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Abstract

We consider a truthful facility location problem in which there is a set of agents with private

locations on the line of real numbers, and the goal is to place a number of facilities at different

locations chosen from the set of those reported by the agents. Given a feasible solution, each agent

suffers an individual cost that is either its total distance to all facilities (sum-variant) or its distance

to the farthest facility (max-variant). For both variants, we show tight bounds on the approximation

ratio of strategyproof mechanisms in terms of the social cost, the total individual cost of the agents.

Keywords: Mechanism design; Facility location; Approximation ratio.

1 Introduction

We consider the following agent-constrained truthful facility location problem. An instance I consists
of a set of n ≥ 2 agents with private locations on the line of real numbers, and k ≥ 2 facilities that can
be placed at different locations chosen from the (multi-)set of locations reported by the agents. Given

a feasible solution x which determines the agent locations where the k facilities are placed, each agent

i suffers an individual cost. We consider two different models that differ on the cost function of the

agents. In the sum-variant, the cost of i in instance I is its total distance from the facilities:

costsumi (x|I) =
∑

x∈x

d(i, x),

where d(i, x) = |i− x| is the distance between the location of agent i and point x on the line. In the

max-variant, the cost of i in instance I is its distance to the farthest facility:

costmax
i (x|I) = max

x∈x
{d(i, x)}.

Whenever the variant we study is clear from context, we will drop the sum and max from notation,

and simply write costi(x) for the individual cost of i when solution x is chosen; similarly, we will

drop I from notation when the instance is clear from context. We are interested in choosing solutions

that have a small effect in the overall cost of the agents, which is captured by the social cost objective

function, defined as:

SC(x|I) =
∑

i

costi(x|I).

A solution can also be randomized in the sense that it is a probability distribution p = (px)x over all

feasible solutions; the expected social cost of such a randomized solution is defined appropriately as

E[SC(p|I)] =
∑

x

px · SC(x|I).
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�e solution is decided by amechanism based on the locations reported by the agents; letM(I) be
the solution computed by a mechanismM when given as input an instance I . A mechanismM is said

to be strategyproof if no agent i can misreport its true location and decrease its individual cost; that is,

costi(M(I)|I) ≤ costi(M(J)|I)

for every pair of instances I and J that differ only on the location reported by agent i. In case themech-

anism is randomized, then it is said to be strategyproof-in-expectation if no agent i cannot misreport its

true location and decrease its expected individual cost.

�e approximation ratio of a mechanism is the worst-case ratio (over all possible instances) of the

(expected) social cost of the chosen solution over the minimum possible social cost:

sup
I

E[SC(M(I)|I)]
minx SC(x|I)

.

Our goal is to design mechanisms that are strategyproof and achieve an as small approximation ratio

as possible.

1.1 Our Contribution

For both individual cost variants, we show tight bounds on the best possible approximation ratio that

can be achieved by strategyproof mechanisms. We start with the case of k = 2 facilities for which we

study both deterministic and randomized mechanisms. For the sum-variant, in Section 2, we show a

tight bound of 3/2 for deterministic mechanisms and a bound of 10 − 4
√
5 ≈ 1.0557 for randomized

ones. For the max-variant, in Section 3, we show bounds of 3 and 2 on the approximation ratio of

deterministic and randomized mechanisms, respectively. In Section 4, we switch to the general case of

k facilities and focus exclusively on deterministic mechanisms. For the sum-variant, we show that the

approximation ratio is between 2 − 1/k and 2, while for the max-variant, we show a tight bound of

k + 1.

Our upper bounds follow by appropriately defined statistic-typemechanisms that choose the agent

locations where the facilities will be placed according to the ordering of the agents on the line from

le� to right. In particular, for k = 2, our mechanisms locate one facility at the median agentm and the

other either at the agent ℓ that is directly to the le� ofm or the agent r that is directly to the right ofm.

To be even even more specific, our deterministic mechanism always chooses the solution (m, r), while
our randomized mechanisms choose the solutions (ℓ,m) and (m, r) according to some probability

distribution. Interestingly, for the sum-variant, it turns out that the probabilities are functions of the

distances d(ℓ,m) and d(m, r); to the best of our knowledge, this is one of few se�ings in which the best

possible randomized strategyproof mechanism is not required to assign fixed, constant probabilities.

For the general case of k facilities, our (deterministic) upper bounds for both variants follow by a

mechanism that is a natural generalization of the one for k = 2; in particular, the mechanism places

the facilities around the median agent(s) within a radius of about k/2.

1.2 Related Work

Truthful facility location problems have a long history within the literature of approximate mechanism

design without money, starting with the paper of Procaccia and Tennenholtz [2013]. Various different

models have been studied depending on parameters such as the number of facilities whose location

needs to be determined [Procaccia and Tennenholtz, 2013, Lu et al., 2010, Fotakis and Tzamos, 2014],

whether the facilities are obnoxious [Cheng et al., 2013], whether the agents have different types of

preferences over the facilities (for example, optional [Chen et al., 2020, Kanellopoulos et al., 2023b,
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Li et al., 2020, Serafino and Ventre, 2016], fractional [Fong et al., 2018], or hybrid [Feigenbaum and

Sethuraman, 2015]), and whether there are other limitations or features (for example, the facilities

might only be possible to be built at specific fixed locations [Feldman et al., 2016, Gai et al., 2024,

Kanellopoulos et al., 2023a, Xu et al., 2021], there might be limited resources that can be used to build

some of the available facilities rather than all [Deligkas et al., 2023], there might be limited available

information during the decision process [Chan et al., 2023, Filos-Ratsikas et al., 2024], or there might

be even more information in the form of predictions about the optimal facility locations which can be

leveraged [Agrawal et al., 2022, Xu and Lu, 2022]). We refer the reader to the survey of Chan et al.

[2021] for more details on the different dimensions along which facility location problems have been

studied over the years.

When there are multiple facilities to locate, the typical assumption about the individual behavior of

the agents is that they aim tominimize their distance to the closest facility [Procaccia and Tennenholtz,

2013, Lu et al., 2010, Fotakis and Tzamos, 2014, Tang et al., 2020, Xu and Lu, 2022]; such a cost model

essentially assumes that the facilities are homogeneous (in the sense that they offer the same service)

and thus each agent is satisfied if it is close enough to one of them. In contrast, both variants (sum

and max) we consider here model different cases in which the facilities are heterogeneous (in the sense

that they offer different services) and each agent aims to minimize either the total or the maximum

distance to the facilities. �ese variants have also been considered in previous work under different

assumptions that us; in particular, the sum-variant has been studied by Serafino and Ventre [2016],

Kanellopoulos et al. [2023a], Gai et al. [2024] and Xu et al. [2021], while the max-variant has been

studied by Chen et al. [2020], Zhao et al. [2023] and Lotfi and Voudouris [2024].

�e main differences between our work and the aforementioned ones are the following: In most

of these papers, the agents have optional preferences over the facilities; that is, some agents approve

one facility and are indifferent to the other, while some agents approve both facilities. Here, we focus

exclusively on the fundamental case where all agents approve both facilities. In addition, some of

these papers study a constrained model according to which the facilities can only be built at different

locations chosen from a set of fixed, predetermined candidate ones. In our model, the facilities can

also only be built at different locations, which, however, are chosen from the set of locations that

are reported by the agents; this is a more dynamic se�ing in the sense that the candidate locations

can change if agents misreport. We remark that, in continuous facility location se�ings (where the

facilities can be placed anywhere on the line) such as those studied in the original paper of Procaccia

and Tennenholtz [2013] and follow-up work, the class of strategyproof mechanisms mainly consists

of mechanisms that place the facilities at agent locations (according to an ordering). However, to the

best of our knowledge, there has not been any previous work that has studied the model where the

candidate locations are restricted to the ones reported by the agents, an assumption that also affects

the optimal solution in terms of social cost.

2 Sum-variant for Two Facilities

We start the presentation of our technical results with the case of k = 2 facilities and the sum-variant.

Recall that in this variant the individual cost of any agent is its distance from both facilities. We

will first argue about the structure of the optimal solution; this will be extremely helpful in bounding

the approximation ratio of our strategyproof mechanisms later on. We start with the case where the

number of agents n is an even number, for which the optimal solution is well-defined and actually

leads to an optimal strategyproof mechanism.

Lemma 2.1. For any even n ≥ 2, an optimal solution is to place the facilities at the two median agents.

Proof. Let m1 and m2 be two median agents. Suppose that there is an optimal solution (o1, o2) with
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o1 ≤ o2. Since any point x ∈ [m1,m2] minimizes the total distance of all agents from any other point

of the line, we have

SC(m1,m2) =
∑

i

d(i,m1) +
∑

i

d(i,m2) ≤
∑

i

d(i, o1) +
∑

i

d(i, o2) = SC(o1, o2),

and thus (m1,m2) is also an optimal solution.

Before we continue, we remark that theTwo-Mediansmechanism, which is implied by Lemma 2.1,

is indeed strategyproof: To change the solution of the mechanism, an agent i would have to report a

location x > m1 in case i ≤ m1 or a location x < m2 in case i ≥ m2; such a misreport leads to an

individual cost of at leastmin{d(i, x), d(i,m2)}+ d(i,m2) in the first case and of at least d(i,m1) +
min{d(i, x), d(i,m1)} in the second case, which is at least the true individual cost d(i,m1)+ d(i,m2)
of i. Hence, agent i has no incentive to deviate and the mechanism is strategyproof.

For the case where the number of agents n ≥ 3 is an odd number, it will be useful to calculate the

social cost of the solutions (ℓ,m) and (m, r), where ℓ and r are the agents directly to the le� and right

of the median agentm, respectively. By the definition ofm and since there is an odd number of agents,

we have |{i ≤ ℓ}| = |{i ≥ r}|. �us, we can match each agent i ≤ ℓ to a unique agent µ(i) ≥ r. Since
i ≤ ℓ ≤ m ≤ r ≤ µ(i), we have that

d(i, ℓ) + d(µ(i), ℓ) = d(i, r) + d(µ(i), r) = d(i,m) + d(µ(i),m).

Hence, for any x ∈ {ℓ, r},

SC(x,m) =
∑

i

(

d(i,m) + d(i, x)

)

=
∑

i

d(i,m) +
∑

i≤ℓ

(

d(i, x) + d(µ(i), x)

)

+ d(m,x)

=
∑

i

d(i,m) +
∑

i≤ℓ

(

d(i,m) + d(µ(i),m)

)

+ d(m,x)

= 2 ·
∑

i

d(i,m) + d(m,x). (1)

Lemma 2.2. For any odd n ≥ 3, an optimal solution is to place the facilities at the median agent and the

agent that is closest to it.

Proof. Clearly, one of ℓ or r is the closest agent tom, say ℓ; hence, d(ℓ,m) ≤ d(m, r). To simplify our

notation, for any x let f(x) =
∑

i d(i, x) denote the total distance of all agents from x. It is well-known
that f is monotone such that f(i) ≥ f(ℓ) ≥ f(m) for every i ≤ ℓ ≤ m, and f(i) ≥ f(r) ≥ f(m) for
every i ≥ r ≥ m. Consequently, the optimal solution is either (ℓ,m) or (m, r). By (1) with x = ℓ and
x = r, we get

SC(ℓ,m)− SC(m, r) = d(ℓ,m)− d(m, r).

Since d(ℓ,m) ≤ d(m, r), we conclude that SC(ℓ,m) ≤ SC(m, r) and the solution (ℓ,m) is indeed the
optimal one.

It is not hard to observe that when n is odd, computing the optimal solution is not strategyproof;

the second-closest agent to the median might have incentive to misreport a location slightly closer to

themedian tomove the second facility there. However, we do know that one of the solutions (ℓ,m) and
(m, r) must be optimal. Based on this, we consider the following Median-Right mechanism: Place
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one facility at the position the median agentm and the other at the position of the agent r directly to
the right ofm.1 One can verify that this mechanism is strategyproof using an argument similar to the

one we presented above for the Two-Medians mechanism in the case of even n. So, we continue by
bounding its approximation ratio.

�eorem 2.3. For any odd n ≥ 3, the approximation ratio of the Median-Right mechanism is at most

3/2.

Proof. �e solution of the mechanism is w = (m, r). If r is the closest agent to m, then w is optimal

by Lemma 2.2. So, assume that this is not the case and the optimal solution is o = (ℓ,m). By (1) with

x = r, we get

SC(w) = 2 ·
∑

i

d(i,m) + d(m, r).

Similarly, for x = ℓ, we get

SC(o) = 2 ·
∑

i

d(i,m) + d(ℓ,m)

≥ 2 ·
∑

i

d(i,m)

≥ 2 · |{i ≥ r}| · d(m, r) = (n− 1) · d(m, r).

Using these two lower bounds on the optimal social cost, we can now upper-bound the social cost of

w as follows:

SC(w) ≤
(

1 +
1

n− 1

)

· SC(o) = n

n− 1
· SC(o).

�erefore, the approximation ratio is at most n/(n− 1) ≤ 3/2 for any n ≥ 3.

�e approximation ratio of 3/2 is in fact the best possible that can be achieved by any deterministic

strategyproof mechanism.

�eorem 2.4. �e approximation ratio of any deterministic strategyproof mechanism is at least 3/2.

Proof. Consider any deterministic strategyproofmechanism and an instance withn = 3 agents located
at 0, 1 and 2. Since there are three possible locations for two facilities, one facility must be placed at 0
or 2, say 0. �en, the cost of the agent i that is located at 2 is at least 2 (in particular, the cost of this

agent is 3 if the solution is (0, 1) and 2 if the solution is (0, 2)).

Now suppose that i moves to 1 + ε for some infinitesimal ε > 0. Due to strategyproofness, the

mechanism must place one of the facilities at 0 in the new instance as well. Otherwise, agent i would
have cost 2 − ε and would prefer to misreport its position as 1 + ε instead of 2. So, the social cost
of any of the two possible solutions (either (0, 1) or (0, 1 + ε)) that the mechanism can output is

approximately 3. In contrast, the optimal solution is (1, 1+ε)with social cost approximately 2, leading
to an approximation ratio of 3/2.

1Clearly, since we are dealing with the case of oddn, instead of this mechanism, one could also consider theMedian-Left

mechanism which places the second facility to the agent ℓ that is directly to the le� of m; both mechanisms are symmetric

and achieve the same approximation ratio.
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Since the optimal solution is either (ℓ,m) or (m, r), it is reasonable to think that randomizing over

these two solutions, rather than blindly choosing one of them, can lead to an improved approximation

ratio. Indeed, we can show a significantly smaller tight bound of 10 − 4
√
5 ≈ 1.0557 for randomized

strategyproof mechanisms when n ≥ 3 is an odd number; recall that, for even n ≥ 2, we can always

compute the optimal solution. For the upper bound, we consider the followingReverse-Proportional

randomizedmechanism: With probability pℓ =
d(m,r)
d(ℓ,r) choose the solution (ℓ,m), and with probability

pr =
d(ℓ,m)
d(ℓ,r) choose the solution (m, r).

�eorem 2.5. �e Reverse-Proportional mechanism is strategyproof-in-expectation.

Proof. Due to symmetry, it suffices to show that no agent i ≥ m has any profitable deviation. We first

consider agent m, and then any agent i ≥ r.

Agent m. �e expected individual cost of m is

costm(ℓ,m, r) =
d(m, r)

d(ℓ, r)
· d(ℓ,m) +

d(ℓ,m)

d(ℓ, r)
· d(m, r) = 2 · d(ℓ,m) · d(m, r)

d(ℓ, r)
.

Suppose now that m deviates to another location x such that ℓ ≤ x < m ≤ r. In this new instance,

the solution (ℓ, x) is chosen with probability d(x, r)/d(ℓ, r) and the solution (x,m) is chosen with

probability d(ℓ, x)/d(ℓ, r). �e expected cost of m becomes

costm(ℓ, x, r) =
d(x, r)

d(ℓ, r)
·
(

d(ℓ,m) + d(x,m)

)

+
d(ℓ, x)

d(ℓ, r)
·
(

d(x,m) + d(m, r)

)

=
d(x, r)

d(ℓ, r)
· d(ℓ,m) +

d(ℓ, x)

d(ℓ, r)
· d(m, r) + d(x,m)

=
d(x,m) + d(m, r)

d(ℓ, r)
· d(ℓ,m) +

d(ℓ,m)− d(x,m)

d(ℓ, r)
· d(m, r) + d(x,m)

= costm(ℓ,m, r) +
d(x,m)

d(ℓ, r)
· d(ℓ,m) − d(x,m)

d(ℓ, r)
· d(m, r) + d(x,m)

= costm(ℓ,m, r) +
d(x,m)

d(ℓ, r)
·
(

d(ℓ, r) + d(ℓ,m)− d(m, r)

)

= costm(ℓ,m, r) +
d(x,m)

d(ℓ, r)
· 2d(ℓ,m),

and thusm has no incentive to deviate to such a location x.

Next, suppose that m deviates to a location x such that x < ℓ ≤ m ≤ r. In this new instance,

the solution (x, ℓ) is chosen with probability d(ℓ, r)/d(x, r) and the solution (ℓ, r) is chosen with

probability d(x, ℓ)/d(x, r). �e expected cost ofm becomes

costm(x, ℓ, r) =
d(ℓ, r)

d(x, r)
·
(

d(x,m) + d(ℓ,m)

)

+
d(x, ℓ)

d(x, r)
·
(

d(ℓ,m) + d(m, r)

)

= d(ℓ,m) +
d(ℓ, r)

d(x, r)
· d(x,m) +

d(x, ℓ)

d(x, r)
· d(m, r)

= d(ℓ,m) +
d(ℓ, r)

d(x, ℓ) + d(ℓ, r)
·
(

d(x, ℓ) + d(ℓ,m)

)

+
d(x, ℓ)

d(x, r)
· d(m, r).

As a function of d(ℓ, x) > 0, costm(x, ℓ, r) is a non-decreasing function and thus

costm(x, ℓ, r) > 2 · d(ℓ,m) ≥ 2 · d(ℓ,m) · d(m, r)

d(ℓ, r)
= costm(ℓ,m, r),
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where the second inequality follows since d(m, r)/d(ℓ, r) ≤ 1. So,m again has no incentive to deviate

to such a location x.

Agent i ≥ r. �e expected individual cost of i is

costi(ℓ,m, r) =
d(m, r)

d(ℓ, r)
·
(

d(ℓ, i) + d(m, i)

)

+
d(ℓ,m)

d(ℓ, r)
·
(

d(m, i) + d(r, i)

)

= d(m, i) +
d(m, r)

d(ℓ, r)
·
(

d(ℓ, r) + d(r, i)

)

+
d(ℓ,m)

d(ℓ, r)
· d(r, i)

= d(m, i) + d(m, r) + d(r, i)

= 2 · d(m, i).

First consider a deviation of i to a location that retains the order of ℓ andm but changes the location of

the agent directly to the right ofm to x ≥ m. �at is, the three middle agents have locations ℓ,m, and

x. In this new instance, the solution (ℓ,m) is chosen with probability d(m,x)/d(ℓ, x) and the solution
(m,x) is chosen with probability d(ℓ,m)/d(ℓ, x). Hence, the expected individual cost of i is

costi(ℓ,m, x) =
d(m,x)

d(ℓ, x)
·
(

d(ℓ, i) + d(m, i)

)

+
d(ℓ,m)

d(ℓ, x)

(

d(m, i) + d(x, i)

)

= d(m, i) +
d(m,x)

d(ℓ, x)
· d(ℓ, i) + d(ℓ,m)

d(ℓ, x)
· d(x, i).

We now consider the following two cases depending on the relative positions of r and x.

• If m ≤ x ≤ r ≤ i, then since d(ℓ, i) = d(ℓ, x) + d(x, i) and d(m, i) = d(m,x) + d(x, i), we
have

costr(ℓ,m, x) = d(m, i) +
d(m,x)

d(ℓ, x)
·
(

d(ℓ, x) + d(x, i)

)

+
d(ℓ,m)

d(ℓ, x)
· d(x, i)

= d(m, i) + d(m,x) + d(x, i)

= 2 · d(m, i),

and thus i does not decrease its cost.

• If m ≤ r < x, then it must be the case that i = r since no agent i > r can deviate to location

x > r and be closer to m than r. Since d(x, r) > 0, d(m,x) = d(m, r) + d(x, r), d(ℓ, r) ≥
d(m, r) and d(ℓ, r) + d(x, r) = d(ℓ, x), we have

costr(ℓ,m, x) > d(m, r) +
d(m, r) + d(x, r)

d(ℓ, x)
· d(ℓ, r)

= d(m, r) +
d(m, r)

d(ℓ, x)
· d(ℓ, r) + d(ℓ, r)

d(ℓ, x)
· d(x, r)

≥ d(m, r) +
d(m, r)

d(ℓ, x)
· d(ℓ, r) + d(m, r)

d(ℓ, x)
· d(x, r)

= d(m, r) +
d(m, r)

d(ℓ, x)
·
(

d(ℓ, r) + d(x, r)

)

= 2 · d(m, r).

Hence, again r does not decrease its cost.
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Finally, consider the case where agent i ≥ r deviates to a location at the le� of m such that the

three middle agents have locations x ≤ ℓ, y ≤ m and z ≤ m instead of ℓ, m and r. In this new

instance, the solutions (x, y) and (y, z) are chosen with positive probability. Since x, y, z ≤ m, the

individual cost of i for the solution (x, y) is d(x, i)+ d(y, i) ≥ 2 · d(m, i) and, similarly, the individual

cost of i for the solution (y, z) is d(y, i) + d(z, i) ≥ 2 · d(m, i). Consequently, the expected cost of i
is at least 2 · d(m, i) = di(ℓ,m, r) for any probability distribution over the solutions (x, y) and (y, z),
which means that i has no incentive to deviate.

�eorem 2.6. For any odd n ≥ 3, the approximation ratio of the Reverse-Proportional mechanism

is at most 10− 4
√
5 ≈ 1.0557.

Proof. Without loss of generality, suppose that d(ℓ,m) ≤ d(m, r) and thus the optimal solution is

o = (ℓ,m). By the definition of the mechanism, the solutions d(ℓ,m) and d(m, r) are chosen with

probability pℓ = d(m, r)/d(ℓ, r) and pr = d(ℓ,m)/d(ℓ, r), respectively; observe that pℓ ≥ pr. By (1)

with x = ℓ and using the fact that that d(ℓ,m) + d(m, r) = d(ℓ, r), we can lower-bound the optimal

social cost as follows:

SC(o) = 2 ·
∑

i

d(i,m) + d(ℓ,m) ≥ 2 · d(ℓ, r) + d(ℓ,m).

Again using (1) with x = ℓ and x = r, as well as the fact that pℓ = 1 − pr , we can write the expected

social cost of the randomized solutionw chosen by the mechanism as

E[SC(w)] = pℓ ·
(

2 ·
∑

i

d(i,m) + d(ℓ,m)

)

+ pr ·
(

2 ·
∑

i

d(i,m) + d(m, r)

)

= 2 ·
∑

i

d(i,m) + (1− pr) · d(ℓ,m) + pr · d(m, r)

= 2 ·
∑

i

d(i,m) + d(ℓ,m) + pr ·
(

d(m, r)− d(ℓ,m)

)

= SC(o) + pr ·
(

d(m, r)− d(ℓ,m)

)

.

Consequently, the approximation ratio is

E[SC(w)]

SC(o)
≤ 1 + pr ·

d(m, r)− d(ℓ,m)

2 · d(ℓ, r) + d(ℓ,m)

= 1 + pr ·
d(m,r)
d(ℓ,r) − d(ℓ,m)

d(ℓ,r)

2 + d(ℓ,m)
d(ℓ,r)

= 1 + pr ·
pℓ − pr
2 + pr

Using the fact that pℓ = 1− pr , we finally have that

E[SC(w)]

SC(o)
≤ 1 + pr ·

1− 2 · pr
2 + pr

.

�e last expression a�ains its maximum value of 10− 4
√
5 ≈ 1.0557 for pr =

√
5− 2.

Next, we will argue that the Reverse-Proportional mechanism is the best possible by showing

a matching lower bound on the approximation ratio of any randomized strategyproof-in-expectation

mechanism. To do this, we will use instances with three agents for which we first show the following

technical lemma that reduces the class of mechanisms to consider.
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Lemma 2.7. Consider any instance with three agents located at x < y < z. Any randomized mechanism

that assigns positive probability to the solution (x, z) achieves larger expected social cost compared to any

randomized mechanism that assigns 0 probability to that solution.

Proof. Let pxy , pyz and pxz be the probabilities assigned to the three possible solutions (x, y), (y, z)
and (x, z), with pxz > 0. �e social cost of each solution is

SC(x, y) = d(x, y) + d(x, y) + d(x, z) + d(y, z) = 3 · d(x, y) + 2 · d(y, z),
SC(y, z) = d(x, y) + d(x, z) + d(y, z) + d(y, z) = 2 · d(x, y) + 3 · d(y, z),
SC(x, z) = d(x, z) + d(x, y) + d(y, z) + d(x, z) = 3 · d(x, y) + 3 · d(y, z).

So, the expected social cost of the randomized solution p = (pxy, pyz, pxz) is

E[SC(p)] =

(

3pxy + 2pyz + 3pxz

)

· d(x, y) +
(

2pxy + 3pyz + 3pxz

)

· d(y, z)

= 2 ·
(

d(x, y) + d(y, z)

)

+

(

pxy + pxz

)

· d(x, y) +
(

pyz + pxz

)

· d(y, z).

Clearly, for any λ ∈ (0, 1),

E[SC(p)] ≥ 2 ·
(

d(x, y) + d(y, z)

)

+

(

pxy + λ · pxz
)

· d(x, y) +
(

pyz + (1− λ)pxz

)

· d(y, z).

�e last expression is exactly equal to the expected social cost of the randomized solution q that assigns

probabilities qxy = pxy + λ · pxz , qyz = pyz + (1 − λ)pxz , and qxz = 0, thus showing the claim that

E[SC(p)] ≥ E[SC(q)].

Using the above lemma, we can now show the desired lower bound.

�eorem2.8. For the sum-variant, the approximation ratio of any randomized strategyproof-in-expectation

mechanism is at least 10 − 4
√
5 ≈ 1.0557.

Proof. Consider any randomized strategyproof mechanism and an instance I with three agents located
at 0, 1 and 2. Let p0(I) and p1(I) be the probabilities assigned to solutions (0, 1) and (1, 2), respectively.
By Lemma 2.7, we can assume that p0(I) + p1(I) = 1, and thus suppose that p0(I) ≥ 1/2 without

loss of generality. �e expected individual cost of the agent i that is located at 2 is then

3 · p0(I) + 1 · p1(I) · 1 = 3 · p0(I) + 1− p0(I) = 2 · p0(I) + 1 ≥ 2.

Now consider an instance J with three agents located at 0, 1 and x = 1/q ∈ (1, 2), where q =
3 −

√
5 ≈ 0.764; hence, the only different between I and J is that agent i is now located at x rather

than 2. Let p0(J) and px(J) be the probabilities assigned to solutions (0, 1) and (1, x), respectively.
Again, using Lemma 2.7 we can assume that p0(J) + px(J) = 1; any other case would achieve worse

approximation ratio. Suppose that px(J) > q. �en, the expected cost of agent i when misreporting

its position as 1/q rather than 2 would be

3 · p0(J) +
(

1 + 2− 1

q

)

· px(J) = 3 ·
(

1− px(J)

)

+

(

3− 1

q

)

· px(J)

= 3− 1

q
· px(J) < 2

9



and agent i would manipulate the mechanism. �erefore, for the mechanism to be strategyproof, it

has to be the case that px(J) ≤ q, and thus p0(J) ≥ 1− q.

In instance J , the optimal solution is (1, x) with social cost 1+1/q+2(1/q− 1) = 3/q− 1. Since
the social cost of the solution (0, 1) is 2 + 1/q + 1/q − 1 = 2/q + 1, the approximation ratio is

p0(J) · SC(0, 1) + px(J) · SC(1, x)
SC(1, x)

= px(J) + p0(J) ·
2/q + 1

3/q − 1

= 1− p0(J) + p0(J) ·
2 + q

3− q

= 1 + p0(J) ·
2q − 1

3− q

≥ 1 + (1− q) · 1− 2(1− q)

2 + (1− q)
= 10− 4

√
5.

Hence, the approximation ratio is at least 10− 4
√
5 ≈ 1.0557.

3 Max-variant for Two Facilities

We now turn our a�ention to the max-variant in which the individual cost of any agent is its distance

from the farthest facility. One might be tempted to assume that the optimal solution has the same

structure as in the sum-variant, which trivially holds for the case of n = 2 agents. However, this is not
true as the following example demonstrates: Consider an instance with n = 4 agents with locations

−1/2, 0, 1, and 2. �e optimal solution is (−1/2, 0) with a social cost of 5; note that the two-medians

solution (0, 1), which is optimal for the sum-variant according to Lemma 2.1, has social cost 11/2.

In spite of this, we do not require the exact structure of the optimal solution to identify the best

possible strategyproofmechanisms. For the class of deterministicmechanisms, we once again consider

theMedian-Right mechanism; recall that this mechanism places one facility at the (le�most) median

agent m and the other at agent r that is directly to the right of m. �is mechanism is strategyproof

for the max-variant as well: �e true individual cost of any agent i ≥ r is d(i,m), and any misreport

x ≥ m of does not change it, while any misreport x < m can only lead to a larger cost; the case of

i < m is similar. We next show that this mechanism always achieves an approximation ratio of at

most 3, and it can achieve an improved approximation ratio of at most 2 when the number of agents

is even.2

�eorem 3.1. �e approximation ratio of theMedian-Rightmechanism is at most 2 for any even n ≥ 4
and at most 3 for any odd n ≥ 3.

Proof. Letw = (m, r) be the solution chosen by the mechanism, and denote by o an optimal solution.

Observe that costi(w) = d(i, r) for every i ≤ m and costi(w) = d(i,m) for every i ≥ r. Hence,

SC(w) =
∑

i≤m

d(i, r) +
∑

i≥r

d(i,m) =
∑

i

d(i,m) + |{i ≤ m}| · d(m, r).

2We remark that since Median-Right is a strategyproof mechanism for both the sum- and the max-variant, the upper

bound of 3 on its approximation ratio for the max-variant follows directly from the upper bound of 3/2 on its approximation

ratio for the sum-variant; this is due to the sum and max individual cost functions being within a factor of 2 of each other

(see [Lotfi and Voudouris, 2024]). �e bound can also be derived by se�ing k = 2 to the more general bound of k + 1 that

we show for the case of multiple facilities in Section 4.2. Nevertheless, we include a full proof for completeness (and to also

capture the case of even n which will be useful later in the analysis of our randomized mechanism).
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For the optimal solution o, since the location of the median agent is the point that minimizes the total

distance from all agents, we have that

SC(o) ≥
∑

i

d(i,m).

In addition, since there are two facilities to be placed, in o one facility must be placed at the position

of some agent o ≤ m or o ≥ r. In the former case, we have that

∀i ≥ r : costi(o) ≥ d(i, o) = d(i, r) + d(m, r) + d(m, o) ≥ d(m, r).

In the la�er case, we have that

∀i ≤ m : costi(o) ≥ d(i, o) = d(i,m) + d(m, r) + d(r, o) ≥ d(m, r).

Since |{i ≤ m}| ≥ |{i ≥ r}| by the definition of m and r, we have established that, in any case,

SC(o) ≥ |{i ≥ r}| · d(m, r).

Using these two lower bounds on the optimal social cost, we can upper-bound the social cost of w as

follows:

SC(w) ≤
(

1 +
|{i ≤ m}|
|{i ≥ r}|

)

· SC(o).

When n ≥ 4 is even, by the definition ofm and r, we have that |{i ≤ m}| = |{i ≥ r}| = n/2, leading
to an approximation ratio of at most 2. When n ≥ 3 is odd, we have that |{i ≤ m}| = (n + 1)/2 and

|{i ≥ r}| = (n− 1)/2, leading to an upper bound of 1 + |{i ≤ m}|/|{i ≥ r}| ≤ 2n/(n− 1) ≤ 3.

We now show that theMedian-Rightmechanism is the best possible by showing amatching lower

bound of 3 on the worst-case (over all possible instances) approximation ratio of any deterministic

strategyproof mechanism.

�eorem 3.2. �e approximation ratio of any deterministic strategyproof mechanism is at least 3.

Proof. Consider an instance with n = 3 agents positioned at 0, 1, and 2. Since there are three possible
locations for two facilities, one facility must be placed at 0 or 2, say 0. �en, the cost of the agent

at position 2 is equal to 2. Now consider a new instance in which this agent moves to 1. Due to

strategyproofness, one of the facilities must still be placed at 0 since, otherwise, the agent that moved

from 2 to 1would decrease her cost from 2 to at most 1. Hence, the social cost of the solution computed

by the mechanism is 3. On the other hand, placing the two facilities at 1 leads to social cost 1, and the
approximation ratio is at least 3.

While no deterministic strategyproof mechanism can achieve an approximation ratio be�er than

3 in general, as we have already seen in �eorem 3.1, the Median-Right mechanism actually has an

approximation ratio of at most 2 when n is an even number. We next show that when the number of

agents n ≥ 3 is odd (which is the worst class of instances for deterministic mechanisms), it is possible

to design a randomized strategyproof mechanism with improved approximation ratio of at most 2. In
particular, we consider the following Uniform mechanism: With probability 1/2 choose the solution

(ℓ,m), and with probability 1/2 choose the solution (m, r). �is mechanism is clearly strategyproof-

in-expectation as it is defines a constant probability distribution over two deterministic strategyproof

mechanisms (theMedian-Left and theMedian-Right).

11



�eorem 3.3. For any odd n ≥ 3, the approximation ratio of the Uniform mechanism is at most 2.

Proof. Since there is an odd number n ≥ 3 of agents, by the definition ofm, we have that |{i ≥ m}| =
|{i ≤ m}| = (n + 1)/2. Hence, we can write the expected social cost of the randomized solution w

chosen by the mechanism as follows:

E[SC(w)] =
1

2

(

∑

i≤ℓ

d(i,m) +
∑

i≥m

d(i, ℓ)

)

+
1

2

(

∑

i≤m

d(i, r) +
∑

i≥r

d(i,m)

)

=
∑

i

d(i,m) +
1

2
|{i ≥ m}| · d(ℓ,m) +

1

2
|{i ≤ m}| · d(m, r)

=
∑

i

d(i,m) +
1

2
· n+ 1

2
· d(ℓ, r).

For the optimal solution o, since the position of the median agent is the point that minimizes the total

distance from all agents, we have that

SC(o) ≥
∑

i

d(i,m).

Since there are two facilities to be placed, in o one facility must be placed at the position of some agent

o ≤ ℓ or o ≥ r. In the former case, we have that

∀i ≥ r : costi(o) ≥ d(i, o) = d(i, r) + d(r,m) + d(m, ℓ) + d(ℓ, o) ≥ d(ℓ, r).

In the la�er case, we have that

∀i ≤ ℓ : costi(o) ≥ d(i, o) = d(i, ℓ) + d(ℓ,m) + d(m, r) + d(r, o) ≥ d(ℓ, r).

Since |{i ≥ r}| = |{i ≤ ℓ}| = (n− 1)/2 by the definition of ℓ and r, we have established that

SC(o) ≥ n− 1

2
· d(ℓ, r).

Using these two lower bounds on the optimal social cost, we can upper-bound the social cost of w as

follows:

E[SC(w)] ≤
(

1 +
1

2
· n+ 1

2
· 2

n− 1

)

· SC(o) = 3n− 1

2n− 2
· SC(o).

Hence, the approximation ratio is at most (3n − 1)/(2n − 2) ≤ 2 for n ≥ 3.

Finally, we show 2 is the best possible approximation ratio for any randomized strategyproof-in-

expectation mechanism.

�eorem 3.4. �e approximation ratio of any randomized strategyproof-in-expectation mechanism is at

least 2.

Proof. We consider the same instance I as in the proof of �eorem 3.2. So, there are three agents with

locations 0, 1, and 2. Since there are three possible locations for two facilities, there is probability

p ≥ 1/2 that one of the facilities will be placed at 0 or 2, say 0. �en, the expected cost of the agent at

position 2 is equal to 2p.

Now consider the instance J in which this agent moves to 1. If there is probability q < p that a

facility is placed at 0 in J , then the agent would have decreased her expected cost from 2p to 2q, which
contradicts that the mechanism is strategyproof-in-expectation. Hence, one facility must be placed at

0 with probability at least p ≥ 1/2 in J , which means that the expected social cost is

p · SC(0, 1) + (1− p) · SC(1, 1) = 3p+ 1− p = 2p + 1 ≥ 2.

However, the optimal social cost is SC(1, 1) = 1, leading to an approximation ratio of at least 2.
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4 Deterministic Mechanisms for Multiple Facilities

Having completely resolved the case of k = 2 facilities in the previous two sections, we now consider

the general case of k facilities for whichwe present (asymptotically) tight bounds on the approximation

ratio of deterministic strategyproof mechanisms.

4.1 Sum-variant

We again start with the sum-variant and first argue about the structure of the optimal solution when

there are k facilities to be placed.

Lemma 4.1. For the sum-variant, an optimal solution is to place the facilities at a set of consecutive agents

that includes the median agent(s).

Proof. Let m by a median agent (note that there might be two in case the number of agents is even).

�e lemma follows directly by the fact that the social cost is the sum of the distances of the agents from

all facility locations and the monotonicity property of the total distance function f(x) =
∑

i d(i, x)
that f(x) ≥ f(y) ≥ f(m) for every x ≤ y ≤ m orm ≤ y ≤ x.

We now show our upper bound by considering a generalization of theMedian-Right mechanism

that we used for k = 2. If k ≥ 2 is even, our mechanism places the facilities at the (le�most) median

agent m, at the k/2 − 1 agents at the le� of m, and at the k/2 agents at the right of m (which might

include the second median agent in case of an even overall number of agents). If k ≥ 3 is odd, the

mechanism places the facilities at the (le�most) median agentm, at the (k−1)/2 agents at the le� ofm,

and at the (k− 1)/2 agents at the right ofm. We will refer to this mechanism asMedian-Ball (given

that it places the facilities around the median agent within a radius of about k/2 in each direction).

Since the mechanism bases its decision only on the ordering of the agents on the line, it is clearly

strategyproof for the same reason thatMedian-Right is strategyproof when k = 2, so in the following
we focus on bounding its approximation ratio.

�eorem 4.2. For the sum-variant, the approximation ratio of the Median-Ball mechanism is at most

2.

Proof. We present the proof for an odd number k ≥ 3 of facilities; the proof is similar for even k. Let
w = (x(k−1)/2, . . . , x1,m, y1, . . . , y(k−1)/2) be the solution computed by the mechanism. To compute

the social cost of w, we first consider the agents that are not part of the solution. Let S< and S> be

the sets of agents that are to the le� of agent x(k−1)/2 and to the right of agent y(k−1)/2, respectively.

Also, letX be the indicator variable that is 1 if n is even and 0 otherwise. By definition, we have that

|S<| = |S>| − 1 if X = 1, and |S<| = |S>| otherwise. In any case, since |S<| ≤ |S>|, we can match

every agent i ∈ S< to an agent µ(i) ∈ S> and observe that, for any w ∈ w,

d(i, w) + d(µ(i), w) = d(i,m) + d(µ(i),m).

Clearly, if the number of agents is even, there will be an agent R ∈ S> that is le� unmatched;3 for this

agent R, if it exists, we use the fact that d(xℓ, R) = d(xℓ, yℓ) + d(yℓ, R). Given this, we have

∑

i 6∈w

costi(w) =
∑

i∈S<

(

costi(w) + costµ(i)(w)

)

+X · costR(w)

3Note that, if k is even, there might be an agent in S< that is le� unmatched instead of an agent in S>.
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=
∑

i∈S<

∑

w∈w

(

d(i,m) + d(µ(i),m)

)

+X ·
∑

w∈w

d(R,w)

= k ·
∑

i 6∈w∪{R}

d(i,m) +X ·
( (k−1)/2

∑

ℓ=1

d(xℓ, yℓ) + 2

(k−1)/2
∑

ℓ=1

d(R, yℓ) + d(R,m)

)

.

Next, we consider the agents that are part of the solutionw and the distances between them. Consider

any two agents x, y ∈ w between which there are t different agents. For each such agent i ∈ (x, y),
we need to take into account the distance of x to i, the distance of i to x, the distance of y to i, and the
distance of i to y. All together, these distances are exactly

2 (d(x, i) + d(i, y)) = 2 · d(x, y).

Accounting for the agents x and y as well, we have that the contribution of the distances of all agents

in [x, y] to the social cost is
(2t+ 2) · d(x, y).

We can now use this observation for all pairs of agents (xℓ, yℓ) for ℓ ∈ [(k − 1)/2] (note that by doing
this we will have calculated the distances of all agents in w from all agents in w, including m). Since

there are 2ℓ − 1 agents between xℓ and yℓ, the distance d(xℓ, yℓ) has a coefficient of 4ℓ in the social

cost.4 Hence,

∑

i∈w

costi(w) =

(k−1)/2
∑

ℓ=1

4ℓ · d(xℓ, yℓ) ≤ 2(k − 1)

(k−1)/2
∑

ℓ=1

d(xℓ, yℓ).

Pu�ing everything together, we have

SC(w) ≤ k ·
∑

i 6∈w∪{R}

d(i,m) +X ·
(

2

(k−1)/2
∑

ℓ=1

d(R, yℓ) + d(R,m)

)

+ (2k − 2 +X)

(k−1)/2
∑

ℓ=1

d(xℓ, yℓ).

We now focus on bounding the optimal social cost. By Lemma 4.1, the optimal solution o can be

thought of as a shi� ofw towards the le� or the right. We will only consider the case where the shi� is

towards the right; the other case can be handled similarly and is simpler since the agent R, if it exists,

will have larger cost in the optimal solution, thus leading to a smaller bound on the approximation

ratio. We again start by considering the agents that are not part of the solutionw. As before, consider

the same matching µ of the agents in S< to the agents in S>. Let o ∈ o be some agent that is part of

the optimal solution. For any agent i ∈ S< such that o ≤ µ(i), we have that

d(i, o) + d(µ(i), o) = d(i,m) + d(µ(i),m).

On the other hand, for any agent i ∈ S< such that µ(i) < o,

d(i, o) = d(i, µ(i)) + d(µ(i), o) ≥ d(i,m) + d(µ(i),m).

�erefore,

∑

i 6∈w

costi(o) =
∑

i∈S<

(

costi(o) + costµ(i)(o)

)

+X · costR(o)

4If k is even, for any (xℓ, yℓ) for ℓ ∈ [k/2]with x1 = m, there are 2ℓ−2 agents between xℓ and yℓ, leading to a coefficient

of 4ℓ− 2 for the distance d(xℓ, yℓ).
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=
∑

i∈S<

∑

o∈o

(

d(i,m) + d(µ(i),m)

)

+X ·
∑

o∈o

d(R, o)

≥ k ·
∑

i 6∈w∪{R}

d(i,m) +X ·
( (k−1)/2

∑

ℓ=1

d(R, yℓ) + d(R,m)

)

.

Next, consider agent xℓ for ℓ ∈ [(k − 1)/2] and let o ∈ o. If o ≤ yℓ, then

d(xℓ, o) + d(o, yℓ) = d(xℓ, yℓ),

Otherwise, if o > yℓ, then

d(xℓ, o) = d(xℓ, yℓ) + d(yℓ, o) > d(xℓ, yℓ).

Hence, we overall have that

∑

i∈w

costi(o) ≥
(k−1)/2
∑

ℓ=1

∑

o∈o

(

d(xℓ, o) + d(yℓ, o)

)

≥ k ·
(k−1)/2
∑

ℓ=1

d(xℓ, yℓ).

Pu�ing everything together, we have

SC(o) ≥ k ·
∑

i 6∈w∪{R}

d(i,m) +X ·
( (k−1)/2

∑

ℓ=1

d(R, yℓ) + d(R,m)

)

+ k ·
(k−1)/2
∑

ℓ=1

d(xℓ, yℓ).

It is now not hard to observe that

SC(w) ≤ SC(o) + (k − 2 +X)

(k−1)/2
∑

ℓ=1

d(xℓ, yℓ) +X ·
(k−1)/2
∑

ℓ=1

d(R, yℓ).

Using this, the approximation ratio is

SC(w)

SC(o)
≤ 1 +

(k − 2 +X)
∑(k−1)/2

ℓ=1 d(xℓ, yℓ) +X ·
∑(k−1)/2

ℓ=1 d(R, yℓ)

SC(o)

≤ 1 +
(k − 2 +X)

∑(k−1)/2
ℓ=1 d(xℓ, yℓ) +X ·∑(k−1)/2

ℓ=1 d(R, yℓ)

k ·∑(k−1)/2
ℓ=1 d(xℓ, yℓ) +X ·∑(k−1)/2

ℓ=1 d(R, yℓ)
≤ 2.

�is completes the proof.

We next provide an asymptotically tight lower bound of 2 − 1/k using a construction that is a

generalization of the one in the proof of �eorem 2.4 for k = 2, where instead of having just 3 agents,
we now have k + 1.

�eorem 4.3. For the sum-variant, when there are k facilities to locate, the approximation ratio of any

deterministic strategyproof mechanism is at least 2− 1/k.

Proof. Consider an instance with n = k+1 agents with one agent at 0, k−1 agents at 1 (or very close
to 1) and one agent at 2. Since not all facilities can be placed at 1, at least one of them has to be placed

0 or 2, say 0. �en, the cost of the agent i that is located 2 is at least k (in particular, the cost of i is
2 + k − 1 = k + 1 if no facility is placed at 2, and 2 + k − 2 = k if a facility is placed at 2).

Now consider a new instance in which i has moved to 1 + ε for some infinitesimal ε > 0. Due
to strategyproofness, the mechanism must place one of the facilities at 0 as well. Otherwise, agent

i would have cost k − ε according to its position in the original instance, and would thus prefer to

misreport its position as 1 + ε instead of 2. So, in the new instance, the social cost of any possible

solution that is restricted to having a facility at 0 is approximately k−1+k = 2k−1, while the social
cost of the remaining solution is only k, leading to an approximation ratio of 2− 1/k.
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4.2 Max-variant

For the max-variant, we will show a tight bound of k + 1 on the approximation ratio of deterministic

strategyproof mechanisms. �e upper bound again follows by theMedian-Ball mechanism; note the

upper bound of 2 on the approximation ratio ofMedian-Ball for the sum-variant immediately implies

an upper bound of 2k for the max-variant, which however is not the best possible we can show.

�eorem 4.4. For the max-variant, the approximation ratio of the Median-Ball mechanism is at most

k + 1.

Proof. Let ℓ and r be the le�most and rightmost agents in the solutionw computed by the mechanism.

By the definition ofw, we have that ||{i ≤ ℓ}|− |{i ≥ r}|| ≤ 1. Since the individual cost of any agent
i is the distance to its farthest facility, we have

costi(w) =











d(i, r) if i ≤ ℓ

max{d(i, ℓ), d(i, r)} if i ∈ w \ {ℓ, r}
d(i, ℓ) if i ≥ r.

Given this, and using the fact that d(i, x) ≤ d(i,m) + d(m,x) for any x ∈ {ℓ, r}, we can bound the

social cost of w as

SC(w) =
∑

i≤ℓ

d(i, r) +
∑

i∈w\{ℓ,r}

max{d(i, ℓ), d(i, r)} +
∑

i≥r

d(i, ℓ)

≤
∑

i

d(i,m) + |{i ≤ ℓ}| · d(m, r) + (k − 2) ·max{d(ℓ,m), d(m, r)} + |{i ≥ r}| · d(ℓ,m)

≤
∑

i

d(i,m) +

(

max
{

|{i ≤ ℓ}|, |{i ≥ r}|
}

+ k − 2

)

· d(ℓ, r).

We now bound the social cost of an optimal solution o. Since the location of the median agent m
minimizes the total distance of all agents, if we were allowed to place the facilities at the same location,

we would place all k facilities atm to minimize the social cost. Since this is not allowed in our model,

the optimal social cost is larger than that, and we obtain

SC(o) ≥
∑

i

d(i,m).

In addition, since w is not optimal (as otherwise the approximation ratio would be 1), at least one
facility must be placed at an agent o that is weakly to the le� of ℓ or weakly to right of r. Let S be the

set of agents that are not part of the solutionw and are on the opposite side of o; that is, S = {i ≥ r}
if o ≤ ℓ and S = {r ≤ ℓ} if o ≥ r. For each agent i ∈ S, we have that

costi(o) ≥ d(i, o) ≥ d(ℓ, r),

which implies

SC(o) ≥ |S| · d(ℓ, r) ≥ min
{

|{i ≤ ℓ}|, |{i ≥ r}|
}

· d(ℓ, r).

Pu�ing everything together, we have that

SC(w) ≤
(

1 +
max

{

|{i ≤ ℓ}|, |{i ≥ r}|
}

+ k − 2

min
{

|{i ≤ ℓ}|, |{i ≥ r}|
}

)

· SC(o).

Since max
{

|{i ≤ ℓ}|, |{i ≥ r}|
}

≤ min
{

|{i ≤ ℓ}|, |{i ≥ r}|
}

+ 1 and min
{

|{i ≤ ℓ}|, |{i ≥ r}|
}

≥
1, we obtain an upper bound of k + 1 on the approximation ratio.
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We conclude the presentation of our technical results with a matching lower bound of k+1 on the
approximation ratio of deterministic mechanisms for the max-variant, thus completely resolving this

se�ing.

�eorem 4.5. For the max-variant, when there are k facilities to locate, the approximation ratio of any

deterministic strategyproof mechanism is at least k + 1.

Proof. Consider an instance with n = k+1 agents with one agent at 0, k−1 agents at 1 (or very close
to 1) and one agent at 2. Since not all facilities can be placed at 1, at least one of them has to be placed

0 or 2, say 0. �en, the cost of the agent i that is located 2 is 2.

Now consider a new instance in which i has moved to 1. Due to strategyproofness, the mechanism

must place one of the facilities at 0 as well. Otherwise, if all facilities are placed at 1, agent iwould have
cost 1 according to its position in the original instance, and would thus prefer to misreport its position

as 1 instead of 2. So, in the new instance, the social cost of the solution chosen by the mechanism is

k+1, while the social cost of solution that places all facilities at 1 is just 1, leading to an approximation

ratio of k + 1.

5 Conclusion and Open Problems

In this work, we showed tight bounds on the best possible approximation ratio of deterministic and

randomized strategyproof mechanisms for the two-facility location problemwhere the facilities can be

placed at the reported agent locations and the individual cost of an agent is either its distance from both

facilities or its distance to the farthest facility. We believe there are many directions for future work. In

terms of our results, it would be interesting to close the gap between 2−1/k and 2 for the sum-variant

and multiple facilities, as well as consider randomizedmechanisms. One can also generalize our model

in multiple dimensions, for example, by considering agents that might have different preferences over

the facilities (such as optional or fractional preferences), and the efficiency of mechanisms is measured

by objective functions beyond the social cost (such as the egalitarian cost, or the more general family

of ℓ-centrum objectives).
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