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We construct a fast, transferable, general purpose, machine-learning interatomic potential suitable
for large-scale simulations of N2. The potential is trained only on high quality quantum chemical
molecule-molecule interactions, no condensed phase information is used. The potential reproduces
the experimental phase diagram including the melt curve and the molecular solid phases of nitrogen
up to 10GPa. This demonstrates that many-molecule interactions are unnecessary to explain the
condensed phases of N2. With increased pressure, transitions are observed from cubic (α-N2), which
optimises quadrupole-quadrupole interactions, through tetragonal (γ-N2) which allows more efficient
packing, through to monoclinic (λ-N2) which packs still more efficiently. On heating, we obtain the
hcp 3D rotor phase (β-N2) and, at pressure, the cubic δ-N2 phase which contains both 3D and 2D
rotors, tetragonal δ∗-N2 phase with 2D rotors and the rhombohedral ϵ-N2. Molecular dynamics
demonstrates where these phases are indeed rotors, rather than frustrated order. The model does
not support the existence of the wide range of bondlengths reported for the complex ι-N2 phase.
The thermodynamic transitions involve both shifts of molecular centres and rotations of molecules.
We simulate these phase transitions between finding that the onset of rotation is rapid whereas
motion of molecular centres is inhibited and the cause of the observed sluggishness of transitions.
Routine density functional theory calculations give a similar picture to the potential.

I. INTRODUCTION

Bonding in solid nitrogen is extremely inhomogeneous.
On one hand, the triple bond of nitrogen is very strong
with a dissociation energy of 9.72 eV/molecule [1]. On
the other, interactions between molecules are weak, and
the free energy differences between competing crystal
structures can be extremely small, in the meV/molecule
range.

The many ways to orient the N2 molecule mean that
the pressure-temperature phase diagram of condensed ni-
trogen is extremely complex. The molecular stability of
nitrogen persists to over 100GPa, so crystal phases below
that pressure involve ordering of well-defined molecules.
Above 100GPa, molecular bond dissociates and either
an amorphous solid [2, 3] or the crystalline cubic gauche
structure [4] is observed to form depending on exact P,
T conditions.

Even within the molecular limit, there is a surprisingly
large diversity of crystal structures. In addition to the
melt, a series of six crystalline phases below 10GPa had
been experimentally reported by multiple groups up to
2016 (α, β, γ, δ, δ∗ and ϵ [5–13]), and more recently two
more (λ and ι [14, 15]). Transformations between them
can be sluggish, so experiments tend to show considerable
hysteresis. With the exception of iota, the reported N2
bondlengths in the crystal phases are all close to 1.09Å.

The accurate description of the potential energy sur-
face of the system of interacting N2 molecules plays an
essential role in governing its dynamics and properties.

∗ gjackland@ed.ac.uk

Solid nitrogen has been studied extensively with a vari-
ety of theoretical methods such as free electron gas model
[16, 17] (FEG), density functional theory (DFT) [18],
Møller–Plesset perturbation theory [19] (MP), coupled
cluster (CC) [20], Monte Carlo [21–24] (MC), molecular
dynamics (MD) and others [25–28].

For the purpose of atomistic simulation a number of
interatomic potentials (IP) have been developed. It was
quickly recognised that the simple atom-atom pair po-
tentials are insufficient [26]. The solid phases of nitrogen
have been the subject of extensive MD studies and the
ability to reproduce various N2 phases, has been recog-
nised in early reviews [25, 26]. Interestingly, Nose and
Klein showed that the α phase predicted using LJ atom-
atom pairwise potentials was different from that when
quadrupole interactions were added, and different again
from a formal charge model. [27]. They argued that the
quadrupole-quadrupole interaction is unimportant for N2
at moderate pressure based on the similarity of the δ-N2
phase to the ambient pressure crystal structure of oxygen.
However their simple potential grossly overestimated the
volume of the trigonal cell as compared with the experi-
ment and is inadequate for other crystal phases.

While great progress has been made in identifying rele-
vant physical mechanisms governing the behaviour of the
nitrogen solid phases, an IP for nitrogen which explains
the seven phases below 10GPa has remained elusive. For
a long time it seemed that only potentials specifically fit-
ted to reproduce α → γ could obtain it [29, 30] and
purpose-built potentials were needed to study different
crystal phases [27, 31–33].

Several of the proposed N2 phases are believed to in-
volve disordered or freely rotating molecules. These two
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situations are difficult to resolve experimentally, but they
constitute an ideal problem to tackle with MD. However
accurate IPs have remained the problem. It is perhaps
surprising that for such a fundamental system as N2 there
is no general purpose transferable IP capable of repro-
ducing well established experimental phases as well as
the liquid state. Currently, the NIST Interatomic Poten-
tials repository lists just one 6-12 LJ potential with the
following note: “(...) its ability to model structures other
than dimers is unknown” [34, 35]. A brief test verifies
that it is rather insufficient for condensed phases.

Machine learning interatomic potentials (MLIP)
trained on density functional theory data have become
a go-to method for describing complex phases in con-
densed matter. We have developed a flexible machine
learning package, Ta-dah! , which enables us to imple-
ment this, alongside community codes CASTEP and
LAMMPS [36, 37]. Unfortunately, much understanding
of the underlying chemistry is lost in the gigabytes of
data needed for an accurate DFT calculation. This is
then compounded by deriving a potential via “machine
learning”, a process which is good at replicating nature,
but not equivalent to “researcher understanding”.

Moreover, machine-learning models are often only re-
liable for interpolating within the regime where they are
trained - successful extrapolation requires physical in-
sight.

The Frenkel line for nitrogen was previously studied
with a Ta-dah! potential trained directly on CCSDT(Q)
data [38]. Therein we introduced a self-teaching method
for machine learning, in which a series of trial MLIPS are
built, each of which is used to generate a training dataset
for its successor. While the model was successful it is still
just a black box with limited transferability beyond the
training dataset.

Consequently, here we build a readily understandable
model for nitrogen with greatly improved transferabil-
ity. We demonstrate that the low pressure N2 phases
can be readily understood by two-molecule pairwise in-
teractions, trained with no reference to condensed phase
electronic structure calculation.

This paper is structured as follows: first, we outline the
machine-learning procedure as implemented in the Ta-
dah! package; second, the methods are then developed
to generate a model based on CCSDT(Q) calculations;
third, the physical accuracy of the potential is assessed
in large-scale simulations by comparison to the known
experimental phase diagram of N2.

II. POTENTIAL DEVELOPMENT

The potential developed in this report makes use of
our Ta-dah! software which is publicly available at
https://git.ecdf.ed.ac.uk/tadah along with an ex-
tensive documentation. The package is designed to as-
sist in the development of custom-made MLIPs and de-
ployment of those in LAMMPS[37] via a provided plu-

gin. Ta-dah! is written in modern C++ and its modular
structure allows rapid implementation and testing of new
ideas, followed by seamless deployment to large-scale MD
simulations. The code provides an easy-to-use command
line interface as well as C++ application programming
interface for more advanced use.

The small energy differences between different com-
peting solid phases require extremely accurate training
datasets, including accurate dispersion forces as well as
an adequate parametrisation procedure. Ta-dah! incor-
porates a two-stage fitting procedure where the nonlin-
ear hyperparameters in the model’s descriptors are si-
multaneously optimised along with the usual machine-
learning of model parameters with linear algebra. The
detailed description of Ta-dah! machine-learning and hy-
perparametrisation procedure is published elsewhere[39].
Here we limit our discussion to physically meaningful de-
tail.

The local energy of molecule i is obtained by iterat-
ing over all of its nearest neighbouring molecules within
a center of mass cutoff distance rc = 12Å and sum-
ming over each molecule-molecule interaction in a pair-
wise fashion. The total energy of the system, Etotal is
then obtained by accumulating all local molecular ener-
gies Ei

Etotal =
∑

i

Ei (1)

The atomic forces are readily available from the deriva-
tive of the total energy with respect to the atomic posi-
tions. However, the force between bonded atoms is re-
moved using the SHAKE algorithm [40] as implemented
in LAMMPS such that the bond length is kept fixed
at 1.1014Å. We note that the self-consistency loop in
SHAKE is unnecessary for diatomic molecules, so the al-
gorithm is much faster than for more complex molecules.

The choice of rigid bonds means the vibrational degree
of freedom is not excited. At 2739 cm−1, the mode is only
excited at around 4000K, well above any temperatures
considered here. Rigid bonding means that the potential
has no spurious contribution to the heat capacity, as a
flexible bond would. Nevertheless, the inclusion of the
bond length in the descriptor implies that the bond en-
ergy varies with environment, so the functional form can
fit the weakening of the triple bond with pressure.

A. Descriptor and regression choice

For the N2 molecular system each atom is permanently
associated with a molecule. The local atomic environ-
ment of each atom is captured by a combination of two-
body (eq. 3) and many-body descriptors (eq. 6) as im-
plemented in Ta-dah! . To represent the interaction be-
tween molecules i and j we choose descriptors to have
chemically intuitive meaning.

The two-body terms can be loosely associated with
short-ranged repulsion and van der Waals interactions
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while the many-body term captures complex electric mul-
tipole interactions. In practice both terms are fitted si-
multaneously by polynomial regression.

This means that the energy and forces for each
molecule can be written as a sum over interactions be-
tween molecules - there are no three-molecule terms.
Chemically, this assumes that the electronic structure of
the molecule is only perturbatively affected by another
nearby molecule. It exploits the fact that quantum forces
calculated via the Hellmann-Feynman theorem are sim-
ply electrostatic in nature. We further assume a rigid
bond, i.e. that the N2 vibration is in its ground state,
such that it makes no spurious contribution to specific
heat or entropy. These assumptions imply that our sim-
ple potential is designed to work at pressures where the
triple-bond remains intact and at temperatures up to
2000K.

Every intermolecular (i − j) configuration is uniquely
described by the set of six interatomic distances defined
between four atoms which are then used as an input
to calculate atomic descriptors. Here i1 and i2 are two
bonded atoms of molecule i and similarly j3 and j4 be-
long to molecule j. The numerical subscripts label atoms
in a given molecular interaction, such that the separation
between atoms i2 and j3 is r23. In total, four atomic de-
scriptors are computed, one per atom, for every molecule-
molecule interaction. Once all four descriptors are cal-
culated, the energy for this particular interaction is ob-
tained and contributions to the forces are integrated ac-
cordingly. The descriptors are then discarded and the
process is repeated for next i− j pair.

We use blip basis functions, B, for the expansion of
both two- and many-body descriptors [41]. The blip is
composed piecewise out of B-spline polynomials in the
four intervals [-2,-1], [-1,0], [0,1] and [1,2]. B-splines are
localised basis functions used to represent functions in
terms of cubic splines [42]. The blip function is defined
for our purpose as

B(rb) =





1− 3
2r

2
b +

3
4 |rb|3 if 0 < |rb| < 1

1
4 (2− |rb|)3 if 1 < |rb| < 2

0 if |rb| > 2

(2)

where rb = η(r − rs) and rs is a parameter which cen-
tres the function on a grid position and η controls its
width such that η/4 is the span of a blip. The shape of
the blip functions is similar to Gaussians but because of
their full localisation the number of computations can be
significantly lower as the latter has infinite span. With
the automated hyperparameter tuning, as implemented
in Ta-dah! , we were able to reduce both two- and many-
body blip grids to just four sets of parameters (SM).

The component of the pairwise descriptor of the p-
th atom is accumulated by summing over three relevant
distances using blip basis functions Bn (eq. 2), where n

labels one of {rs, η} sets of hyperparameters.

vnp =

4∑

q=1
q ̸=p

Bn(rpq)fc(rpq) (3)

where the sum runs over the neighbours of atom p within
its own molecule and in one adjacent molecule and fc is
the cosine function (eq. 4) which ensures smooth energy
cutoff

fc(r) =

{
0.5

[
cos

(
πr
rc

+ 1
)]

if r ≤ rc

0 otherwise
(4)

The four-body interactions are captured by first com-
puting local atomic densities using Gaussian Type Or-
bitals [43, 44] (eq. 5):

ψη,rs
lx,ly,lz

(r) = xlxylyzlz exp
{(

− η|r − rs|2
)}

(5)

where x, y and z are components of the displacement
vector rpq between two interacting atoms.

The summation is constrained (eq. 6) to ensure rota-
tional invariance of the descriptor ϕ, despite ψη,rs

lx,ly,lz
(r)

not having this property.

ϕL,η,rs
p =

L∑

lx,ly,lz

L!

lx!ly!lz!

( 4∑

q=1
q ̸=p

ψη,rs
lx,ly,lz

(rpq)
)2

(6)

In the current work, this many-body expansion is trun-
cated at L = 1, so that lx!, ly!, lz! and L! are all equal to
1. Combined with the four choices of hyperparameters η
and rs, this means we use eight components to the many
body descriptor for each atom. While in principle this
results in a three-body descriptor (the expansion up to
the p-orbital) it is found sufficient when combined with a
linear regression and second order polynomial basis func-
tions. By taking the combinations of descriptor’s compo-
nents, an accurate representation of the four dimensional
PES of two interacting N2 molecules is obtained.

The descriptor vectors are used to construct a design
matrix Φ. The optimal set of weights, w, is obtained by
employing the Bayesian approach to linear regression

w =
1

σ2
ϵ

ΣNΦT t (7)

where, t is a vector of targets containing training energies
and the covariance matrix Σ is given by

Σ−1
N =

1

σ2
p

I+
1

σ2
ϵ

ΦTΦ (8)

The complexity of the model is controlled by the ridge
regression with the regularisation parameter λ = σ2

ϵ /σ
2
p

which is optimised by the evidence approximation algo-
rithm [45]. This automated procedure avoids model over-
fitting given a sufficiently large training database.
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B. Training Database

The training set is built upon publicly available quan-
tum chemistry data for two interacting N2 molecules
[20]. Therein a coupled cluster method with single, dou-
ble and noniterative triple excitations (CCSD(T)) were
used to obtain 408 data points for 26 distinct angular
configurations. The bond length was fixed at 1.1014Å.
The data were further refined by including the effects of
quadruple excitations, relativistic effects and core-core
and core-valence correlations. A five-site per molecule
analytical model is given in the paper which allows one to
generate CCSDT(Q)-based energies. This model, called
CCSDT(Q)-5, is the only external input to our train-
ing data - we do not use any DFT data. In principle,
CCSDT(Q)-5 could be applied directly in MD using 5
massless sites in the molecule; however, the presence of
the Coulomb term results in the infinite span.

III. MOLECULAR DYNAMICS

Our Ta-dah! package provides a plugin for the
LAMMPS code to allow the custom made potential to
be employed in large-scale MD. The constraint on the
bond lengths was enforced using LAMMPS fix SHAKE.
For a diatomic molecule this is trivial but for a five-site
linear model such as CCSDT(Q)-5 the algorithm is un-
stable and can generate bogus dipole moments.

Calculations used the NPT ensemble with Nose-Hoover
thermostat and barostat for single-phase materials, and
the NPH ensemble for the two phase calculations. A
timestep of 1 fs is used throughout.

The melting curve is obtained using the phase-
coexistence method with the following procedure. The
initial box contains the relevant solid phase for a given
pressure. The initial configuration is equilibrated for
20 ps in the NPT ensemble with temperature and pres-
sure being close to the expected melt point. After ini-
tial equilibration, approximately half of the box is kept
frozen while the remaining molecules are first heated to
1.5Tm, where Tm is experimental melting temperature,
then cooled down to the initial temperature. The stages
of melting and cooling takes 10 ps each. Finally the NPH
ensemble is used to simulate the entire system for at least
350 ps. The long simulation time is required for the sys-
tem to equilibrate. There are three possible scenarios at
this stage. The molecules in the box either completely
solidify, melt or a mixture of solid and liquid is present
at the end of the simulation. The first two cases indi-
cate that the initial temperature was too low or to high
respectively. The latter case means that the simulation
has equilibrated at thermodynamic pressure and temper-
ature conditions somewhere on the melt curve. The time
averaged kinetic energy from the last 50 ps is assumed to
be corresponding to the melting temperature.

IV. NPT MD - CRYSTAL PHASES

We begin exploration of the N2 system by running
NPT MD at different pressure-temperature conditions to
establish at least metastability of solid phases. This also
allows us to identify the approximate position of the melt
curve and some of the solid phases boundaries. Those ini-
tial findings are then used to fully resolve the phase di-
agram of N2 (VII). The obtained phase diagram is then
compared with zero temperature DFT calculations (V).
The aim is to investigate all relevant phases under 10GPa
which are shown on the experimental phase diagram in
Fig. 1.

FIG. 1. The experimental phase diagram of N2 shows a
number of competing phases. Figure adapted from [46], the
λ-N2 phase boundary (dashed line) from [14], the melt curve
is from [47].

A. Alpha phase (α-N2)

Figure 2a) shows alpha nitrogen α-N2 which is a low
temperature and low pressure phase. The molecular cen-
tres of the α-N2 are located on the face centred cubic
(fcc) lattice. Each molecule is aligned along a different
cube body diagonal which preserves cubic symmetry. In
NPT molecular dynamics simulation the α-N2 was found
to be stable at temperatures above 25K which is in agree-
ment with the experimental evidence [7, 48]. At temper-
atures below 20K it transitions to tetragonal γ-N2 phase.
The computed lattice parameter at 0.4GPa and 30K is
a = 5.42Å and is in excellent agreement with the ex-
perimental measurement [48]. Upon heating, the α-N2
libron oscillations increases and around the experimen-
tally observed phase transition to the β-N2 phase there
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FIG. 2. The solid phases of N2 under 10GPa. (a) α-N2, cubic with molecules along (111), (b) β-N2, hcp with rotating
molecules, shown by spheres (c) γ-N2, tetragonal, with molecules oriented along (110) (d) δ-N2, with spheres indicating 3D
rotors and 8-atom rings indicating 2D rotors. (e) tetragonal δ∗-N2: the striped sphere show the preferred orientation of the
molecules which primarily rotate about the tilted axis; the molecules are oriented in preferred direction, but reorient through
180 degrees on a picosecond timescale. (f) rhombohedral ϵ-N2 (g) monoclinic λ-N2.

is a sudden change to full 3D rotors. We note that the
molecular centres remain on the fcc sites.

The compression of α-N2 at 15K produces a transition
to a twinned microstructure of γ-N2 at 7GPa, suggest-
ing that the transformation path to this defective struc-
ture is martensitic. The transition is hindered by the
high-energy barrier between the structures along a path
that requires both unit cell strain and molecular rotation.
We use the NPT ensemble, but the twinning reduces the
overall strain in the supercell. The twin boundary has a
higher energy than the perfect crystalline γ-N2, indicat-
ing significant hysteresis in the transition.

B. Beta phase (β-N2)

The β-N2 is a dominant high temperature phase up
to around 9GPa with molecular centres located in a
P63/mmc structure close to hexagonal close packing
(hcp). The high symmetry P63/mmc can be maintained
if the molecules point along the z-axis, but this is im-
plausible for a high-T phase and more likely indicates
that the atomic positions are highly disordered or ro-
tating [48] (see Fig. 2a)). The MD simulations show
that the β-N2 phase remains stable in the PT condi-
tions where it is experimentally observed. As expected,
the molecules are close to freely rotating. The hcp lat-

tice parameters and their respective c/a ratios, as ob-
tained from MD simulations at experimentally relevant
pressures and temperatures, are close to the ideal

√
8/3

ratio for hexagonal close-packed hard spheres. For exam-
ple, the calculated lattice parameters at 0.5GPa and 50K
are a = 3.835Å and c = 6.269Å. The obtained values
agrees well with the experimental findings of a = 3.861Å
and c = 6.265Å [48]. Upon heating in the NPT ensemble
the β-N2 melts, while the quenching results in a twinned
but ordered structure with molecular centres remaining
on the original hcp sites.

C. Gamma phase (γ-N2)

The γ-N2 phase is a low temperature and moderate
pressure ordered phase of nitrogen and is shown in Fig.
2c). Its crystal structure has been determined by X-ray
diffraction as tetragonal with two molecules per unit cell
at Wyckoff position 4f of space group P42/mnm [48].
Equivalently, γ-N2 can be described as a body centred
tetragonal (bct) lattice with a central molecule pointing
along (110) direction and the corner molecule pointing
along (110), orthogonal to the central one. In NPT sim-
ulations at temperatures below 50K the γ-N2 phase re-
mains at least metastable across the wide pressure range
from 0.1GPa up to approximately 5GPa. The calculated
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unit cell parameters are within 1% of the experimental
ones [48]. The structure can be related to α-N2 via the
Bain path as follows. One places the molecular centers
on an fcc lattice, and reorients the molecules from point-
ing along {111} (α-N2) to along (110),(110), (β-N2) this
breaks the cubic symmetry. The c/a ratio drops from

√
2

to 1.29.

D. Delta phase (δ-N2)

FIG. 3. (Left) Probability density for atoms in the δ-N2 phase
from NPT MD at 4GPa and 200K. Two distinct molecular
motions can be identified: sphere-like (green) and disc-like
(blue). The kidney bean shape of discs indicates that the
motion is not fully planar which is in agreement with the
experimental findings [9]. (Right) Mean atomic positions av-
eraged over 1 ps. Molecules show nearly perfect spherical or
disc-like motion.

The cubic δ-N2 phase has the Weaire-Phelan A15
structure (β-tungsten) space group Pm3n with eight
molecules per unit cell and is similar to γ−O2 and β−F2

at 50K and atmospheric pressure [9, 11]. The unit cell of
the δ-N2 phase (Fig. 2d)) consists of the two molecules lo-
cated at 2(a) Wyckoff sites at (0, 0, 0) and ( 12 ,

1
2 ,

1
2 ) which

are approximately spherically disordered (represented as
large spheres on Fig. 2d)), however they preferentially
avoid pointing along the cubic ⟨100⟩ directions [13]. The
remaining six molecules are located at 6(d) Wyckoff sites
at (0, 14 ,

1
4 ) and the respective cubic symmetry equiva-

lents and their motion is disc-like.
The MD simulations confirms the existence of 3D ro-

tors at 2(a) Wyckoff sites and discs on 6(d) sites (Fig. 3).
It is observed that for both spheres and discs the center
of the molecule moves significantly away from its respec-
tive symmetry site under thermal motion. This results in
a saddle shaped atomic distribution around the discs in
agreement with [9]. These disclike molecules form chains
rotating around the x, y or z-direction. Heating of δ-N2
does not result in solid-solid phase transitions: the phase
ultimately melts once over the experimentally observed
melting curve. Quenching at 5.7GPa proceeds through
initial ordering of the disc-like molecules and associated
distortion of the unit cell to a tetragonal lattice. The lat-
tice parameter, as obtained from NPT MD, at 5.7GPa

and 293K is a = 6.167Å agrees very well with the exper-
imental value [13].

E. Delta* phase (δ∗-N2)

The tetragonal δ∗-N2 (Fig. 2e)) is a unit-cell dou-
bling from δ-N2. Its space group has been proposed
as P42/ncm in 1998 by [49] and finally resolved in
2009 by [13]. The measured unit cell parameters are
a = 8.063(5)Å and c = 5.685Å at 14.5GPa and 293K
[13], giving a c/a ratio just 0.3% different from δ-N2. The
δ∗-N2 phase is considered an intermediate phase between
fully ordered ϵ-N2 phase and almost perfectly disordered
δ-N2 phase. The δ∗-N2 shares the same positions for the
molecular centres as δ-N2 and ϵ-N2 [11, 13]. However, in
the δ∗-N2 phase all molecules appear to show preferred
directions. The refinement of the experimental structure
has been performed in [13] who reported disc-like coor-
dinated motion where molecular orientations are either
paired or perpendicular to each other. However, they
note that their proposed structure does not produce the
observed number of Raman and infrared modes.

In MD simulations at 10GPa and 200K δ∗-N2 simu-
lation box is tetragonal with molecular centres remain-
ing on P42/ncm sites, however the rotations are signifi-
cantly reduced relative to δ-N2. The explanation for why
this is beneficial, is as follows. Along a line of ex-disc
molecules which previously rotated about a z-axis (blue
in Fig. 4) the molecules now point alternately along (110)
and (110), with adjacent "chains" alternating (i.e. (110)
and (110)). This freezing-in and period doubling alone
would cause a cubic-tetragonal transition, to space group
P42/ncm

The former-spherical rotors now rotate in 2D, about
an axis with no obvious crystallographic direction, and
its mirror image. The rotating molecule is tilted away
from the fixed direction of the ex-z-disc molecules The
tetragonal symmetry breaking means that the ex-discs
rotation around x and y (red in Fig. 4) remain sym-
metry equivalent. Curiously, these lock into orienta-
tions roughly (0, 12 ,±

√
3
2 ) with a fourfold AABB repeat.

These molecules reorient through 180o on a picosecond
timescale, significantly more often than the ex-z-discs.
But, they are essentially librating and there is no sign
of static disorder. All these observations are consistent
with the X-ray data [13].

Thus, we can envisage the δ∗-N2 phase as due to
the ex-z-disc molecules ceasing to rotate and forming a
favourable ABAB chain with molecules at 90o to their
neighbours. This lock-in causes the ex-spheres to rotate
preferentially about an axis which avoids the locked-in
ex-z-disc. Finally, the ex-xy-disc molecules also stop ro-
tating, in directions so as to avoid the ex-spheres, which
requires an AABB repeat.

The heating of δ∗-N2 increases symmetry to cubic
Pm3n structure (δ-N2) while cooling results in a dis-
torted tetragonal lattice. The high rate of quenching in
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FIG. 4. (a) MD snapshot taken from the NPT MD simulation of the δ∗-N2 phase at 120K and 5.7GPa. The view is along
[110]-direction. (b) and (c) The time averaged atomic positions over 2.5 ps for [110] and [001] direction respectively. (d) The
unit cell of the δ∗-N2 phase obtained by time averaging atomic positions. The unit cell has the same orientation along the [010]
direction as Fig. 7 in [13]. Green coloured molecules correspond to ex-spheres in [13] while red and blue to ex-discs of type 1
and 2 respectively. (e) The crystal orientation is as in (d) but with added trajectory lines and molecules removed for clarity.
The trajectory lines are computed over 4000 MD steps (200 ps) where atomic positions in every step are averaged using 2.5 ps
smoothing window.

MD simulations (approx. 100K/ns) results in a synthe-
sis of crystals with a number of different molecular ori-
entations, similar to ϵ-N2 but not always identical. We
propose that there is a strong reduction in energy from
orienting the molecules along one of several preferred di-
rections, but only a weak additional energy gain from
choosing the particular set of orientations associated with
ϵ-N2. By comparison to the nanosecond timescale of the
MD, in experimental settings involving disordered phases
the sample is first annealed at high temperature before
cooling it down at the slow rate of 10K/hr [13].

At 200K and 10GPa the lattice parameters obtained
from MD simulations are a = 8.36Å and c = 5.91Å giv-
ing c/a ratio of 0.706 which is slightly below the 0.707
expected from the cubic crystal. Such a small distor-
tion from Pm3n to P42/ncm is expected for this phase
at relatively low pressure [49] given the phase transition
between δ-N2 and δ∗-N2 appears to be second order.

F. Epsilon phase (ϵ-N2)

The R3c rhombohedral ϵ-N2 phase is the orientation-
ally ordered version of the cubic δ-N2 phase distorted
along ⟨111⟩ direction - the resulting angle between axes is
around 5◦[11]. The molecular center positions are slightly
displaced as compared with the δ-N2. The rhombohe-
dral unit cell contains eight ordered molecules. ϵ-N2 re-
mains stable at low T in approximately 2 to 25GPa range
[10, 11]. The similarity between δ-N2, δ∗-N2 and ϵ-N2 is
apparent from their respective Raman stretching-mode
spectra [10] each containing two distinct branches - in-
tense lower frequency peak and less pronounced higher
frequency peak, which can be associated with the 2(a)
and 6(d) sites in δ-N2 and their subsequent distortions.
The ϵ-N2 phase can either be obtained by compressing
γ-N2 phase at low temperature or δ-N2 phase at room
temperature [12]. It is also possible to obtain it by slowly
cooling δ-N2 or δ∗-N2 phases which results in ordering of
molecules. However such an experiment is difficult to re-
produce using limited timescale in MD simulations. The
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MD hexagonal unit cell at 10GPa and 80K has dimen-
sions a = 7.98Å and c = 11.07Å. The unit cell and the
increase in c/a ratio with pressure and agree well with
the experimental values [11, 12].

G. Lambda phase (λ-N2)

The λ-N2 phase [14] has been suggested as having
sheets of nitrogen molecules and P21/c symmetry. A
low energy DFT structure with P21/c symmetry has
been found with 4 atoms per unit cell, located on the 4e
Wyckoff positions [18]. This phase is a good fit to the ex-
perimental X-ray pattern, but its two-molecule unit cell
appears incompatible with the three vibrons observed in
Raman spectroscopy. The λ-N2 phase can be consid-
ered as a distortion from the tetragonal γ-N2 phase. The
phase transition can be realised by gradually tilting γ-N2
molecules along the tetragonal c-direction. This implies
a low (or zero) energy barrier on compression from the γ-
N2 phase as there is no reshuffling of molecular centres.
The description of the structure as “Layered” is highly
misleading: molecular centers lie close to an fcc lattice,
with each molecule having 12 nearest neighbours. With
our potential, the zero-temperature structure relaxation
favours the λ-N2 phase over γ-N2, however the molecular
rotation away from the (110)-direction is much smaller
as compared with the DFT structure [18]. Our constant-
stress NPT MD simulations in the experimental region
where the λ-N2 phase has been observed started with this
initial structure, but spontaneously transform the the γ-
N2 phase. Still, the λ-N2 phase can be simulated with
MLIP using an isobaric ensemble with fixed c/a ratio.

Experimentally, the transformations between ordered
phases γ-N2-λ-N2-α-N2 have considerable hysteresis and
are sensitive to details of the sample history. Our calcula-
tions reflect this, showing that even at fixed temperature
and pressure, one can drive the transitions by applied
strain.

H. Iota phase (ι-N2)

The ι-N2 phase[15] was reported to be a 96-atom unit
cell molecular nitrogen structure, with bondlengths rang-
ing from 0.88 to 1.13Å. The MLIP cannot describe this
variation in bondlength, and DFT simulation gives an
ι-N2 structure with nearly equal bondlengths. A sim-
ulation with the experimental cell and molecular orien-
tations, but using the MLIP fixed bondlength, suggests
that the ι-N2 structure is metastable and has low energy,
but is not the most stable phase.

Method α→ γ γ → ϵ γ → λ

PBE-vdW -0.1 7.1 0.0
SCAN 0.1 3.2 0.7

SCAN-vdW -0.4 3.1 -0.1
Expt. 0.35 1.9 2.0
MLIP -0.6 4.1 -

TABLE I. Transition pressures in GPa found using different
methods. Experimental values from [10, 14]. Negative tran-
sition pressures are estimated from data.

V. VALIDATION VIA GROUND STATE
ENERGIES FROM DFT

Although we do not use it for training here, Den-
sity Functional Theory (DFT) has become the standard
method for producing data for machine-learned poten-
tial. Since no solid-phase data was used in the fitting,
the DFT ground state energy of the crystal structures
is a good test of transferability. However, DFT is not a
unique theory: results depend on the choice of exchange-
correlation functional, and it does not give especially ac-
curate results for systems with weak dispersion interac-
tions.

Unfortunately the situation with DFT is not clear: ac-
cording to Materials Project [50], the α-N2 Pa3 is unsta-
ble against a P213 distortion which was first proposed
more than 60 years ago [51] but not proven in subse-
quent work [52]. We calculated this structure, as well as
the other ground states (γ-N2, ϵ-N2 and λ-N2) with three
different exchange-correlation functionals and MLIP. In
Fig. 5 we see that the overall theory picture for is similar,
with pressure favouring λ-N2 over the remaining crystal
structures. At very low P α-N2 is the most stable phase
for SCAN with the α→ γ transition pressure of 0.1GPa.
However, the transition pressure is highly sensitive to
choice of functional, with this transition even shifting to
negative pressures for PBE-vdW, SCAN-vdW and MLIP.

Our potential also reproduces the correct sequence
α→ γ → ϵ with increasing pressure, but like PBE it has
λ-N2 as the stable phase at zero pressure. The MLIP
predicts a transition to the ϵ-N2 phase at 4.1GPa which
agrees with early measurements [10, 11] but contrasts
with recent experiment [14, 15] where λ-N2 or ι-N2 is
expected to be the most stable phase.

This can be seen in Fig. 6 where different choices of
functional give some 10% variation in density at a fixed
pressure. Our potential falls within the uncertainty of
these DFT calculations. Similarly with the sequence of
phase transformation under static relaxation (Fig. 5).

All functionals show that the sequence with increasing
pressure is α → γ → λ, although the transition pres-
sures are functional dependent. In some cases the re-
quired pressure at T=0K is negative for the transition
to happen: this is unphysical, but the implied densities
can be reached through thermal expansion. However the
enthalpy differences are very small, so thermal and zero-
point effects may be significant.
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FIG. 5. Enthalpy difference (relative to α-N2) between ordered α-N2, γ-N2, ϵ-N2 and λ-N2 phases as calculated by PBE-vdW,
SCAN + SCAN-vdW, and the MLIP. These calculations exclude phonon free energy. For exact transition pressures, see table
I)

FIG. 6. Equation of state for nitrogen calculated from DFT (PBE-vdW, SCAN, SCAN-vdW) and our potential at T=0.
Rightmost figure shows comparison of liquid T=300K with the experimental reference [53].

The ι-N2 phase[15] was reported to be a 96-atom unit
cell molecular nitrogen structure which exhibits an excep-
tional range of intramolecular separations between 0.88
and 1.13Å. The MLIP cannot describe this variation
in bondlength, and our DFT calculations, set up in the
experimental structure, relax to equalise the bonds at a
conventional length, around 1.08Å. These relaxed struc-
tures are metastable, but the wide range of bondlengths,
reported for this structure cannot be understood with
either DFT or MLIP.

The MLIP gives similar qualitative behaviour, with
EoS and transition pressures within the uncertainty of
DFT functionals. For the present study, this is the best
possible DFT-based validation of the MLIP.

VI. FACE CENTRED STRUCTURES

One could consider the three phases α-N2, γ-N2 and
λ-N2 as decorations of molecules on a face-centred cu-
bic/tetragonal lattice. In each case, the symmetry-

breaking to Pa3, P42/mnm, and P21/c is fully deter-
mined by the orientation of the diatomic molecule cen-
tred on an fcc lattice. The relaxation of the lattice to
tetragonal or monoclinic does not introduce any further
change in symmetry.

The fact that these lattice relaxations are small is con-
cealed by the choice of unit cell reported. In fact, the
tetragonal distortion of the γ-N2 phase is only 3% in a
and b, and 6% in c away from cubic. In λ-N2 at 5GPa our
SCAN-DFT calculations give a = 3.473Å, b = 3.481Å,
c = 6.354Å, β = 132◦. Compared to conventional fcc,
these axes map to ( 12 ,

1
2 , 0), ( 12 ,− 1

2 , 0) and (− 1
2 ,− 1

2 , 1),
giving a distortion from fcc of 1.3%, 1.5% and 7◦.

These phases are thereby linked through martensitic
transformations. If post-transformation structures are
examined via single-crystal diffraction, strain relaxation
will result in twinned microstructures[54]. We have seen
this in simulations, where the transformations in NPT
molecular dynamics give twinning, but the transition can
be realised by applying strain (varying the c/a ratio).

These structures have molecules oriented in different
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directions, and can be mapped to an antiferromagnetic
fcc lattice, the decoration of which remains a contentious
issue [55, 56]. Quadrupole interactions do not favour
alignment, and are reasonably long ranged. The Pa3
arrangement is the most favourable decoration of an fcc
lattice with quadrupoles, but it is unstable against lattice
distortions[57]. In early work[27], it was thought that β-
N2 might also be fcc with rotating molecules, and indeed
such a structure can be generated in MD by heating α-N2.
In fact β-N2 is based on hcp, but the simulations show
that the molecular orientations become (dis)ordered far
faster than the molecular centers can rearrange. So, heat-
ing transformations pass through a metastable interme-
diate fcc rotor phase, while cooling transformations pass
through a metastable intermediate state of quadrupole
ordering in hcp, which has multiple competing states and
is very prone to domain formation[57]. Such domains are
likely to result in heavily twinned crystals, and complex
diffraction patterns which can be challenging to solve.

VII. N2 PHASE DIAGRAM FROM MD

We build the phase diagram in stages. Firstly we cal-
culate the melt curve for both hcp β-N2 and cubic δ-N2
phases as well as a hypothetical fcc phase with 3D rotors.
The crystal phase with the higher melting temperature
has lowest free energy, and is stable, and the intercept is
the β - δ - liquid triple point.

Since we know the latent heat and the density differ-
ence between the phases, we can also use the Clausius-
Clapeyron equation to determine the initial direction of
the β-N2 and δ-N2 phase line away from the triple point.

Along the zero-Kelvin line, we can use enthalpy calcu-
lations to locate the α - γ -ϵ intercepts, and the Third
Law to determine that the initial phase boundary is ver-
tical. We also run NṖT simulations across the α − γ
phase boundary which allows the Bain transition to be
mapped, albeit with hysteresis.

Several of the phase transformations involve a transi-
tion from fixed orientation to rotation of the molecules.
We can model this with NPṪ simulations, gradually
heating the sample until the rotation starts. The phase
line can be crossed in both directions.

The ordered crystal phases can be unambiguously iden-
tified by time averaging NPT trajectory and analysing
obtained crystal with symmetry analysis package such as
spglib [58]. For the rotor phases we repeat the procedure
using molecular centres of mass, and use probability den-
sity plots (e.g. Fig.3) to determine rotations.

A. The Melting Curve

We used phase coexistence calculations to track the
melt curve of the relevant phases. The total of 25 coex-
istence calculations at 10 different pressure points were

FIG. 7. The melting curves obtained using two phase coex-
istence method for experimental β-N2 and δ-N2 phases com-
pared with hypothetical fcc structure with rotors. Higher
melting point for a given pressure indicates energetically
favourable structure. The curves are fitted using modified
Simon–Glatzel equation [59].

performed to obtain smooth melt lines as shown in Fig.
7.

The simulation box for both the β-N2 phase and
the hypothetical fcc phase with rotors contains 28800
molecules on the hcp and fcc lattices respectively. The
molecular orientations are initially assigned at random
and show full spherical disorder/rotation throughout the
simulation.

The initial structure for δ-N2 has space group Pm3n.
The cell is constructed with 29952 molecules. The molec-
ular orientations where randomly assigned: disclike for 6d
Wyckoff and spherical disordered for 2a.

The calculated melting temperatures under various
pressures are shown in table II. The obtained melt curve
is in a very good agreement with the experimental one
from Fig. 1.

In addition to determining the melt curve, these cal-
culations pinpoint the triple point: it is at the pressure
at which β-N2 and δ-N2 have the same melting point,
8GPa and 457K. The fcc structure with rotors has lower
melting temperature and is therefore energetically un-
favourable across the measured pressure range.

B. Solid-solid Phase Boundaries

alpha/gamma ←→ beta

The phase boundary between α − β and γ − β is rep-
resented on the phase diagram in Fig. 10 as a solid black
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P (GPa) β T (K) δ T (K)
0.1 83 -
0.3 112 -
0.5 142 -
1.0 185 -
2.45 297 -
5.0 389 365
7.0 440 433
8.0 457 458
9.0 467 474
10.0 488 496

TABLE II. The melting temperatures obtained from the
phase coexistence simulations between 0.1GPa and 10.0GPa
for both β and δ phases of nitrogen.

FIG. 8. Mean potential energy vs temperature from a single
MLIP run starting in γ at P=1GPa and heating rapidly from
10K to 300K through the sequence γ → β →melt. The inset
shows corresponding mean square displacement obtained dur-
ing heating. Three distinct stages can be identified: molecular
solid with librons, solid with rotors and finally melt.

line with an increasing positive slope with pressure. The
phase boundary has been estimated based on the follow-
ing observations.

For the α/γ → β transformation, the molecular cen-
ters are completely different, and the transition is slug-
gish such that on heating we see a transformation from
ordered fcc α-N2 to a metastable free rotor fcc. Alter-
natively, on cooling from rotating hcp β-N2, we obtain
a metastable ordered hcp. These two transitions bound
the true transition line. Near the experimental bound-
ary it is observed that during the molecular dynamics
simulations across the boundary, molecules in the α-N2
phase begin to rotate or equivalently β-N2 rotors cease
their motion. This behaviour is only observed in the nar-
row temperature zone, and we take it as indicating the
position of the phase boundary between librating and
rotating molecules. If we consider the static hcp and ro-

tating fcc phases to be metastable, then the α-N2 heating
simulations give an upper bound on the true phase line,
while the β-N2 cooling calculations give a lower bound:
these are close enough to determine the phase boundary
with small errors.

Although a rotation↔libration transition is observed
in both fcc (α-N2) and hcp (β-N2) on heating and on
cooling, we note that no direct phase transition is ob-
tained from fcc to hcp or vice versa in any simulation.
The molecular centers in simulations started in the β-N2
phase remain hexagonal even after rotation ceases; simi-
larly the molecular centres of α-N2 remain close to fcc. In
both cases, the rotation ceases at similar T,P conditions.

The fact that the transition does not occur on a
nanosecond timescale is consistent with the experimen-
tal observation that the transformation is sluggish. This
is understandable as even for an atomic system fcc/hcp
phase transition is complex and difficult to realise in
molecular dynamics simulation. For example, the hcp to
fcc transition in titanium is a process which involves slip
of planes dislocations, adjustment of interplanar spacing
followed by the volume expansion [60]. To best of our
knowledge the mechanism of the fcc/hcp phase transi-
tion for N2 (or any other) dimers is unknown.

beta ←→ gamma

FIG. 9. (Left) Figure shows the c/a ratio of the γ-N2 phase
at various temperatures simulated in the NPT ensemble at
1GPa. At 65K and 70K librons are observed with occasional
disc-like motion fixed to either 110 or 110 rotation axis. At
75K there is a sudden increase in c/a ratio associated with
molecules transitioning to free rotors. After the phase tran-
sition to molecular centres are located at fcc sites. (Right)
MD snapshots showing the c-direction at 70K and 75K and
respective 2 ps time averages.

Fig. 9 shows that upon heating of the tetragonal γ-N2
phase, there is a small increase in the c/a ratio. Close
to the phase boundary the molecules begin to rotate and
there is a sudden jump in the c/a ratio to

√
2 indicating

a transition to a perfect fcc lattice - the same as obtained
from heating alpha. The initial transition from body
centered tetragonal lattice to fcc follows classical Bain
transformation [61]. Therefore we speculate that phase
transition from both α-N2 and γ-N2 to the β-N2 phase
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proceeds through metastable rotationally disordered fcc
phase. The complete phase transition to the hexagonal
β-N2 phase does not occur due to the same reason as for
α→ β as explained above.

epsilon ←→ delta∗

On heating from ϵ-N2 at 8GPa it is observed that
the molecular motion changes and molecular orientations
progressively evolve from libron-like motion to spherical
rotor or disc-like motion. NPṪ ensemble heating runs
along several isobars were performed to determine the
approximate position of the line. Additional NPT simu-
lations were performed close to the phase boundary, and
crystal symmetry analysis utilised to identify transition
points from rhombohedral R3c to tetragonal P42/ncm
of the δ∗-N2 phase. The dashed line in Fig. 10 separat-
ing δ∗-N2 and ϵ-N2 phases indicates the position of the
established phase transition.

delta ←→ delta∗

We were able to establish boundaries between δ∗-N2
and δ-N2 phases by time averaging NPT simulations over
1 ns after initial equilibration. We notice cubic Pm3n
to tetragonal P42/ncm phase transition when quenching
the δ-N2 phase. This observation is further confirmed by
heating δ∗-N2. We do not observe any significant hys-
teresis which indicates very low energy barrier between
two phases. This is perhaps unsurprising given that δ∗-
N2 phase is just a small distortion from the cubic δ-N2
phase.

beta ←→ delta/delta∗

The intercept of this line with the melt was determined
from the phase coexistence calculations. Similarities be-
tween crystal structures of δ-N2, δ∗-N2 and ϵ-N2 phases
as well as zero temperature phase transition between γ-
N2 and ϵ-N2 allow us to trace the β-N2 to δ-N2/δ∗-N2
line.

alpha ←→ gamma

Static relaxation (Fig. 5) shows that the γ-N2 phase
has lower enthalpy than α-N2 at 0K and all pressures.
This surprising result turns out to be consistent with
DFT calculations. Nevertheless, it is clear in both DFT
and MLIP calculations that alpha becomes stable at
densities only marginally larger that those calculated at
T=0, P=0. These densities are obtained by thermal ex-
pansion at finite temperature (and through consideration
of zero-point energy). Therefore this surprising finding

FIG. 10. The phase diagram for solid nitrogen obtained using
MLIP potential. Symbols show structures observed in MD at
the given P,T conditions, lines are derived from coexistence
and free energy calculations as described in the text.

regarding theoretical enthalpy does not contradict exper-
iment.

It is observed that during MD simulations the α-N2
phase spontaneously transforms to γ-N2 at temperatures
below 20K across the computed pressure range. The
phase transition occurs within the first few picoseconds
of the simulation. This observation is further confirmed
by comparing MD enthalpy differences at pressures be-
low 0.5GPa as shown in Fig. 5. The γ-N2 phase
is marginally more stable at low pressure but its rela-
tive stability increases suddenly near the expected phase
boundary at 0.3GPa. The obtained free energy differ-
ences at zero temperature are around 1meV/molecule in
the measured pressure range. The small enthalpy dif-
ferences and directly-observed phase transition indicates
low phase transition energy barrier below 20K. How-
ever, above those temperatures the phase transition is
not observed indicating at least strong metastability of
the α-N2 phase.

gamma ←→ epsilon

The intercept of the γ-N2-ϵ-N2 line with the P axis
was precisely determine by static relaxation calculation.
The Third Law of thermodynamics means that line must
be vertical at T=0. The transition was not directly
observed in MD, so we simply interpolate between the
known points.
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VIII. DISCUSSION AND CONCLUSIONS

The success of our model provides strong evidence that
our chemically-understandable descriptors are sufficient
to capture the necessary physics, whereas conventional
rigid molecules with pairwise atom-atom interactions,
quadrupoles, or formal charges have failed. The relative
simplicity of our model means that it provides a good
agreement with the experimental data for all molecular
phases of nitrogen except the ι-N2 phase. By enabling
molecular dynamics, we are able to describe the nature
of each phase in more detail than is possible experimen-
tally.

We deduce that α-N2 Pa3 is favoured by quadrupole-
quadrupole interactions, which are captured by our four-
body interatomic descriptors. The small distortion of
Pa3 to P213 is washed out by thermal effects.

The γ-N2 phase is a slightly more efficient packing
than α-N2. In the transformation, molecules rotate away
from < 111 > so as to point along < 110 > directions.
This breaks cubic symmetry, leading to martensitic-type
transformation as the c-axis contracts.

The β-N2 phase is revealed as freely rotating N2
molecules in hexagonal close packing. The transforma-
tion between α-N2 and β-N2 involves two aspects, the
rotation of the molecules and the transformation from
fcc-like to hcp-like crystal. The onset of rotation occurs
rapidly with heating, but the fcc-hcp transformation is
sluggish and prone to generation of stacking faults[62].
In molecular dynamics, the α → β transformation on
heating goes first to a rotating fcc phase.

Regarding the transitions, α → β, γ → β and ϵ → δ
are revealed as due to the extra entropy available to
molecular rotors. Consequently, we expect these trans-
formations to be temperature-driven with flattish phase
boundaries. By contrast α → γ, γ → ϵ, is primarily a
competition between energy and density, so it is pressure
driven leading to nearly vertical phase lines.

The β → δ transformation combines both aspects of
the transition. Converting 3D rotors to 2D rotors comes
at an entropy cost, but there is a density increase in pack-
ing the non-spherical objects. Consequently, the β ↔ δ
transition line has a positive slope. Similarly, the liq-
uid has higher entropy and lower density than coexisting
solid phases, so the melt curve also has a positive slope.

The α → γ transition is driven by enthalpy, with the
higher-density gamma phase observed at higher pressure.
However, the MD also suggests there is a significant en-
tropy difference in favour of α, so the transition line has
a positive slope. Extrapolating the transition line from
classical MD to T=0 suggests that γ-N2 is the T=0, P=0
ground state, a surprising result which is consistent with
DFT calculations. However the enthalpy difference is
small.

The MD sheds considerable light on the nature of the δ
and δ∗ phases. Both are based on the topologically close
packed Weaire-Phelan A15 crystal structure (Pm3̄n) and
exhibit dynamic disorder with 3D and 2D rotors. In δ-
N2 there is a body centred-cubic sublattice with 3D ro-
tors, with the remaining 3/4 of the molecules in the cube
faces being 2D rotors with the axis in a (001)-type di-
rection. δ∗-N2 has molecules centred on the sites, with
the bcc sublattice showing 2D rotation, and the cube-
face molecules being non-rotating (possibly disordered on
rapid cooling). When all rotation stops, the ϵ-N2 phase
is formed.

The model supports the existence of the λ-N2 phase
at low temperatures. Regarding ι-N2, although the re-
ported spread of bondlengths is implausible, we find that
a structure with equalised bondlengths and the same pat-
tern of orientations is competitive.

On a broader view, we find a strong correlation be-
tween the unit cell shape and the molecular orientations:
rather small strains in the cell can result in significant
changes in orientation. At a mesoscopic level this leads to
microtwinning, but we cannot rule out ι-N2-like complex
structures forming in response to non-hydrostatic strain,
and in doing so relaxing the non-hydrostatic stress.

In many cases, single-molecule reorientations have low
energy and there could be significant numbers of them
thermally-activated. We can speculate that these pop-
ulations of defects may produce well-defined signals in
spectroscopy, perhaps resolving the discrepancy between
Raman and X-ray/DFT for λ-N2.

Finally, we emphasize that the insights gained into
solid nitrogen should not overshadow the transferrabil-
ity of the MLIP itself. We believe that this is the first
MLIP for a molecular material capable of describing such
a wide range of crystal structures, none of which were in-
clude in the training data. Its simple form provides a
deep physical understanding that, indeed, the properties
of solid N2 are fully determined from the interactions be-
tween pairs of molecules.
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1 Enthalpy vs pressure for DFT and MLIP.

Figure 1: Enthalpy vs pressure for α, γ, ϵ and λ phases from static relaxation using the
MLIP and from DFT with PBE+vdW, SCAN and SCAN+vdW functionals.

2 Descriptors hyperparameters

rs 2.61066139097 0.10228258167 11.9012832034 1.56876280611
η 1.02994852292 7.79076437642 0.04040235561 0.01340519269

Table 1: Two-body blip function hyperparameters.

rs 0.00472139504 1.63499413497 0.00355931367 0.00361552429
η 0.10854249660 0.78122061421 0.64121026653 0.31448274608

Table 2: Many-body blip function hyperparameters.
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3 Radial Distribution Function

Figure 2: Simulated (NPT) radial distribution functions for liquid and low pressure phases
of molecular nitrogen.

Figure 3: (Left) Comparison of simulated RDFs between this model and model developed
in [2]. (Right) RDFs generated with the model from this paper and experimentally obtained
using neutron diffraction [2].

4 Images of rotation

We generate the orientational distribution of N2 molecules in the polar angles θ, ϕ from the
direction of the molecular axis in the MD runs.

At each snapshot in an MD trajectory, the molecular orientation in θ and ϕ was calcu-
lated. These values were then assigned to bins on the surface of a unit sphere. The bin

3



centres were taken from an approximately uniform set of points on a sphere generated with
a script adapted from the S2 Sampling Toolbox in MATLAB [3].

In Fig. 4, the orientational PDFs are plotted as surfaces in r, θ, ϕ. The value of r
corresponds to the probability density for a given orientation in θ, ϕ. The values of r are
normalised for each molecule independently and scaled such that the maximum value of r
is equal across all molecules.

The PDFs in Fig. 4 are positioned at the time averaged molecular centre of mass over
the MD trajectory.

Figure 4: Orientational PDFs for all molecules in the δ* phase at 120 K and 10 GPa.

5 N2 Phases
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Pressure Space group Lattice parameters Atomic coordinates
(GPa) (Å, ◦) (fractional)

0 P63/mmc a=2.922 b=4.17 c=7.01 N 0.3333 0.6666 0.323
α=90.00 β=90 γ=120.00

0 Pa3 a=5.56 b=5.56 c=5.56 N 0.0574 0.0574 0.0574
α=90.00 β=90.00 γ=90.00

0 P213̄ a=5.56 b=5.56 c=5.56 N1 0.064 0.064 0.064
α=90.00 β=90.00 γ=90.00 N2 0.095 0.095 0.095

0 P21/c a=2.922 b=2.891 c=5.588 N 0.5678 0.3764 0.4534
α=90.00 β=132.54 γ=90.00

0 P42/mnm a=4.08 b=4.08 c=5.35 N 0.904 0.904 0
α=90.00 β=90.00 γ=90.00

0 R3̄c a=9.86 b=9.86 c=13.21 N1 0.6666 0.3333 0
α=90.00 β=90.00 γ=120.00 N2 0.451 0.386 0.107

40 Pbcn a=2.895 b=4.606 c=5.221 N 0.1243 0.3576 0.8301
α=90.00 β=90.00 γ=90.00

40 P41212 a=2.907 b=2.907 c=8.228 N 0.4463 0.3019 0.7267
α=90.00 β=90.00 γ=90.00

40 C2/c a=4.112 b=4.110 c=9.795 N1 0.4041 0.6783 0.2732
α=90.00 β=122.84 γ=90.00 N2 0.7789 0.3759 0.5233

56[4] P21/c a=9.899 b=8.863 c=8.726 N1-N24
α=90.00 β=91.64 γ=90.00

200 P 4̄21m a=3.009 b=3.009 c=4.029 N1 0.1645 0.3355 0.6815
α=90.00 β=90.00 γ=90.00 N2 0.5000 0.5000 0.8404

200 P212121 a=2.569 b=3.482 c=4.019 N1 0.4909 0.4726 0.4150
α=90.00 β=90.00 γ=90.00 N2 0.7343 0.1478 0.3206

Table 3: Structures from DFT, Materials Project and high pressure [1]
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