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ABSTRACT

We report on spin variations in the intermediate polar and cataclysmic variable CC Scl, as seen by the Transiting

Exoplanet Survey Satellite (TESS). By studying both the spin period and its harmonic, we find that the spin has

varied since it was first observed in 2011. We find the latest spin value for the source to be 389.473(6) s, equivalent

to 0.00450779(7) days, 0.02 s shorter than the first value measured. A linear fit to these and intermediate data give a

rate of change of spin (Ṗ) ∼ -4.26(2.66)×10−11 and a characteristic timescale τ ∼ 2.90×105 years, in line with other

known intermediate polars with varying spin. The spin profile of this source also matches theoretical spin profiles of

high-inclination intermediate polars, and furthermore, appears to have changed in shape over a period of three years.

Such ‘spin-up’ in an intermediate polar is considered to be from mass accretion onto the white dwarf (the primary),

and we note the presence of dwarf nova eruptions in this source as being a possible catalyst of the variations.
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1 INTRODUCTION

Cataclysmic Variables (CVs) are compact binary systems
where a white dwarf accretes from a late-type companion star
via Roche Lobe overflow. This accretion is strongly affected
by the white dwarf’s magnetic field: When the white dwarf’s
magnetic field is low, it accretes from a disc; however, for
white dwarfs with strong magnetic fields (>106 G), matter is
swept up along the magnetic field lines and channelled onto
the poles.
In the latter, if the accretion occurs directly from the

stream from the companion, then the system will not host
a disc, and the white dwarf’s spin will synchronise with the
orbit; these systems are known as polars. However, in weaker
magnetic regimes, the magnetic field will instead merely trun-
cate the disc, sweeping up matter at the ‘magnetospheric ra-
dius’; such systems are known as intermediate polars.
The interaction between the magnetic field and the disc can

transfer angular momentum both to the white dwarf (during
accretion) and from it (e.g. the propeller effect, Wynn et al.
1997), respectively increasing or decreasing the white dwarf’s
spin. Spin variations have been seen in several intermediate
polar CVs, such as DQ Her, AO Psc, FO Aqr, V1223 Sgr,
and BG CMi (see Patterson et al. 2020 for details).
One particular intermediate polar, CC Sculptoris (also

known as CC Scl), was first discovered as an X-ray source

⋆ E-mail: johnapaice@gmail.com

(RX J2315.5-3049, Schwope et al. 2000) and later also found
to undergo dwarf nova eruptions (Ishioka et al. 2001). These
eruptions occur when the accretion disc becomes ionised, sim-
ilar to many low-mass X-ray binary systems (see Lasota 2001;
Done et al. 2007 for reviews).

Woudt et al. (2012) confirmed CC Scl as an intermediate
polar with a spin period of 389.49 s (0.00450801 days). Kato
et al. (2015) and Szkody et al. (2017) investigated the spin
since, with the latter being the first to detect it during qui-
escence. Both Woudt et al. (2012) and Szkody et al. (2017)
noted that the harmonic of the spin period (at twice the fre-
quency) is sometimes stronger than the fundamental; the au-
thors of the former suggested (and the latter supported) that
this is due to the second pole being visible, as CC Scl is a
high-inclination system (Kato et al. 2015). All the spin de-
terminations of this source so far are shown in Table 1.

We now present new data on the variability of this source,
obtained from data taken by the Transiting Exoplanet Sur-
vey Satellite (TESS), which has observed CC Scl on two sep-
arate occasions. We investigate the frequency of the spin and
harmonic, compare it with previous data, and quantify the
changes that may have happened over the past decade.

2 METHOD

Data were taken by TESS, the Transiting Exoplanet Sur-
vey Satellite (Ricker et al. 2015), which observes in the
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Figure 1. Long-term light curves of CC Scl from ASASSN (green) and AAVSO (purple), with outbursts (arbitrarily defined as magnitude
< 16) in red. Faded points have error > 0.1 mag, and are not considered for outbursts. Previous observations in literature (Woudt et al.

2012; Kato et al. 2015; Szkody et al. 2017) and the two TESS sectors investigated in this paper (29 and 69) are also plotted.

Table 1. Historical spin determinations for this source.

MJD Spin (s) Spin (days) Reference

55717 389.492(2) 0.00450801(6) 1

55874 389.457(20) 0.0045076(2) 2
56472 387.371 0.0044835 3†

56850 389.483(80) 0.0045079(9) 2

1Woudt et al. (2012); 2Kato et al. (2015); 3Szkody et al. (2017)
†See Appendix

Figure 2. Power spectrum of TESS sector 69. The orbit and its

harmonic are strongest, with the spin at higher frequencies.

optical/near-infrared bands, between ∼600–1000 nm. The
two datasets were from Sector 29 (2020 August 26 – 2020
September 21) and Sector 69 (2023 August 25 – 2023 Septem-
ber 20), and the long-cadence (‘LC’) data (with a cadence
of 120 s) were obtained and analysed using the Lightkurve

python package1. We used the SAP (Simple Aperture Pho-
tometry) flux as our data, and any rows with a quality flag
> 0 were removed.
Figure 1 shows the ASAS-SN (All-Sky Automated Survey

for Supernova, Shappee et al. 2014; Kochanek et al. 2017) and
AAVSO (American Association of Variable Star Observers)
light curves of the source; dwarf nova outbursts can be seen
to happen regularly, with a recurrence time of around 175
days. Previous investigations into CC Scl’s spin, as well as
the relevant TESS sectors for this paper, are also plotted. A

1 https://docs.lightkurve.org/index.html

power spectrum of sector 69 of the TESS data, averaged over
20 segments (∼1 day in length), can be seen in Figure 2.

To investigate the spin of CC Scl, we used a Lomb-Scargle
periodogram (Lomb 1976; Scargle 1982). We only investi-
gated the region around the fundamental spin frequency
(221.80–221.87 cycles/day), outside of which there were no
significant signals. The Lomb-Scargle package we used was
from astropy2, and with it we used twenty ‘samples per peak’
as the oversampling.

In order to find the uncertainties of the peak of the Lomb-
Scargle, we also employed bootstrapping, wherein N points
were drawn from the original light curves with replacement
(where N is the length of the original light curve), and the
above analyses were carried out on the resultant data. To
find the peak of the signal, the highest bin in this range was
taken, along with two bins on either side; a polynomial was
fit to them, and the location of the maximum of that polyno-
mial was recorded as the maximum frequency. This was done
50,000 times. Afterwards, a histogram of the frequencies was
recorded, and a Gaussian was fit; the mean of this Gaussian
was taken to be the mean value of the signal, and the stan-
dard deviation of the population of bootstrapped points was
taken to be the error.

We also considered the harmonic of the spin at twice the
frequency, also noted in Woudt et al. (2012) and in several
subsequent papers. For this region, the frequency interval
443.64–443.72 cycles/day was used, outside of which there
were no significantly high peaks. Lomb-Scargle analysis of
this harmonic required going beyond the Nyquist frequency,
and as such a Nyquist factor of 2 was used; this is possible
because any signal beyond the Nyquist frequency is reflected
back into the sub-Nyquist range, and shows a peak at the
relevant frequency (which we see).

3 RESULTS

Lomb-Scargles for the spin and harmonic are plotted in Fig-
ure 3, alongside the bootstrapped analysis, its mean, and its
standard deviation (i.e. one-sigma uncertainty), and a com-
parison is made with the spin period given by Woudt et al.

2 https://docs.astropy.org/en/stable/index.html
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Table 2. Spin and Harmonic determinations from this work, with
one-sigma uncertainties. ‘Equivalent Spin’ is our Harmonic mea-

surements multiplied by a factor of 2.

MJD Period Equivalent Spin

(s) (s) (days)

59100 389.4733(60) 389.4733(60) 0.004507792(69)
60194 389.4730(46) 389.4730(46) 0.004507789(53)

59100 194.7365(23) 389.4731(47) 0.004507790(54)
60194 194.7329(18) 389.4659(36) 0.004507707(42)

(2012). Values for the spin and the harmonic, as well as the
harmonic translated to the spin, are shown in Table 2.
Both measurements of the fundamental are consistent. For

the harmonic, there is a small increase in the frequency, but
this is not outside of errors. However, each case shows a strong
deviation from the original spin period reported in Woudt
et al. (2012).

4 DISCUSSION

We plot our results with those from Woudt et al. (2012), Kato
et al. (2015), and Szkody et al. (2017) in Figure 4, and in each
case carry out a χ2 fit. Szkody et al. (2017)’s point used the
harmonic; see Appendix for a discussion of those data.
It is unclear what the overall trend is for this source. The

points from Kato et al. (2015) and Szkody et al. (2017) imply
a sudden, strong increase in spin of 0.2 s over at minimum one
year (Ṗ∼106). Intermediate polars do vary their spin around
equilibrium (see, e.g., Warner 1990; Patterson 1994; Norton
et al. 2004), but not on timescales like this (Patterson et al.
2020, see also Table 3); it should also be noted that these
points have large uncertainties. We do note, though, that
the spin of CC Scl is not inconsistent with it being in sta-
ble equilibrium; Pspin ∼ 0.078 Porb (Woudt et al. 2012), a
value consistent with the theory of disc-like intermediate po-
lars (Norton et al. 2008) and the general population (Wynn
& King 1995).
However, what is clear is that there has been some shift

between the original measurement in 2011 by Woudt et al.
(2012) and the two most recent TESS sectors in 2020 and
2023. A simple linear fit to the data gives a spin-up rate be-
tween -4.26(2.66)×10−11 for the spin and -5.85(2.42)×10−11

for the harmonics, to one sigma, with reduced χ2 of 3.21 and
3.12 respectively. This equates to a characteristic timescale
(τ, equal to the spin over Ṗ) of ∼2.90×105 and ∼2.11×105

years respectively. This is similar to other intermediate polar
systems with variable spins; see Table 3.

4.1 Spin Profile

To investigate the source further, we found the spin phase
profile for both sectors. We did this by folding the light curves
on the spin period for sector 29 (since the spins are within 1
sigma of each other); see Figure 5. T0 was chosen indepen-
dently for each sector, as our ephemeris was not good enough
to phase across sectors.
The folded light curves bear a resemblance to XY Ari, a

similarly high-inclination IP, as shown in Hellier et al. (1997).
In that source, a combination of the upper accretion zone (the

Table 3. Spins from five other Intermediate Polars that show (or

have at one point shown) linear spin-changes, including their rate
of change of spin (Ṗ) and characteristic timescale (τ), compared

with our values.

Name Spin (s) Ṗ τ (years) Ref.

PQ Gem 833.42 9.08(5)×10−11 2.91×105 1

V418 Gem 240.34 -3.0(2)×10−12 -2.52×106 2

GK Per 351.33 1.2(2)×10−11 8.57×105 3

AO Psc 858.62 -5.93×10−11 -5.05×105 4

V1223 Sgr 794.41 2.35×10−11 1.07×106 4

CC Scl 389.49 -4.26×10−11 -2.90×105 -

1Evans et al. (2006); 2Patterson et al. (2011);
3Zemko et al. (2017); 4Patterson et al. (2020)

one tilted towards us) and the lower accretion zone (the one
tilted away from us), when combined with some asymmetry
between the two, give rise to a three-step shape: a plateau
when just the upper accretion region is visible; then a peak
while it’s turning away and the lower accretion region is com-
ing into view; and finally a dip as the lower region turns away
and the upper region is still coming into view. We created a
representative, phenomenological model matching this idea:
two sinusoids, with some cut-off value (one at the top, to rep-
resent the upper pole, and one at the bottom, to represent the
lower), are offset slightly in phase and then combined. The re-
sultant is fitted to our CC Scl data; this is shown in the right
half of Fig. 5; note that this is a representative model and fit
only, merely to show that our data is consistent with this con-
cept. This supports previous determinations by Woudt et al.
(2012) and Szkody et al. (2017) that both poles are visible,
and their combination produces the harmonic.

The spin pulse profile of CC Scl changes between sectors;
the peak occurs after the dip in sector 29, and before the dip
in sector 69. This is reminiscent of ‘pole-switching’, which
occurs when accretion favours one pole and then the other;
although such effects are primarily seen in asynchronous po-
lars (e.g. CD Ind, Littlefield et al. 2019, and BY Cam, where
Mason et al. 2022 ascribe it to a magnetic valve at L1 mod-
ulating the accretion flow).

5 CONCLUSION

CC Scl is an intermediate polar that has shown a signifi-
cant change in its spin over the course of several years. While
intervening measurements have large uncertainties, the first
spin measurement from 2011 (Woudt et al. 2012) is signifi-
cantly different from the most recent determinations made in
2020 and 2023; fitting to all measurements implies that the
source is spinning up with a Ṗ of -4.26(2.66)×10−11 and a
characteristic timescale of ∼2.90×105 years.

Further observations of this source in the coming years
would be highly desirable, and TESS is already planning to
observe this source in a future sector. Other bands, such as
X-rays, could also test the two-pole model and monitor the
evolution of the spin period.

MNRAS 000, 1–5 (2024)
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Figure 3. Lomb-Scargle periodograms (blue) of CC Scl about the spin period, for sectors 29 (top) and 69 (bottom). The peaks of
bootstrapped Lomb-Scargle (left) and PDM (right) analyses are shown in orange, with their mean and standard deviation shown in

purple. Each analysis has been normalised to unity. Also plotted in black is the spin period and error reported in Woudt et al. (2012).

Figure 4. Plot of the spin determination over time, including a lin-

ear fit to calculate the rate of change of spin (Ṗ) and characteristic
timescale (τ). The top plot fits to our spin measurements, and the
bottom plot fits to twice our harmonic measurements. We also fit

to the values from Woudt et al. (2012), Kato et al. (2015), and

Szkody et al. (2017). Note that the spin period from Szkody et al.
(2017) is calculated from their reported harmonic; see Appendix.
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APPENDIX A: HUBBLE SPACE TELESCOPE DATA
FROM SZKODY+2017

Szkody et al. (2017) presented ultraviolet data on CC Scl as
observed by Hubble Space Telescope (HST) using the Cosmic
Origins Spectrograph (Green et al. 2012), on 2013 June 29 at

3 https://asas-sn.osu.edu
4 https://www.aavso.org/data-access

Figure A1. Analysis of HST data first presented in Szkody et al.

(2017); Lomb-Scargle (red) and subsequent bootstrap (orange) of

the harmonic period, with mean and standard deviation presented
in purple. Our and Woudt’s data are shown.

03:39:03 UT with an effective exposure time of 1.3 h covering
two HST orbits, as part of the GO programe 12870 (Gaen-
sicke 2012). In this work, Szkody et al. (2017) found the spin
period peak at around 387 s, and a stronger harmonic peak
at 194.657 s, but did not give an error on either.

We downloaded the HST data from the Mikulski Archive
for Space Telescopes (MAST). Light curves were extracted
from the time-tag event list following the method described
in Castro Segura et al. (2022), and geocoronal spectral re-
gions were removed from the event list to avoid artefacts
in the light curves. To test the influence of the emission
lines in the resulting periodograms, we also created light
curves from spectral regions with no clear emission line con-
tribution. The continuum regions were selected by visual in-
spection from the average spectrum: the regions lie between
λλ = (1352.0,1377.6),(1425.1,1516),(1573,1622),(1665,1839)
and (1870,2000) Å.

In both cases, we found the spin period to be far less sig-
nificant than the harmonic, which explains the deviation in
reported spin seen in Table 1. Instead, we focused on the
harmonic; we applied a Lomb-Scargle periodogram and boot-
strapped the result between 435–450 cycles, with everything
else the same as described in Section 2. We find the harmonic
to be 194.63(3) s for the full light curve and 194.66(4) s for
the continuum, which is equivalent to 389.26(6) and 389.32(7)
respectively (note that each are consistent within uncertain-
ties). The latter case is shown in Figure A1.

However, the breadth of the Lomb-Scargle peak should be
noted. In Figure A1, the locations of both Woudt et al. (2012)
and our spins are very close to the peak of the Lomb-Scargle
of the HST data, even if the bootstrapping does not align with
them. Figure 5 in Szkody et al. (2017) shows that the win-
dow size for the discrete Fourier transform is much broader
than the spin differences seen in this source. Alongside the
much shorter data train for this data compared with TESS,
investigating the HST light curve shows a lot of stochastic
variability in the source, which is an additional complication
for determining the spin.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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