p = (p1,...,p1), »i € R, ¢ = 1,...,T,
such that Zil p; = 1, and subset (H) = {{w1),...,(wr)} C RP", such that
span (H) = R"TL the following equality is true:

1_p’i1 —Pi, — "~ Di w

(2.8) mx((H) =) e
W H
We(H)Y:! [ ]

£0

Here, the indices used in the numerator correspond to elements from

La(W) N (H) = {(wi)y oo (i) (w50 } -

n

Let
(2.9) E,={(1,by,...,by) | b €{x1}, i=1,...,n}
and
(2.10) {Ex}P =E, x---x E,.

p

We say that an ordered collection W = (w1, ..., wp), w; € {£1}"H i =
1,...,p, satisfies to KSO-condition, and we write W € KSO(p,n + 1), iff

(2.11) span (w, ..., wp) N {{:I:l}”Jr1 \ {£wy, .. .,:I:wp}} £ 0.

Then

KSO(n,n+1 We{E,}" | WeKSO(n,n+1
Plon 1 = MO L I _ [0V € (B} | W € KSOlnun+ )]

and

2.1 |KSO(n,n+ 1) N(E,) 55| =
' = [{W € (B.)350 | W € KSO(n,n+ 1)}| < 2" P(n,n +1).

Corollary 2.3 If lim, o P(n,n+1) =0, then P(2,n) ~ 2(27:1), n — 0o.

Proof. Let us apply Theorem 22 to the set H = E,, C R"™! and the collection
of weights p = (1,0,...,0), where wy = (1,...,1) € R"*!. Then

(2.13) i ((En)) = T1+ B2 — T3 — By,



where

1
E =
1 Z WIE,]’
We(En) s, WEKSO(n,n+1)
1
E =
2 Z WIE,]’
WE(EH);S, WeKSO(n,n+1)
% = > 1
3 — W[En] 3
WG(E,J;:, w1 {W}, wi€span(W)
1
Yy = .
4 Z WIE,]
We(E) X, wie{w}

From (ZTI2]), we have

|<En>;g —|KSO(n,n+1)N (E,Q;g -
n!

2
2. (2" —n+1) = 2" P, — |[KSO(n,n+ 1) N{(E,) 3"
n:
2

~ (2:> - (27:> (2 — 1) -2-7-1(271 Ty ) En PR L),

Y1 =

(2.15) X3 < Pn({0, 1})2n(2n Y .2.7.1(271 "+ 1) (27:>

(2.16) Si<n

(2"-1)@2"=2)- (2" —n+1) _ <2"—1>.

n! n—1

Here P,,({0,1}) denotes the probability that a (0, 1)-n x n-matrix, with entries
chosen at random, uniformly, and independenly from {0, 1}, is singular. It follows

from (Z13), @), [I5). and (ZI5) that
2" —1

n

(217) x> (77 e,

where )

2n (
CESy T
Taking into account the inequality (see the formulas (19) and (25) of [5])

P, +P(n,n+1) +P,({0,1})).

Cp =

P(2,n) > 213 ((En)),



L. Schlafli’s upper bound (see the formula 2 in [5] and [13])

P(2,n)§2§(2ni—1),

the given fact that P(n,n+ 1) — 0, and the well known results P,,({0,1}) — 0,
and P, — 0 as n — oo (see [9], [10], [7], [14], [1], [15], [5]), we can conclude that

cn — 0 as n— oo,

and .
P(2,n) ~2(2 n_ 1), n — oo.
Q.E.D.
We define 6,1, k=1,...,n+1, as
xk
5n,kdff%, =1,...,n+1.
For W = ((wy, ), ..., (w;,)) € (En)%g, we use the following notations:

L,(W) def span (Wi, ..., w; ) C R

def
@ = [Ln(W) N Eyl;

n

E,Td:ef{W€<En>;g|qXV:n+m}, m=0,1,...,2"" 1 _n.

Theorem 2.4 For sufficiently large n, we have

KSO(m,n+ 1)1 (B)5h] _ w2
on? — 9n—1"

(2.18)

Proof. Let us take a vector w € R"*! in general position to the set E,, i.e. for
any vectors w,, ..., w;, € B, C R""1,
w & span{w;,, ..., w; ).

From the Theorem applyed to the set H = (E,) U (w) C RP" and the
collection of weights p(w) =1 and p(w;) =0 for w; € E,,, i =1,...2", we get

(B Uw)) = Y ﬁ:

We(En) Ly
2n—1_n 1 1 277.71_” 277.71_” 1 1
- > mEtw 2 - T S (5w S

m=0 m=1 WEeEM

1 11 1 oom
(E CWIE] T nl (n=D(n+m) n!(n+m)>
1
<

)

on—1_
EE S




or

T ((Ba) U () < (2) (1= Gn)-

n

(2.19)
‘KSO (non+1) N (B 50|

n'(n+1

From the Theorem 5 of the paper [5], we have (see the formula (135) in [5]):

220 B U = (7)) [1-0, - 51 (1o <;‘—))] |

Combining inequalities (2.19) and ([2:20)), we get

2 -1 3
< 2™ (27 —n—l—l) ST (1+0(§n>).

The Theorem 24 follows from the inequality (Z21).

(2.21) [KSO(n,n+1) N (En)%)

Q.E.D.

3 Proof of the Main Theorem.

Let P, (p,n), m < p < n —1, denote the probability that in the set of p vectors
v1,...,0p € {£1}" C R", chosen at random uniformly and independently, there
are some m vectors vy, ..., v;,. such that

a1V, + -+ apv;,, € {£1}" for some wq,...,a, € R\ {0}.

Let M., (p, n) denote the set of (pxn)-{£1}-matrices M with linear independent

rows w1, ..., w, € {£1}" satisfying the following property. There are a subset
of m rows wj, , ... w;, and some nonzero coefficients a, ..., a, € R\ {0} such
that

cqwyy + -+ apw;, € {1}

Let Q(p,n) be the the set of (p x n)-{x1}-matrices M with rank less than p
(< p). Denote by Ry, (p,n) the probability that a (p x n)-{£1}-matrix M chosen
at random belongs to M, (p,n) and by P, ,, the probability that a (pxn)-{£1}-
matrix M chosen at random has rank less than p (< p). Then

KSO(p,n) UM (p:n) || Qp,n)

1) Rop.) < (1) oo,



p
(32) ]P)m(pv n) < Rm(pv n) + ]P)p,n < <m> Rm(m7 n) + Pp,nv

33 Ep) < Y Rlpn) 4By < 3 (2) Run) 4 By

m=3 m=3
It follows from [5] (see Lemma 5 and the proof of the Theorem 6) that for
p=1,...,n

(p—1)°
2n—1

(34) ]P)Pm < (1 +0n(1))

The proof of the Theorem [[2is divided into 3 cases of evaluation R, (p,n) :

Casel. 5<m<— al)=—~ 0<e<— <p<n-—1
ase 1. _m_a(e), ale) = =, €< 100’ m<p<n-1;
Case 2 i <m<n-— o , ¢>736, m<p<n-—1;
a(e) logyn
Case 3. n — o <m<n-1, ¢>736, m<p<n-—1.
logy 1

It was shown in the paper [I1] that

(3.5) Po(p,n) = O(p*2™") as n — oo, for 2<p<n—1;

D 3\ " . 5\"
(3.6) P3(p,n) =4 5) 7 +O0|(p 3 as n— o0, for3<p<n-1,;
(3.7) Py(p,n) = 0O (p427”) as n—oo, for 4<p<n-—1.

The proofs of cases 1 and 2 repeat some arguments of the papers [I1] and [4].
Here we present the proofs of cases 1 and 2 for completeness of presentaton and
clarification of some constants. The proof of case 3 is based on Theorem 2.4]

31 Casel:5<m<Z2 m<p<n-1

Lemma 3.1 For any €, m, p, such that 0 < € < ﬁ, 5 <m < 2, where
aza(e)zé%, and m < p <n—1, we have

R, (p,n) < <g> (I+€)™ as n— 0.



Proof. Let M € M,,(m,n). Denote by ws,...,w,, the rows of M. If columns
1 <j1 <-+ < jm < n of the matrix M are linearly independent, then for
each choice of f1,...,8n € {£1}, there will be a unique set of coefficients

a1, ...,y with jsth coordinate of the vector aM = ((aM)y,...,(aM),) = Lof
ajwi + -+ + apw, equals to Bs, s = 1,...,m. Hence, there are at most 2™
sets aq,. .., m € R\ {0} such that (aM); =+1or —1for j =ji,...,jm. For
each fixed vector a = (aq, ..., am), a; € R\ {0}, i =1,...,m, probability that
(aM)j =+1or —1for j+#ji,...,Jm, is at most

2'”(@])
)

by Erdos-Littlewood-Offord lemma (see [2]). Since all columns j, j # j1, ..., jm,
we choose independently of each other, we have

({3
() ()]

Taking into account B and B), we get

30 F) <2 (il) G ()]

m < p<n—1, we have

(3.8)

( ) <2a-e)% — on(1+3logy ave).

m )} ( 5 )n(li)
—’g 16 ’
Thus, we have

Ron( )<2n(1+310g2a»e) o n(l—%)_ 5\" 2210g2a-e 16 \"
i) = 16 —\38 5

For any €, 0 < e < if we take a = a(e) = %, we get

1
1 a
<2§10g2 a-e <EG) ) < 1 Te.

Hence, for any €, m, p, such that 0 < € < 100,5§m§e2n, m<p<n-—1,
we have

100’

(3.10) R (p,n) < (g) (14+¢€)" as n— occ.

Q.E.D.

10



32 Case?2:e¢n<m<n— =

1
< : Tog, 717 0<e< 155, 2736, m <
p<n-—1.

Lemma 3.2 For any €, m, p, such that 0 < € < Wlov en<m<n—
where ¢ > 7.36, and m < p <n — 1, we have

cn
logy n?

o =o((2)) o no .

Proof. Using arguments from the first case, we have:

e () ()] )
< 92 W%n—é] T e [( 2 )r

I3 3

me2

Then,

<
m me2 -
o 2 2102 T " n
e l(_2> 2 1 0(<_) > for ¢ > 7, 36.
Te
Q.E.D.

3.3 Case3d: n—y—<m<n-—1,
g2 T

c>736, m<p<n-—1.
Lemma 3.3 For any m, n — —=

log, n
m<p<n-—1, we have

< m < n—1, where ¢ > 7.36, and p,

Rn(p,n) = (%+0n(1))n as n - oo.

Proof. Let M € M,,,(m,n) and M (j1,...,jm+1) be its m x (m + 1)-submatrix
with columns j; < ... < jmt1. Denote by M, (m,n;j1,. .., jm+1) the set
. . def
Mm(ma n;Jji, .- 7]m+1) =
def . .
= {M € My, (m,n) | M(41,.. ., Jm+1) € Mm(m,m+1)}.
Then

(3.12) Mo (m,n) C U Mo (m, 15 41,

coy Jmg)-
1<ji1< .. <jm+1<n

11



On the other hand, by Theorem 2.4] we have:

m(m, 1
Run(m,m + 1) = Mmlmm £ DI _
(3 13) om(m+1)
' [KSO(m,m+ 1) N (En) 50" m2
= <
2m2 — 9m—1 :
From (&12), BI3), and BII), we get

Rin(p,n) < (f;) <m11>Rm(m,m+1) < <;)22ZZ’: <

n \? m? elogyn Toiz n? 1 "
< < o = (5 ton(l) ) -
o 2m—1 c Q" Togam 2
82 T

Q.E.D.
Now Theorem follows from B3), B4), G3), B), BT), Lemma 3]

Lemma 3.2, and Lemma

[1]

Q.E.D.
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