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To accelerate the process of materials design, materials science has increasingly used data driven
techniques to extract information from collected data. Specially, machine learning (ML) algorithms,
which span the ML discipline, have demonstrated ability to predict various properties of materials
with the level of accuracy similar to explicit calculation of quantum mechanical theories, but with
significantly reduced run time and computational resources. Within ML, graph neural networks
have emerged as an important algorithm within the field of machine learning, since they are capable
of predicting accurately a wide range of important physical, chemical and electronic properties
due to their higher learning ability based on the graph representation of material and molecular
descriptors through the aggregation of information embedded within the graph. In parallel with
the development of state of the art classical machine learning applications, the fusion of quantum
computing and machine learning have created a new paradigm where classical machine learning
model can be augmented with quantum layers which are able to encode high dimensional data
more efficiently. Leveraging the structure of existing algorithms, we developed a unique and novel
gradient free hybrid quantum classical convoluted graph neural network (HyQCGNN) to predict
formation energies of perovskite materials. The performance of our hybrid statistical model is
competitive with the results obtained purely from a classical convoluted graph neural network, and
other classical machine learning algorithms, such as XGBoost. Consequently, our study suggests a
new pathway to explore how quantum feature encoding and parametric quantum circuits can yield

drastic improvements of complex ML algorithm like graph neural network.

I. INTRODUCTION

With a focus on predicting properties of complex ma-
terials, this manuscripts derives a novel and unique
gradient-free hybrid quantum graph neural network al-
gorithm. Through the application of predicting the
formation energies of perovskites, the hybrid quantum-
classical convoluted graph neural network (CGNN) re-
gression model yielded an R-squared value of R? = 0.674,
displaying an algorithm competitive with a pure classical
CGNN. In particular, our work demonstrated the utility
of quantum algorithms to augment a complex ML class
of algorithms, CGNN, in performing prediction on the
complex dataset of perovksites [1]. Of particular inter-
est is the utilization of gradient-free techniques to train
the statistical model. The implementation of gradient-
free optimization sub-processes is beyond the scope of
a previous study on quantum graph neural network for
materials research [2], as well as other studies that ex-
plore different quantum graph neural network (QGNN)
algorithms [3-5].

The remainder of the manuscript is organized as fol-
lowing. Section I A gives an overview of how classical
machine learning algorithms used within the field of ma-
terials science, with a special focus on classical graph neu-
ral network, while I B provides a brief review of previous
studies of how quantum machine learning algorithms can
be used to accelerate material discovery, and I C presents
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the motivation for the research. Section II provides a de-
tailed description of our feature engineering process by
extracting the relevant descriptors of perovskites, the ar-
chitecture of our hybrid quantum-classical graph neural
network, non-gradient based optimization, the XGBoost
algorithm, and the training and evaluation of our results.
Section IIT summarize and discuss the results obtained
from our classical, XGBoost and hybrid algorithm, and
section IV provides the concluding remarks of our study.

A. Overview of Machine Learning Approach for
Material Discovery

In-silico simulations have accelerated the discovery of
new materials and molecular candidates by performing
atomistic simulation to predict their properties. How-
ever, an open challenge within the field of material sim-
ulation is the polynomial increase in computational time
as the molecules or solid state materials become larger
in sizes [6, 7]. Furthermore, due to the limitation of
certain quantum mechanical approximation of the ex-
act interaction within the materials’ atomic structure
[8], certain materials properties are difficult to calculate
accurately. These characteristics result in the reliance
to extract these properties using laboratory techniques,
and such laboratory measurement processes can be pro-
hibitively expensive. As a consequence, data-driven tech-
niques have emerged as an important toolkit to acceler-
ate the material design process, in addition to quantum
simulation and experimental studies.
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Moreover, the advancement of data-driven strategies
in material design can also be attributed to the increas-
ingly availability of data-sets [9] based on high through-
put screening studies as well as experimental database
[10]. This has enabled the materials science commu-
nity to apply complex machine learning techniques to
data mine and potentially extrapolate the complex inter-
dependencies of structure and property in materials to
make predictions of new materials with novel properties.

In fact, through various applications, machine learning
models have demonstrated their utilities in correlating
the complex interplay between structure-properties rela-
tionship, which enables these models to predict materials’
properties such as atomization energies [11], formation
energies [12], bulk modulii [13], and band gap energies
[14] at low computational cost. In addition, the emer-
gence of deep learning also allows for the prediction of
quantum mechanical properties of materials such as the
electronic ground states of many body problems [15, 16],
and density of states [17] with a high level of accuracy. In-
terestingly, in comparison with explicit calculation using
state-of-the art quantum chemistry methods, this accu-
racy was computed with a significantly reduced run-time.

In ML, feature engineering is an essential sub-process
in the workflows. For materials science, the process of
engineering features involves the extraction of various
chemical descriptors, which then are columns in a data
frame format and ingested into various machine learning
models. Among many classical machine learning models,
graph neural networks (GNNs) represent the best-in-class
algorithm for materials’ property prediction due to their
high learning capabilities [18] from the latent representa-
tion derived the materials’ chemical descriptors. GNNs
utilize the graph structure to encode data features, on
top of a neural network architecture which extracts the
most relevant features of the nodes and edges to perform
a predictive task.

For the materials science discipline, graph represen-
tation of atomic and bonding features represent a more
natural expression of materials since the atomic features
can now be encoded in the nodes, while bonding proper-
ties can be encoded as edge features, and the connectives
between the atoms can be expressed as the number of
edges within a graph. Such a representation was first
used by Xie et al. [19] to encode a unit cell of solid in
the form of a crystal graph convolution neural network
(CGCNN) to predict properties of solids. Subsequently,
other more advanced GNN models have been developed,
like MegNet [20] which includes more global state inputs
like pressure, temperature and entropy, and GATGN [21]
which includes local and global attention layer in the neu-
ral network to increase the expressivity of the model.

While machine learning algorithms have demonstrated
utilities in predicting materials properties to various de-
gree of accuracy, there are potential pitfalls for machine
learning in the field of materials science. In particular,
the lack of training data for certain exotic compounds.
In addition, the predictive power of a machine learning

model can be strongly dependent on the feature extrac-
tion from the data of the material. Such a process re-
quires expert knowledge and intuition [22]. To compen-
sate for the a priori knowledge, various automated algo-
rithms [23] have been proposed to extract a vast array
of features, but are unable to elongate the model train-
ing time due to increasing requirement of available data
points with increasing number of features [24]. Another
potential drawback is that many GNNs utilize a message
passing scheme to learn the relevant features iteratively.
Such an approach can suffer the non-convergence prob-
lem [25].

B. Quantum Machine Learning Application in
Materials Science

To compensate for the the potential shortcomings men-
tioned in the previous subsection, an alternative solution
is to utilize quantum computing in order to perform ma-
chine learning training and prediction in an exponentially
large Hilbert space. By taking advantage of the quan-
tum mechanical properties, quantum machine learning
(QML) algorithms were mathematically shown to require
less training data to build a predictive model in compari-
son to their classical counterpart [26]. In addition, QML
also allows for a better mapping high-dimensional feature
space of classical data, which enables better prediction
for certain data structures [27]. Recently, it has been
suggested that certain QML model can also emulate the
long-range correlation in classical data through quantum
contextuality [28], thus allowing the models to be both
explainable and accurate.

Even within the NISQ area, various QML algorithms
have displayed promising results in different application
for materials science and molecular engineering. For in-
stance, quantum support vector machines (QSVM) has
been applied in different areas of the drug discovery pro-
cess such as classifying drug toxicities [29], as well as iden-
tifying binding sites in virtual screening [30]. The more
sophisticated learning task of quantum neural network
(QNN) through the applications of generating new small
molecules [31, 32], force fields parameter [33] for molecu-
lar dynamic simulation, and the electronic ground states
[34], demonstrated an advantage using quantum comput-
ing. In the context of graph machine learning (GML), the
augmentation of GML with feature encoding in the form
of a Hamiltonian representation can outperform classical
GML with less features [35].

C. Owur Motivation

To leverage the potential advantage of quantum prop-
erties, various hybrid models combining quantum and
classical neural networks have been proposed, and many
of them have been applied successfully to perform classi-
fication and prediction of materials and molecules’ prop-



erties [2, 36-38]. Within this context, we explored the po-
tential enhancing statistical model performance for mate-
rials science prediction by augmenting traditional graph
convoluted neural networks with quantum feature encod-
ing and with quantum neural network layer. Specifi-
cally, we utilized an amplitude encoding method to en-
code the adjacency matrix in our quantum circuit in con-
junction with a trainable ansatz. In addition, to avoid
the vanishing gradient problem [39, 40] in variational al-
gorithms, we incorporated a gradient-free optimization
method [41, 42] in our hybrid algorithm. Our results
show that the hybrid model is competitive against classi-
cal algorithms but does not improve on the results. Par-
ticularly, using simplified features composed mainly of
electronic properties, we compared results obtained from
a pure classical convoluted graph neural network [43],
and state-of-the-art gradient boosting algorithms, XG-
Boost [44], for predicting properties like formation ener-
gies of perovskites materials. Consequently, the competi-
tive predictive power of the hybrid model through includ-
ing a quantum encoding of the materials’ descriptors and
graph connectivities, and the utilization of non-gradient
based optimization suggest that there is potential im-
provement of performance in QGNN models through the
development of new feature mappings of graphs .

II. METHODOLOGIES

A. Chemical Descriptors and Chemical Bonding as
Features

1. Training data and feature extraction
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FIG. 1: Featurization overview

The perovskite dataset [1] was downloaded from the
MatBench database [45] and cleaned and featurized. To
clean the data, we restricted attention to oxide perovskite
which have a formula of ABOs3. In our study, we aimed
to predict the formation energy of our oxide perovskite
using various machine learning models, and compared
the results with density functional theory (DFT) calcu-
lations. To accomplish this task, PyMatGen [46] was

used to perform the feature extraction from the materi-
als data-set. We extracted the electronic properties of the
individual atoms as our node features. Specifically, these
properties are: atomic number, Ewald energy, electroneg-
ativity, electron affinity, ionization potential, cationic and
anionic radii. Chemical descriptors like electronegativity
and electron affinity have been demonstrated to be im-
portant in machine learning models used to predict the
formation energy of binary compounds [47]. Other de-
scriptors like ionization potential and cationic and an-
ionic radii are also important descriptors in predicting
phase stability in periodic system [11]. While Ewald en-
ergy for the individual site in the perovskite structures
can capture the long range interaction [48] which can be
important in a graph neural network model [49].

To encode the features for the edges, we extract the
properties that connect the individual atoms such as the
inverse of the Euclidean distances, the coulomb potential
between the neighbouring atoms, the electronegativity
and electron affinity differences between the two atoms.
For the Coulomb matrix descriptor, we only extracted
the values of the off-diagonal element which represent
the interaction between two different nuclei.

2.  Encoding of chemical bonding into graph structures

As shown in figure 1 each of the perovskite crystals
from the Castelli perovskites dataset was translated into
a graph by mapping the chemical features of each atom
onto the node features. Connectivities between nodes
were mapped as bond relationships between the atoms
based on the adjacency matrices found for each atom
and how they are connected to each other. By incor-
porating the spatial geometric structure of the materials
into graph in the form of adjacency matrices have been
suggested to enhance the predictive power of various clas-
sical graph neural network models [50].

B. Hybrid Quantum-Classical Convoluted Graph
Neural Network (HyQCGNN)

1. Classical layer: Generalized Graph Convolution Neural
Network (GENConv)

For a classical graph neural network layer, we use the
GENConv model [43], which has a number of desirable
properties. Two techniques in particular increase the ex-
pressive power of a GNN substantially.

1. GENConv uses a generalized aggregation function,
with trainable parameters allowing the model to
learn the optimal aggregation method. For exam-
ple, we used SoftMax with a learnable “tempera-
ture” parameter. For low values of inverse tem-
perature, this behaves like mean aggregation and
at high inverse temperatures it behaves like max



aggregation. This technique is well-established in
numerous fields of machine learning [51, 52].

2. GENConv uses a message normalization technique
to normalize features of aggregated messages that
combines them with other features (like edge fea-
tures) during the update phase. This is accom-
plished through a MLP! and a learnable scaling
factor s, yielding the vertex update function:
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It is worth mentioning that not all GNNs permit the
use of edge features at all, while the MLP implemented
by GENConv includes them in a particularly powerful
way.

Classical GNNs (whether GENConv or other) can
make use of the backpropagation techniques [53] estab-
lished across the field of neural network architectures
to calculate gradients. In quantum machine learning,
parameter-shift rule [54] has been shown to be a solution
to compute the gradients in variational quantum circuits
to optimize trainable parameters. However, this method
has been shown to be less efficient than the classical back-
propagation in traditional ML [55]. As a result, in our
study we explored the use of gradient-free approach for
both classical and hybrid model as detailed in IIB 3, to
facilitate like-to-like comparisons.

2. Quantum Layer

The encoding of a feature vector ¥ = (zo, z1,...,TN)
into a quantum state requires initializing the state to
have amplitudes equal to each feature vector element, as
below:

1 N
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The circuit form of the amplitude encoding is shown in
figure 2b, for the case where Ngyupits = 3 for illustrative
purpose. The quantum circuit was implemented using
the RawFeatureVector function [56] within Qiskit. In
order to model the perovskite structure of our study, we
utilized 5 qubits since the chemical structures contain 5
atoms within a primitive unit cell. Thus, they can be
mapped to 5 nodes within our adjacency matrix.

By unrolling our adjacency matrix into a 1-D vector,
we can use the equation 1 to determine state amplitudes.

1 Note that in our case, we use a single fully connected layer, so
our architecture is not truly an MLP, although GENConv allows
for multiple layers.
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(a) The overall quantum circuit used as a layer in
the hybrid model
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(b) The decomposition into gates of a 3-qubit
amplitude encoding data loader circuit created by
the Parameterized Initialize method
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FIG. 2: Quantum circuit implemented in our hybrid
QGCNN model which includes a data loading layer
using amplitude encoding, a variational layer, and a
trainable readout layer. For space considerations the
amplitude encoding layer is restricted to 3-qubits

After loading the data in this way, we applied a trainable
ansatz layer, which allows us to adjust incrementally the
parameters. The general form of the ansatz is shown in
figure 2

We then applied a readout layer, which also includes
trainable parameters, rotating the qubits around the
X,Y, Z axes. Since the trainable rotations occur right
before measurement, the readout layer can be thought
of as learning which observable to measure for optimal
information extraction from the circuit.



8. Non-Gradient-Based Optimization

Guided by recent research of exploring gradient-free
optimization algorithm for quantum neural network
model [57, 58], we performed our optimization using non-
gradient-based approaches.

We used an open-source gradient-free package from
Facebook research, called Nevergrad [41, 42]. This pack-
age includes numerous optimization algorithms. Their
default algorithm, called NGOpt is a carefully tuned
black-box optimization, sometimes called an “algorithm
selection wizard”. Such selection wizards auto-select
optimization procedures based on details of the search
space, defined at the outset of optimization. Extensive
research has gone into these selection wizards, and their
performance is difficult to beat. Furthermore, Nevergrad
has been shown to be an effective algorithm to optimize
the cost function for variational method like the quantum
approximate optimization algorithm [59, 60].

4. Algorithm Workflow

The steps for optimization of our hybrid model are as
follows.

1. The optimizer is queried to produce a set of val-
ues for the model parameters, which will include
subsets for both the classical and quantum layers.

2. The classical model parameters are loaded into the
GENConv layer.

3. The GENConv model then transforms the input
graph producing an intermediate graph. This inter-
mediate graph has one node feature and one edge
feature, distilled by GENConv. In other words,
GENConv is performing trainable dimensionality
reduction on the node and edge features.

4. This intermediate graph, which is represented by a
(symmetric) weight matrix, is unrolled into a 1D
vector, denoted 7.

5. The vector ¥ is loaded into a quantum circuit via
amplitude encoding along with the quantum subset
of trainable parameters.

6. A small set of observables are measured for the cir-
cuit, then scaled and compared to the target value
of our data-set.

7. The difference between the target and the model
prediction is reported back to the optimizer, which
updates accordingly.

8. An updated set of parameters is requested from the
optimizer.

C. XGBoost

The XGBoost algorithm [44], using gradient boosting
on decision trees, is by now a well-established and well-
understood model. We investigated the performance of
XGBoost for the regression task of predicting formation
energy from crystal graphs, both to serve as a baseline
and to guide the featurization of the crystal graphs. In
order to accomplish this, we used the fact that our graphs
have homogeneous size and connectivity to flatten the
graphs into a simple tabular data-set. This allowed us
also to select features based on the feature importances
reported by the XGBoost model after training.

D. Training, Evaluation of Results, and Software
Implementation

Our neural networks were defined using pytorch [61],
pytorch-geometric [62]. When defining circuits, we used
Qiskit and the connectors that Qiskit exposes to pytorch
neural network modules. Our hybrid quantum-classical
model, pure GENConv, and XGBoost were trained with
196 data points, and the best model was selected by eval-
uating performance on validation set with 25 samples.
Final evaluation was done on a test set containing 25
samples, which was not used in either model training or
selection.

The results of our HyQCGNN model were obtained
using the Qiskit Runtime environment and qiskit esti-
mator primitive [63]. Specially, we utilized the the Esti-
mator Quantum Neural Network (EstimatorQNN). Esti-
matorQNN is a hybrid neural network architecture that
combines classical and quantum elements. In this struc-
ture, the quantum component, referred to as the feature
map, transforms classical data into quantum states. The
EstimatorQNN in general, is a neural network designed
to process a parameterized quantum circuit with assigned
parameters for input data and/or weights, along with an
optional observable(s), generating the corresponding ex-
pectation value(s) as its output. EstimatorQNN from
Qiskit leverages the Estimator primitive and allows users
to combine parameterized quantum circuits with quan-
tum mechanical observables, and can be connected to py-
torch through TorchConnector. TorchConnector takes a
neural network and makes it available as a PyTorch Mod-
ule. The resulting module can be seamlessly incorporated
into PyTorch classical architectures and trained jointly
without additional considerations, enabling the develop-
ment and testing of novel hybrid quantum-classical ma-
chine learning architectures. While applying TorchCon-
nector, the user can get access to all of the well defined
optimizer algorithms and pre-defined loss functions.

All the models were trained using our internal cluster
with 64 CPU cores and simulated on Qiskit QASM sim-
ulator. Feature importance analysis was also performed
using XGBoost to understand how the different materials
descriptors included in our data-set affect the predicted



property of formation energies. Such analysis is done
to further verify that we extracted the relevant features
for our machine learning models, and their impacts are
physically relevant.

III. RESULTS AND DISCUSSION

Both the classical and the hybrid models were trained
for 2000 iterations, using the NGOpt algorithm of Nev-
ergrad. After every iteration, the model was evaluated
on a validation data-set, and the best-performing model
was recorded for later use. At the end of the 2000 iter-
ations, the model that performed best on the validation
set was evaluated on a test set, on which the model was
not trained, and which played no part in model selection.
We then plot the true formation energy values against the
predicted values and perform a simple linear fit. The R?
values for this fit are the figures of merit for the corre-
sponding model.

The results for both classical and hybrid methods are
illustrated in figures 3a and 3b

The R? score obtained for the classical GNN is com-
parable to the XGBoost model. This illustrates that,
despite the handicap of not using gradients in the opti-
mization, the GNN architecture is able to perform quite
well. In addition to the performance metric of R?, XG-
Boost was also used to perform the feature importance
analysis as shown in Fig. 4. The results suggest that
the most relevant feature affecting the formation energy
is the first ionization energy of site A in a perovskite ma-
terial. The importance of ionization energies have been
known to be an important descriptor to predict the sta-
bility of oxide perovskites [64, 65], and halide peroskites
[66].

On the other hand, the R? score predicted by the hy-
brid quantum-classical model is slightly lower than the
classical GNN and XGBoost results. This illustrates that
the advanced methods used in the GENConv are more
powerful than the quantum methods employed here. This
is to be expected, as GENConv is among the most pow-
erful GNN models available. Nevertheless, a competi-
tive R? suggests that a hybrid quantum GNN is a viable
model to perform prediction of complex materials’ prop-
erties. A potential improvement is to perform further
research in area of graph embedding within the Hilbert
space to design a full quantum graph convoluted neural
network as suggested by Hu et al. [67]. However, such
an investigation is not within the scope of this study and
will be explored in subsequent research.

IV. CONCLUSION

In this work, we have presented an implementation of a
hybrid graph convolutional neural network that incorpo-
rates a quantum layer. This quantum layer includes both
amplitude encoding and a trainable ansatz. Furthermore,
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FIG. 3: Plot and associated R? value for the true
formation energy vs different models’ prediction of
formation energy.

we showed the feasibility of using non-gradient-based op-
timization for training this hybrid model. We report the
figures of merit and compare to baseline scores obtained
from advanced classical techniques. Although the clas-
sical techniques retain an advantage at present, the in-
creasing maturity of quantum hardware, alongside the
native 2V scaling enabled by quantum amplitude encod-
ing, suggests that this is a potentially fruitful avenue for
continued research.



Feature Importances

lenization energy (0)

Ewald site energy (1)

Ewald site energy (4)

Coulomb interaction (4,1)

Coulomb interaction (2,0)

Coulomb interaction (4,0)

Ewald site energy (3)

Coulomb interaction (2,1)

lonization energy (1)

Ewald site energy (2)

Feature

lonization energy (2)
Coulomb interaction (3,1)
Coulomb interaction (3,2)
Coulomb interaction (4,2)

Ewald site energy (0)
Coulomb interaction (1,0)

Coulomb interaction (4,3)

Coulomb interaction (3,0) -
lonization energy (3) .

lonization energy (4) |

0.

o

0 0.02 0.04 0.06 0.08 0.10 0.12
Importance

FIG. 4: Feature importances reported by the XGBoost
algorithm. The parenthesis indicate which atom or pair
of atoms the feature applies to.

Disclaimer (Deloitte)

About Deloitte: Deloitte refers to one or more of De-
loitte Touche Tohmatsu Limited, a UK private company
limited by guarantee (“DTTL”), its network of member
firms, and their related entities. DTTL and each of its
member firms are legally separate and independent enti-
ties. DTTL (also referred to as “Deloitte Global”) does
not provide services to clients. In the United States, De-
loitte refers to one or more of the US member firms of
DTTL, their related entities that operate using the “De-
loitte” name in the United States and their respective
affiliates. Certain services may not be available to attest
clients under the rules and regulations of public account-
ing. Please see www.deloitte.com/about to learn more
about our global network of member firms.

Deloitte provides industry-leading audit, consulting,
tax and advisory services to many of the world’s most ad-
mired brands, including nearly 90% of the Fortune 500®)
and more than 8,500 U.S.-based private companies. At
Deloitte, we strive to live our purpose of making an im-
pact that matters by creating trust and confidence in a
more equitable society. We leverage our unique blend
of business acumen, command of technology, and strate-
gic technology alliances to advise our clients across in-
dustries as they build their future. Deloitte is proud to
be part of the largest global professional services net-
work serving our clients in the markets that are most
important to them. Bringing more than 175 years of ser-
vice, our network of member firms spans more than 150
countries and territories. Learn how Deloitte’s approxi-
mately 457,000 people worldwide connect for impact at
www.deloitte.com.

This publication contains general information only and
Deloitte is not, by means of this [publication or presen-
tation], rendering accounting, business, financial, invest-
ment, legal, tax, or other professional advice or services.
This [publication or presentation] is not a substitute for
such professional advice or services, nor should it be used
as a basis for any decision or action that may affect your
business. Before making any decision or taking any ac-
tion that may affect your business, you should consult a
qualified professional advisor. Deloitte shall not be re-
sponsible for any loss sustained by any person who relies
on this publication. Copyright (©) 2023 Deloitte Devel-
opment LLC. All rights reserved.

Disclaimer (IBM)

IBM, the IBM logo, and ibm.com are trademarks
of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and ser-
vice names might be trademarks of IBM or other compa-
nies. The current list of IBM trademarks is available at
https://www.ibm.com/legal /copytrade.



[1]

2]

3]

[4]

[5]

10

(11]

[12

(14]

Ivano E Castelli, David D Landis, Kristian S Thygesen,
Sgren Dahl, Ib Chorkendorff, Thomas F Jaramillo, and
Karsten W Jacobsen. New cubic perovskites for one-
and two-photon water splitting using the computational
materials repository. Energy & Environmental Science,
5(10):9034-9043, 2012.

Ju-Young Ryu, Eyuel Elala, and June-Koo Kevin Rhee.
Quantum graph neural network models for materials
search. Materials, 16(12), 2023.

Xing Ai, Zhihong Zhang, Luzhe Sun, Junchi Yan, and
Edwin Hancock. Decompositional quantum graph neural
network, 2023.

Guillaume Verdon, Trevor McCourt, Enxhell Luzhnica,
Vikash Singh, Stefan Leichenauer, and Jack Hidary.
Quantum graph neural networks, 2019.

Cenk Tiiysiiz, Bilge Demirkoz, Daniel Dobos, Fabio Fra-
cas, Federico Carminati, Jean-Roch Vlimant, Karolos
Potamianos, Kristiane Novotny, Sofia Vallecorsa, and
Cenk Tiysliz. Ctd2020: A quantum graph network ap-
proach to particle track reconstruction. 2020.

Laura E. Ratcliff, Stephan Mohr, Georg Huhs, Thierry
Deutsch, Michel Masella, and Luigi Genovese. Challenges
in large scale quantum mechanical calculations. WIREs
Computational Molecular Science, 7(1):¢1290, 2017.
Richard A. Friesner. jijab initioj/i; quantum chemistry:
Methodology and applications. Proceedings of the Na-
tional Academy of Sciences, 102(19):6648-6653, 2005.
John P. Perdew, Adrienn Ruzsinszky, Lucian A. Con-
stantin, Jianwei Sun, and Gabor I. Csonka. Some funda-
mental issues in ground-state density functional theory:
A guide for the perplexed. Journal of Chemical Theory
and Computation, 5(4):902-908, 2009. PMID: 26609599.
Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier,
Wei Chen, William Davidson Richards, Stephen Dacek,
Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand
Ceder, and Kristin A. Persson. Commentary: The ma-
terials project: A materials genome approach to acceler-
ating materials innovation. APL Materials, 1(1):011002,
Jul 2013.

Andriy Zakutayev, Nick Wunder, Marcus Schwarting,
John D. Perkins, Robert White, Kristin Munch, William
Tumas, and Caleb Phillips. An open experimental
database for exploring inorganic materials. Scientific
Data, 5(1):180053, Apr 2018.

Luca M. Ghiringhelli, Jan Vybiral, Sergey V. Levchenko,
Claudia Draxl, and Matthias Scheffler. Big data of ma-
terials science: Critical role of the descriptor. Phys. Rev.
Lett., 114:105503, 2015.

Christopher J. Bartel, Amalie Trewartha, Qi Wang,
Alexander Dunn, Anubhav Jain, and Gerbrand Ceder.
A critical examination of compound stability predictions
from machine-learned formation energies. npj Computa-
tional Materials, 6(1):97, Jul 2020.

Olexandr Isayev, Corey Oses, Cormac Toher, Eric Gos-
sett, Stefano Curtarolo, and Alexander Tropsha. Uni-
versal fragment descriptors for predicting properties of
inorganic crystals. Nature Communications, 8(1):15679,
Jun 2017.

Ya Zhuo, Aria Mansouri Tehrani, and Jakoah Brgoch.
Predicting the band gaps of inorganic solids by machine
learning. The Journal of Physical Chemistry Letters,

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

(25]

[26]

27]

9(7):1668-1673, Apr 2018.

David Pfau, James S. Spencer, Alexander G. D. G.
Matthews, and W. M. C. Foulkes. Ab initio solution of
the many-electron schrédinger equation with deep neural
networks. Phys. Rev. Res., 2:033429, Sep 2020.

7. Schéatzle, P. B. Szabdé, M. Mezera, J. Hermann,
and F. Noé. DeepQMC: An open-source software suite
for variational optimization of deep-learning molecu-
lar wave functions. The Journal of Chemical Physics,
159(9):094108, 09 2023.

Po-Yen Chen, Kiyou Shibata, Katsumi Hagita, Tomo-
hiro Miyata, and Teruyasu Mizoguchi. Prediction of the
ground-state electronic structure from core-loss spectra
of organic molecules by machine learning. The Journal of
Physical Chemistry Letters, 14(20):4858-4865, May 2023.
Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and Philip S. Yu. A comprehensive
survey on graph neural networks. IEFEFE Transactions
on Neural Networks and Learning Systems, 32(1):4-24,
2021.

Tian Xie and Jeffrey C Grossman. Crystal graph convolu-
tional neural networks for an accurate and interpretable
prediction of material properties. Physical review letters,
120(14):145301, 2018.

Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and
Shyue Ping Ong. Graph networks as a universal machine
learning framework for molecules and crystals. Chemistry
of Materials, 31(9):3564-3572, May 2019.

Steph-Yves Louis, Yong Zhao, Alireza Nasiri, Xiran
Wang, Yuqi Song, Fei Liu, and Jianjun Hu. Graph
convolutional neural networks with global attention for
improved materials property prediction. Phys. Chem.
Chem. Phys., 22:18141-18148, 2020.

Nicholas Wagner and James M. Rondinelli. Theory-
guided machine learning in materials science. Frontiers
in Materials, 3, 2016.

Ziyu Xiang, Mingzhou Fan, Guillermo Vdazquez To-
var, William Trehern, Byung-Jun Yoon, Xiaofeng Qian,
Raymundo Arroyave, and Xiaoning Qian. Physics-
constrained automatic feature engineering for predictive
modeling in materials science. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(12):10414—
10421, May 2021.

Jianping Hua, Zixiang Xiong, James Lowey, Edward Suh,
and Edward R. Dougherty. Optimal number of features
as a function of sample size for various classification rules.
Bioinformatics, 21(8):1509-1515, 11 2004.

Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei
Wang, and Xiaokui Xiao. Eignn: Efficient infinite-depth
graph neural networks. In Advances in Neural Informa-
tion Processing Systems, 2021.

Matthias C. Caro, Hsin-Yuan Huang, M. Cerezo, Ku-
nal Sharma, Andrew Sornborger, Lukasz Cincio, and
Patrick J. Coles. Generalization in quantum machine
learning from few training data. Nature Communica-
tions, 13(1):4919, Aug 2022.

Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni,
Ryan Babbush, Sergio Boixo, Hartmut Neven, and Jar-
rod R. McClean. Power of data in quantum machine
learning. Nature Communications, 12(1):2631, May 2021.



(28]

29]

(30]

(31]

32]

33

34]

(39]

[40

Eric R. Anschuetz, Hong-Ye Hu, Jin-Long Huang, and
Xun Gao. Interpretable quantum advantage in neural
sequence learning. PRX Quantum, 4:020338, Jun 2023.
Amandeep Singh Bhatia, Mandeep Kaur Saggi, and
Sabre Kais. Quantum machine learning predicting adme-
tox properties in drug discovery. Journal of Chemical
Information and Modeling, 63(21):6476-6486, Nov 2023.
Stefano Mensa, Emre Sahin, Francesco Tacchino, Pana-
giotis Kl Barkoutsos, and Ivano Tavernelli. Quantum
machine learning framework for virtual screening in drug
discovery: a prospective quantum advantage. Machine
Learning: Science and Technology, 4(1):015023, feb 2023.
Po-Yu Kao, Ya-Chu Yang, Wei-Yin Chiang, Jen-Yueh
Hsiao, Yudong Cao, Alex Aliper, Feng Ren, Aldn Aspuru-
Guzik, Alex Zhavoronkov, Min-Hsiu Hsieh, and Yen-Chu
Lin. Exploring the advantages of quantum generative
adversarial networks in generative chemistry. Journal of
Chemical Information and Modeling, 63(11):3307-3318,
Jun 2023.

Junde Li, Rasit O. Topaloglu, and Swaroop Ghosh.
Quantum generative models for small molecule drug dis-
covery. IEEE Transactions on Quantum FEngineering,
2:1-8, 2021.

Isabel Nha Minh Le, Oriel Kiss, Julian Schuhmacher,
Ivano Tavernelli, and Francesco Tacchino. Symmetry-
invariant quantum machine learning force fields. arXiv
e-prints, page arXiv:2311.11362, November 2023.

Jack Ceroni, Torin F. Stetina, Maria Kieferova, Car-
los Ortiz Marrero, Juan Miguel Arrazola, and Nathan
Wiebe.  Generating Approximate Ground States of
Molecules Using Quantum Machine Learning. arXiv e-
prints, page arXiv:2210.05489, October 2022.

Boris Albrecht, Constantin Dalyac, Lucas Leclerc, Luis
Ortiz-Gutiérrez, Slimane Thabet, Mauro D’Arcangelo,
Julia R. K. Cline, Vincent E. Elfving, Lucas Lassabliere,
Henrique Silvério, Bruno Ximenez, Louis-Paul Henry,
Adrien Signoles, and Loic Henriet. Quantum feature
maps for graph machine learning on a neutral atom quan-
tum processor. Phys. Rev. A, 107:042615, Apr 2023.
Pranath Reddy and Aranya B Bhattacherjee. A hybrid
quantum regression model for the prediction of molecular
atomization energies. Machine Learning: Science and
Technology, 2(2):025019, feb 2021.

Anh Phuong Ngo, Nhat Le, Hieu T. Nguyen, Abdullah
Eroglu, and Duong T. Nguyen. A quantum neural net-
work regression for modeling lithium-ion battery capacity
degradation. In 2028 IEEE Green Technologies Confer-
ence (GreenTech), pages 164-168, 2023.

L. Domingo, M. Djukic, C. Johnson, and F. Borondo.
Binding affinity predictions with hybrid quantum-
classical convolutional neural networks. Scientific Re-
ports, 13(1):17951, Oct 2023.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-
term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, 5(2):157-166,
1994.

Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy,
Ryan Babbush, and Hartmut Neven. Barren plateaus
in quantum neural network training landscapes. Nature
Communications, 9(1):4812, Nov 2018.

Risto Trajanov, Ana Nikolikj, Gjorgjina Cenikj, Fa-
bien Teytaud, Mathurin Videau, Olivier Teytaud,
Tome Eftimov, Manuel Lépez-Ibanez, and Carola Do-
err. Improving Nevergrad’s Algorithm Selection Wiz-

42]

(43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

53]

[54]

[55]

ard NGOpt Through Automated Algorithm Configura-
tion, page 18-31. Springer International Publishing,
2022.

J. Rapin and O. Teytaud. Nevergrad - A gradient-
free optimization platform. https://GitHub.com/
FacebookResearch/Nevergrad, 2018.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard
Ghanem. Deepergen: All you need to train deeper gens.
arXiwv preprint arXiv:2006.07739, 2020.

Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785-794, 2016.

Alexander Dunn, Qi Wang, Alex Ganose, Daniel Dopp,
and Anubhav Jain. Benchmarking materials property
prediction methods: the matbench test set and automat-
miner reference algorithm. npj Computational Materials,
6(1):138, Sep 2020.

Shyue Ping Ong, William Davidson Richards, Anubhav
Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia,
Dan Gunter, Vincent L. Chevrier, Kristin A. Persson,
and Gerbrand Ceder. Python materials genomics (py-
matgen): A robust, open-source python library for mate-
rials analysis. Computational Materials Science, 68:314—
319, 2013.

Yuanqging Mao, Hongliang Yang, Ye Sheng, Jiping Wang,
Runhai Ouyang, Caichao Ye, Jiong Yang, and Wenqing
Zhang. Prediction and classification of formation en-
ergies of binary compounds by machine learning: an
approach without crystal structure information. ACS
omega, 6(22):14533-14541, 2021.

Felix Faber, Alexander Lindmaa, O. Anatole von Lilien-
feld, and Rickard Armiento. Crystal structure repre-
sentations for machine learning models of formation en-
ergies. International Journal of Quantum Chemistry,
115(16):1094-1101, 2015.

Arthur Kosmala, Johannes Gasteiger, Nicholas Gao,
and Stephan Glinnemann. Ewald-based long-range mes-
sage passing for molecular graphs. In Proceedings of
the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Jiucheng Cheng, Chunkai Zhang, and Lifeng Dong. A
geometric-information-enhanced crystal graph network
for predicting properties of materials. Communications
Materials, 2, 2021.

Yu-Lin He, Xiao-Liang Zhang, Wei Ao, and
Joshua Zhexue Huang. Determining the optimal
temperature parameter for softmax function in rein-
forcement learning. Applied Soft Computing, 70:80-85,
2018.

Yinhua Piao, Sangseon Lee, Dohoon Lee, and Sun Kim.
Sparse structure learning via graph neural networks for
inductive document classification, 2022.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533-536, Oct 1986.

Leonardo Banchi and Gavin E. Crooks. Measuring Ana-
lytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule. Quantum, 5:386, Jan-
uary 2021.

Maria Schuld and Nathan Killoran. Is quantum advan-
tage the right goal for quantum machine learning? PRX
Quantum, 3:030101, Jul 2022.


https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

[56]

[59]

(60]

(61]

V.V. Shende, S.S. Bullock, and I.L. Markov. Synthe-
sis of quantum-logic circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 25(6):1000-1010, June 2006.

Ankit Kulshrestha, Xiaoyuan Liu, Hayato Ushijima-
Mwesigwa, and Ilya Safro. Learning to optimize quantum
neural network without gradients, 2023.

Marco Wiedmann, Marc Hoélle, Maniraman Periyasamy,
Nico Meyer, Christian Ufrecht, Daniel D. Scherer, Axel
Plinge, and Christopher Mutschler. An empirical com-
parison of optimizers for quantum machine learning with
spsa-based gradients, 2023.

Jack S. Baker and Santosh Kumar Radha. Wasser-
stein solution quality and the quantum approximate opti-
mization algorithm: A portfolio optimization case study,
2022.

Jiahao Yao, Marin Bukov, and Lin Lin. Policy gradi-
ent based quantum approximate optimization algorithm.
ArXiv, abs/2002.01068, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zach DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-

[62]

(63]

(64]

(65]

(66]

[67]

10

torch: An imperative style, high-performance deep learn-
ing library, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph repre-
sentation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

Blake Johnson and Ismael Faro. Ibm quantum delivers
120x speedup of quantum workloads with qiskit runtime.
Quantum, 2023.

Robert B. Wexler, Gopalakrishnan Sai Gautam, Ellen B.
Stechel, and Emily A. Carter. Factors governing oxygen
vacancy formation in oxide perovskites. Journal of the
American Chemical Society, 143(33):13212-13227, Aug
2021.

Michele Pavone, Andrew M. Ritzmann, and Emily A.
Carter. Quantum-mechanics-based design principles for
solid oxide fuel cell cathode materials. Energy Environ.
Sci., 4:4933-4937, 2011.

Chao Zheng and Oleg Rubel. Ionization energy as a sta-
bility criterion for halide perovskites. The Journal of
Physical Chemistry C, 121(22):11977-11984, Jun 2017.
Zhirui Hu, Jinyang Li, Zhenyu Pan, Shanglin Zhou, Lei
Yang, Caiwen Ding, Omer Khan, Tong Geng, and Wei-
wen Jiang. On the design of quantum graph convolu-
tional neural network in the nisg-era and beyond. In
2022 IEEE 40th International Conference on Computer
Design (ICCD), pages 290-297, 2022.



