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Chains and arrays of phosphorus donors in silicon have recently been used to demonstrate dopant-based quan-
tum simulators. The dopant disorder present in fabricated devices must be accounted for. Here, we theoretically
study transport through disordered donor-based 3× 3 arrays that model recent experimental results. We employ a
theory that combines the exact diagonalization of an extended Hubbard model of the array with a non-equilibrium
Green’s function formalism to model transport in interacting systems. We show that current flow through the array
and features of measured stability diagrams are highly resilient to disorder. We interpret this as an emergence
of uncomplicated behavior in the multi-electron system dominated by strong correlations, regardless of array
filling, where the current follows the shortest paths between source and drain sites that avoid possible obstacles.
The reference 3 × 3 array has transport properties very similar to three parallel 3-site chains coupled only by
interchain Coulomb interaction, which indicates a challenge in characterizing such devices.

INTRODUCTION

Recently there has been much interest in using semicon-
ductor quantum dot arrays and precisely placed dopants in
Si as sites to carry out analog quantum simulations (AQS)
of extended Hubbard models. Nagaoka ferromagnetism was
demonstrated experimentally for the first time with a 2×2 array
of gated semiconductor quantum dots,1 more than fifty years
after the predictions of Nagaoka.2 The Su-Schrieffer-Heeger
model3 was simulated using a one-dimensional chain of phos-
phorous dopant quantum dots in Si.4 Precise placement of the
dopants has been done with scanning tunneling microscope-
based lithography5 and used to fabricate 3 × 3 dopant arrays
for AQS.6 The 3 × 3 array with 3 rows, each with 3 dopant
sites, connecting the source to the drain is the smallest two-
dimensional array with at least one column of sites not directly
coupled to the source or the drain by tunneling. The study of the
3 × 3 array is the starting point for the simulation of extended
two-dimensional systems with internal sites and edge sites not
directly coupled to the leads.

In their study of 3 × 3 dopant arrays, Wang et al.6 identified
a delocalized-localized transition when the intersite separation
increased and the tunneling between sites decreased. In the
delocalized regime, charge stability diagrams displayed charge
transition boundaries all with the same slope, indicating the
delocalization of the array states into the states of a single large
quantum dot, corresponding to a metallic state in an extended
system. At large site separation, three slopes for the charge
transition lines were seen after the transition to the localized
phase. Each slope corresponded to the current along one of
the three rows of sites between the source and drain, with the
side-gate bias on each row experiencing a different dependence
on the two side gates due to the different lever arms between
each row and each side gate.

In AQS with gate-defined quantum dots, the gates can be
used to tune the quantum dots and the coupling between the
dots. This tunability is an important advantage for gated semi-
conductorAQSs. One-dimensional structures, (i.e.,1×𝑁 chains

of dots) and two-dimensional structures limited to two parallel
chains, (i.e.,2×𝑁 chains) can be fabricated with gated quantum
dots. However, other geometries will be much harder to realize
with gated structures. In particular, two-dimensional structures
with both internal sites and edge sites should be more easily
realized by dopant placement. The 3 × 3 dopant arrays studied
by Wang et al.6 represent the first step in this direction. With
dopant arrays, tunability is achieved by making arrays with
different spacing between sites or with different dopant config-
urations at the sites. Perfect placement of individual dopants
will be needed for the controlled fabrication of complex array
geometries.

Perfect dopant placement may soon be realized.7 However,
disorder due to fluctuations in dopant position or dopant num-
ber at a site still must be accounted for in dopant devices cur-
rently being used for AQS. In this paper, we show theoretically
that current flow through a 3 × 3 dopant array is highly re-
silient to disorder. We observe current flow characterized by
stability and Coulomb-blockade diagrams, which indicates that
electrons just move around local obstructions created by the dis-
order. Consequently, transport measurements can be a useful
probe of AQS even in the presence of disorder.

We use the extended Hubbard model to study dopant arrays.
The extension is needed as the sites are not electrically neutral
and are close enough that the Coulomb and exchange interac-
tions between the sites play a significant role. To calculate the
current, we must deal with an open system coupled to the leads.
For this, we follow the non-equilibrium Green’s functions for-
malism. The system is strongly correlated, i.e., Coulomb in-
teractions are much stronger than hopping, and mean-field ap-
proximations are insufficient. Thus, we resort to constructing
Green’s functions by directly finding many-electron eigenstates.
This approach based on combining exact diagonalization with
non-equilibrium Green’s functions allows us to calculate termi-
nal currents in the arrays and other observables characterizing
the system. Typically, by resorting to Green’s functions, one
loses information on the underlying eigenstates. Our method-
ology lets us preserve this knowledge and back-trace states
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FIG. 1. Simulation of the experimental device. (a) Schematic diagram of the 3 system with source (S), drain (D), and plunger gates (G1, G2)
marked. (b) Stability diagram showing the total source-drain current through the device (color scale) for a fixed bias voltage 𝑉SD = 8 mV as
a function of plunger gate potentials 𝑉G1

and 𝑉G2
. (c) Coulomb blockade diagram showing the total source-drain current through the device

(color scale) as a function of the plunger-gate potential 𝑉G1
= 𝑉G2

and bias voltage 𝑉SD and. Model parameters are taken from Ref. 6 to reflect
the actual experimental device.

responsible for features of interest. This gives us a way to gain
more information about the transport processes than can be
obtained directly from transport measurements. Thus, we can,
e.g., characterize the many-body configurations that contribute
to the current or determine current magnitudes for different
channels. We discuss these effects to better understand trans-
port studies of experimentally realized arrays.6

RESULTS AND DISCUSSION

The device and its model

To keep our study closely connected to experimentally re-
alized AQSs, we take the main system studied in Ref. 6 as a
reference. It consists of a ≈ 10.7-nm-spaced 3× 3 array of few-
dopant sites tunnel coupled to the source and drain gates and
capacitively coupled to two side gates. The last two serve as
plunger gates or enable the application of a transverse electric
field. Together with two other arrays with smaller site spac-
ings, which provide a smaller ratio of Coulomb repulsion to
hopping, 𝑈/𝑡, Wang et al. demonstrated the transition to the
metallic regime. We show the schematic view of the system in
Fig. 1(a).

We model the system with the extended Hubbard model that
accounts for the hopping of electrons between the sites (𝑡),
on-site (𝑈), and long-range (𝑊) Coulomb repulsion of elec-
trons, as well as their attraction to positively charged sites and
nearest-neighbor electron-electron exchange (𝐽). For a gated
system, we additionally evaluate the lever arms between the
leads and each of the sites,6 which gives us site-dependent
chemical potentials for a given configuration of lead poten-
tials. To study transport properties, we employ the powerful
non-equilibrium Green’s functions (NEGF) formalism.8–10 As
the system is strongly correlated, i.e., Coulomb interactions are
much stronger than hopping, and mean-field approximations
are insufficient. For this reason, we construct Green’s functions
by directly finding many-electron eigenstates. Our combination
of exact diagonalization with the NEGF method is thus nonper-
turbative in contrast to the standard NEGF approach. Electron

states in the source and drain leads are described via a proper
self-energy and tunnel coupled to the array. As this coupling
has nonvanishing terms only between states in the array and the
lead, its inclusion is also nonperturbative with the only approx-
imation assuming leads are screened (metallic) and remain in
equilibrium. As a result, we get a treatment that is in principle
exact within the model’s assumptions at the cost of solving
the Hubbard model for all charge-spin sectors of Fock space
at each set of system parameters studied. After including the
coupling to the leads, we can calculate the terminal current in
the system. We give the details of the model and our approach
in the Methods section.

We begin by presenting in Fig. 1 the results we obtained for
the widely spaced 3 × 3 array from Ref. 6. We use the site-
dependent model parameters as assessed by the authors. This
site dependence is due to disorder, as the number of donors and
their arrangement within a site may vary. Later in the paper,
we systematically study systems without and with decomposed
disorder as well.

Fig. 1(b) shows the stability diagram obtained by separately
varying the two plunger-gate potentials at a fixed low source-
drain bias of 𝑉SD = 8 mV. We observe charge transition lines
characterized by nonzero currents in the diagram. The slope
of the lines has approximately three values, which correspond
to the three positions of sites with respect to plunger gates (for
each row of sites). The middle row of sites is roughly equally
distant from both leads, resulting in antidiagonal lines,while the
other two slopes, steeper and less steep than the antidiagonal,
correspond to sites lying closer to one of the leads. As the
actual device has a disorder, we observe little degeneracy and
some deviations from the expected tripartite pattern. We notice
the evident wide separation of the charge stability diagram into
sections below and above half-filling with the Mott gap and the
Coulomb-blockaded diamond-shaped region in the middle.

Notably, currents are generally higher in the high-filling
regime. This observation is surprising at first glance. A weaker
current might be expected above half-filling due to interac-
tions blocking the movement of electrons. We explain the
higher currents above half-filling by realizing that populat-
ing the system with electrons smoothes the potential land-
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FIG. 2. Impact of model parameters on transport properties of the system. (a) Stability diagrams for 𝑉G2 and 𝑉G1 varied in the range of
−750–1000 mV (as shown in the lower right panel). In each row, one of the parameters is varied, while the other parameters are fixed at values
representing an ideal reference device: 𝑡 = 1 meV, 𝑈 = 44 meV, 𝑊 = 5 meV, 𝐽 = 1 meV (framed in each row). (b) Ground state filling (electron
number) of the array shown for the first and last cases of varying 𝑡 and 𝑊 .

scape, partially limiting the influence of disorder. This intu-
ition may be unreliable in a highly correlated system, but it
seems justified when crossing the specific half-filling point.
Experimental devices also manifested this effect.6 Another no-
ticeable difference between the two parts of the diagram is
the presence of "bridges" at line anticrossings corresponding
to tunneling resonances.11,12 These are most evidently visible
around the diagram’s (𝑉G1

= 50 meV, 𝑉G2
= 300 meV), and

(𝑉G1
= 350 meV, 𝑉G2

= 300 meV) points and were also ob-
served for the experimental device and attributed to hybridiza-
tion (due to tunneling) of many-body states with distinct charge
distributions.6 Reproducing these two effects shows that the
model correctly captures the impact of delocalization and cor-
relation in the system.

In panel (c) of Fig. 1, we present the complementary
Coulomb-blockade diagram showing the current in the sys-
tem for various source-drain biases as the potentials of plunger
gates are tied together and swept. These results correspond to
changing bias along the diagonal of the stability diagram, with
more electrons occupying the array with increasing chemical
potential. We observe that each conduction resonance typi-
cally gets widened at a higher bias into an hourglass-shaped
feature. For the current to flow, a resonance must lie energeti-
cally in the bias window, which is widened proportionally to
the applied voltage. The features form two groups, below and
above half-filling, with a pronounced Coulomb blockade dia-
mond in the middle. Here also, e.g., at 𝑉G1,2

= −120 meV and
𝑉G1,2

= 350 meV, we observe additional horizontal enhance-
ments corresponding to tunnel coupling and complementary
to those we noticed in the stability diagram. Finally, we also
see that the summation of currents is not always constructive
when two features overlap. We notice symptoms of partially
destructive interference, e.g., at𝑉G1,2

= −145 meV for negative
biases from 𝑉SD = −14 mV.

Model parameters and the transition to the metallic state

In the following, we first consider a 3 × 3 array without
disorder to establish the response of an idealized, perfectly
ordered array. Then, we systematically study the consequences
of deviations from this idealized reference. We set the array
parameters to be: hopping 𝑡 = 1 meV, on-site repulsion 𝑈 =

44 meV, long-range Coulomb𝑊 = 5 meV,and nearest-neighbor
exchange of 𝐽 = 1 meV. In particular, none of the parameters is
now position-dependent. It should be noted, however, that the
array potential is still not homogeneous because the array is
finite and the Coulomb potential due to attraction to positively
charged sites is largest at the middle site in the array.13

We focus on the idealized array to understand features ob-
served in the realistic array. We vary model parameters inde-
pendently. We show the results in Fig. 2(a), where each row of
stability diagrams corresponds to changing a single parameter,
while the other parameters are kept fixed at values correspond-
ing to the parameters of the ideal, reference array. In each row,
the panel framed in orange is for the ideal reference array. Ad-
ditionally, Fig. 2(b) shows the ground state filling for selected
diagrams corresponding to the lowest and highest studied val-
ues of 𝑡 and 𝑊 .

In the first row of Fig. 2(a), we show the transition to the
metallic (delocalized) regime when hopping 𝑡 increases and
becomes comparable with Coulomb repulsion. As the eigen-
states become more delocalized due to increasing hopping,
we observe a widening of the line anticrossings, and finally,
the three slopes initially present in the diagram merge into
a single antidiagonal slope. This simplification of the charge
stability diagram reflects that a state delocalized over the entire
array is equally distant to both plunger gates, and the device
effectively behaves as a single quantum dot (site). Importantly,
in this regime, the Coulomb-blockade diamonds are almost
completely closed.
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that are shifted with the increasing offset; in the bottom row, thick dashed pale-red lines show positions of lines that vanish due to the offset.

Next, we vary the strength of the long-range Coulomb in-
teraction of electrons in the array. The results are shown in
the second row of panels in Fig. 2. While the largest isolating
diamond-shaped areas correspond to the on-site repulsion, the
long-range interaction introduces additional splittings of the
observed lines. These splittings correspond to lifting the degen-
eracy present at 𝑊 = 0 and resulting from electrons’ freedom
to choose a site as long as it is not already occupied.

Finally, we check the impact of nearest-neighbor exchange
energy 𝐽, an energy penalty for the parallel alignment of nearest-
neighbor spins. We vary 𝐽 in a wide range of values reaching
far beyond both sides of the ferro-antiferromagnetic transition.
While this interaction is essential for the magnetic properties
of the array, the third row of panels in Fig. 2 shows 𝐽 has mini-

mal effect on the probed charge transport properties. The only
noticeable difference 𝐽 introduces is the minor changes in the
splittings caused by long-range Coulomb interaction. Thus, to
quantify 𝐽, critical for quantum-information applications of im-
purity systems,14–16 a more sophisticated experimental method-
ology will be required, like the one used in Ref. 1 for a system
of gate-defined quantum dots. While not visible in the transport
properties, we identify the paramagnetic-ferromagnetic transi-
tion in the reference system at approximately 𝐽 = −0.1 meV.
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Impact of disorder

Although the technology of positioning phosphorus impuri-
ties in silicon has achieved near atom-scale precision, a certain
amount of disorder is still inevitable. Disorder due to small in-
accuracies in the positions of the array sites can translate into
large hopping and exchange integral fluctuations.17–23 These
fluctuations were due to oscillations in the dependence on
the donor separation resulting from valley interference.24–26

However, this problem concerns systems in which single im-
purities comprise the sites. In fact, systems of this kind are
not yet typically manufactured. Creating sites containing sev-
eral donors is more feasible and advantageous for suppressing
those oscillations.27 In this situation, minor inaccuracies in the
positions of sites become less relevant, and the randomness of
on-site energy related to the dispersion in the number of donors
forming a site is the dominant source of disorder.

Calculations of the electron binding energy in few-dopant
quantum dots12 showed that the on-site energy for a singly,
positively-charged site depends linearly on the number of phos-
phorus atoms forming the site, with an increase in binding of
approximately 20 meV per atom. Based on the characterization
of the actual device in Ref. 6, we infer that a good description
of this disorder is to adopt a discrete tri-modal distribution
of on-site energies: the base one and ±20 meV, i.e., the set
{−20, 0, 20} meV, each with equal probability. We present cor-
responding results showing six realizations of such a disorder
in Fig. 3. While individual lines are randomly shifted and cur-
rent values are generally lower, the pattern is largely retained.
We can still recognize the contributions (slopes) associated
with each row in the array. Noticeably, for some realizations,
all lines with a given slope are stronger than the lines with other
slopes, indicating a common source affecting the entire conduc-
tion "channel". This interpretation will be further supported by
results presented later.

To understand the observed effects of disorder more easily,
we decompose the disorder into individual contributions. To
do this, we return to the reference array and check the effects
of changing the on-site energy at only one site at a time. The
corresponding results are presented in Fig. 4, where each line

shows a change in the diagram due to the gradual energy
shifting on the indicated site. The first two rows concern the
middle sites not connected to the leads. Although the electrons
in the array are strongly correlated, the effect of single-site
disorder is surprisingly simple. A single pair of lines (related to
single and double site occupation) with a slope corresponding
to the given site’s row moves as the site energy changes. After it
is pushed outside the diagram, corresponding to the exclusion
of a given site from transport, the diagram is qualitatively intact,
just missing a single pair of lines.

The situation is different when the single-site disorder con-
cerns a site coupled to one of the leads (see the bottom row in
Fig. 4). In such a case, all lines with a given slope decay, as
exemplified by the disappearance of antidiagonal lines in the
plotted case. This result points to the crucial role of terminal
sites that connect to the source and drain and suggests that
groups of lines with a given slope are, in fact, associated with
spatial conduction channels determined by which terminal sites
play an essential role.

Current bypassing obstacles - a single-site bottleneck

To verify this observation, we consider a transport obstacle
that arises when the on-site energy of two of the three middle
sites is detuned from the other sites. This modification creates
a constriction forcing the current to flow through a single site in
the middle column. In the regime of weak hopping, one might
expect here results similar to those for a single quantum dot,
i.e., much simpler diagrams.28–30 However, this is not the case.
In Fig. 5, we present the results for two non-equivalent ways to
create a narrow constriction by detuning two sites in the middle
column. The results are simple and additive in terms of the
coexistence of single-site perturbations: we observe two pairs
of lines being pushed outside the diagram, each independently
corresponding to one of the detuned sites. The effective seven-
site systems created in the extreme cases of high detuning still
show diagrams qualitatively not much different from that for
the reference array. All three slopes are still present in the
diagram, suggesting that the conduction channels associated
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with the top and bottom rows are still active despite the current
being forced through the single site in the middle column. Thus,
we have another observation highlighting the crucial role of
terminal sites with the terminal sites defining the slopes.

Impact of disabled hoppings

Another elementary disturbance that we can introduce into
the system is disabling the hopping between a single pair of
sites. We can do this in four non-equivalent ways for hoppings
along the device, i.e., in the source-drain direction, and the
corresponding results are shown in the first row of panels in
Fig. 6. Such a disturbance completely switches off the con-
duction channel associated with a given row of sites, which
is observable by the disappearance of all lines with a given
slope in the diagram. This outcome is understandable as each
of these disabled hoppings involves a terminal site connecting
the array to a lead. We have already seen that the terminal site
is crucial for a given channel.

The results look strikingly different when we disable trans-
verse hoppings. The first three panels in the second row of Fig. 6
show that the changes due to removing transverse hopping are
difficult to notice when compared to the reference array. More-
over, when all transverse hoppings are removed, as done for the
last panel in the second row, the charge stability diagram is still
very similar to the diagram for the fully connected, reference
array. The only difference from the fully connected system is
the closing of small anti-crossings in places magnified in the
insets. In the last row of Fig. 6, we compare Coulomb-blockade
diagrams for the fully connected reference system and the one

with the complete absence of transverse hoppings. Again, the
results are difficult to distinguish from each other.

Thus, the transport properties of the studied 3 × 3 array are
strikingly similar to those of three 1 × 3 chains lying close
enough for the electrons in neighboring chains to interact via
the long-range Coulomb repulsion. This similarity suggests
that transport is via conduction channels connecting the oppo-
site lead contact points by the shortest available paths. In such a
situation, the electrons do not exploit the transverse tunneling.

CONCLUSIONS

In conclusion, we have theoretically considered the transport
properties of gated systems of 3 × 3 phosphorus dopant arrays
in silicon, which are now being used as analog quantum simu-
lators and are promising for quantum information processing.
Electrons in such a system are often strongly correlated be-
cause the Coulomb interaction can vastly exceed the hopping
energy. Consequently, mean-field theories have to fail. For this
reason, we have developed a methodology based on combin-
ing the exact diagonalization of the extended Hubbard model
with the non-equilibrium Green’s functions formalism. This
methodology is a powerful tool for, e.g., transport calculations,
previously typically done at a mean-field level. We have simu-
lated actual devices recently demonstrated experimentally and
presented the results for the stability and Coulomb blockade
diagrams that are measured in experiments. We considered the
ideal 3×3 array with no disorder first. This allowed us to assess
the impact of individual system parameters on the current flow.
The simulated devices exhibited the same insulator-to-metal
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transition with increasing hopping that has been observed ex-
perimentally. Variations in the long-range Coulomb interaction
and the exchange had little impact on the transport.

Most importantly, we found that the transport shows sig-
nificant resilience to disorder in the on-site energy with the
charge-stability and Coulomb-blockade diagrams that charac-
terize transport displaying qualitatively the same structure as
seen in transport through a perfect array. By analyzing sepa-
rately the effect of disorder from on-site energy fluctuations at
individual sites, from single-site constrictions, and from van-
ishing hoppings, we found that the nature of the current flow is
surprisingly simple. Conduction channels are defined by the ter-
minal sites that connect to the source and drain, even when the
electrons must pass around obstructions. The role of a terminal
site is crucial, as its disorder may disable the whole channel.
This simple picture of the transport emerges even when the
electrons are strongly correlated. Significantly, this result does
not depend on the array filling with electrons. Moreover, trans-
port through the 3 × 3 array is very similar to the transport
through a system with three closely located, Coulomb-coupled
three-site chains with no interchain hopping.

Simulating a realistic device, we also noticed that work-
ing above half-filling provided higher currents because low-
energy traps in the array potential got filled up and screened at
higher electron filling. Such an effect has also been observed
experimentally.6 This observation may provide an additional
method of optimizing the performance of future devices by
working with the upper Hubbard band states.

METHODS

We model the system using the extended Hubbard model
defined by the Hamiltonian

𝐻S = −
∑︁
⟨𝑖, 𝑗 ⟩

∑︁
𝜎

𝑡𝑖 𝑗 𝑎
†
𝑖𝜎
𝑎𝑗 𝜎 +

∑︁
𝑖

𝑈𝑖 𝑛𝑖↑𝑛𝑖↓

−
∑︁
𝑖

(
𝜀𝑖 − 𝜇𝑖

)
𝑛𝑖𝜎 +𝑊

∑︁
𝑖, 𝑗

∑︁
𝜎,𝜎′

𝑛𝑖𝜎𝑛𝑗 𝜎′��𝒓𝑖 − 𝒓𝑗
��

+ 𝐽
∑︁
⟨𝑖, 𝑗 ⟩

∑︁
𝜎

𝑛𝑖𝜎𝑛𝑗 𝜎 − 𝐶𝑊
∑︁
𝑖, 𝑗

∑︁
𝜎

𝑛𝑖𝜎��𝒓𝑖 − 𝒓𝑗
�� , (1)

where 𝑎
†
𝑖𝜎

(𝑎𝑖𝜎) creates (annihilates) an electron with spin 𝜎

at the site 𝑖 of the array positioned at 𝒓𝑖 , 𝑛𝑖𝜎 = 𝑎
†
𝑖𝜎
𝑎𝑖𝜎 is the

corresponding particle number, ⟨𝑖, 𝑗⟩ denotes nearest-neighbor
pairs of sites, 𝑡𝑖 𝑗 is the hopping for a given pair of sites, 𝑈𝑖 is
the on-site Coulomb repulsion energy, 𝜀𝑖 represents the single-
particle electron energy at site 𝑖, and 𝜇𝑖 is the local chemical
potential. Moreover, in the extended part of the Hamiltonian,
𝑊 denotes the magnitude of the long-range electron-electron
or electron-ion Coulomb interaction, 𝐽 is the nearest-neighbor
exchange interaction, and 𝐶 = 1 is the on-site charge of the
positively charged sites.

For the simulation of the experimental device, we use site-
dependent parameters from Ref. 6. In the rest of the study where
an ideal perfect array is the starting point, we take 𝑡𝑖 𝑗 = 𝑡 and
𝑈𝑖 = 𝑈. The lever arms needed to calculate 𝜇𝑖 based on applied

gate potentials are also calculated as in Ref. 6 with the disorder
removed for the ideal, perfect array.

We deal with a system where Coulomb repulsion is large
(𝑈/𝑡 ∼ 50 for the ideal device we model). For this reason, we
use exact diagonalization and take the resultant many-electron
eigenstates as the starting point forGreen’s functions formalism
to calculate the current in the system. Thus, we construct the
matrix elements of the "bare" retarded Green’s function 𝑔R

(which in our case already includes the impact of interactions)
using the Lehmann (spectral) representation31

[
𝑔R (𝐸)

]
𝑖 𝑗
=

1
𝑍

∑︁
𝑚,𝑛

(
𝑝𝑛 + 𝑝𝑚

) 〈
𝑛
��𝑎𝑖 ��𝑚〉〈

𝑚
��𝑎†

𝑗

��𝑛〉
𝐸 −

(
𝐸𝑚 − 𝐸𝑛

)
+ 𝑖0+

, (2)

where we have omitted spin indices, 𝑛 and 𝑚 label the many-
electron eigenstates of the system and run through all Fock-
space sectors, 𝑝𝑛 = exp(−𝛽𝐸𝑛) is the occupation of state
𝑛, 𝛽 = 1/𝑘B𝑇 , 𝑍 =

∑
𝑛 𝑝𝑛 is the partition function, and 𝐸

is the energy at which the function is evaluated. The sys-
tem is assumed to be in a stationary state and we work
in the Fourier domain with respect to the time difference,
𝑔(𝐸) = ℏ−1

∫
d(𝑡 − 𝑡′)𝑔(𝑡 − 𝑡′) exp(−𝑖𝐸 (𝑡 − 𝑡′)/ℏ). In addition

to retarded functions, advanced Green’s functions also appear,
and the general relationship between them is 𝑂A = (𝑂R)†. We
use a similar spectral representation to calculate the "bare"
correlation functions 𝑔< (𝐸) and 𝑔> (𝐸).31

To attach the leads and thus study an open system, we use
a standard embedding self-energy assuming semi-infinite one-
dimensional leads32 and we include it via the Dyson equation,31

which yields the full retarded function 𝐺R (𝐸). Next, we
apply the Keldysh quantum kinetic equation 𝐺</> (𝐸) =

𝐺R (𝐸) 𝛴</> (𝐸)𝐺A (𝐸), to obtain full correlation functions
𝐺</> (𝐸).10 Here, 𝛴</> (𝐸) = ∑

𝑙 𝛴
</>
𝑙

(𝐸) +𝛴</>
int (𝐸), where

the first term contains standard lesser/greater self energies due
to leads (index 𝑙 runs over the source and drain) calculated
assuming they stay in thermal equilibrium,32 while the second
term accounts for electron scattering in the system and can be
calculated based on "bare" correlation functions 𝑔</> (𝐸),

𝛴
</>
int (𝐸) =

[
𝐺R (𝐸)

]−1 [
I − 𝑔R (𝐸)𝛴R (𝐸)

]−1
𝑔</> (𝐸)

×
[
I − 𝛴A (𝐸)𝑔A (𝐸)

]−1 [
𝐺A (𝐸)

]−1
. (3)

To fully include the non-equilibrium distribution of occupa-
tions, we should do a self-consistent loop in which one step
consists of recalculating 𝐺R/A (𝐸) by definition based on the
difference of 𝐺> (𝐸) and 𝐺< (𝐸) (spectral function) and then
applying Keldysh equation again. This turns out to be numeri-
cally challenging and will be addressed in a separate work. In
this study, we have verified that for the studied low-bias condi-
tions a single-step solution is sufficiently close to the converged
one by comparing the anti-hermitian parts of 𝐺R (𝐸) before
and after the step.

Finally, we follow Ref. 33 to calculate the terminal current

⟨ 𝑗 (𝐸)⟩ = 𝑒 Tr
[
𝛴<

L (𝐸)𝐺> (𝐸) − 𝛴>
L (𝐸)𝐺< (𝐸)

]
, (4)

where subscript L denotes now either of the leads (currents on
both terminals are identical). Integration over energy yields the
current through the device.
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