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Abstract

We study topology optimization governed by the incompressible Navier-Stokes flows using
a phase field model. Novel stabilized semi-implicit schemes for the gradient flows of Allen-
Cahn and Cahn-Hilliard types are proposed for solving the resulting optimal control problem.
Unconditional energy stability is shown for the gradient flow schemes in continuous and dis-
crete spaces. Numerical experiments of computational fluid dynamics in 2d and 3d show the
effectiveness and robustness of the optimization algorithms proposed.

Keywords: Topology optimization, incompressible Navier-Stokes equations, stabilized gra-
dient flow, energy stability, phase field method

1 Introduction

Shape and topology optimization [1] of computational fluid dynamics is a popular topic with
applications such as auto-coronary bypass anastomoses in medical science [2], the laminar flow
wing design in aeronautics [3] and pipe flow [4]. Such optimal control problems in fluid flow [3]
aim to seek a configuration or layout for optimizing some objective (e.g., energy dissipation and
geometric inverse problem) subject to geometric and physical constraints such as incompressible
fluid flows [5, 6, 7, 8, 9, 10, 11] or compressible Navier-Stokes equations [12]. Compared to shape
optimization by adjusting the profile of geometric boundary to obtain better configuration [13],
topology optimization can perform both shape and topological changes of structures. Numerical
realization of topology optimization in fluid flows can be performed via the variable density method
[14], topological derivative [15], level set method [16], phase field method [17, 18], etc.

As diffusive interface tracking techniques, the phase field method [18, 19, 20, 21, 22] is intro-
duced for minimizing general volume and surface functionals constrained by incompressible Navier-
Stokes flows. The porous medium approach [14] proposed by Borrvall and Petersson enables the
governing equations to be defined on a fixed domain with a variable linear term characterizing the
permeability. The main idea of the phase field model of topology optimization is to combine both
objective and so-called Ginzburg–Landau energy to construct the total free energy. The latter is
a diffuse interface approximation of perimeter regularization implying the existence of the optimal
control problem [20]. For topology optimization constrained by Navier-Stokes flow, Garcke et al.
[21, 18] discussed the differentiability of the solution to the phase field function, the first-order
necessary condition from sensitivity analysis, and sharp interfacial asymptotic analysis.

The gradient flow method actually was a powerful tool for minimization of nonlinear or multi-
physical coupling type of energy functional for many problems (see, e.g., [23, 24]). From the
numerical perspective, a gradient flow scheme is generally evaluated on the energy dissipation
and its computational efficiency [23]. The energy dissipative gradient flow scheme is of crucial
importance to topology optimization implying that the sequence generated by the algorithm is
convergent and monotonous. Unlike phase field models in the physical background such as interface
dynamics [19] or crystallization [25], the difficulty of constructing an energy dissipative gradient flow
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scheme for topology optimization arises from the coupling among the gradient flow, linear/nonlinear
physical constraints of partial differential equations and possible extra adjoint systems. For shape
design constrained by Stokes flow in the phase field model, an energy monotonic-decaying gradient
flow scheme is proposed [17, 26] for minimization of energy dissipation via the stabilized method.
An efficient iterative thresholding method [27, 28] was developed for topology optimization for
Stokes and the Navier–Stokes flow. To the best of our knowledge, however, there exists no research
work on energy dissipative gradient flow schemes for topology optimization constrained by the
nonlinear partial differential equations such as the incompressible Navier-Stokes flow.

In this paper, we derive the gradient flow of the phase field model for topology optimization of
incompressible Navier-Stokes flow and prove the energy dissipation property in continuous space by
overcoming the introduction of the extra adjoint variables that are induced by nonlinear constraints.
Then we propose energy dissipative gradient flow schemes (Allen-Cahn and Cahn-Hilliard types)
based on the so-called stabilization method [29, 30] by adding stabilization terms to avoid strict
time step constraints, which treats the nonlinear terms explicitly and the linear terms implicitly.
For the Navier-Stokes flows by the porous medium approach, the Fréchet differentiability of state
functions with respect to phase field function [21] defines the unique solution of linearized Navier-
Stokes equation. The uniform boundedness of the velocity field and pressure function is also
guaranteed. These analysis results motivate us to deduce the Lipschitz continuity of the solution
to the phase field function which is of use in showing energy dissipation of the gradient flow. We
note that the unconditional energy stability holds when the stabilized coefficients are larger than
the coefficients depending on Lipschiz conditions, uniform bounds of the solution, and geometric
area.

The rest of the paper is organized as follows: In section 2, we briefly introduce the phase field
model and the governing steady-state Navier-Stokes equations. Then the topology optimization
is built. The uniform boundedness of the solution pairs and adjoint variables are shown by the
assumption that the gradient of velocity is smaller than a prescribed constant depending on the
viscous coefficient and geometric measure. In section 3, we proposed the generalized gradient flow
schemes first to solve the topology optimization problem. The energy dissipation of the gradient
flow in continuous space is addressed by combining both state and adjoint variables which is an
important clue for the stability of the scheme in time discretization. Then the Lipschtiz continuity
of both state and adjoint variables is shown via the error estimate analysis and Sobolev compact
embedding Theorem. After that, we present the main Theorem to show the stabilized gradient flow
schemes are unconditional energy stable for both Allen-Cahn and Chan-Hilliard types. We also
prove the cut-off technique does not affect the monotonicity of the cost functional by gradient flow
scheme. In section 4, we introduce the conforming mixed finite element method to discretize the
state variables (velocity field, pressure function) as well as the adjoint variables. The algorithm with
a stable semi-implicit scheme is proposed to evolve the phase field function numerically. Various
numerical experiments in 2D and 3D have been tested to verify the effectiveness of the algorithms
proposed. Section 4 draws brief conclusions and some potential values to generalize such gradient
flow schemes to other topology optimization.

2 Model problem

In this section, we introduce the phase field model for shape and topology optimization in
a viscous incompressible fluid. The purpose of shape and topology optimization here is to seek
an optimized configuration attaining the minimization of a given cost functional (typically dissi-
pated energy) subject to stationary incompressible Navier-Stokes equations and some geometric
constraint.

Let Ω ⊂ Rd (d = 2, 3) be an open bounded domain with Lipschitz continuous boundary ∂Ω.
The whole domain Ω is partitioned into three disjoint subregions Ω = Ω1 ∪ Ω2 ∪ Ω0 where Ω1, Ω2

and Ω0 represent the fluid region, solid region and diffuse layer, respectively. The boundary ∂Ω
is partitioned into both nonoverlapping Dirichlet and Neumann boundaries with ∂Ω = Γd ∪ Γn

(see Fig. 1 left), where Γd consists of the inlet as well as the wall, and Γn represents the outlet.
First, we introduce notations involving Sobolev spaces [31]. Let L2(Ω) be a Lebesgue space of
square-integrable functions on Ω. Denote W 1,2(Ω) := {v ∈ L2(Ω) |Div ∈ L2(Ω), i = 1, · · · , d}
with Div being the generalized derivative of v with respect to xi. Denote H1(Ω) := W 1,2(Ω) and
H1

0 (Ω) := {v ∈ H1(Ω) | v = 0 on ∂Ω}. Then denote the vectorial function spaces H1(Ω) := H1(Ω)d,
H1

0(Ω) := H1
0 (Ω)d with its dual space H−1(Ω), L2(Ω) := L2(Ω)d and L∞(Ω) := L∞(Ω)d. Denote

Sobolev space with divergence-free constraint H1(div0,Ω) := {w ∈ H1(Ω) | ∇ ·w = 0 in Ω}. Let
us use a same notation to define inner products of L2 type by (ζ1, ζ2) :=

∫
Ω
ζ1ζ2 and (ζ1, ζ2) :=
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∫
Ω
ζ1 · ζ2 for any scalar functions ζ1, ζ2 ∈ L2(Ω) and vectorial functions ζ1, ζ2 ∈ L2(Ω). The phase

field function ϕ ∈ H1(Ω) can be seen as a “density” function (see Fig. 1 right) such that
ϕ(x) = 0, x ∈ Ω1,

ϕ(x) = 1, x ∈ Ω2,

0 < ϕ(x) < 1, x ∈ Ω0.

(1)

Ω2(ϕ = 1)

Ω1(ϕ = 0)

Γn

Γn

Γd Γd

Γd

Γd

Phase A

Phase B

Ω

0 < ϕ < 1

Figure 1: Illustrations of design domain with subdomains represented implicitly by phase field
function (left) and phases with diffuse layer (right).

2.1 Governing equations

Let the positive number µ be the viscous coefficient. Define the following bilinear form a(·, ·)
and trilinear form b(·, ·, ·), respectively

a(u,v) := µ

∫
Ω

Du : Dv ∀u,v ∈ H1(Ω),

b(u,v,w) :=

∫
Ω

(u · ∇)v ·w ∀u,v,w ∈ H1(Ω),

where the vectorial functions are given by u = [u1, u2, · · · , ud]T, v = [v1, v2, · · · , vd]T and w =
[w1, w2, · · · , wd]T, respectively. We refer to [32, Lemma IX.1.1 and Lemma IX.2.1] and [33] for
some useful properties on the trilinear form.

Lemma 2.1. The trilinear form b(·, ·, ·) is well-defined and continuous in the space H1
0(Ω) ×

H1(Ω)×H1
0(Ω). The following estimate holds

|b(u,v,w)| ≤ KΩ∥∇u∥L2(Ω)∥∇v∥L2(Ω)∥∇w∥L2(Ω), ∀u,w ∈ H1
0(Ω), v ∈ H1(Ω), (2)

where

KΩ :=


1

2
|Ω|1/2, if d = 2,

2
√

2

3
|Ω|1/6, if d = 3,

with |Ω| being the Lebesgue measure of Ω. Furthermore, the following properties hold:

b(u,v,v) = 0, ∀u ∈ H1(div0,Ω), v ∈ H1
0(Ω),

b(u,v,w) = −b(u,w,v), ∀u ∈ H1(div0,Ω),v,w ∈ H1
0(Ω).

(3)

The permeability function for medium [21, page 225] α(·) ∈ C1,1(R) is non-negative with
α(1) = 0, α(0) = α0 > 0 satisfying

α(s) = α(0), ∀ s ≤ 0,

α(s) = α(1), ∀ s ≥ 1.
(4)

Let the Cauchy stress tensor be σ(u, p) := −pI + µ(Du + DuT) with I ∈ Rd×d being an identity
tensor. Let ud : Γd → Rd be a prescribed velocity field imposed on the inlet and the wall. Define
the Sobolev spaces H1

d(Ω) := {v ∈ H1(Ω) |v = ud on Γd, σ(v, p)n = 0 on Γn} and H1
00(Ω) :=

{v ∈ H1(Ω) |v = 0 on Γd, σ(v, q)n = 0 on Γn} for state and adjoint variables. Consider a weak
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formulation of a steady-state incompressible Navier-Stokes equation: find (u, p) ∈ H1
d(Ω)× L2(Ω)

such that {
a(u,v) + b(u,u,v) + (α(ϕ)u,v)− (p,∇ · v) = (f ,v) ∀ v ∈ H1

00(Ω),

(∇ · u, q) = 0 ∀ q ∈ L2(Ω),
(5)

where f ∈ L2(Ω) is a given source. The existence of (5) is valid (see [18, Lemma 2.7]) for every
phase field function ϕ ∈ L1(Ω) with |ϕ| ≤ 1 a.e. in Ω. The uniqueness [18, Lemma 2.8] of (5) holds
by the assumption that ∥∇u∥L2(Ω) <

µ
KΩ

.

2.2 Phase-field model

The shape functional with specific purpose is defined by the phase field function and the ve-
locity field J(ϕ,u(ϕ)) :=

∫
Ω
j(ϕ,u(ϕ)) where the non-negative integrand j(ϕ,u(ϕ)) is Fréchet

differentiable with respect to ϕ and u. Consider the shape functional of energy dissipation
j(ϕ,u(ϕ)) := 1

2µ|Du|2 + 1
2α(ϕ)|u|2. Let V (ϕ) :=

∫
Ω

(1 − ϕ) be the volume of the solid region.
The double well potential [34, page 421]

ω(ϕ) =


ϕ2, ϕ < 0,

1

4
ϕ2(ϕ− 1)2, ϕ ∈ [0, 1],

(ϕ− 1)2, ϕ > 1.

(6)

has the formulation with uniform upper bound of its derivative. Next, we can construct the total
free energy by the summation of the Ginzburg-Landau energy, the shape functional and the least
square of volume error as

W(ϕ,u(ϕ)) :=
ϵ1
2
∥∇ϕ∥2L2(Ω) +

1

ϵ2
(ω(ϕ), 1) + J(ϕ,u(ϕ)) +

1

2
β(V (ϕ)− V̂ )2, (7)

where ϵi > 0 (i = 1, 2) represents the thickness of the diffuse layer, V̂ > 0 and β > 0. Then the
shape and topology optimization problem is to seek ϕ∗ ∈ H1(Ω) such that

W(ϕ∗,u(ϕ∗)) = inf
ϕ∈H1(Ω),0≤ϕ≤1

W(ϕ,u(ϕ)), (8)

where (u(ϕ), p(ϕ)) is the solution of (5) with given phase field function ϕ. The existence of the
minimizer for optimal control problem (8) holds by using the lower semi-continuity of the objective
functional and some compactness properties (see [21, 18]). We introduce the following adjoint
equations corresponding to the optimization problem (8).

Lemma 2.2. Let domain Ω be an open bounded domain. Suppose that j(ϕ,u) is differentiable

with respect to u with the Fréchet derivative denoted as ju := δj(ϕ,u)
δu . Then the weak form of the

adjoint problem (a generalized Stokes equation) satisfies: find (v, q) ∈ H1
00(Ω)× L2(Ω) such that{

a(v,w) + b(w,u,v) + b(u,w,v) + (α(ϕ)v,w)− (q,∇ ·w) = (ju,w) ∀w ∈ H1(Ω),

(z,∇ · v) = 0, ∀ z ∈ L2(Ω),
(9)

where the directional derivative (ju,w) = µ(Du,Dw) + (α(ϕ)u,w) for energy dissipation.

Proof. By utilizing the weak formulation of (5), define the following functional

L(ϕ,u, p;v, q) := a(u,v) + b(u,u,v) + (α(ϕ)u,v)− (p,∇ · v)− (q,∇ · u)− (f ,v). (10)

The Lagrange functional is introduced associated with total free energy W(ϕ,u) and (10)

L̂(ϕ,u, p;v, q) :=W(ϕ,u)− L(ϕ,u, p;v, q). (11)

Then the constrained problem can be transformed into the saddle point problem [35]

inf
ϕ∈H1(Ω)

W(ϕ,u)︸ ︷︷ ︸
(u,p) satisfy (5)

= inf
ϕ∈H1(Ω)

inf
(u,p)∈H1

d(Ω)×L2(Ω)
sup

(v,q)∈H1
00(Ω)×L2(Ω)

L̂(ϕ,u, p;v, q). (12)
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By the Karusch-Kuhn-Tucker condition, the saddle point of L̂ is characterized by

δL̂
δu

(du) =
δL̂
δp

(dp) = 0, ∀ du ∈ H1(Ω), dp ∈ L2(Ω),

δL̂
δv

(dv) =
δL̂
δq

(dq) = 0, ∀ dv ∈ H1(Ω), dq ∈ L2(Ω).

(13)

The first line in (13) implies the adjoint equations while the second line in (13) leads to the
steady-state incompressible Navier-Stokes equations.

The following analysis is based on the assumption that the boundary condition of the velocity
field is the homogeneous Dirichlet condition.

Lemma 2.3. Let ϕ ∈ H1(Ω) ∩ L∞(Ω) be given such that ∥∇u∥L2(Ω) ≤ µ
2KΩ

. Then, there exists

a unique solution pair (u, p) ∈ H1(Ω) × L2
0(Ω) of the Navier-Stokes equations (5) and a unique

solution pair (v, q) ∈ H1
0(Ω) × L2

0(Ω) of the adjoint equations (9). The solution pairs fulfill the
following estimates

∥u∥H1(Ω) + ∥p∥L2(Ω) ≤ C1(µ, α0,f ,Ω), (14)

and
∥v∥H1(Ω) + ∥q∥L2(Ω) ≤ C2(µ, α0,f ,Ω), (15)

with constants C1(µ, α0,f ,Ω) and C2(µ, α0,f ,Ω) independent of ϕ.

Proof. We refer to [18, Lemma 2.8] where the existence and uniqueness results for the Navier-
Stokes equations (5) are discussed requiring that ∥∇u∥L2(Ω) ≤ µ

KΩ
. The uniform boundedness

(14) of the solution pair for Navier-Stokes equations (5) independent of phase field function ϕ is
proved referring to [21, Lemma 4.3]. For the adjoint equations (9) of the general cost functional,
the solvability and uniqueness has also been discussed referring to [21, Lemma 4.9] requiring
∥∇u∥L2(Ω) ≤ µ

KΩ
. We are going to show the uniform boundedness of the adjoint variables by

assuming ∥∇u∥L2(Ω) ≤ µ
2KΩ

which is of help to the following estimate. Let the test function
w = v in (9) so that b(u,v,v) = 0 for ∇u = 0. After applying Lemma 2.1, Cauchy inequality and
Poincaré inequality, we obtain

a(v,v) + (α(ϕ)v,v) =− b(v,u,v) + (ju,v)

≤KΩ∥∇u∥L2(Ω)∥∇v∥2L2(Ω) + ∥ju∥L2(Ω)∥v∥L2(Ω)

≤KΩ∥∇u∥L2(Ω)∥∇v∥2L2(Ω) + Cp∥ju∥L2(Ω)∥∇v∥L2(Ω)

≤µ
2
∥∇v∥2L2(Ω) +

µ

8
∥∇v∥2L2(Ω) +

2C2
p

µ
∥ju∥2L2(Ω),

(16)

which implies that
3µ

8
∥∇v∥2L2(Ω) ≤

2C2
p

µ
∥ju∥2L2(Ω). (17)

Furthermore by [36, Lemma II.2.1.1], we obtain unique q ∈ L2
0(Ω) such that

∥q∥L2
0(Ω) ≤ C0∥ − µ∆v + α(ϕ)v + DuTv −Dvu− ju∥H−1(Ω), (18)

is fulfilled for some constant C0 > 0.

3 Gradient flow

In this section, we construct an efficient and effective method to solve the optimal control
problem (8) numerically. The minimum can be found by introducing the gradient flow with a
virtual temporal dimension. The phase field function is extended to ϕ(t,x) ∈ H1(0, T ;H1(Ω))
where T is the prescribed terminal time. Given free energy functional W(ϕ,u(ϕ)) bounded from
below, denote its variational derivative as ν = δW

δϕ . The general form of the gradient flow [23] can
be written as

∂ϕ

∂t
= Gν in (0, T ]× Ω (19)

supplemented with suitable boundary conditions. The nonpositive symmetric operator G is the
dissipation mechanism including the L2 gradient flow of Allen-Cahn type with G = −I and the
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H−1 gradient flow of Cahn-Hilliard type with G = −∆ (the Laplacian). Since the H−1 gradient
flow preserves mass conservation, hence no extra volumetric constraint needs to be introduced.
To simplify the presentation, we assume throughout the paper that the boundary conditions are
chosen such that all boundary terms will vanish when integration by parts is performed. The
gradient flow for solving the optimal control problem (8) reads: find ϕ(t,x) ∈ H1(0, T ;H1(Ω))
such that 

∂ϕ

∂t
= Gν in (0, T ]× Ω,

ν = −ϵ1∆ϕ+
1

ϵ2
ω′(ϕ) + jϕ(ϕ,u(ϕ))− α′(ϕ)u · v + β(V (ϕ)− V̂ )V ′(ϕ).

(20)

Lemma 3.1. Let the assumptions in Lemma 2.2 hold. Let (u, p) and (v, q) be the solution pairs
of (5) and (9), respectively. Then the Fréchet derivative holds as

j′(ϕ,u(ϕ)) =
1

2
α′(ϕ)u(ϕ)2 − α′(ϕ)u(ϕ) · v(ϕ). (21)

Proof. The existence of variational derivative uϕ := ⟨u′(ϕ), ζ⟩ and pϕ := ⟨p′(ϕ), ζ⟩ hold for all
ζ ∈ H1(Ω) by the implicit Theorem [21] implying that

a(uϕ,v)+b(uϕ,u,v)+b(u,uϕ,v)+(α(ϕ)uϕ,v)−(pϕ,∇·v)−(q,∇·uϕ)+(α′(ϕ)u ·v, ζ) = 0. (22)

By the chain rule of variational differentiation, we obtain〈
δJ(ϕ,u(ϕ))

δϕ
, ζ

〉
= ⟨Jϕ(ϕ,u(ϕ)), ζ⟩+

〈
δJ(ϕ,u(ϕ))

δu
,uϕ

〉
= ⟨Jϕ(ϕ,u(ϕ)), ζ⟩+ (ju,uϕ).

(23)

Taking the test function with (uϕ, pϕ) in adjoint equations (9), we have

a(v,uϕ) + b(uϕ,u,v) + b(u,uϕ,v) + (α(ϕ)v,uϕ)− (pϕ,∇ · v)− (q,∇ · uϕ) = (ju,uϕ). (24)

Combing (22), (23) and (24) yields

(ju,uϕ) = −(α′(ϕ)u · v, ζ), (25)

which allows the conclusion to hold.

Proposition 3.2. Under the gradient flow (20), the energy stable holds for all t > 0 such that

δW
δt

= (ν,Gν) ≤ 0. (26)

Proof. Take the differentiation of the total energy in (7) with respect to the temporal variable t
yielding that

δW
δt

= (ϵ∇ϕ,∇ϕt) + (ω′(ϕ), ϕt) + β(V (ϕ)− V̂ )(V ′(ϕ), ϕt) +

(
δj(ϕ,u(ϕ))

δϕ
, ϕt

)
, (27)

where the derivative denotes ϕt := ∂ϕ
∂t . Next for the last term in (27), we obtain(

δj(ϕ,u(ϕ))

δϕ
, ϕt

)
= (jϕ, ϕt) + (ju,ut), (28)

according to the chain rule in differentiation (ut, pt) := (uϕ
∂ϕ
∂t , pϕ

∂ϕ
∂t ). After using the adjoint

equations (9) with test functions (ut, pt), we have

a(v,ut) + b(ut,u,v) + b(u,ut,v) + (α(ϕ)v,ut)− (q,∇ · ut)− (pt,∇ · v) = (ju,ut). (29)

Differentiate (5) with respect to t to derive

a(ut,v)+ b(ut,u,v)+ b(u,ut,v)+(α(ϕ)ut,v)+(α′(ϕ)u ·v, ϕt)− (pt,∇·v)− (q,∇·ut) = 0. (30)

Combining (28) - (30), we obtain(
δj(ϕ,u(ϕ))

δϕ
, ϕt

)
=

(
jϕ − α′(ϕ)u · v, ϕt

)
. (31)

By using the integration by parts and combining (20), (27) and (31), we obtain (26) thanks to the
nonnegative operator of G.
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Now, we are going to construct the energy dissipative gradient flow scheme for solving the
optimal control problem (8). Let T > 0 and 0 = t0 < t1 < · · · < tn < tn+1 < · · · < tN = T denote
a time partition with time step size τn := tn+1− tn (n = 0, 1, · · · , N−1) for N ∈ N. For simplicity,
consider a uniform time discretization with tn = nτ , where the number of time levels N = T/τ .
The first-order semi-implicit scheme with generalized stabilization of gradient flow (20) reads

ϕn+1 − ϕn

τ
= Gνn+1,

νn+1 = −ϵ1∆ϕn+1 + U(ϕn,un,vn) + S(ϕn+1 − ϕn),

(32)

where the nonlinear term

U(ϕn,un,vn) :=
1

ϵ2
ω′(ϕn) + jϕ(ϕn,un)− α′(ϕn)un · vn + β(V (ϕn)− V̂ )V ′(ϕn),

and the general stabilization operator denotes S = S0 + S1(−∆) with each S0, S1 > 0. Then we
begin to prove the property of the unconditional energy stable for the semi-implicit scheme (32).
For proving the unconditional energy stability of the scheme (32), we need to verify the Lipschtiz
boundedness of state and adjoint variables with respect to the phase field function

Lemma 3.3. Let ϕ ∈ H1(Ω) ∩ L∞(Ω) be given such that ∥∇u∥L2(Ω) ≤ µ
2KΩ

. Suppose that α(ϕ)

is Lipschitz continuous with respect to its argument: For any ϕn+1, ϕn ∈ H1(Ω) ∩ L∞(Ω), there
exists positive coefficient γ > 0 independent of ϕ satisfying that

∥α(ϕn+1)− α(ϕn)∥L2(Ω) ≤ γ∥ϕn+1 − ϕn∥L2(Ω). (33)

Suppose that (ϕn,un, pn) and (ϕn+1,un+1, pn+1) are the solution of Navier-Stokes equations (5),
respectively. Then the following estimate holds for state variables

∥∇(un+1 − un)∥L2(Ω) ≤ C̃1∥ϕn+1 − ϕn∥L2(Ω), (34)

where C̃1 := γ(1 + Cp)2/KΩ. Furthermore, if (ϕn,vn, qn) and (ϕn+1,vn+1, qn+1) are the solution
of adjoint equations (9), respectively. Then the following estimates hold for adjoint variables

∥∇(vn+1 − vn)∥L2(Ω) ≤ C̃2∥ϕn+1 − ϕn∥L2(Ω), (35)

where
C̃2 := max

{
2KΩC̃1C2, γ(1 + Cp)2(C1 + C2), (α0C

2
p C̃1 + µC̃1)

}
(36)

with Cp being a constant related to the Poincaré inequality.

Proof. Let (ϕn,un, pn) and (ϕn+1,un+1, pn+1) be the solution pairs of Navier-Stokes equations
(5), respectively. Then the substraction together with setting the test function v = un+1 − un

yields that

a(un+1 − un,un+1 − un) + b(un+1 − un,un+1,un+1 − un)

+ b(un,un+1 − un,un+1 − un) + ([α(ϕn+1)− α(ϕn)]un+1,un+1 − un)

+ (α(ϕn)(un+1 − un),un+1 − un) = 0.

(37)

For un ∈ H1(div0,Ω), we have b(un,un+1 − un,un+1 − un) = 0. After applying Lemma 2.1,
Cauchy inequality, Hölder equality, and Poincaré inequality, we obtain

µ∥∇(un+1 − un)∥2L2(Ω) + (α(ϕn)(un+1 − un),un+1 − un)

≤KΩ∥∇(un+1 − un)∥2L2(Ω)∥∇u
n+1∥L2(Ω)

+ ∥α(ϕn+1)− α(ϕn)∥L2(Ω)∥un+1∥L4(Ω)∥un+1 − un∥L4(Ω)

≤µ
2
∥∇(un+1 − un)∥2L2(Ω)

+ γ(1 + Cp)2∥ϕn+1 − ϕn∥L2(Ω)∥∇un+1∥L2(Ω)∥∇(un+1 − un)∥L2(Ω),

(38)

where the Sobolev imbedding Theorem is used for H1(Ω) ↪→ L4(Ω) ignoring its constant and Cp

depends on the Poincaré inequality. After that, we can deduce the following estimate

µ

2
∥∇(un+1 − un)∥L2(Ω) ≤ γ(1 + Cp)2

µ

2KΩ
∥ϕn+1 − ϕn∥L2(Ω). (39)
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Let (ϕn,vn, qn) and (ϕn+1,vn+1, qn+1) are the solution pairs of adjoint equations (9). The sub-
straction by setting the test function w = vn+1 − vn yields that

a(vn+1 − vn,vn+1 − vn) + b(vn+1 − vn,un+1,vn+1)− b(vn+1 − vn,un,vn)

+ b(un+1,vn+1 − vn,vn+1)− b(un,vn+1 − vn,vn)

+ (α(ϕn+1)vn+1,vn+1 − vn)− (α(ϕn)vn,vn+1 − vn)

=a(un+1 − un,vn+1 − vn) + (α(ϕn+1)un+1 − α(ϕn)un,vn+1 − vn).

(40)

By the rearrangement of the trilinear terms, we obtain

a(vn+1 − vn,vn+1 − vn) + b(vn+1 − vn,un+1 − un,vn+1) + b(vn+1 − vn,un,vn+1 − vn)

+ b(un+1 − un,vn+1 − vn,vn+1) + b(un,vn+1 − vn,vn+1 − vn)

+ ([α(ϕn+1)− α(ϕn)]vn+1,vn+1 − vn) + (α(ϕn)(vn+1 − vn),vn+1 − vn)

=a(un+1 − un,vn+1 − vn) + ([α(ϕn+1)− α(ϕn)]un+1,vn+1 − vn)

+ (α(ϕn)(un+1 − un),vn+1 − vn).

(41)

For un ∈ H1(div0,Ω), we have b(un,vn+1 − vn,vn+1 − vn) = 0. Similarly applying Lemma 2.1,
Cauchy inequality, Hölder equality and Poincaré inequality, we obtain

µ∥∇(vn+1 − vn)∥2L2(Ω) + (α(ϕn)(vn+1 − vn),vn+1 − vn)

≤2KΩ∥∇(vn+1 − vn)∥L2(Ω)∥∇(un+1 − un)∥L2(Ω)∥∇vn+1∥L2(Ω)

+KΩ∥∇(vn+1 − vn)∥2L2(Ω)∥∇u
n∥L2(Ω)

+ ∥α(ϕn+1)− α(ϕn)∥L2(Ω)∥vn+1 − vn∥L4(Ω)(∥vn+1∥L4(Ω) + ∥un+1∥L4(Ω))

+ ∥α(ϕn)∥L∞(Ω)∥vn+1 − vn∥L2(Ω)∥un+1 − un∥L2(Ω)

+ µ∥∇(vn+1 − vn)∥L2(Ω)∥∇(un+1 − un)∥L2(Ω),

(42)

yielding

µ∥∇(vn+1 − vn)∥2L2(Ω)

≤2KΩC̃1C2∥∇(vn+1 − vn)∥L2(Ω)∥ϕn+1 − ϕn∥L2(Ω) +
µ

2
∥∇(vn+1 − vn)∥2L2(Ω)

+ γ(1 + Cp)2∥ϕn+1 − ϕn∥L2(Ω)∥∇(vn+1 − vn)∥L2(Ω)(∥∇vn+1∥L2(Ω) + ∥∇un+1∥L2(Ω))

+ α0C
2
p∥∇(vn+1 − vn)∥L2(Ω)∥∇(un+1 − un)∥L2(Ω)

+ µ∥∇(vn+1 − vn)∥L2(Ω)∥∇(un+1 − un)∥L2(Ω),

(43)

where the Sobolev imbedding Theorem is used for H1(Ω) ↪→ L4(Ω). The boundedness result can
be further deduced by

µ

2
∥∇(vn+1 − vn)∥L2(Ω) ≤2KΩC̃1C2∥ϕn+1 − ϕn∥L2(Ω) + γ(1 + Cp)2(C1 + C2)∥ϕn+1 − ϕn∥L2(Ω)

+ (α0C
2
p C̃1 + µC̃1)∥ϕn+1 − ϕn∥L2(Ω)

(44)
where the estimate (34) is used.

Next, the estimate of the adjacent cost functionals is discussed.

Lemma 3.4. Suppose that the phase field function ϕn+1 is evolved by the scheme (32).
Let (ϕn+1,un+1, pn+1) and (ϕn,un, pn) be the solution pairs of Navier-Stokes equations (5). Fur-
thermore, let (ϕn+1,vn+1, qn+1) and (ϕn,vn, qn) be the solution pairs of adjoint equations (9).
Then the subtraction of adjacent cost functional gives

J(ϕn+1,un+1)− J(ϕn,un) =

(
1

2
α′(ϕn)(un)2 − α′(ϕn)un · vn, ϕn+1 − ϕn

)
− µ

2

∫
Ω

|Dun+1 −Dun|2 −
∫
Ω

α(ϕn+1)

2

∣∣un+1 − un
∣∣2 +Rn+1

1 +Rn+1
2 ,

(45)

where Rn+1
1 ,Rn+1

2 are the two quadratic residual terms defining

Rn+1
1 :=b(un+1 − un,un+1 − un,vn+1),

Rn+1
2 :=−

(
α′(ϕn)un · (vn+1 − vn), ϕn+1 − ϕn

)
.

(46)
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Proof. By the identity, it holds for all a, b ∈ R

1

2
(a2 − b2) = (a− b)a− 1

2
|a− b|2, (47)

yielding that
J(ϕn+1,un+1)− J(ϕn,un)

=
µ

2

∫
Ω

|Dun+1|2 − |Dun|2 +

∫
Ω

α(ϕn+1)

2
|un+1|2 − α(ϕn)

2
|un|2

=a(un+1,un+1 − un)− µ

2

∫
Ω

|Dun+1 −Dun|2

+

∫
Ω

α(ϕn+1)

2
(
∣∣un+1|2 − |un|2) +

∫
Ω

α(ϕn+1)− α(ϕn)

2
|un|2.

(48)

For last two terms in the last equation of (48), we have∫
Ω

α(ϕn+1)

2

(
|un+1|2 − |un|2

)
+

∫
Ω

α(ϕn+1)− α(ϕn)

2
|un|2

=
(
α(ϕn+1)un+1,un+1 − un

)
−
∫
Ω

α(ϕn+1)

2

∣∣un+1 − un
∣∣2 +

(
1

2
α′(ϕn)|un|2, ϕn+1 − ϕn

)
.

(49)

Given (ϕn+1,un+1, pn+1), take the test functions (un+1 − un, pn+1 − pn) in (9) yielding that
a(vn+1,un+1 − un) + b(un+1 − un,un+1,vn+1) + b(un+1,un+1 − un,vn+1)

+ (α(ϕn+1)vn+1,un+1 − un)− (qn+1,∇ · (un+1 − un))

=a(un+1,un+1 − un) + (α(ϕn+1)un+1,un+1 − un),

(pn+1 − pn,∇ · vn+1) = 0.

(50)

Considering the Navier-Stokes equations (5) with two consecutive time steps, then the substraction
leads to 

a(un+1 − un,vn+1) + b(un+1,un+1,vn+1)− b(un,un,vn+1)

+ (α(ϕn+1)un+1,vn+1)− (α(ϕn)un,vn+1)− (pn+1 − pn,∇ · vn+1) = 0,

(∇ · (un+1 − un), qn+1) = 0,

(51)

where we have taken the test functions by (vn+1, qn+1). For the nonlinear terms in (51), we have

b(un+1,un+1,vn+1)− b(un,un,vn+1)

=b(un+1,un+1,vn+1)− b(un+1,un,vn+1) + b(un+1,un,vn+1)− b(un,un,vn+1)

=b(un+1,un+1 − un,vn+1) + b(un+1 − un,un+1,vn+1)−Rn+1
1 ,

(52)

where the residual Rn+1
1 = b(un+1−un,un+1−un,vn+1) is second-order term of the substraction

un+1 − un. Similarly, we have

(α(ϕn+1)un+1,vn+1)− (α(ϕn)un,vn+1)

=(α(ϕn+1)un+1,vn+1)− (α(ϕn+1)un,vn+1) + (α(ϕn+1)un,vn+1)− (α(ϕn)un,vn+1)

=
(
α(ϕn+1)(un+1 − un),vn+1

)
+
(
α′(ϕn)unvn+1, ϕn+1 − ϕn

)
=
(
α(ϕn+1)(un+1 − un),vn+1

)
+
(
α′(ϕn)unvn, ϕn+1 − ϕn

)
−R2,

(53)

where the residual is Rn+1
2 = −

(
α′(ϕn)un(vn+1 − vn), ϕn+1 − ϕn

)
. Thus from (50) to (53), we

obtain
a(un+1,un+1 − un) + (α(ϕn+1)un+1,un+1 − un)

=−
(
α′(ϕn)un · vn, ϕn+1 − ϕn

)
+Rn+1

1 +Rn+1
2 .

(54)

Combining (48), (49) and (54), we conclude the result.

We are prepared to deduce the property of unconditional energy stable with semi-implicit
gradient flow scheme.
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Theorem 3.5. Let S0, S1 are positive values independent of ϕ such that
1

2ϵ2
∥ω(2)(ϕ)∥L∞(Ω) +KΩC̃

2
1C2 +

1

2
α0(1 + Cp)2C1C̃2 +

β|Ω|2

2
≤ S0,

1

2
α0(1 + Cp)2C1C̃2 ≤ S1.

(55)

The unconditional energy stable holds for the stabilized gradient flow scheme (32)

W(ϕn+1,un+1)−W(ϕn,un) ≤ τ(νn+1,Gνn+1). (56)

Proof. The residue terms in (45) can be bounded by Lemma 3.3

|Rn+1
1 | = |b(un+1 − un,un+1 − un,vn+1)|

≤ KΩ∥∇(un+1 − un)∥2L2(Ω)∥∇v
n+1∥L2(Ω)

≤ KΩC̃
2
1C2∥ϕn+1 − ϕn∥2L2(Ω),

(57)

and
|Rn+1

2 | = |
(
α′(ϕn) · un(vn+1 − vn), ϕn+1 − ϕn

)
|

≤ ∥α′(ϕn)un∥L4(Ω)∥vn+1 − vn∥L2(Ω)∥ϕn+1 − ϕn∥L4(Ω)

≤ α0(1 + Cp)2∥∇un∥L2(Ω)C̃2∥ϕn+1 − ϕn∥L2(Ω)∥∇(ϕn+1 − ϕn)∥L2(Ω)

≤ 1

2
α0(1 + Cp)2C1C̃2(∥ϕn+1 − ϕn∥2L2(Ω) + ∥∇(ϕn+1 − ϕn)∥2L2(Ω)).

(58)

The subtraction between adjacent Ginzburg-Landau energy gives∫
Ω

[
ϵ1
2

∣∣∇ϕn+1
∣∣2 +

1

ϵ2
ω(ϕn+1)

]
dx−

∫
Ω

[
ϵ1
2

∣∣∇ϕn∣∣2 +
1

ϵ2
ω(ϕn)

]
dx

=

∫
Ω

ϵ1
(
∇ϕn+1 −∇ϕn

)
· ∇ϕn+1 dx− 1

2

∫
Ω

ϵ1
∣∣∇ϕn+1 −∇ϕn

∣∣2 dx

+

∫
Ω

1

ϵ2
ω′(ϕn)(ϕn+1 − ϕn) +

1

2ϵ2
ω(2)(ζ)(ϕn+1 − ϕn)2 dx,

(59)

where we use Taylor expansion up to the second order by taking ζ = τ0ϕ
n+1+(1−τ0)ϕn, τ0 ∈ (0, 1).

Then use the linear property of the volume functional and apply the Cauchy-Schwarz inequality
to obtain

β

2

(
V (ϕn+1)− V̂

)2 − β

2

(
V (ϕn)− V̂

)2
=
β

2

(
V (ϕn+1) + V (ϕn)− 2V̂

)
(V (ϕn+1)− V (ϕn))

=
β

2

(
2V (ϕn)− 2V̂ + V (ϕn+1)− V (ϕn)

)
(V ′(ϕn), ϕn+1 − ϕn)

=β
(
V (ϕn)− V̂

) ∫
Ω

V ′(ϕn)(ϕn+1 − ϕn) dx+
β

2

[ ∫
Ω

V ′(ϕn)(ϕn+1 − ϕn) dx

]2
≤β

(
V (ϕn)− V̂

) ∫
Ω

V ′(ϕn)(ϕn+1 − ϕn) dx+
β

2
∥V ′(ϕn)∥2L2(Ω)∥ϕ

n+1 − ϕn∥2L2(Ω).

(60)

We conduct the estimation via Lemma 3.4 and (59)

W(ϕn+1,un+1)−W(ϕn,un)

=− µ

2

∫
Ω

|Dun+1 −Dun|2 −
∫
Ω

α(ϕn+1)

2

∣∣un+1 − un
∣∣2

+
1

2

(
α′(ϕn)(un)2 − α′(ϕn)un · vn, ϕn+1 − ϕn

)
+ ϵ1(∇ϕn+1 −∇ϕn,∇ϕn+1)− ϵ1

2
∥∇ϕn+1 −∇ϕn∥2L2(Ω) +Rn+1

1 +Rn+1
2

+
1

ϵ2
(ω′(ϕn), ϕn+1 − ϕn) +

1

2ϵ2
(ω(2)(ζ1), (ϕn+1 − ϕn)2)

+ β(V (ϕn)− V̂ )(V ′(ϕn), ϕn+1 − ϕn) +
β

2

[ ∫
Ω

V ′(ϕn)(ϕn+1 − ϕn) dx

]2
,

(61)
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and

W(ϕn+1,un+1)−W(ϕn,un)

≤
(

1

2
α′(ϕn)|un|2 − α′(ϕn)un · vn, ϕn+1 − ϕn

)
+Rn+1

1 +Rn+1
2

+ (∇ϕn+1 −∇ϕn, ϵ1∇ϕn+1) +
1

ϵ2
(ω′(ϕn), ϕn+1 − ϕn) +

1

2ϵ2
(ω(2)(ζ1), (ϕn+1 − ϕn)2)

+ β(V (ϕn)− V̂ )(V ′(ϕn), ϕn+1 − ϕn) +
β

2

[ ∫
Ω

V ′(ϕn)(ϕn+1 − ϕn) dx

]2
=τ(νn+1,Gνn+1)− (S0, (ϕ

n+1 − ϕn)2)− (S1, |∇ϕn+1 −∇ϕn|2) +Rn+1
1 +Rn+1

2

+
1

2ϵ2
(ω(2)(ζ1), (ϕn+1 − ϕn)2) +

β

2

[ ∫
Ω

V ′(ϕn)(ϕn+1 − ϕn) dx

]2
≤
(

1

2ϵ2
∥ω(2)(ϕ)∥L∞(Ω) +KΩC̃

2
1C2 +

1

2
α0(1 + Cp)2C1C̃2 +

β|Ω|2

2
− S0

)
∥ϕn+1 − ϕn∥2L2(Ω)

+

(
1

2
α0(1 + Cp)2C1C̃2 − S1

)
∥∇ϕn+1 −∇ϕn∥2L2(Ω) + τ(νn+1,Gνn+1)

≤τ(νn+1,Gνn+1),

(62)

thanks to the nonnegative operator G and sufficient large values S0 and S1.

Remark 3.6. The popular method to construct an energy stable scheme of gradient flow is the
class of convex splitting method [37] involving inner iteration. While it requires updating P.D.E.
repeatedly for each time step in the case of topology optimization. The stabilization treats the
nonlinear terms explicitly and adds a stabilization term to avoid strict time step constraints [29].
In our case, the instability factors come from the nonlinear term in Navier-Stokes equations and
the introduction of adjoint variables. The other method to construct the energy stable scheme is
introducing a scalar auxiliary variable (see [23]). However, such a method can only keep the energy
stability of the modified energy instead of the original energy.

Then we introduce the bounded value function space

BV(Ω; [0, 1]) := {ξ ∈ L∞(Ω), 0 ≤ ξ ≤ 1}, (63)

and the corresponding projection operator P defines

P(·) : L∞(Ω)→ L∞(Ω),

ζ 7−→ inf
ξ∈BV(Ω;[0,1])

∥ξ − ζ∥L∞(Ω).
(64)

Modify the volume function V (ϕ) :=
∫
Ω

(1−P(ϕ)) and α(ϕ) = α0(1−P(ϕ)) to obtain the following
result.

Lemma 3.7. Let ϕ̃ = P(ϕ) be the projected phase field function where the projection operator is
defined (64). Suppose (ϕ,u, p) is the solution pair of (5). Then (ϕ̃,u, p) is still the solution pair
of (5) and the total energy decreases satisfying that

W(ϕ̃,u) ≤ W(ϕ,u). (65)

Proof. The projection operator satisfies P2 = P. Then using the definition of the permeability
function defined on the whole domain and the volume function, it holds

α(ϕ̃) = α(P(ϕ)) = α0(1− P2(ϕ)) = α0(1− P(ϕ)) = α(ϕ),

V (ϕ̃) =

∫
Ω

[1− P2(ϕ)] dx =

∫
Ω

1− P(ϕ) dx = V (ϕ),
(66)

such that (ϕ̃,u) is the solution pair of (5). Let Ω be partitioned into two disjoint domains Ω =
D1 ∪D2 where

D1 := {x ∈ Ω, ϕ ∈ [0, 1]}, D2 := {x ∈ Ω, ϕ /∈ [0, 1]}. (67)

Then we obtain ∫
Ω

ϵ1
2
|∇ϕ|2 dx =

∫
D1

ϵ1
2
|∇ϕ|2 dx+

∫
D2

ϵ1
2
|∇ϕ|2 dx

≥
∫
D1

ϵ1
2
|∇ϕ|2 dx =

∫
Ω

ϵ1
2
|∇ϕ̃|2 dx,

(68)
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where ∇ϕ̃ vanishes on D2 for ϕ̃ is a.e. constant. Furthermore, by the nonnegativity of the double
well potential, we have ∫

Ω

1

ϵ2
ω(ϕ) dx =

∫
D1

1

ϵ2
ω(ϕ) dx+

∫
D2

1

ϵ2
ω(ϕ) dx

≥
∫
D1

1

ϵ2
ω(ϕ) dx =

∫
Ω

1

ϵ2
ω(ϕ̃) dx,

(69)

where ω(ϕ̃) vanishes on D2 for ϕ̃ takes value on 0 or 1. The invariant of the permeability function
and volume function under the projection leads to

J(ϕ̃,u(ϕ̃)) = J(ϕ,u(ϕ)), (70)

and
1

2
β
(
V (ϕ̃)− V̂

)2
=

1

2
β
(
V (ϕ)− V̂

)2
. (71)

Combining (68) (69) (70) and (71), we conclude the estimate.

Remark 1. Given the previous phase field function ϕn−1, then compute the velocity field un−1

via the Navier-Stokes equations. After that update the phase field function ϕn via the stabilized
gradient flow (32) and then compute the corresponding velocity field un. In this way, the minimiz-
ing sequence {ϕn,un}∞n=1 is generated by repeating the above procedure. From Theorem 3.5, the
sequence {ϕn,un}∞n=0 satisfies the energy dissipation

W(ϕn+1,un+1) ≤ W(ϕn,un) ≤ · · · ≤ W(ϕ0,u0),

which guarantees the convergence and monotonicity. However, the phase field function may exceed
the range [0, 1] causing inaccuracy in computing the Navier-Stokes equations.

Another way to construct the convergent sequence meanwhile keeping phase field function in
the range [0, 1] is computing (ϕn,un,vn) by (32), (5) and (9) first. Then use the projection P(·)
on phase field function to obtain (ϕ̃n,un). We note that (ϕ̃n,un) is still the solution pair of the
Navier-Stokes equations (5) because the permeability function does not change by the projection
operator. Then, use the stabilized gradient flow to obtain the next decreasing iteration

W(ϕn+1,un+1) ≤ W(ϕ̃n,un).

Finally, we alternatively take the projection step and the stabilized gradient flow step to generate
the sequence {ϕ̃n, ϕn,un}∞n=1 such that

W(ϕ̃n+1,un+1) ≤ W(ϕn+1,un+1) ≤ W(ϕ̃n,un) ≤ W(ϕn,un) ≤ · · · ≤ W(ϕ̃0,u0) ≤ W(ϕ0,u0),

which preserves the energy dissipation and bounds the phase field function in [0, 1].

4 Numerical realization

In this section, we introduce the finite element to discretize the Navier-Stokes equations (5),
the adjoint equation (9) and the gradient flow (32) of the phase field.

4.1 Finite element discretization

Consider a family of unstructured meshes {Th}h>0 satisfying the union of triangular units
Ω =

⋃
K∈Th

K, where the mesh size is h := maxK∈Th
hK with hK being the diameter of any

K ∈ Th. Let us consider the conforming finite element subspaces characterized as the discrete
velocity function space Uh ⊂ H1(Ω) and the discrete pressure function as well as the phase field
function space Wh ⊂ L2(Ω). We shall also admit a compatibility condition [38, 39, 40] between the
discrete velocity and pressure spaces Uh and Wh by assuming that there exists a positive constant
β0 > 0 such that

inf
qh∈Wh

sup
vh∈Uh

(qh,∇ · vh)

∥∇vh∥L2(Ω) ∥qh∥L2(Ω)

⩾ β0. (72)

Denote the space of bubble functions by P := [P1 ⊕ span bK ]d, where the bubble function bK :=
Πd+1

i=1 λi and λi(i = 1, · · · , d + 1) are the barycentric coordinates of K. Then the MINI (P1-
bubble/P1) element [38, 39] for discretization of Navier-Stokes equations is given by

Uh = {vh ∈ C0(Ω)d
∣∣vh|K ∈ P ∀ K ∈ Th},

Wh = {qh ∈ C0(Ω)
∣∣ qh|K ∈ P1 ∀ K ∈ Th}.
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The following subspaces are necessary to describe the Dirichlet boundary condition for the velocity
field Uh

d = Uh ∩H1
d(Ω) and for the adjoint function Uh

0 = Uh ∩H1
00(Ω). The phase field function

is discretized in piece-wise linear function space ϕh ∈ Wh. The discrete variational problem of
Navier-Stokes equations (5) reads: find (uh, ph) ∈ Uh

d ×Wh such that{
a(uh,vh) + b(uh,uh,vh) + (α(ϕh)uh,vh)− (ph,∇ · vh) = (f ,vh) ∀vh ∈ Uh,

(∇ · uh, qh) = 0 ∀qh ∈Wh.
(73)

Similarly, the discrete problem of adjoint equations (9) reads: find (vh, qh) ∈ Uh
00 ×Wh such that

a(vh,wh) + b̂(uh,vh,wh)− b(uh,vh,wh) + (α(ϕh)vh,wh)− (qh,∇ ·wh)

= a(uh,wh) + (α(ϕh)uh,wh), ∀wh ∈ Uh,

(zh,∇ · vh) = 0, ∀zh ∈Wh.

(74)

The discrete variational problem of gradient flow (32) is given by: find (ϕn+1
h , νn+1

h ) ∈ Wh ×Wh

such that
1

τ
(ϕn+1

h − ϕnh, ζh) = (Ghνn+1
h , ζh), ∀ζh ∈Wh

(νn+1
h , ψh) = (ϵ1∇ϕn+1

h ,∇ψh) +
(
U(ϕnh,u

n
h,v

n
h), ψh

)
+

(
S(ϕn+1

h − ϕnh), ψh

)
, ∀ψh ∈Wh,

(75)

where Gh is the discrete nonpositive symmetric operator such as the discrete Laplacian Gh = −∆h

for H−1 gradient flow and the identity operator for L2 gradient flow Gh = −I. For Allen-Cahn
gradient flow, take the test function ψh = ζh in the second equation of (75) then insert it into
the first equation to simplify the expression. Hence no intermediate variable is introduced. Since
the stability proofs of stabilized semi-implicit schemes (32) are all variational, they can be directly
extended to fully discrete stabilized semi-implicit schemes with mixed finite element methods.

Theorem 4.1. Let assumptions in Theorem 3.5 hold. Consider (ϕnh,u
n
h, p

n
h) and (ϕn+1

h ,un+1
h , pn+1

h )
are the solution pairs of (73) where ϕn+1

h is updated by (75). Then the total energy has the
monotonic-decaying property:

W(ϕn+1
h ,un+1

h )−W(ϕnh,u
n
h) ≤ τ(νn+1

h ,Ghνn+1
h ), (76)

where S0 and S1 are sufficiently large numbers independent of ϕh.

Proof. Replace the continuous variables (ϕj ,uj , pj) with the discrete variables (ϕjh,u
j
h, p

j
h) as well

as for the adjoint variables (j = n, n+ 1). Then follow the procedure of Theorem 3.5 to obtain the
conclusion.

To verify the monotonic-decaying property of the projection in the fully-discrete sense, we refer
to [17, Lemma 4.1] with the phase field function discretized by the piecewise linear finite element
method

∥∇(Phϕh)∥L2(Ω) ≤ ∥∇ϕh∥L2(Ω), (77)

where Ph defines the corresponding discrete projection operator

Ph(·) : Wh →Wh,

ϕh 7−→ inf
ϕ̃h∈BV(Ω;[0,1])∩Wh

∥ϕ̃h − ϕh∥L∞(Ω).
(78)

Denote the discrete permeability α(ϕh) := α0(1 − Ph(ϕh)). Then the following monitonicity
property holds.

Lemma 4.2. Let ϕ̃h = Ph(ϕh) be the projected phase field function where the projection operator
is defined (73). Suppose that (ϕh,uh, ph) is the solution pair of (5), then (ϕ̃h,uh, ph) is still the
solution pair of (73) and the total energy decreases satisfying that

W(ϕ̃h,uh) ≤ W(ϕh,uh). (79)

Proof. Follow the Lemma 3.7 and combine (77) to conclude the proof.
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The Lagrange multiplier ℓn is introduced to further eliminate the volume error for the Allen-
Cahn gradient flow. Furthermore, the nonlinear term can be expressed by

U(ϕnh,u
n
h,v

n
h) :=

1

ϵ2
ω′(ϕnh) +

η1
η2

(
jϕ(ϕnh,u

n
h)− α′(ϕnh)un

h · vn
h

)
+ β(V (ϕnh)− V̂ )V ′(ϕnh) + ℓn, (80)

where η1 is the weighted parameter, η2 := ∥jϕ(ϕnh,u
n
h) − α′(ϕnh)un

h · vn
h∥L2(Ω) is the normalized

factor. For updating the Lagrange multiplier, a Uzawa type scheme reads

ℓn+1 = ℓn + β(V (ϕnh)− V0). (81)

Note that the discrete Navier-Stokes system in (73) has a nonlinear convection term. A typi-
cally efficient Newton scheme preserving locally quadratic convergence rate is proposed by solv-
ing numerically a series of Oseen problems: Given (uh, ph) for the previous approximation, find
(u∆

h , p
∆
h ) ∈ Uh

d ×Wh such that ∀ (vh, qh) ∈ Uh ×Wh
a(u∆

h ,vh) + b(u∆
h ,uh,vh) + b(uh,u

∆
h ,vh) + (α(ϕh)u∆

h ,vh)

− (p∆h ,∇ · vh) = (f ,vh)− a(uh,vh)− b(uh,uh,vh)− (α(ϕh)uh,vh) + (ph,∇ · vh),

(∇ · u∆
h , qh) = 0.

(82)

Then the approximate solution pair is updated by (uh, ph)← (uh, ph) + (u∆
h , p

∆
h ). In this section,

we propose a topology optimization algorithm based on the scheme (75). We use the trick that once
the state and adjoint variables are solved, the phase field is evolved via the gradient flow scheme
for several steps to further improve the efficiency. Now, we are prepared to present Algorithm 1
(Allen-Cahn) and Algorithm 2 (Cahn-Hilliard) for topology optimization using the semi-implicit
gradient flow scheme. We note that the projection P(·) can not be used in the Cahn-Hilliard
gradient for it may break the mass conservation.

Algorithm 1: Projected Allen-Cahn gradient flow algorithm for topology optimization
of Navier-Stokes flows
Data: Given the maximum iteration times N,Nϕ, the stopping tolerance ϵu
Initialize phase field function ϕ0 and n = 0
while n ≤ N do

Step 1 : Solve state variables (un+1
h , pn+1

h ) of Navier-Stokes equations
while ∥u∆

h ∥L∞(Ω) ≤ ϵu do
(1). Compute the increment (u∆

h , p
∆
h ) via Newton iteration

(2). Update the solution by uh ← uh + u∆
h , ph ← ph + p∆h

end

Step 2 : Solve adjoint variables (vn+1
h , qn+1

h ) from adjoint equations
Set ϕn+1

0 ← ϕn and k = 0
Step 3 : Update the phase field function via Allen-Cahn gradient flow
while k ≤ Nϕ do

(1). Update the phase field function ϕn+1
k+1 with semi-implicit scheme

(2). Use the projection by ϕn+1
k+1 ← P(ϕn+1

k+1)

end

Set ϕn+1 ← ϕn+1
Nϕ

, n← n+ 1
Step 4 : Update the Lagrange multiplier

end

4.2 Numerical experiments

Numerical simulations are performed with FreeFem++ [41]. All numerical results are performed
on a computer with 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz and 16 GB memory. Set
α(ϕ) := α0(1− P(ϕ)) where the permeability coefficient α0 = 1000 for the following Examples.

Example 1 (Diffuser in 2d): Consider a benchmark of the shape design for the diffuser in 2d
space (see [14]). The computational domain is set to be a square Ω = [0, 1]2 (see Fig. 2 left). The
flow on the inlet is imposed by the prescribed function ud = (1, 0)T. The volume target is set to be
V̂ = 0.4 of the solid phase. The basic parameters are given as follows: κ1 = 0.001, κ2 = 0.1, β = 5
and η1 = 1. Set Nϕ = 10 for Allen-Cahn flow and Nϕ = 1 for Cahn-Hilliard flow. Choose the
initial phase field function be the constant ϕ0 = 0.5.
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Algorithm 2: Cahn-Hilliard gradient flow algorithm for topology optimization of Navier-
Stokes flows
Data: Given the maximum outer and inner iteration numbers N,Nϕ, and stopping

tolerance ϵu
Initialize phase field function ϕ0 and n = 0
while n ≤ N do

Step 1 : Solve state variables (un+1
h , pn+1

h ) of Navier-Stokes equations
Step 2 : Solve adjoint variables (vn+1

h , qn+1
h ) from adjoint equations

Set ϕn+1
0 ← ϕn and k = 0

Step 3 : Update the phase field function via Cahn-Hilliard gradient flow
while k ≤ Nϕ do

Update the phase field function ϕn+1
k+1 with semi-implicit scheme

end

Set ϕn+1 ← ϕn+1
Nϕ

, n← n+ 1

end

1L

1L 1
3LΩ Ω

1.5L

1L 0.3L

0.2L

0.2L

Figure 2: Design domains for different Examples in 2d space.

• Test the performance of stabilized Allen-Cahn gradient flow by Algorithm 1 for realizing the
topology optimization. No stabilized terms and projection operator are used for the Allen-
Cahn gradient flow in situation 1. Set S0 = 100 for situation 2, S0 = 100, S1 = 1 for situation
3, and S0 = 100, S1 = 1 as well as the projection operator for situation 4. The maximum and
minimum of the phase field function are presented in Table 1 during shape evolution showing
that the stabilized Allen-Cahn gradient flow with the projection operator behaves well even
in large time step τ = 0.2 (see optimal shape in Fig. 5 right). Then fix τ = 0.005, S0 = 1,
and S1 = 0.1. The optimal shapes and the corresponding velocity fields are shown in Fig. 4
with different viscous parameters. The curves of convergence histories for total energy and
volume errors are presented in Fig. 3 demonstrating the property of energy decreasing and
the high accuracy of volume control.

• Next, consider algorithm 2 by the Cahn-Hilliard gradient flow for topology optimization.
Choose S0 = 1 and S1 = 0.5 for the stabilized parameters. Though the Cahn-Hilliard
gradient flow has the property of mass conservation, we note that the mass of solid region∫
Ω

(1 − ϕ) is not equivalent to volume function V (ϕ) in which the phase field function may
exceed the range [0, 1]. The stabilized parameters are well chosen such that the phase field
function is well controlled in the range [0, 1] during shape evolution (see Table 2) to meet the
demand of volume constraint. The optimal shapes are shown in Fig. 5 (left and middle) with
different viscous parameters. The convergence histories of total energy and mass variation
are shown in Fig. 6 showing that the Chan-Hiliard gradient flow scheme proposed has the
energy dissipation property.

Example 2 (Bypass design): The second Example is the shape design for the bypass in 2d
space. The computational domain is set to be a rectangle Ω = [0, 1.5] × [−0.5, 0.5] (see Fig. 2
right) with two inlets and two outlets. The flow on the inlet is imposed by the prescribed function
ud = (−50(y2 − 0.352)(y2 − 0.152), 0)T.

• At first, fix the volume target V0 = 0.85 in which the solid phase occupies almost 57%
the volume of the whole domain. Consider the algorithm 1 with the projected Allen-Cahn
gradient flow scheme to evolve the phase field function. The basic parameters are given as
follows: τ = 0.0005, κ1 = 0.001, κ2 = 0.1, β = 500, S0 = 1, S1 = 0.5, η1 = 90 and Nϕ = 10.
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Situation 1 Situation 2 Situation 3 Situation 4
iter maxϕ minϕ maxϕ minϕ maxϕ minϕ maxϕ minϕ
0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1 1e73 -1e76 1.22 0.51 0.86 0.54 0.89 0.54
20 - - 1.46 0.24 1.37 -0.06 1.00 0.00
40 - - 1.38 -0.01 1.36 -0.03 1.00 0.00
60 - - 1.35 0.00 1.34 -0.02 1.00 0.00
80 - - 1.39 0.00 1.34 -0.01 1.00 0.00
100 - - 1.40 0.00 1.33 -0.01 1.00 0.00

Table 1: Tests for effects of the stabilizers and the projection operator for Example 1 with τ = 0.2.

µ = 0.01 µ = 0.1
τ = 0.0025 τ = 0.01 τ = 0.001 τ = 0.01

iter maxϕ minϕ maxϕ minϕ iter maxϕ minϕ maxϕ minϕ
0 0.65 0.65 0.65 0.65 0 0.65 0.65 0.65 0.65
20 0.67 0.63 0.78 0.55 20 0.67 0.63 0.77 0.55
40 1.03 -0.04 1.02 -0.02 40 1.03 -0.02 1.02 -0.02
60 1.00 -0.06 1.03 -0.03 60 1.00 -0.06 1.03 -0.03
80 1.01 -0.05 1.03 -0.03 80 1.01 -0.05 1.03 -0.03
100 1.01 -0.05 1.03 -0.03 100 1.01 -0.05 1.03 -0.03

Table 2: Tests for range of phase field function by Algorithm 2 for Example 1 with different τ and
µ.
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Figure 3: Convergence histories of energy by Algorithm 1 (µ = 0.01, 0.005 left and 0.1 middle) and
volume errors (right) for Example 1.

Figure 4: Optimized distributions (line 1) and velocity fields (line 2) for Example 1: µ = 0.1, 0.01,
and 0.005 from left to right.
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Figure 5: Optimal distributions by Algorithm 2 left (µ = 0.1), middle (µ = 0.01) and τ = 0.2
right.
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Figure 6: Convergence histories of energy (left µ = 0.1, µ = 0.01) and mass (right) for Example 1
by Algorithm 2.

The initial phase field function is ϕ0 = min(abs(y − 0.3) − 0.1, abs(y + 0.3) − 0.1). The
optimal distribution with single connected shape and the corresponding velocity fields are
presented on the left and middle of Fig. 7 where the viscous coefficients µ = 0.1 and µ = 0.01.
The convergence histories of total energy are shown in Fig. 8 left demonstrating that the
algorithm 1 has the energy dissipative property. Meanwhile, the volume error (Fig. 8 right)
is well controlled almost by 0.01.

• Consider the Cahn-Hilliard gradient flow algorithm 2 for topology optimization. Choose the
initial phase field function ϕ0 = 0.5. The basic parameters are given as follows: µ = 0.01, τ =
0.00025, κ1 = 0.001, κ2 = 0.01, S0 = 1.0, S1 = 0.15 and η1 = 4. The other conditions are the
same as the above. The optimal distribution and its corresponding velocity field exhibit the
double channels in Fig. 7 right. The convergence histories of total energy is presented in
the middle of Fig. 8 showing the effectiveness of the algorithm 2. Furthermore, different µ
(see Fig. 9) have been tested to display the optimal configurations and curves of total free
energy.

Example 3 (Bypass design in 3d): This example is solved by Algorithm 1. See Fig. 10 for
the domains to design the internal flow channels.

• (A). The design domain is the Fig. 10 left. The velocity on the inlet is ud = (0, 0,−1)T. Set
the volume target 0.85 for the solid phase. The basic parameters are given as follows: τ =
0.0025, ϵ1 = 0.0001, s0 = 1, ϵ2 = 0.1, β = 10, η1 = 10 and Nϕ=10. The optimal distribution
from two directions and corresponding velocity fields are displayed in Fig. 11 with different
viscous coefficients. The curves of convergence histories for both total energy and volume in
Fig. 12 shows the energy dissipative for the scheme in 3d space.

• (B). The design domain is the Fig. 10 right. The velocity on the inlet is ud = [−(50(y −
0.35)(y − 0.15)(y + 0.35)(y + 0.15)), 0, 0]T. The basic parameters are given as follows: τ =
0.001, ϵ1 = 0.001, ϵ2 = 0.1, β = 250, η1 = 10, V0 = 0.55|Ω|, Nϕ = 15, S0 = 1 and S1 = 0.5.
The optimal distribution from two directions and corresponding velocity fields are displayed
in Fig. 13 with different viscous coefficients. The curves of convergence histories for both
total energy and volume in Fig. 14 shows the energy dissipative for the scheme in 3d space.
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Figure 7: Optimal distributions on line 1 and velocity fields on line 2 (Allen-Cahn: µ = 0.1 left,
µ = 0.01 middle and Cahn-Hilliard: µ = 0.01 right) for Example 2.
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Figure 8: The convergence histories of total energy (Allen-Cahn: left, Chan-Hilliard: middle) and
volume errors for Allen-Cahn (right) for Example 2.

5 Conclusion

Topology optimization in incompressible Navier-Stokes equations has been considered using
a phase field model. We propose the novel stabilized semi-implicit schemes of the gradient flow
in Allen-Cahn and Cahn-Hilliard types for solving the resulting optimal control problem. The
unconditional energy stability is shown for the gradient flow schemes in both continuous and
discrete spaces by the Lipschtiz continuity. Numerical examples of computational fluid dynamics
show effectiveness and robustness of the optimization algorithm proposed. The stabilized gradient
flow scheme is the constant coefficient equation that can be solved efficiently. The scheme keeping
energy dissipation is simple to realize and may can be extended to other topology optimization
models with general objective functionals such as geometric inverse problems or with nonlinear
physical constraints.
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Figure 9: Optimal distributions (Cahn-Hilliard: µ = 1 left, µ = 0.1 middle and convergence
histories right) for Example 2.
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Figure 10: The design domains for different Examples in 3d space.

Figure 11: Optimized designs with 36864 tetrahedron elements and corresponding velocity fields
of Example 3 (A) (line 1 for µ = 0.1 and line 2 for µ = 0.01).
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Figure 12: Convergence histories of the total energy and volume error for Example 3 (A).
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Figure 13: Optimal designs with 89711 tetrahedron elements and corresponding velocity fields of
Example 3 (A) (line 1 for µ = 0.1 and line 2 for µ = 0.01).
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Figure 14: Convergence histories of the total energy and volume error for Example 3 (B).
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