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Two methods for fast Fourier transforms are used in a quantum context. The first method is for
systems with dimension of the Hilbert space D = dn with d an odd integer, and is inspired by the
Cooley-Tukey formalism. The ‘large Fourier transform’ is expressed as a sequence of n ‘small Fourier
transforms’ (together with some other transforms) in quantum systems with d-dimensional Hilbert
space. Limitations of the method are discussed. In some special cases, the n Fourier transforms
can be performed in parallel. The second method is for systems with dimension of the Hilbert
space D = d0...dn−1 with d0, ..., dn−1 odd integers coprime to each other. It is inspired by the
Good formalism, which in turn is based on the Chinese reminder theorem. In this case also the
‘large Fourier transform’ is expressed as a sequence of n ‘small Fourier transforms’ (that involve
some constants related to the number theory that describes the formalism). The ‘small Fourier
transforms’ can be performed in a classical computer or in a quantum computer (in which case we
have the additional well known advantages of quantum Fourier transform circuits). In the case that
the small Fourier transforms are performed with a classical computer, complexity arguments for
both methods show the reduction in computational time from O(D2) to O(D logD). The second
method is also used for the fast calculation of Wigner and Weyl functions, in quantum systems with
large finite dimension of the Hilbert space.

I. INTRODUCTION

The fast implementation of large Fourier transforms is very important for many technological applications.
Roughly speaking in this paper we express the Fourier transform in a Hilbert space of large dimension, as a
combination of many Fourier transforms in Hilbert spaces of small dimension. This is a fast Fourier transform,
because performing many ‘small’ Fourier transforms instead of one ‘large’ Fourier transform, is computationally
beneficial. The ‘small’ Fourier transforms can be performed in a classical computer or as quantum Fourier
transforms in a quantum computer. In the latter case, we will also have an additional well known reduction
of the computational time by quantum Fourier transform circuits (e.g., [1, 2]). Our methodology (and the
associated reduction of computational time) is applicable to the calculation of other quantities also, like the
Wigner and Weyl functions.
Two important approaches are the Cooley-Tukey formalism [3, 4], and the Good formalism[5–7] which is

based on the Chinese remainder theorem. There are also many variations of these schemes (reviewed in [8–10]).
In this paper we study the implementation of fast Fourier transforms in quantum systems with large dimension
of the Hilbert space. We also study the fast calculation of the Wigner and Weyl functions. This is an important
application of the physics of quantum systems with finite -dimensional Hilbert space(e.g. [11]).
We consider a finite quantum system Σ(D) with variables in Z(D) (the ring of integers modulo d) where D

is an odd integer. This system is described by the D-dimensional Hilbert space H(D). There are well known
technical differences between quantum systems with odd dimension D and even dimension D (e.g., [12–14]).
In this paper we consider systems with odd dimension D. We discuss the fast implementation of the Fourier
transform F in Σ(D), using two methods described briefly below.
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A. First method for the case D = dn with d an odd integer

The fast implementation of the Fourier transform F in Σ(D), is using a sequence of n Fourier transforms
(together with some other transforms) in a multipartite system Σn(d) comprised of n components each of which
is described with variables in Z(d). Positions and momenta in Σn(d) take values in [Z(d)]n = Z(d)× ...Z(d) and
the corresponding Hilbert space is HA = H(d) ⊗ ... ⊗H(d). The Hilbert spaces H(D) and HA are isomorphic
(they have the same dimension), and in this sense Σ(D) and Σn(d) are two different descriptions of the same
system. However, Fourier transforms and other phase space methods are different in these two cases[15].
Mathematically, this approach is inspired by the Cooley-Tukey formalism [3] for fast Fourier transforms (see

also [8–10]), and is used here in a quantum context. But we note that the most popular Cooley-Tukey algorithm
is for D = 2n, whilst in our approach D is a power of an odd number.
A quantum circuit for the implementation of this fast Fourier transform is given in Fig.1. In some special

cases, the various operations can be performed in parallel (parallel computing).
We discuss the complexity of this method and show that the computational time is reduced from O(D2) to

O(D logD). We also present numerical work that supports this.
A limitation of the method is the fact that the ring Z(D) (with D = dn) is not isomorphic to the ring [Z(d)]n.

Although there is a bijective map between them, sum and products do not correspond to sums and products
(section 2.A). The implications of this are discussed in section 4.C. For example, this method cannot be used
in Eqs(63) below, for the fast calculation of the Wigner and Weyl functions.

B. Second method for the case D = d0...dn−1 with d0, ..., dn−1 odd integers coprime to each other

The fast implementation of the Fourier transform F, is using a multipartite system Σ(d0, ..., dn−1) comprised of
n components, which are described with variables in Z(d0), ...,Z(dn−1). Positions and momenta in Σ(d0, ..., dn−1)
take values in Z(d0) × ... × Z(dn−1) and the corresponding Hilbert space is HB = H(d0) ⊗ ... ⊗H(dn−1). The
Hilbert spaces H(D) and HB are isomorphic (they have the same dimension), and in this sense Σ(D) and
Σ(d0, ..., dn−1) are two different descriptions of the same system.
Mathematically, this approach is inspired by the Good formalism[5–7] for fast Fourier transforms (see also

[8–10]), which in turn is based on the Chinese remainder theorem, and is used here in a quantum context. A
quantum circuit for the implementation of this fast Fourier transform is given in Fig.5.
The complexity of the method is discussed, and it is shown that the computational time is reduced from

O(D2) to O(D logD). This is supported with numerical work.
A strength of the method is the fact that the ring Z(D) is isomorphic to the ring Z(d0)× ...×Z(dn−1) (section

2.B). Because of this the method is used for the fact calculation of Wigner and Weyl functions in section 6.

C. Contents

The work is complementary to the work on quantum Fourier transforms. It reduces a large Fourier transform
to many small Fourier transforms, and this reduces the computational time. The small Fourier transforms
can be preformed with a classical computer, or (if available) with a quantum computer so that we have the
additional (and well known) advantages of quantum Fourier transforms[1, 2].
In section 2 we discuss the number theory related to the two methods. In section 3 we consider a quantum

system Σ(D) with variables in Z(D) where D is an odd integer, described by the D-dimensional Hilbert space
H(D). In section 4 we present the first method for the case where D = dn. In section 5 we present the second
method for the case where D = d0...dn−1 with d0, ..., dn−1 odd integers coprime to each other. In section 6 we
use the second method for the fast calculation of the Wigner and Weyl functions. We conclude in section 7 with
a discussion of our results.
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II. NUMBER THEORY FOR THE TWO FAST FOURIER TRANSFORMS

A. A bijective map between the non-isomorphic rings [Z(d)]n and Z(D) when D = dn

Z(D) is the ring of integers modulo D, where D is an odd integer. We take D = dn (where d is an odd
integer) and consider a bijective map between [Z(d)]n = Z(d)× ...× Z(d) and Z(D). We use upper case letters
for elements in Z(D), and lower case letters for elements in Z(d). We also take jr ∈ Z(d) and J ∈ Z(D) in the
‘periods’ [

−d− 1

2
,
d− 1

2

]
;

[
−D − 1

2
,
D − 1

2

]
, (1)

correspondingly.
We introduce the following bijective map between the sets [Z(d)]n and Z(D)

(j0, ..., jn−1) ↔ J = j0 + j1d+ ...+ jn−1d
n−1. (2)

Given J , we can find the j0, ..., jn−1 as the remainders in the following sequence of divisions:

• We divide J by d and we get j1 + j2d+ ...jn−1d
n−2 and remainder j0.

• We divide j1 + j2d+ ...jn−1d
n−2 by d and we get j2 + j3d+ ...jn−1d

n−3 and remainder j1.

• e.t.c.

We note that the [Z(d)]n as a ring (with addition and multiplication componentwise), is not isomorphic to the
ring Z(D) because addition and multiplication is different[15]. Indeed

(j0, ..., jn−1) + (k0, ..., kn−1) = (j0 + k0, ..., jn−1 + kn−1) (3)

does not correspond to J +K. The sum in Z(D) has the ‘carry’ rule and the r-component might be jr + kr +1
rather than jr + kr . In contrast, there is no ‘carry’ rule in [Z(d)]n. Also the multiplication in Z(D)

JK = j0k0 + d(j1k0 + k1j0) + ...+ dn−1(j0kn−1 + ...+ jn−1k0), (4)

does not correspond to the componentwise multiplication in [Z(d)]n

(j0, ..., jn−1) · (k0, ..., kn−1) = (j0k0, ..., jn−1kn−1). (5)

Due to the non-isomorphism of the rings Z(D) and [Z(d)]n, there is a limitation (see subsection 4.C) of the
corresponding fast Fourier transform method in section 4.
We use the notation

ωr(s) = exp

(
i
2πs

r

)
. (6)

For later use, we use Eq(4) and we get

ωD(JK) = ωdn(j0k0)ωdn−1(j1k0 + k1j0)...ωd(j0kn−1 + ...+ jn−1k0). (7)

Example II.1. We consider the bijective map between the sets [Z(3)]2 and Z(9):

(j0, j1) ↔ J = j0 + 3j1; jν = −1, 0, 1; J = −4, ..., 4. (8)

Then (1, 1) corresponds to 4 ∈ Z(9). Addition in [Z(3)]2 gives (1, 1) + (1, 1) = (−1,−1) which corresponds to
−4 ∈ Z(9). The corresponding addition in Z(9) gives 4 + 4 = −1.
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B. The isomorphic rings Z(d0)× ...×Z(dn−1) and Z(D) when D = d0...dn−1 and the d0, ..., dn−1 are coprime

A different method for Fast Fourier transforms is the Good method [5–7] which is based on the Chinese
remainder theorem. In a quantum context it has been used in [11, 16].
If d0, ..., dn−1 are coprime, then the ring Z(d0)× ...×Z(dn−1) is isomorphic to Z(D) where D = d0× ...×dn−1.

We first define the integers

aν =
D

dν
; aνbν = 1(mod dν) (9)

bν is the inverse of aν within Z(dν), and it exists because the aν , dν are coprime. We also define the cν = aνbν
as an element of Z(D), which is an integer multiple of dν plus one (Ndν + 1).

Lemma II.2.

aνaµ = a2νδµν(mod D); cνcµ = cνδµν(mod D); aνcµ = aνδµν(mod D). (10)

Proof. In the first relation, for ν ̸= µ we get a multiple of D, which is 0(mod D).
In the second relation, we get

cνcµ = aνbνaµbµ = (aνbν)
2δνµ = c2νδνµ = cν(Ndν + 1)δνµ = cνδνµ +Nbν(aνdν)

= cνδνµ +NbνD = cνδνµ (mod D). (11)

In the third relation, we get

aνcµ = aνaµbµ = a2νbνδνµ = aνcνδνµ = aν(Ndν + 1)δνµ = aνδνµ +ND

= cνδνµ (mod D). (12)

We define a bijective map between Z(d1)× ...× Z(dn) and Z(D) as follows:

(j0, ..., jn−1) ↔ J ; jν = J(mod dν) ∈ Z(dν); J =
∑

jνcν ∈ Z(D). (13)

The Chinese remainder theorem ensures that this map is bijective. Using Eq.(12), we prove that

(j0 + j′0, ..., jn−1 + j′n−1) ↔ J + J ′;

(j0j
′
0, ..., jn−1j

′
n−1) ↔ JJ ′. (14)

and therefore the ring Z(d0)× ...× Z(dn−1) is isomorphic to Z(D).
We also define a different bijective map

(ĵ0, ..., ĵn−1) ↔ J ; ĵν = Jbν(mod dν) ∈ Z(dν); J =
∑

ĵνaν ∈ Z(D). (15)

From Eqs(13),(15) we find the relationship between jν and ĵν :

ĵν = jνbν(mod dν); jν = ĵνaν(mod dν). (16)

Using Eqs(12),(13),(15) we prove that

JK = ĵ0k0a0 + ...+ ĵn−1kn−1an−1. (17)

It then follows the important relation:

ωD(JK) = ωd0
(ĵ0k0)...ωdn−1

(ĵn−1kn−1)

= ωd0(j0b0k0)...ωdn−1(jn−1bn−1kn−1) (18)
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Example II.3. Let d0 = 3 and d1 = 5. Then D = 15 and

a0 = 5; b0 = 2; c0 = 10

a1 = 3; b1 = 2; c1 = 6. (19)

Then

J = 10j0 + 6j1 = 5ĵ0 + 3ĵ1 (20)

As an example, we take J = 11 and we find the corresponding (j0, j1) = (2, 1) and (ĵ0, ĵ1) = (4, 2). We confirm
Eq(16):

j0b0 = 2× 2 = 4 = ĵ0; j1b1 = 1× 2 = ĵ1

ĵ0a0 = 4× 5 = 2(mod 3) = j0; ĵ1a1 = 2× 3 = 1(mod 5) = j1. (21)

III. A QUANTUM SYSTEM Σ(D) WITH VARIABLES IN Z(D)

We consider a quantum system Σ(D) with variables in the ring Z(D), where D is an odd integer. H(D) is
the D-dimensional Hilbert space describing this system.

Let |X; J⟩ where J ∈ Z(D) be an orthonormal basis in H(D). The X in the notation is not a variable, it
simply indicates ‘position states’. The finite Fourier transform F is given by[17]

F =
1√
D

∑
J,K

ωD(JK)|X; J⟩⟨X;K|; A, J,K ∈ Z(D)

F 4 = 1; FF † = 1. (22)

We act with F † on position states and get the dual basis

|P ; J⟩ = F †|X; J⟩ = 1√
D

∑
K

ωD(−JK)|X;K⟩. (23)

The P in the notation is not a variable, it simply indicates ‘momentum states’. A state |s⟩ in H(D) can be
written as

|s⟩ =
∑

s(J)|X; J⟩ =
∑

s̃(J)|P ; J⟩

s̃(J) =
1√
D

∑
K

ωD(JK)s(K) (24)

Below we study the fast implementation of this Fourier transform.

IV. THE CASE D = dn

A. A multipartite system Σn(d) with variables in [Z(d)]n

We consider a multipartite system Σn(d) comprised of n components each of which is described with variables
in Z(d). Positions and momenta take values in [Z(d)]n. This system is described with the dn-dimensional Hilbert
space HA = H(d)⊗ ...⊗H(d). We consider the basis

|X; j0, ..., jn−1⟩ = |X; j0⟩ ⊗ ...⊗ |X; jn−1⟩; jr ∈ Z(d). (25)
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An arbitrary state is written as

|s⟩ =
∑

s(j0, ..., jn−1)|X; j0, ..., jn−1⟩;
∑

|s(j0, ..., jn−1)|2 = 1. (26)

Fourier transforms are defined as:

FA = F ⊗ ...⊗F ; F =
1√
d

∑
j,k

ωd(jk)|X; j⟩⟨X; k|

F4
A = 1; FAF

†
A = 1; j, k ∈ Z(d). (27)

We assume that D = dn and compare and contrast the systems Σn(d) and Σ(D). Then HA is isomorphic to
H(D) (because they both have the same dimension), and therefore Σ(D) and Σn(d) are two different descriptions
of the same system. However as discussed in ref[15], Fourier transforms and phase space methods (displacement
operators, Wigner and Weyl functions, etc) are different in Σ(D) and Σn(d) (F is different from FA). This is
because in these techniques we use addition and multiplication and as we explained above, the rings [Z(d)]n
and Z(D) are not isomorphic to each other. Furthermore (proposition 4.4 in ref[15]), depending on the d, n, the
Fourier transforms in Σn(d) and Σ(D) are unitarily inequivalent or unitarily equivalent .
Below we explain how the equivalent of the Fourier transform F in Σ(D), is a sequence of transformations

in Σn(d) that involve Fourier transforms in the various components together with some other transformations.
The latter is a fast Fourier transform in a quantum context.

B. Fast Fourier transform F in Σ(D) as a sequence of transformations in Σn(d) with D = dn

We use the following dual notation for functions and states in Σ(D), based on the bijective map in Eq.(2):

s(K) = s(k0, ..., kn−1). (28)

The matrix elements of the Fourier transform F in Σ(D) (Eq.(22)) as:

F (j0, ..., jn−1|k0, ..., kn−1) = ⟨j0, ..., jn−1|F |k0, ..., kn−1⟩

=
1√
dn

ωdn [j0k0 + d(j1k0 + k1j0) + ...+ dn−1(j0kn−1 + ...+ jn−1k0)]

= A(kn−1)A(kn−2)A(kn−3)...A(k0) (29)

where

A(kn−1) =
1√
d
ωd(j0kn−1)

A(kn−2) =
1√
d
ωd(j1kn−2)ωd2(j0kn−2)

A(kn−3) =
1√
d
ωd(j2kn−3)ωd2(j1kn−3)ωd3(j0kn−3)

......

A(k0) =
1√
d
ωd(jn−1k0)ωd2(jn−2k0)....ωdn(j0k0) (30)

Using this we implement the Fourier transform in Eq.(24), as a sequence of transforms in the system Σn(d). It
involves the following steps (shown also in the quantum circuit in Fig.1):

• A Fourier transform of s(K) = s(k0, ..., kn−1) with ωd(j0kn−1) that involves summation over kn−1:

s1(j0|k0, .., kn−2) =
1√
d

∑
kn−1

ωd(j0kn−1)s(k0, ..., kn−1) (31)
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• We first multiply s1(j0|k0, .., kn−2) by ωd2(j0kn−2) (this is the analogue of ‘twiddle factors’[18] in the
present context). Then we perform a Fourier transform of ωd2(j0kn−2)s1(j0|k0, .., kn−2) with ωd(j1kn−2),
that involves summation over kn−2:

s2(j0, j1|k0, .., kn−3) =
1√
d

∑
kn−2

ωd(j1kn−2)[ωd2(j0kn−2)s1(j0|k0, .., kn−2)] (32)

• We first multiply s2(j0, j1|k0, .., kn−2) by ωd2(j1kn−3)ωd3(j0kn−3). Then we perform a Fourier transform
of ωd2(j1kn−3)ωd3(j0kn−3)s2(j0, j1|k0, .., kn−2) with ωd(j2kn−3), that involves summation over kn−3:

s3(j0, j1, j2|k0, .., kn−4) =
1√
d

∑
kn−3

ωd(j2kn−3)[ωd2(j1kn−3)ωd3(j0kn−3)s2(j0, j1|k0, .., kn−2)] (33)

• We continue in this way and the n-step is a Fourier transform with ωd(jn−1k0) that involves summation
over k0:

s̃(J) = s̃(j0, ..., jn−1) =
1√
d

∑
k0

ωd(jn−1k0)[ωd2(jn−2k0)....ωdn(j0k0)sn−1(j0, ..., jn−2|k0)] (34)

We note that:

• ∑
|s(k0, ..., kn−1)|2 =

∑
|s1(j0|k0, .., kn−2)|2 = ... =

∑
|s̃(j0, ..., jn−1)|2 = 1. (35)

• Starting from sr(j0, ..., jr−1|k0, .., kn−r−1) with a series of inverse Fourier transforms we get the original
wavefunction s(k0, ..., kn−1). For example from s̃(j0, ..., jn−1) we go to sn−1(j0, ..., jn−2|k0)] as follows:

sn−1(j0, ..., jn−2|k0)] = [ωd2(−jn−2k0)....ωdn(−j0k0)]
1√
d

∑
j0

ωd(−jn−1k0)s̃(j0, ..., jn−1) (36)

In a similar way we go backwards in all above steps. Therefore all the sr(j0, ..., jr−1|k0, .., kn−r−1) contain
the same information as the original wavefunction s(k0, ..., kn−1).

Example IV.1. For n = 2, Eq.(29) becomes

F (j0, j1|k0, k1) =
1√
d2

ωd2 [j0k0 + d(j1k0 + k1j0)]. (37)

Acting on a vector s(K) = s(k0, k1) we get

s̃(J) = s̃(j0, j1) =
1√
d2

∑
k0,k1

ωd2 [j0k0 + d(j1k0 + k1j0)]s(k0, k1). (38)

In this case the fast Fourier transform given above becomes

s̃(J) = s̃(j0, j1) = 1√
d

∑
k0

ωd(j1k0)[ωd2(j0k0)s1(j0|k0)] (39)

with

s1(j0|k0) =
1√
d

∑
k1

ωd(j0k1)s(k0, k1) (40)
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C. Limitation of the method

We have calculated the Fourier transform of the function s(K) = s(k0, ..., kn−1). For other functions it is
not easy to apply this method. For example in the Weyl function in Eq.(63) below, we want to calculate the
Fourier transform of the function s(K)s∗(B +K). Because the rings [Z(d)]n and Z(D) (with D = dn) are not
isomorphic to each other, if

(k0, ..., kd−1) ↔ K = k0 + k1d+ ...+ kn−1d
n−1

(b0, ..., bd−1) ↔ B = b0 + b1d+ ...+ bn−1d
n−1. (41)

the (k0 + b0, ..., kn−1 + bn−1) does not correspond to K + B. It is then difficult to apply directly the above
formalism to Eq.(63) for the fast calculation of the Weyl and Wigner functions.
In general, this fast Fourier transform is not directly applicable to functions which involve various sums and

products of the variables. The fact that the rings [Z(d)]n and Z(D) are not isomorphic to each other, limits the
practical use of the method.

D. Parallelism in the special case of factorisable states

We consider the factorisable state

s(K) = s(k0, ..., kn−1) = g0(k0)g1(k1)...gn−1(kn−1);
∑
kν

|gν(kν)|2 = 1. (42)

In this case

s1(j0|k0, .., kn−2) = g0(k0)...gn−2(kn−2)g̃n−1(j0)

g̃n−1(j0) =
1√
d

∑
kn−1

ωd(j0kn−1)gn−1(kn−1) (43)

Also

s2(j0, j1|k0, .., kn−3) = g0(k0)...gn−3(kn−3)G̃n−2(j0, j1)g̃n−1(j0)

G̃n−2(j0, j1) =
1√
d

∑
kn−2

ωd(j1kn−2)[ωd2(j0kn−2)gn−2(kn−2)] (44)

Also

s3(j0, j1, j2|k0, .., kn−4) = g0(k0)...gn−4(kn−4)G̃n−3(j0, j1, j2)G̃n−2(j0, j1)g̃n−1(j0)

G̃n−3(j0, j1, j2) =
1√
d

∑
kn−3

ωd(j2kn−3)[ωd2(j1kn−3)ωd3(j0kn−3)gn−3(kn−3)] (45)

etc. The last one is

s̃(j0, ..., jn−1) = G̃0(j0, ..., jn−1)G̃1(j0, ..., jn−2)...G̃n−2(j0, j1)g̃n−1(j0)

G̃0(j0, ..., jn−1) =
1√
d

∑
k0

ωd(jn−1k0)[ωd2(jn−2k0)....ωdn(j0k0)g0(k0)] (46)

We note that for factorisable functions, we can calculate independently each of the n factors

G̃0(j0, ..., jn−1), G̃1(j0, ..., jn−2), ..., g̃n−1(j0) and multiply them at the end. Therefore this scheme is suitable
for parallel computation. The calculation in the previous subsection for general functions, needs to be done
sequentially.
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Example IV.2. For n = 2 we consider the factorisable state

s(K) = s(k0, k1) = g0(k0)g1(k1) (47)

In this case

s̃(J) = s̃(j0, j1) = G̃0(j0, j1)g̃1(j0)

g̃1(j0) =
1√
d

∑
k1

ωd(j0k1)g1(k1)

G̃0(j0, j1) =
1√
d

∑
k0

ωd(j1k0)[ωd2(j0k0)g0(k0)] (48)

The two factors G̃0(j0, j1) and g̃1(j0) can be calculated in parallel.

Remark IV.3. The ‘parallel formalism’ of this section is limited to special cases where we know that the
factorisation in Eq.(42) holds. Given s(K) = s(k0, ...kn−1), we give a necessary (but not sufficient) condition
for the factorisation to hold.
We define the

|g(kν)|2 =
∑
̸=kν

|s(k0, ...kn−1)|2. (49)

Here we have a summation over all indices, except one. A necessary (but not sufficient) condition for Eq.(42)
to hold, is that

|s(k0, ...kn−1)| = |g(k0)|...|g(kn−1)| (50)

E. Time complexity of the Fourier transform: counting the number of multiplications

The estimate of the computational time is usually based on the number of multiplications, because they
require more computational time than additions. It is easily seen that the number of multiplications for ‘normal’
Fourier transform is O(D2) (it is a multiplication of a D×D matrix with a D-dimensional vector). For the fast
Fourier transform it is known that a lower bound for the computational time is O(D logD), and we now give
an approximate estimate for this.
In the fast transform in section IVB, the first step in Eq.(31) is a Fourier transform in a d-dimensional space

and it requires d2 multiplications. This needs to be repeated for all values of the n − 1 variables k0, .., kn−2

which take d values each, therefore the number of multiplications is d2dn−1 = Dd. The second step in Eq.(32)
involves another Dd multiplications (plus some extra multiplications which we ignore because we are interested
in a lower limit). In this way we find that a lower bound for the number of multiplications is

Dnd ≥ Dn log d = D logD. (51)

Many authors pointed out that this is a lower bound and that ‘real’ numerical fast Fourier transforms take a
bit more time than that.
We consider a Hilbert space H(D) with D = d2, where d that takes all the odd values 51, ...., 101. Using a

random vector s(K) = s(k0, k1) (produced by qiskit [19]) , we calculated s̃(J) = s̃(j0, j1) using both Eq(38)
(that involves the multiplication of a D × D matrix times a D-dimensional vector) and also the fast Fourier
transform in Eqs(39), (40). We call T (D) the computational time for the calculation of all components s̃(j0, j1)
with the ‘normal’ Fourier transform in Eq.(38), and Tf (D) the computational time for the calculation with the
fast Fourier transform in Eqs(39), (40). In Figs.2,3 we plot

T (D)

D2
;

Tf (D)

D logD
; D = d2. (52)
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The result for T (D)
D2 in Fig.2 is a horizontal line and this confirms that the computational time for the normal

Fourier transform is O(D2).

The result for
Tf (D)
D logD in Fig.3 is a slightly ascending line and this confirms that a good lower bound for the

computational time of the fast Fourier transform is approximately O(D logD).
In Fig.4 we compare T (D) with Tf (D). It is seen that Tf (D) is much smaller than T (D). We checked that

the Fourier transform of different random vectors give similar results.

V. THE CASE D = d0...dn−1 WITH COPRIME d0, ..., dn−1

A. A multipartite system Σ(d0, ..., dn−1) with variables in Z(d0)× ...× Z(dn−1).

In this section D = d0...dn−1 with d0, ..., dn−1 odd integers coprime to each other. We consider a multipartite
system Σ(d0, ..., dn−1) comprised of n components, which are described with variables in Z(d0), ...,Z(dn−1).
Positions and momenta in the multipartite system take values in Z(d0) × ... × Z(dn−1) and the corresponding
Hilbert space is HB = H(d0)⊗ ...⊗H(dn−1). The Hilbert spaces H(D) and HB are isomorphic (they have the
same dimension), and therefore Σ(D) and Σ(d0, ..., dn−1) are two different descriptions of the same system.
We consider the basis

|X; j0, ..., jn−1⟩ = |X; j0⟩ ⊗ ...⊗ |X; jn−1⟩; jν ∈ Z(dν). (53)

An arbitrary state is written as

|s⟩ =
∑

s(j0, ..., jn−1)|X; j0, ..., jn−1⟩;
∑

|s(j0, ..., jn−1)|2 = 1. (54)

Fourier transforms in Σ(d0, ..., dn−1) are defined as:

FB = F0 ⊗ ...⊗Fn−1; Fν =
1√
d

∑
jν ,kν

ωdν (jνkν)|X; jν⟩⟨X; kν |

F4
B = 1; FBF

†
B = 1; jν , kν ∈ Z(dν). (55)

Clearly F is very different from FB .

B. Fast Fourier transform F in Σ(D) as a sequence of transformations in Σ(d0, ..., dn−1) with D = d0...dn−1

We use the following dual notation for all functions and states in Σ(D), based on the bijective map in Eq.(13):

s(K) = s(k0, ..., kn−1); kν ∈ Z(dν). (56)

Using Eq.(18) we express the matrix elements of the Fourier transform F in Σ(D) (Eq.(22)) as:

F (j0, ..., jn−1|k0, ..., kn−1) = ⟨j0, ..., jn−1|F |k0, ..., kn−1⟩

=

[
1√
d0

ωd0
(j0b0k0)

]
...

[
1√
dn−1

ωdn−1
(jn−1bn−1kn−1)

]
(57)

The constants bν have been defined in Eq.(9). Using this we implement the Fourier transform in Eq.(24), as a
sequence of transforms in the system Σ(d0, ..., dn−1). It involves the following steps (shown also in the quantum
circuit in Fig.5):
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• A Fourier transform of s(K) = s(k0, ..., kn−1) with ωdn−1(jn−1bn−1kn−1) (we note here the constant bn−1)
and summation over kn−1:

s1(jn−1|k0, .., kn−2) =
1√
dn−1

∑
kn−1

ωdn−1
(jn−1bn−1kn−1)s(k0, ..., kn−1) (58)

• A Fourier transform of s1(jn−1|k0, ..., kn−2) with ωdn−2
(jn−2bn−2kn−2) (we note here the constant bn−2)

and summation over kn−2:

s2(jn−2, jn−1|k0, .., kn−3) =
1√
dn−2

∑
kn−2

ωdn−2
(jn−2bn−2kn−2)s1(jn−1|k0, .., kn−2), (59)

etc. The last step is

•

s̃(J) = s̃(j0, ..., jn−1) =
1√
d0

∑
k0

ωd0
(j0b0k0)sn−1(j1, ..., jn−1|k0) (60)

Similarly to the previous method, for factorisable functions these n steps can be done in parallel. But for
general functions, they need to be done sequentially.

C. Time complexity of the Fourier transform: counting the number of multiplications

We first give an approximate estimate that a lower bound for the computational time in the present scheme,
is O(D logD).
In the fast transform in section VB, the first step in Eq.(58) is a Fourier transform in a dn−1-dimensional space

and it requires d2n−1 multiplications. This needs to be repeated for all values of the n− 1 variables k0, .., kn−2,
therefore the number of multiplications is d1...dn−2d

2
n−1 = Ddn−1. The second step in Eq.(59) involves another

Ddn−2 multiplications. In this way we find that a lower bound for the number of multiplications is

D(d0 + ...+ dn−1) ≥ D(log d0 + ...+ log dn−1) = D logD. (61)

We consider Hilbert spaces H(d1d2) where d1 = 53 and d2 takes the odd values 55, 57, ...., 101. Since 53 is a
prime number the d1, d2 are coprime. As in section IVE we used a random vector s(K) = s(k0, k1) (produced
by qiskit [19]) , we calculated s̃(J) = s̃(j0, j1). In Figs.6,7 we plot

T (D)

D2
;

Tf (D)

D logD
; D = d1d2. (62)

The result for T (D)
D2 in Fig.6 is a horizontal line and this confirms that the computational time for the normal

Fourier transform is O(D2). The result for
Tf (D)
D logD in Fig.7 is also a horizontal line and this confirms that a

good lower bound for the computational time of the fast Fourier transform is approximately O(D logD).
In Fig.8 we compare T (D) with Tf (D). It is seen that Tf (D) is much smaller than T (D). We checked that

the Fourier transform of different random vectors give similar results.

VI. FAST WIGNER AND WEYL FUNCTIONS USING THE SECOND METHOD

Phase space methods for the system Σ(D) (Wigner andWeyl functions, etc) rely heavily on Fourier transforms.
Therefore fast Fourier transforms can be used for the fast calculation of various quantities within the phase
space formalism.
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As an example, we consider the Weyl function W̃ (A,B) and the Wigner function W (A,B) for the state
|s⟩ =

∑
K s(K)|X;K⟩ of the system Σ(D). They are given by the following Fourier transforms(e.g.,[20]):

W̃ (A,B) = ωD(2−1AB)
∑
K

ωD(AK)s(K)s∗(B +K); A,B ∈ Z(D)

W (A,B) = ωD(2AB)
∑
K

ωD(−2AK)s(K)s∗(2B −K) (63)

The 2−1 = D+1
2 (mod D) for odd D.

We explained in subsection IVC that the first method for fast Fourier transforms (in the case D = dn) is not
directly applicable to Eqs(63), for the fast calculation of these functions. This is related to the fact that the
rings [Z(d)]n and Z(D) (with D = dn) are not isomorphic to each other.
The second method for fast Fourier transforms (in the case D = d0...dn−1 with coprime d0, ..., dn−1) is directly

applicable in the fast calculation of the Weyl and Wigner functions. We present in detail the fast Weyl function.
We use the bijective map in Eq.(13), and express K,B as

K ↔ (k0, ..., kn−1); kν ∈ Z(dν)
B ↔ (b0, ..., bn−1); bν ∈ Z(dν)
A ↔ (a0, ..., an−1); aν ∈ Z(dν) (64)

The rings Z(D) and Z(d0)× ...× Z(dn−1) are isomorphic and therefore

K +B ↔ (k0 + b0, ..., kn−1 + bn−1). (65)

Consequently

s(K)s∗(B +K) = s(k0, ..., kn−1)s
∗(k0 + b0, ..., kn−1 + bn−1). (66)

We now give briefly the basic steps for the fast Weyl function (shown also in the quantum circuit in Fig9).

• A Fourier transform of s({kr})s∗({kr + br}) with ωdn−1
(an−1bn−1kn−1) (we note here the constant bn−1)

and summation over kn−1:

W̃1(an−1|k0, .., kn−2|{br}) =
∑
kn−1

ωdn−1(an−1bn−1kn−1)s({kr})s∗({kr + br}). (67)

• A Fourier transform of W̃1(an−1|k0, .., kn−2|{br}) with ωdn−2(an−2bn−2kn−2) (we note here the constant
bn−2) and summation over kn−2:

W̃2(an−2, an−1|k0, .., kn−3|{br}) =
∑
kn−2

ωdn−2
(an−2bn−2kn−2)W̃1(an−1|k0, .., kn−2|{br}), (68)

etc. The last step is

•

W̃ (A,B) = W̃ ({ar, br}) = ωD(2−1AB)
∑
k0

ωd0
(a0b0k0)W̃n−1(a1, ..., an−1|k0|{br}). (69)

Similarly to the previous methods, for factorisable functions s(k0, ..., kn−1) these n steps can be done in
parallel. But for general functions, they need to be done sequentially.
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Analogous algorithm can be given for the Wigner function.
We note that the Fourier transform requires O(D2) multiplications, but it needs to be performed for all values

of A,B. Therefore the complexity of the calculation of the Wigner or Weyl function is O(D4), and with the
fast Fourier transforms discussed above it is reduced to O(D3 logD).

As an example we consider the case D = 21× 23 = 3× 7× 23 and calculated the Weyl function of a random
vector (produced by qiskit[19]) with the normal Fourier transform and with the fast method given above. We
found numerically that the ratio of the corresponding computational times is T/Tf = 14.7 (with the D = 21×23
factorisation), and T/Tf = 17.6 (with the D = 3× 7× 23 factorisation).

VII. DISCUSSION

We have presented a fast implementation of the Fourier transform F in a large quantum system. This replaces
the large Fourier transform with many small Fourier transforms. The small Fourier transforms can be performed
classically or (if available) in a quantum computer in which case we have the well known additional advantages
of quantum Fourier transforms. We used two methods.
The first method is for the case D = dn with d an odd integer. This is based on the bijective map between the

sets Z(D) and [Z(d)]n in Eq.(2). The algorithm is described in Eqs(31)-(34) and the relevant quantum circuit
is shown in Fig.1.
The complexity (based on the number of multiplications) of the normal Fourier transform is O(D2) and of

the fast Fourier transform O(D logD). This has been supported with numerical work shown in figs 2,3. As
expected the fast Fourier transform is much faster than the normal Fourier transform (Fig.3). A limitation of
the method is the fact that the ring Z(D) (with D = dn) is not isomorphic to the ring [Z(d)]n. Consequently,
this method cannot be used with Eqs(63) for the fast calculation of the Wigner and Weyl functions.
The second method is for the case D = d0...dn−1 with d0, ..., dn−1 odd integers coprime to each other. This

is based on the bijective map between the rings Z(D) and Z(d0), ...,Z(dn−1) in Eq.(13). These two rings
are isomorphic. The algorithm is described in Eqs(58)-(60) and the relevant quantum circuit is shown in
Fig.5. Numerical work shown in figs 6,7 confirm that the complexity of the normal Fourier transform is O(D2)
and of the fast Fourier transform O(D logD). Fig8 shows that the fast Fourier transform requires much less
computational time than the Normal Fourier Transform.
This second method can be used with Eqs(63) for the fast calculation of the Wigner and Weyl functions. The

algorithm for the Weyl function is given in Eqs(67)-(69) and the relevant quantum circuit is shown in Fig.9.
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FIG. 1: Circuit for the fast calculation of the Fourier transform F , using Eqs(31)-(34). Here D = dn.



16

FIG. 2: T (D)

D2 for the ‘normal’ Fourier transform of a random vector (Eq(38)), as a function of D = d2 where d =
51, 53, ..., 101 is an odd integer. The result is a horizontal line, and this confirms that the computational time for the
normal Fourier transform is O(D2). The Fourier transform of different random vectors give similar results.
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FIG. 3:
Tf (D)

D logD
for the fast Fourier transform of a random vector(Eqs(39), (40)), as a function of D = d2 where

d = 51, 53, ..., 101 is an odd integer. The result is a slightly ascending line, and this confirms that a lower bound for
the computational time for the fast Fourier transform is approximately O(D logD). The Fourier transform of different
random vectors give similar results.
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FIG. 4: The CPU times T (D) and Tf (D) for the normal Fourier transform (Eq(38)) and the fast Fourier transform
(Eqs(39), (40)) correspondingly, of a random vector, as a function of D = d2 where d = 51, 53, ..., 101 is an odd integer.
It is seen that Tf (D) is much smaller than T (D). Different random vectors give similar results.
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FIG. 5: Circuit for the fast implementation of the Fourier transformf using Eqs(58)-(60). Here D = d0...dn−1 with
coprime d0, ..., dn−1. The constants bν are defined in Eq.(9).
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FIG. 6: T (D)

D2 for the ‘normal’ Fourier transform of a random vector (Eq(38)), as a function of D = d1d2 where d1 = 53
and d2 = 55, 57, ..., 101 (the d1, d2 are coprime). The result is a horizontal line, and this confirms that the computational
time for the normal Fourier transform is O(D2). The Fourier transform of different random vectors give similar results.
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FIG. 7:
Tf (D)

D logD
for the fast Fourier transform of a random vector(Eqs(39), (40)), as a function of D = d1d2 where

d1 = 53 and and d2 = 55, 57, ..., 101 (the d1, d2 are coprime). The result is approximately a horizontal line, and this
confirms that the computational time for the fast Fourier transform is approximately O(D logD). The Fourier transform
of different random vectors give similar results.
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FIG. 8: The CPU times T (D) and Tf (D) for the normal Fourier transform (Eq(38)) and the fast Fourier transform
(Eqs(39), (40)) correspondingly, of a random vector, as a function of D = d1d2 where d1 = 53 and and d2 = 55, 57, ..., 101
(the d1, d2 are coprime). It is seen that Tf (D) is much smaller than T (D). Different random vectors give similar results.
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FIG. 9: Circuit for the fast calculation of the Weyl function, using Eqs(67)-(69). Here D = d0...dn−1 with coprime
d0, ..., dn−1. The constants bν are defined in Eq.(9).
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