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THE HARNACK INEQUALITY FAILS FOR NONLOCAL KINETIC EQUATIONS

MORITZ KASSMANN AND MARVIN WEIDNER

Abstract. We prove that the Harnack inequality fails for nonlocal kinetic equations. Such equations
arise as linearized models for the Boltzmann equation without cutoff and are of hypoelliptic type. We
provide a counterexample for the simplest equation in this theory, the fractional Kolmogorov equation.
Our result reflects a purely nonlocal phenomenon since the Harnack inequality holds true for local
kinetic equations like the Kolmogorov equation.

1. Introduction

The goal of this article is to show that the Harnack inequality fails for the following nonlocal kinetic
equation

∂tf + v · ∇xf + (−∆v)
sf = 0 in Q ⊂ R× R

d × R
d (1.1)

and its time-independent version

v · ∇xf + (−∆v)
sf = 0 in B ⊂ R

d × R
d, (1.2)

where s ∈ (0, 1), d ∈ N, and

(−∆v)
sf(x, v) = cd,s p.v.

∫

Rd

(

f(x, v)− f(x,w)
)

|v − w|−d−2s dw

denotes the fractional Laplacian acting only on the v-variable. Here cd,s > 0 denotes a normalization
constant. The equation (1.2) is the kinetic fractional Kolmogorov equation, which arises as a linearized
model for the Boltzmann equation without Grad’s cutoff assumption.

As we will explain below, our result reflects a purely kinetic nonlocal phenomenon, since the Harnack
inequality holds true for kinetic local equations (i.e., when s = 1 in (1.2)) [LP94, Mou18, GIMV19,
GM22], and also for non-degenerate nonlocal equations [BL02, CK03, DKP14, Coz17, KW23].

Theorem 1.1. Let s ∈ (0, 1). There exist a constant c0 > 0 and solutions fε : R
d × R

d → [0, 1] to

v · ∇xfε(x, v) + (−∆v)
sfε(x, v) = 0 for (x, v) ∈ B := B1(0)×B1(0),

such that for ζ = (12ed, 0) ∈ R
d × R

d and every ε ∈ (0, 14) it holds

fε(ζ) ≤ c0 ε
d(1+2s)−2sfε(0).

In particular, the ratio fε(0)/fε(ζ) → ∞ as ε→ 0.
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Thus, Theorem 1.1 implies the failure of the Harnack inequality for (1.2), and in particular for (1.1),
because fε is independent of t.

In the following, we first comment on the relation between Theorem 1.1 and the recently developed
theories for nonlocal hypoelliptic and kinetic equations. Second, we consider its relation to existing
results on Harnack inequalities for non-degenerate nonlocal problems. Finally, we explain the strategy
of the proof and the definition of the functions fε.

1.1. Background on nonlocal kinetic equations. The fractional Kolmogorov equation

∂tf + v · ∇xf + (−∆v)
sf = 0 in Q

can be regarded as a linearized model for the Boltzmann equation without cutoff. The regularity
program for the Boltzmann equation subject to macroscopic bounds has recently been established
by Imbert, Silvestre, and Mouhot in a series of works [Sil16, IMS20, IS20b, IS21, IS22] (see also the
survey [IS20a]). A central part of this theory is the development of the regularity theory for solutions
to the following more general class of nonlocal kinetic equations

∂tf + v · ∇xf + Lvf = 0 in Q, (1.3)

where Q is a kinetic cylinder and Lv denotes an integro-differential operator, acting only on v ∈ R
d,

defined as

Lvf(v) = p.v.

∫

Rd

(

f(v)− f(w)
)

Kt,x(v,w) dw,

where, for any t, x, the kernel Kt,x : Rd × R
d → [0,∞] satisfies suitable ellipticity and boundedness

assumptions. One key step in their program (see [IS20b]) consists in proving a weak Harnack inequality

for nonnegative (super)solutions to (1.3) without any regularity assumptions on the kernel, i.e., for
some ε0 ∈ (0, 1), C > 0 independent of f , and suitable kinetic cylinders Q⊖,Q⊕ the following estimate

(
∫

Q⊖

f ε0
)1/ε0

≤ C inf
Q⊕

f. (1.4)

The weak Harnack inequality is used to deduce an a priori Hölder regularity estimate for solutions to
(1.3) and also for the Boltzmann equation. This result can be regarded as a De Giorgi-Nash-Moser
type theorem for nonlocal kinetic equations (see also [Sto19]).

The question whether even the strong Harnack inequality holds true for (1.3), i.e., whether there exists
C > 0, depending only on d, s, and the ellipticity constants of Kt,x, such that

sup
Q⊖

f ≤ C inf
Q⊕

f (1.5)

has been an open problem after [Sil16, IMS20, IS20b, IS21, IS22]. Our main result Theorem 1.1
provides a negative answer to this question, already in case Lv = (−∆v)

s and for any dimension
d ∈ N. It even shows that the Harnack inequality fails for solutions that are stationary in t. Moreover,
due to (1.4), Theorem 1.1 implies that nonnegative weak solutions to (1.3) do not satisfy a local
boundedness estimate only in terms of local quantities

sup
Q⊖

f ≤ C

(
∫

2Q⊖

f2
)1/2

. (1.6)

Moreover, a close inspection of our counterexample (1.9) shows that (1.6) remains false if a tail term

(see [KW23]) is added to the right-hand side in (1.6), as long as the tail is Lp in x for some p < d(1+2s)
2s .

The failure of both, the Harnack inequality (1.5), and the local boundedness (1.6) of weak solutions
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to (1.3) (and to (1.2)), is in stark contrast to the theory of nonlocal elliptic and parabolic equations
(see [DKP14, DKP16, Coz17], and [KW23]).

Let us comment on the recent articles [APP24a, APP24b] and [Loh24a], which attempt to prove a
strong Harnack inequality for nonlocal kinetic equations (1.3). Their main results [APP24a, Theorem
1.3], [APP24b, Theorem 1.3], [Loh24a, Theorem 1.1] contradict Theorem 1.1. We mention mistakes
in the corresponding proofs: The parameter λ > 1 in [APP24a, (7.1)] might depend on f, ρ,R, and
therefore the estimate [APP24a, (7.3)] does not follow. The conclusion based on [APP24b, (7.9)] is

incorrect. In [Loh24a, Proposition 3.1] the test function f
−(1−ζ)
l,ε ψl is not admissible since it is not

compactly supported in QR.

[Loh24b] establishes a nonlinear version of the Harnack inequality (1.5) for weak solutions to (1.3).
This result is interesting in itself and does not contradict Theorem 1.1. Our counterexample implies
that the exponent β ∈ (0, 1) in [Loh24b, Theorem 1.3] is at most 2s

d(1+2s) .

From the perspective of local kinetic equations, the failure of the Harnack inequality for nonlocal
equations such as (1.1) and (1.2) comes as a surprise. Indeed, in [LP94], [KP16], [AT19], [AEP19],
[PP04], Harnack inequalities have been established for different classes of local hypoelliptic equations.
Moreover, in [Mou18, GIMV19, GM22] the authors prove Harnack inequalities for local kinetic equa-
tions driven by a second order operator in divergence form acting on v, using approaches via Moser
and De Giorgi iteration, respectively. Hence, Theorem 1.1 describes a purely nonlocal effect, on which
we will elaborate in the discussion below.

Note that in the past years there has been an increasing interest in the investigation of nonlocal
hypoelliptic operators of Hörmander type

Kf := v · ∇xf + Lvf,

and there are many parallels between the local and nonlocal theories of hypoellipticity. For instance,
we refer to [AIN24a], [AIN24b] for the construction of fundamental solutions to the corresponding
nonlocal kinetic Cauchy problems, to [CZ18], [HMP19], [NZ21], [Nie22], [NZ22] for nonlocal kinetic
Lp maximal regularity results, to [Loh23], [IS21], [HWZ20] for nonlocal kinetic Schauder theory, and
to [HM16], [CZ18], [HWZ20], [HPZ21] for approaches to nonlocal kinetic and hypoelliptic equations
via degenerate stochastic differential equations driven by Lévy processes.

1.2. Background on Harnack inequalities for nonlocal operators. The development of the
De Giorgi-Nash-Moser theory for nonlocal equations, and in particular the investigation of Harnack
inequalities has become an active field of research in the past 20 years. In the simplest case

(−∆)sf = 0 in B1, (1.7)

the Harnack inequality for globally nonnegative solutions follows from classical works, including
[Rie38], [Lan72]. It was shown in [Kas07] that the Harnack inequality fails for (1.7) unless one
assumes that u ≥ 0 in R

d. If solutions are nonnegative only in B1, one can still establish a nonlocal
version of the Harnack inequality including a so-called tail term, which captures the effect caused by
the nonlocality of the operator (see [Kas11, DKP16, DKP14, Coz17]). Since Theorem 1.1 describes
the failure of the Harnack inequality for globally nonnegative solutions, we will only focus on this case
in the sequel.

A challenging topic is the investigation of Harnack inequalities for elliptic and parabolic equations

Lf = 0 in B1, ∂tf + Lf = 0 in Q1 (1.8)
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driven by more general nonlocal operators of the form

Lf(v) = p.v.

∫

Rd

(

f(v)− f(w)
)

µ(v, dw),

where (µ(v, ·))v∈Rd is a family of measures on R
d, satisfying suitable assumptions. We refer to [BL02],

[CK03], [BK05], [CS09], [DKP14], [Coz17], [Str19], [CKW23] and to [CD16], [CKW19], [CKW20],
[KW22] for proofs of Harnack inequalities under fairly general assumptions on µ. Moreover, only
recently, Harnack inequalities have been established for a general class of parabolic nonlocal equations
in [KW23], using an entirely analytic approach.

It is important to point out that the Harnack inequality holds true in the aforementioned works only
under suitable assumptions on µ that go beyond classical ellipticity conditions. In fact, there exist
many classes of uniformly elliptic examples µ for which the Harnack inequality fails (see [BS05], [BK05],
[BC10], [MM24], [Kit23]). Most of these counterexamples have in common that µ exhibits long range

oscillations, namely that the value of µ(v,A) can vary drastically for a given set A ⊂ R
d \B2, even if

v ∈ B1 only changes marginally. A simple example is given by

µaxes(v, dw) :=

d
∑

i=1

|vi − wi|
−1−2s dwi

d
∏

j 6=i

δ{vj}( dwj).

The measure µaxes(v, dw) charges only those sets that intersect the coordinate axes centered at v,
which leads to long range oscillations, as described before. As a consequence, a solution to (1.8) might
oscillate around a point v ∈ B1, depending on whether µaxes(v, dw) interacts with certain portions of
the exterior of the solution domain for suitable exterior data.

As we will see in the next section, the main observation in the proof of Theorem 1.1 is that, although
(−∆v)

s is a well-behaved, non-degenerate diffusion operator in v, the combination with the drift term
v ·∇x makes the resulting operator K = v ·∇x+(−∆v)

s sensitive to changes of the exterior data when
the x-variable is varied. This anisotropic behavior leads to an effect that is very similar to the one
present for µaxes, and becomes most apparent in our proof of Theorem 1.1 through (2.7).

Our result shows that the aforementioned anisotropy of K leads to a failure of the Harnack inequality.
This phenomenon is quite remarkable since the degeneracy of K is no obstruction to C∞ regularity

of bounded solutions to the fractional Kolmogorov equation (1.1) (see [IS20b, IS21, IS22]). In fact,
velocity averaging lemmas are available for K (see [IS20b], [Loh23], [NZ21]) and lead to a regularity
transfer from the v-variable to the x-variable in complete analogy to the situation for local operators
falling within the realm of Hörmander’s hypoellipticity theory.

Let us close the discussion with a remark on why the new techniques for nonlocal parabolic equations
developed in [KW23] do not apply to nonlocal kinetic equations. A main idea in [KW23] was to
estimate the parabolic tail (which is L1 in the t-variable) by local quantities and to combine this
result with a local boundedness estimate involving the L1 tail. Note that one cannot expect to bound
the Lp tail for p > 1 by local quantities, since weak solutions a priori do not need to have finite Lp

tails. On the other hand, the local boundedness estimate involving the L1 tail is a borderline result,
since the tail can be considered as a source term belonging to L1,∞

t,x , which is critical with respect to
parabolic scaling. For kinetic equations, due to the same reason, there is no hope to estimate any other
tail than the L1,1

t,x tail from above by a local quantity. However, a local boundedness estimate involving

the L1,1
t,x tail fails, since such tails would correspond to source terms in L1,1,∞

t,x,v , which is supercritical

with respect to kinetic scaling (see also the discussion after (1.6)). We refer to [Sto19] for an extension
of the results in [IS20b] including unbounded source terms.
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1.3. Strategy of proof. Previous proofs of the failure of the Harnack inequality for non-degenerate
nonlocal equations (1.8) rely on purely probabilistic arguments (see [BS05], [BC10], [MM24]), involving
exit- and hitting-time estimates for the corresponding Markov jump processes. In contrast to that, our
proof of Theorem 1.1 is of analytic nature and uses only basic estimates of the fundamental solution,
scaling properties, and the weak maximum principle (see Section 2).

In the sequel, let us define the functions fε and sketch the main arguments of our proof of Theorem 1.1.
We define the following subsets of Rd × R

d for ε ∈ (0, 1)

B = B1(0) ×B1(0), Gε = Bε1+2s(0)×B1(0), Eε = Bε1+2s(0) ×B1(3ed)

and let fε be the solution to
{

v · ∇xfε + (−∆v)
sfε = 0 in B,
fε = 1Eε in (Rd × R

d) \ B.
(1.9)

The proof of Theorem 1.1 relies on the following two lemmas, whose proofs are given in Section 3 and
Section 4, respectively.

Lemma 1.2. There exists c1 > 0 such that for any ε ∈ (0, 1):

fε(0) ≥ c1ε
2s.

Lemma 1.3. Let ζ := (12ed, 0) ∈ R
d × R

d. There exists c2 > 0 such that for any ε ∈ (0, 14):

fε(ζ) ≤ c2ε
d(1+2s).

Clearly, Lemma 1.2 and Lemma 1.3 immediately imply our main result Theorem 1.1.

Proof of Theorem 1.1. By Lemma 1.2 and Lemma 1.3, we have

fε(ζ) ≤ c2ε
d(1+2s) ≤ c2c

−1
1 εd(1+2s)−2sfε(0).

Thus, we conclude the proof by setting c0 := c2c
−1
1 . �

1.4. Outline. This article is structured as follows. In Section 2, we collect several auxiliary results,
introduce the fundamental solution to the fractional Kolmogorov equation and derive a helpful identity
for fε in (2.7). Then, in Section 3 and Section 4 we establish Lemma 1.2 and Lemma 1.3, respectively.

Acknowledgments. We thank Florian Grube for helpful comments on the manuscript. Moreover,
we are grateful to Florian Grube and Tuhin Ghosh for sharing their insights regarding (2.2).

2. Preliminaries

Let us collect several key properties that will be important for our approach.

Our proof of Theorem 1.1 makes use of the fundamental solution (t, (x, v), (y,w)) 7→ pt(x, v; y,w) to
the fractional Kolmogorov equation (1.1) in (0,∞) × R

d × R
d, i.e., for any g ∈ L2(Rd × R

d) it holds
that f : Rd ×R

d → R given by

f(x, v) =

∫ ∞

0

∫

Rd

∫

Rd

pt(x, v; y,w)g(y,w) dy dw dt

is the solution to

v · ∇xf + (−∆v)
sf = g in R

d × R
d.
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The fundamental solution is smooth, nonnegative, and it satisfies the relation

pt(x, v; y,w) = Pt(x− y − tw, v − w),

where the function (t, x, v) 7→ Pt(x, v) satisfies the following scaling property for any ε > 0

Pt/ε2s(x, v) = εd(2+2s)Pt(ε
1+2sx, εv), (2.1)

and Pt is defined as follows, via the Fourier transform:

F [Pt](η, ξ) = exp

(

−

∫ t

0
|ξ + τη|2s dτ

)

.

We refer to [IS20b, Section 2.3, 2.4] as a reference to all of the aforementioned properties. Moreover,
we have the following transformation invariance Pt(x, v) = Pt(tv−x, v) = Pt(x−tv,−v), which follows
immediately from the definition.

Also in our work, the asymptotic behavior of the fundamental solution plays an important role. We
require the following two elementary properties of Pt(x, v).

Lemma 2.1. The function Pt(x, v) satisfies for some constant c > 0
∫

Rd

Pt(x,w) dw ≤ ct−d− d
2s

(

1 + t−1− 1

2s |x|
)−d−2s

∀t > 0, ∀x ∈ R
d.

Proof. We observe that for any x ∈ R
d

∫

Rd

P1(x,w) dw ≤ c(1 + |x|)−d−2s. (2.2)

This property follows immediately from the computation
∫

Rd

P1(x,w) dw = F−1
η

[
∫

Rd

F−1
ξ

[

e−
∫
1

0
|ξ+τη|2s dτ

]

(w) dw

]

(x)

= F−1
η

[

e−(1+2s)−1|η|2s
]

(x) = (1 + 2s)
d
2sQ1

(

(1 + 2s)
1

2sx
)

,

where we denote Q1(x) := F−1
η

[

e−|η|2s
]

(x). Note that Qt(x) := t−
d
2sQ1(t

− 1

2sx) is the fractional

heat kernel, i.e., the fundamental solution to ∂tQt + (−∆)sQt = 0 in (0,∞) × R
d, which satisfies

Q1(x) ≤ c(1 + |x|)−d−2s. Hence, we deduce (2.2). Then, by scaling (2.1) for any x ∈ R
d

∫

Rd

Pt(x,w) dw =

∫

Rd

t−d− d
sP1(t

−1− 1

2sx, t−
1

2sw) dw = t−d− d
2s

∫

Rd

P1(t
−1− 1

2sx,w) dw

≤ ct−d− d
2s (1 + t−1− 1

2s |x|)−d−2s,

as desired. �

Next, given any bounded, open set Ω ⊂ R
d×R

d, we introduce the fundamental solution (t, (x, v), (y,w)) 7→
pΩt (x, v; y,w) to the Dirichlet problem associated to (1.1) in Ω, for which it holds that for any g ∈ L2(Ω)
the function

f(x, v) =

∫ ∞

0

∫∫

Ω
pΩt (x, v; y,w)g(y,w) dy dw dt

is the solution to
{

v · ∇xf + (−∆v)
sf = g in Ω,
f = 0 in (Rd ×R

d) \ Ω.
(2.3)
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Establishing the existence and uniqueness of the fundamental solution pΩt follows by standard argu-
ments. It can be achieved, for instance, by studying the well-posedness of the fractional Kolmogorov
equations (1.1), but also via the theory of stochastic processes, where pΩt is the transition density of

the Markov process Zt = (x−
∫ t
0 Xs ds, v+Xt) in R

d×R
d (which is generated by K = v ·∇x+(−∆v)

s),

killed upon exiting Ω, where Xt denotes the rotationally symmetric 2s-stable process in R
d (see for

instance [CZ18]).

Note that for any two sets Ω ⊂ Ω′ ⊂ R
d ×R

d and A ⊂ R
d × R

d, we have

0 ≤

∫∫

A
pΩt (x, v; y,w) dy dw ≤

∫∫

A
pΩ

′

t (x, v; y,w) dy dw ∀t > 0, x, v ∈ R
d. (2.4)

This relation remains true for Ω′ = R
d × R

d, in which case we set pR
d×Rd

t := pt. To see this, observe
that the two functions in (2.4) solve the fractional Kolmogorov equation ∂tf + v · ∇xf + (−∆)sf =
0 in (0,∞) × Ω and in (0,∞) × Ω′, respectively, with f ≡ 0 in (0,∞) × (Rd × R

d) \ Ω, and in
(0,∞)× (Rd×R

d)\Ω′, respectively, and initial data f(0) = 1A. Then, (2.4) follows immediately from
the weak maximum principle (see [IS20b, Lemma A.12]).

Note that in the same way as for pt, we have a scaling property for pΩt . Namely, let us define
pΩt (x, v) := pΩt (0, 0;x, v) ≥ 0. Then, it holds (see [IS20b, Section 2.3])

pB
ε

t/ε2s(x, v) = εd(2+2s)pBt (ε
1+2sx, εv), where Bε := Bε−1−2s ×Bε−1 . (2.5)

We can use the previous insights to derive a formula for fε, which will be of fundamental importance
to us in the proofs of Lemma 1.2 and Lemma 1.3. Let us define

gε(x, v) := −(−∆v)
s
1Eε(x, v) = cd,s1B

ε1+2s (0)(x)

∫

B1(3ed)
|v −w|−d−2s dw, (x, v) ∈ B,

and deduce that for some 0 < C1 ≤ C2 <∞ it holds

C11Gε ≤ gε ≤ C21Gε in B. (2.6)

Moreover, it holds by construction for hε := fε − 1Eε :
{

v · ∇xhε + (−∆v)
shε = gε in B,
hε = 0 in (Rd × R

d) \ B.

Now, since we can represent hε with the help of the fundamental solution pBt (see (2.3)), and using
also that fε ≡ hε in B, and (2.6), we have

fε(x, v) =

∫ ∞

0

∫∫

Gε

pBt (x, v; y,w)gε(y,w) dy dw dt ∀(x, v) ∈ B. (2.7)

Here, the key observation is that the integration in y,w in (2.7) takes place only over the set Gε.

3. Proof of Lemma 1.2

The goal of this section is to prove Lemma 1.2. It relies mainly on (2.7) and a scaling argument.

Proof of Lemma 1.2. First, we deduce from (2.7), (2.6), and the nonnegativity of pBt

fε(0) =

∫ ∞

0

∫∫

Gε

pBt (y,w)gε(y,w) dy dw dt ≥ C1

∫ ∞

0

∫

B
ε1+2s

∫

Bε

pBt (y,w) dw dy dt.



8 MORITZ KASSMANN AND MARVIN WEIDNER

Recall that Bε := Bε−1−2s ×Bε−1 . Then, we deduce by scaling (see (2.5))
∫ ∞

0

∫

B
ε1+2s

∫

Bε

pBt (y,w) dw dy dt

= εd(2+2s)

∫ ∞

0

∫∫

B
pBt (ε

1+2sy, εw) dw dy dt =

∫ ∞

0

∫∫

B
pB

ε

t/ε2s(y,w) dw dy dt

= ε2s
∫ ∞

0

∫∫

B
pB

ε

t (y,w) dw dy dt ≥ ε2s
∫ ∞

0

∫∫

B
pBt (y,w) dw dy dt,

where we used in the last step that, since B ⊂ Bε, by (2.4) it holds
∫∫

B
pB

ε

t (y,w) dw dy ≥

∫∫

B
pBt (y,w) dw dy ∀t > 0.

Finally, we observe
∫ ∞

0

∫∫

B
pBt (y,w) dw dy dt > 0,

which is immediate. �

4. Proof of Lemma 1.3

The goal of this section is to prove Lemma 1.3. Its proof relies mainly on (2.7) and Lemma 2.1.

Proof of Lemma 1.3. First, we observe that by (2.7), (2.6), and (2.4), as well as the Galilean invariance
pt(ζ; y,w) = Pt(

1
2ed − y − tw,−w) = Pt(

1
2ed − y,w):

fε(ζ) ≤ C2

∫ ∞

0

∫∫

Gε

pt(ζ; y,w) dy dw dt = C2

∫ ∞

0

∫

B
ε1+2s

∫

B1

Pt

(

1

2
ed − y,w

)

dw dy dt.

Then, by the integrated on-diagonal upper bound for Pt (see Lemma 2.1), we deduce
∫ ∞

1

∫

B
ε1+2s

∫

B1

Pt

(

1

2
ed − y,w

)

dw dy dt ≤ cεd(1+2s)

∫ ∞

1
t−d− d

2s dt ≤ cεd(1+2s).

Next, observing that for y ∈ Bε1+2s it holds |12ed − y| ∈ (14 , 1), once ε ∈ (0, 14), we obtain by using
again the integrated off-diagonal upper bound for Pt (see Lemma 2.1):

∫ 1

0

∫

B
ε1+2s

∫

B1

Pt

(

1

2
ed − y,w

)

dw dy dt ≤ cεd(1+2s) sup
t∈(0,1)

sup
|x|∈( 1

4
,1)

∫

Rd

Pt(x,w) dw

≤ cεd(1+2s) sup
t∈(0,1)

sup
|x|∈( 1

4
,1)

t1+2s|x|−d−2s ≤ cεd(1+2s).

Combining the previous two estimates yields the desired result. �
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