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Abstract—The applications of artificial intelligence (AI) are
rapidly evolving, and they are also commonly used in safety-
critical domains, such as autonomous driving and medical diag-
nosis, where functional safety is paramount. In AI-driven systems,
uncertainty estimation allows the user to avoid overconfidence
predictions and achieve functional safety. Therefore, the robust-
ness and reliability of model predictions can be improved. How-
ever, conventional uncertainty estimation methods, such as the
deep ensemble method, impose high computation and accordingly
hardware (latency and energy) overhead because they require
the storage and processing of multiple models. Alternatively,
Monte Carlo dropout (MC-dropout) methods, although having
low memory overhead, necessitate numerous (∼ 100) forward
passes, leading to high computational overhead and latency.
Thus, these approaches are not suitable for battery-powered
edge devices with limited computing and memory resources. In
this paper, we propose the Tiny-Deep Ensemble approach, a
low-cost approach for uncertainty estimation on edge devices.
In our approach, only normalization layers are ensembled M
times, with all ensemble members sharing common weights and
biases, leading to a significant decrease in storage requirements
and latency. Moreover, our approach requires only one forward
pass in a hardware architecture that allows batch processing
for inference and uncertainty estimation. Furthermore, it has
approximately the same memory overhead compared to a single
model. Therefore, latency and memory overhead are reduced by
a factor of up to ∼ M×. Nevertheless, our method does not
compromise accuracy, with an increase in inference accuracy of
up to ∼ 1% and a reduction in RMSE of 17.17% in various
benchmark datasets, tasks, and state-of-the-art architectures.

Index Terms—Deep Ensemble, BatchEnsemble, TinyML, Un-
certainty Estimation, MC-Dropout

I. INTRODUCTION

Recent advances in deep learning models, such as neural
networks (NNs), have shown superior performance in var-
ious domains [1]. Consequently, they are widely adopted
in different sectors, including critical ones such as automo-
tive, health care, and industrial control. However, training
and inference of modern NN models require a tremendous
amount of computational power and memory. Therefore, they
are suitable for the cloud computing paradigm due to their
“unlimited” storage capacity and computing resources [2], but
they are challenging for edge AI accelerators. Edge AI ac-
celeration provides privacy and real-time processing, but they
have limited computational and memory resources. Numerous
industries may expect significant transformations due to AI-
powered edge computing [3] and their the market is estimated
to be worth $3.5 billion by 2027 [4].
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Fig. 1. a) Deep Ensemble [7] with M ensemble members , b) BatchEnsem-
ble [8], proposed Tiny-DE model with M normalization layers with a single
shared convolutional layer in c) serial mode, and d) parallel mode.

Numerous contributions have been made in the field of
TinyML [5], where the emphasis is on the running of NNs
on hardware with extremely low power, memory, and compu-
tational resources while still maintaining reasonable accuracy.
Nevertheless, research on predictive uncertainty estimation
with tiny NN models is lacking.

Uncertainty estimation in prediction is crucial in safety-
critical applications where NNs operate on real-time data, e.g.,
from sensory inputs. During NN deployment, the underlying
data distribution may shift or the data may become corrupted
due to sensor noise [6]. To address this, predictive uncer-
tainty can supplement model predictions and enable informed
decision-making. As a result, unreliable predictions can be
prevented from reaching the end user and reviewed by a human
expert.

Among the numerous uncertainty estimation methods [9],
the Deep Ensemble [7] is considered a “gold standard” for un-
certainty estimation [10]. In the Deep Ensemble, M ensemble
members 1, · · · ,M are trained independently and stored in
hardware. During inference in edge AI accelerators, the input
is processed by each model in M forward passes (see Fig. 1
(a)). Subsequently, the outputs of all models are combined
to obtain the predictive distribution. Therefore, the cost in
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Fig. 2. a) Number of parameters in each layer and b) Share of parameter
groups with respect to the total number of parameters in ResNet-32.

terms of latency, power, and memory for training, storage, and
processing of M ensemble members is challenging for edge
AI accelerators.

To reduce computational and memory overhead in ensemble
methods, several studies exist. Monte Carlo dropout (MC-
dropout) can be interpreted as ”implicit” ensembles that can
create an exponential number of weight-sharing sub-networks
for uncertainty estimates [11]. Although MC-dropout requires
training and storage of a single model, inference involves M
forward passes through a dropout-enabled network. Here, M
varies with tasks, and the topology can be as large as 94
even on a small (six-layer) fully convolutional network [12].
Furthermore, MC-dropout has sampling latency and chip area
overhead for the dropout module implementation [13]. To
reduce inference latency, the work [14] proposed to ensemble
only deeper convolutional layers while the shared backbone
is computed only once and cached. However, in convolutional
NNs (CNNs), deeper convolutional layers have significantly
larger parameter counts than other layers, as shown in Fig 2
(a). Also, this approach only works if dropout is applied
only to deeper convolutional layers rather than to all layers.
Another domain-specific group of work, binarized the MC-
Dropout to reduce memory overhead by 32×, improve latency
by accelerating them in Spintronics-based computation-in-
memory (CIM) architecture, and reduce sampling latency by
reducing the total number of Dropout modules [13], [15]–
[17]. In contrast, the BatchEnsemble [8] approach also shares
weights but introduces two sets of M rank-1 matrices to
generate M ensemble members. Their approach is not scalable
to the AI accelerator architecture that does not allow batch
processing. Additionally, it introduces additional computation
at the input and output of a layer, as shown in Fig. 1 (b).

We observed that parameters other than weights and bi-
ases in a NN consume only ∼ 1% of all parameters, as
shown in Fig. 2 (b). Therefore, we propose to ensemble
only normalization layers with shared weight and biases. The
normalization layer is commonly used in NNs, as it speeds up
the training and improves performance [18]. Our approach is
scalable 1) in any AI accelerator architecture, 2) in any NN
topologies, such as CNN and recurrent neural network (RNN),
3) in tasks, and 4) in datasets. Furthermore, our approach
is parallelizable during training and inference within an AI
accelerator architecture. Consequently, all ensemble members
can be updated concurrently for a given mini-batch, and
inference requires a single forward pass, allowing for single-
shot training and inference.

Our contributions can be summarized as follows:
• Ensembling normalization layers with shared weights and

biases for low-cost uncertainty estimation, tailored for
edge AI accelerators.

• Tiny-DE network topology that is scalable to existing NN
topologies, AI accelerator architectures, and NN tasks.

• Single-Shot training and inference in hardware architec-
ture that allows batch processing.

• EnsembleNorm layer for normalizing all ensemble mem-
bers in a single shot.

• Substantial reduction in computational and storage re-
quirements without sacrificing accuracy and quality of
uncertainty estimates, as evidenced by extensive empiri-
cal evaluation.

The rest of the paper is organized as follows: Section II
reviews the related work, Section III details the proposed
methodology, Section IV provides experimental results, and
Section V concludes the paper.

II. PRELIMINARY

A. Uncertainty In Deep Learning

In deep learning, uncertainty estimation is crucial for eval-
uating the reliability and robustness of model predictions. It
offers vital information about confidence in these predictions.
This is especially crucial in supporting decision-making in
safety-critical applications, such as autonomous driving and
automatic medical diagnostics.

Deep learning models are usually deployed in dynamic
and uncertain environments where the distribution of infer-
ence data can change over time. Therefore, the model can
receive input data that is unseen during training and its
distribution is completely different. For example, a model
trained on the MNIST (handwritten digit recognition) dataset
can receive corrupted data during inference due to sensor
noise or domain shift. Such data are referred to as out-of-
distribution (OoD) data or sometimes called out-of-training-
distribution data points [19], [20]. Uncertainty in prediction
arises primarily due to the tendency of the model to give
overconfident predictions for unknown data. For example, in
a classification task, the model will predict that the unseen
OoD data belong to one of the classes with close to 100%
confidence [13]. In such scenarios, quantifying the uncertainty
in the prediction allows the user to make informed decisions
and avoid catastrophic failures.

A reliable uncertainty estimation method should demon-
strate low uncertainty in data similar to what it has been trained
on, in distribution (ID) data, and high uncertainty on unseen
or OoD data. In a fine-grained method, an incorrect prediction
should show high uncertainty and a correct prediction should
show low uncertainty.

Note that there is a difference between generalizing on the
same data, i.e., inference accuracy, and OoD data. Inference
accuracy refers to prediction accuracy with data that have
the same distribution as training data but are unseen during
training, e.g., validation data. An ideal uncertainty estimation



method, during inference, is expected to generalize well on the
same data distribution and provide interpretable uncertainty
estimates on OoD data.

B. Normalization Approaches

In modern-deep learning topologies, normalization layers
are essential to improve training stability, speed, convergence,
and performance [18]. In general, normalization layers stan-
dardize its input y, as follows:

ȳ =
y − µ√
σ2 + ϵ

× γ + β. (1)

where, the mean µ and standard deviation σ are calculated
across a specific dimension (batch, feature map, channel
groups) depending on the type of normalization method. For
instance, batch normalization (BN) [18] normalizes activations
across a mini-batch, layer normalization (LN) [21] normalizes
across all features of a single example, Instance Normalization
(IN) [22] normalizes independently within each channel of
a single example, and Group Normalization (GN) [23] nor-
malizes across groups of channels. Furthermore, γ and β are
learnable parameters and ϵ is a small constant for numerical
stability.

C. Model Ensemble and Related works

As stated earlier, in the literature, several methods for
uncertainty estimates are proposed. Among them, the model
ensemble method is highly successful due to its high inference
accuracy and quality uncertainty estimates.

Model ensemble involves combining predictions from mul-
tiple individual models (see Fig. 1(a)) to improve overall
performance and estimate uncertainty. During training, M
models are trained independently or collaboratively using
techniques such as bagging or boosting. These models can be
trained with different architectures, initializations, or subsets
of data to encourage diversity. During inference, predictions
from different models are aggregated using methods such as
averaging or weighted averaging to obtain the final prediction.
Since training, storage, and processing of M full models is
required, the hardware cost, e.g., memory, latency, and power
is a concern.

In Section I, related studies on model ensembles for un-
certainty estimates and related works for cost reduction were
discussed. Nevertheless, the ensemble of models has been
extensively studied to improve model performance [24]–[26].
Even in this case, there are several methods to reduce the cost
of inference. For example, the work in [27] proposed a model
compression technique to compress large and complex models
into smaller and faster ones. Similarly, [28] introduced the
knowledge distillation method, which distills model ensembles
into a single neural network.

Since ensembles require training M models, several studies
aim to reduce their cost at training time. For example, [29]
proposed the Snapshot ensemble method, which encourages
a single model to visit multiple local minima by training it
using cyclic learning rates [30]. This method encourages the

exploration of numerous local minima, which are then used
as ensemble members.

In contrast, our approach aims to optimize performance,
training, and inference costs collectively with AI accelerator
architectures in mind.

III. TINY DEEP ENSEMBLE (TINY-DE)

As mentioned previously, a naive ensemble approach incurs
significant memory and computational overhead. Here, the
proposed Tiny Deep Ensemble approach is discussed, a low-
cost ensemble method for uncertainty estimation in deep
neural networks.

A. Core Idea

In Tiny-DE, only the normalization layers are ensembled,
which overall have the smallest amount of parameters in
the network, differ between the ensemble members, while
all other weights are shared. We denote the normalization
layers of layer index l by N l

0, N
l
1, . . . , N

l
M−1 in the following.

The normalization layers can be Batch Normalization, Layer
Normalization, Instance Normalization, and Group Normal-
ization with learnable parameters β ∈ Rn and γ ∈ Rn.
Therefore, compared to the deep ensemble approach [7] and
BatchEnsemble [8], our approach requires a M× lower weight
matrix storage and a 2M× lower rank-1 matrix computation
(see Figs.1 (a) and (b)).

B. Operation Modes

Depending on the batch processing capabilities of the
hardware architecture, Tiny-DE can operate in either se-
quential or parallel modes. In hardware architectures where
batch processing is challenging, such as the memristor-based
computation-in-memory (CIM) architecture [31]–[33], a se-
quential processing NN architecture should be used. Here,
”sequential” refers to sequential in time rather than signal flow
through the ensembles. In contrast, in parallel mode, single-
shot uncertainty estimation can be done using vectorization
in hardware architectures such as edge tensor processing
units (TPUs), field-programmable gate arrays (FPGAs), and
graphics processing units (GPUs) [34], [35]. Both methods
are described in detail in the following.

1) Sequential Inference: The sequential inference of Tiny-
DE utilizes a counter variable c and router to dynamically
select a normalization layer for each forward pass. Depending
on the state of the counter c, the output of the l-th layer yl is
directed through one of the M normalization layers, as shown
in Fig. 1 c). The activation function such as the ReLU function
is applied to the processed output as is normally done.

The counter c is an unsigned integer and it is updated
cyclically in each layer as follows:

c← (c+ 1) mod M, (2)
where c is initialized to 0 at the start of the inference process.
The mechanism ensures that the output of each layer sequen-
tially passes through each normalization layer in a cyclic order.
For example, if c = 0, the output yl is processed by N0. In the
next forward pass, c becomes 1, routing the output yl through
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Fig. 3. Sketch of proposed Tiny-DE architecture based on popular CNN
architectures ResNet [36] and VGG [37]. We only show the four signature
layers of a specific topology. Our proposed topology is generalizable across
existing topologies, with only the addition of a router before the normalization
layers. In the case of our proposed approach in batch mode, no change is
required in the topology.

N1, and this process is repeated until the M -th forward pass.
After that, c resets to 0. Note that, due to the global signal
routing and synchronization challenge, the counter variable is
updated locally in each layer.

This cyclic routing mechanism allows each input of the
NN to experience every normalization setting, providing di-
verse internal-state manipulations within a single inference
cycle, which is crucial for enhancing the ensemble’s ability
to generalize and generate output distribution for uncertainty
estimation.

Furthermore, the proposed Tiny-DE can be generalized to
all existing NN architectures by making minor modifications,
as shown in Fig. 3. For popular architectures, such as ResNet
and VGG, a router can be inserted after the convolutional layer.

Router Implementation: In CIM architectures, the router
can be implemented digitally at the periphery using a demulti-
plexer (DeMux). The DeMux takes the Q-bit unsigned counter
c as the control signal, allowing for up to 2Q possible routing
paths, each corresponding to one of the normalization layers
(ensemble members). Since a typical DeMux expects a bit-
wise control signal, the DeMux for our purpose is designed
to interpret the control signal c in binary representation. This
can be expressed as:

binary(c) = bQ−1bQ−2 · · · b0, (3)
where bQ−1 to b0 are the bits of the binary sequence repre-
senting c.

Our approach requires only changes to the CiM periphery
since the router is implemented in the digital domain with
some logic hardware. Specifically, the Multiply-Accumulate
(MAC) operation of a layer is computed in a memristor-based
crossbar structure (analog domain) and the result is digitized
by an analog-to-digital converter (ADC) operation. Following
that the router selects the parameter for normalization and
the normalization is performed. In the following, non-linear

activation is performed and a digital-to-analog (DAC) converts
the results of the activation function for MAC operation (in the
analog domain) of the subsequent layer. The overall algorithm
for our proposed approach in sequential inference mode is
depicted in Algorithm 1.

Algorithm 1 Sequential inference mode of Tiny-DE in CiM
1: Input: Controller c, number of ensembles M , input to the

network x, number of layers L
2: for m = 1, . . . ,M do ▷ sequential inference
3: for l = 1, . . . , L do ▷ single forward pass
4: Digital-to-analog conversion
5: MAC operation in memristor-based crossbar array
6: Analog-to-digital conversion
7: Router selects parameters of normalization layer
8: Perform normalization
9: Non-linear activation

10: end for
11: Increment counter
12: end for

2) Single-Shot Uncertainty Estimation: By manipulating
the computations for a mini-batch, the computations of the
Tiny-DE approach are parallelizable within a hardware ar-
chitecture that allows batched processing such as FPGAs,
GPUs, and TPUs. Therefore, only a single forward pass with
respect to multiple ensemble members in parallel is required to
estimate uncertainty. Here, an input to the convolution or linear
layer is repeated M times to generate a mini-batch of size M
to obtain the batched output Y l. However, if the batch size
of the inference inputs is more than one, e.g., B, by repeating
the input similarly M times, an effective batch size of M ·B
can be created. Therefore, a single forward pass is required
for the convolution or linear layer.

However, to still allow a single forward pass through all
ensemble members, we propose EnsembleNorm. In Ensem-
bleNorm, the input dimension and the parameters are modified
across the batch dimension so that they independently apply
normalization to each input of the batch. Specifically, the input
of the shape [M ·B,C,H,W ] is reshaped as [M,B,C,H,W ].
Here, C, H , and W represent the channel, height, and width,
respectively. Similarly, the learnable parameters expanded to
β ∈ RM×n and γ ∈ RM×n. That means that the param-
eters are not only channel-specific, but also unique to each
ensemble member. The mean and variance are also calculated
in the respective dimensions. That means that each ensemble
member can have its own specific mean µm,c and variance
σ2
m,c. Furthermore, each ensemble member can be scaled and

shifted by its own unique parameters, γm,c and βm,c.
Subsequently, the normalized output Ȳ l is reshaped again

to [M ·B,C,H,W ] before applying the non-linear activation
function. The PyTorch implementation of EnsembleNorm with
other implementations will appear in 1.

Consequently, all ensemble members can compute the out-
put in a single forward pass, eliminating the need to calculate

1will be open-sourced upon acceptance



the output of each ensemble member sequentially. Therefore,
the computational latency is reduced to a minimum.

C. Training

The training procedure of Tiny-DE also depends on the
operating mode. The sequential mode involves two main
phases, but the parallel mode allows single-shot training. Both
methods are described in detail in the following.

Sequential Mode: As stated earlier, the overall training
of the M ensembles requires two main phases. Initially, the
full model is trained with all parameters (weights and biases)
being updated. After this, the parameters of the model, e.g.,
weights and biases are frozen, and the normalization layers are
re-initialized. Here, ”frozen” means that they are not updated
using backpropagation. In each subsequent training, only the
normalization layers are updated. The training is stopped once
a comparable accuracy to the full model is achieved. All
trained parameters of the normalization layer are accumulated
in a list to allow for ensemble learning as described earlier.

Since the full model is only trained once, the training
overhead and complexity are significantly lower compared
to [7] and [8], respectively. The decoupling of parameters
allows for effective ensemble learning without the overhead
of training multiple distinct models from scratch. In addition,
it allows one to obtain M ensemble members from a single
pre-trained model.

Single-Shot Training: In the batched processing mode,
replacing the normalization layer with the proposed Ensem-
bleNorm layers along with manipulating the dimension as
discussed earlier section, all the ensemble members can be
trained together.

Here, the effective batch size for training may need to be
reduced due to the memory overflow issue in GPUs. However,
since training is typically done in the cloud, it is not an issue
for edge inference.

D. Prediction and Uncertainty Estimation

The input for inference is forward-passed through the Tiny-
DE to get the predictive distribution. The final prediction
of Tiny-DE is obtained from the average predictions of all
ensemble members.

To obtain uncertainty in the prediction, we explore different
methods depending on the task. For classification tasks, the
predictive entropy is commonly used, but we also measure
the maximum disagreement among the outputs, as shown in
Algorithm 2.

The Maximum Disagreement metric quantifies uncertainty
by calculating the maximum absolute difference in output
distributions for each class, across all models in the ensemble.
Since it is computed directly from SoftMax output, this metric
ranges from 0 to 1. A low maximum disagreement value
(closer to 0) indicates low uncertainty, and a high value (closer
to 1) indicates high uncertainty.

Furthermore, in semantic segmentation and time series
prediction tasks, uncertainty is quantified by the variance
in predictions of different ensemble members. Lastly, for

Algorithm 2 Maximum Disagreement
1: Input: output samples of y of shape (M,B,K)
2: Initialize Max Disagreement (MD) with zeros of shape

(B,K)
3: for m = 1, . . . ,M − 1 do
4: for m′ = m+ 1, . . .M do
5: Calculate absolute difference m′ and m output
6: Calculate the maximum across the class dimension
7: Update Max Disagreement
8: end for
9: end for

regression tasks, the uncertainty is estimated using the negative
log-likelihood (NLL) of the prediction.

E. Diversity Improvement Among Ensemble Members

Diverse predictions among ensemble members are advan-
tageous as they offer complementary perspectives, potentially
improving performance and enhancing uncertainty estimates.
For our approach, diversity can be improved by a) using differ-
ent kinds of normalization layers in each member, b) training
each ensemble member with different data augmentations, and
c) creating multiple bootstrap samples (random samples with
replacement) from the training data and training each ensemble
member on each sample.

IV. RESULTS

A. Experimental Setup

To show scalability on deep learning tasks, we have evalu-
ated our method on four different tasks: image classification,
regression, autoregressive time series forecast, and semantic
segmentation. To further show scalability on datasets and NN
topologies, we have evaluated each task on several state-of-
the-art (SOTA) NN topologies (including CNN and RNN) and
datasets.

For image classification, we used the CIFAR-10 and
CIFAR-100 benchmark datasets on the VGG-19, ResNet-
56, ShuffleNet-V2, RepVGG-A1, and TinyML compatible
MobileNet-V2 CNN topologies. Furthermore, for the regres-
sion task, we have used 10 UCI datasets with a topology and
setting as [11]. Specifically, each dataset except for the protein
and Year Prediction MSD, is split into 20 train-test folds. Five
train-test splits were used for the protein dataset, and a single
train-test split was used for the Year Prediction MSD dataset.
The NN has 2-hidden layers with ReLU6 nonlinearity followed
by a 1D batch normalization layer. The number of neurons is
50 for the smaller datasets and 100 for the larger protein and
Year Prediction MSD datasets, making the network compatible
with edge AI accelerators. All the dataset was trained for 40
epochs and we have used 5 ensemble members (M=5).

On the other hand, for the time-series forecast, an NN with
an LSTM layer and a classifier layer was used for the Mauna
Loa CO2 concentrations dataset. Lastly, for Semantic seg-
mentation tasks, we have considered binary as well as multi-
class segmentation datasets and two safety-critical scenarios,
for biomedical and automotive. For biomedical image seg-
mentation, we have used the Kvasir-SEG [38] dataset which



TABLE I
RESULTS ON REGRESSION BENCHMARK DATASETS OF THE PROPOSED APPROACH AND RELATED WORKS PROBABILISTIC BACK-PROPAGATION

(PBP) [42], MC-DROPOUT [11], DEEP ENSEMBLES [7] COMPARING RMSE AND NLL. DATASET SIZE (N ) AND INPUT DIMENSIONALITY (Q) ARE ALSO
GIVEN.

Avg. Test RMSE and Std. Errors ↓ Avg. Test LL and Std. Errors ↓
Dataset N Q PBP MC-Dropout Deep Ensemble Proposed PBP MC-Dropout Deep Ensemble Proposed
Boston Housing 506 13 3.01 ± 0.18 2.97 ± 0.85 3.28 ± 1.00 2.97 ±0.46 2.57 ± 0.09 2.46 ± 0.25 2.41 ± 0.25 4.92 ±1.03
Concrete Strength 1,030 8 5.67 ± 0.09 5.23 ± 0.53 6.03 ± 0.58 5.51 ±0.41 3.16 ± 0.02 3.04 ± 0.09 3.06 ± 0.18 5.02 ±0.62
Energy Efficiency 768 8 1.80 ± 0.05 1.66 ± 0.19 2.09 ± 0.29 1.53 ±0.38 2.04 ± 0.02 1.99 ± 0.09 1.38 ± 0.22 1.41 ±0.46
Kin8nm 8,192 8 0.10 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 0.07 ±0.00 -0.90 ± 0.01 -0.95 ± 0.03 -1.20 ± 0.02 -0.95 ±0.01
Naval Propulsion 11,934 16 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ±0.00 -3.73 ± 0.01 -3.80 ± 0.05 -5.63 ± 0.05 -3.81 ±0.08
Power Plant 9,568 4 4.12 ± 0.03 4.02 ± 0.18 4.11 ± 0.17 4.48 ±0.18 2.84 ± 0.01 2.80 ± 0.05 2.79 ± 0.04 2.95 ±0.05
Protein Structure 45,730 9 4.73 ± 0.01 4.36 ± 0.04 4.71 ± 0.06 3.92 ±0.03 2.97 ± 0.00 2.89 ± 0.01 2.83 ± 0.02 5.05 ±0.52
Wine Quality Red 1,599 11 0.64 ± 0.01 0.62 ± 0.04 0.64 ± 0.04 0.64 ±0.05 0.97 ± 0.01 0.93 ± 0.06 0.94 ± 0.12 1.28 ±0.33
Yacht Hydrodynamics 308 6 1.02 ± 0.05 1.11 ± 0.38 1.58 ± 0.48 3.22 ±1.59 1.63 ± 0.02 1.55 ± 0.12 1.18 ± 0.21 1.37 ±0.43
Year Prediction MSD 515,345 90 8.88 ± NA 8.85 ± NA 8.89 ± NA 8.53 ±NA 3.60 ± NA 3.59 ± NA 3.35 ± NA 7.63 ± NA

contains medically obtained gastrointestinal polyps images on
the Feature Pyramid Network (FPN) [39]. For automotive
scene understanding we used the CamVid [40] dataset which
consists of road scene images and involves segmenting each
pixel into one of the 12 classes on the UNet++ topology [41].
We have further evaluated the generalized scene understanding
task with the Pascal VOC dataset with the fully convolutional
network (FCN). The encoder network for each topology is
shown in brackets in Table. III.

Note that the semantic segmentation task is known to be
more challenging than other tasks due to its finer granularity.
That is, it involves segmenting an image into multiple sections
and assigning each pixel with its corresponding class label.

The performance of the classification task is evaluated on
inference accuracy, time series, and regression on root-mean-
square-error (RMSE), and semantic segmentation on pixel
accuracy and mean intersection-over-union (mIoU) metrics.

In terms of uncertainty estimation, classification tasks are
evaluated on data distribution shift and out-of-domain data as
OoD data. Specifically, for data distribution shift, images are
corrupted by 90◦ rotation and Gaussian noise, a subset of the
CIFAR-C dataset [6]. Furthermore, SVHN (Street View House
Numbers) and STL-10 datasets are used for out-of-domain
data which refers to data that significantly deviates from
the distribution of the training data. The predictive entropy
distribution is calculated from the mean of 250 batch samples
and is subsequently modeled as a normal distribution.

B. Evaluation of Regression on Real-World UCI Datasets

The result of the regression task is depicted in Table I. Our
approach is compared with Bayesian [42], implicit ensemble
(MC-Dropout) [11], and ensemble [7] methods. As can be
seen, our method outperforms or is competitive with existing
methods in terms of RMSE and NLL. Specifically, our method
outperforms other methods in 8 out of the 10 datasets in terms
of RMSE. In some datasets, we observe that our method is
slightly worse in terms of NLL. We believe that this is due
to the fact that our method optimizes for RMSE instead of
NLL (which captures predictive uncertainty). We found that
there is a trade-off between RMSE and NLL. Optimizing
for NLL instead reduces RMSE. Also, we did not perform
hyperparameters optimization, unlike [11] which performed
grid search.

TABLE II
PERFORMANCE OF TINY-DE WITH CIFAR-10 AND CIFAR-100 DATASET
TRAINED ON VARIOUS TOPOLOGIES WITH UP TO 15 ENSEMBLE MEMBERS.

Topology Dataset Number of ensembles
1 5 10 15

VGG-19

CIFAR-10

93.91 93.86 93.79 93.80
ResNet-56 94.37 94.28 94.14 94.38

ShuffleNet-V2 93.3 93.27 93.44 93.67
RepVGG-A1 94.93 94.56 94.84 94.62

MobileNet-V2 94.05 93.67 93.92 94.01
VGG-19

CIFAR-100

73.87 74.21 74.56 74.68
ResNet-56 72.63 72.64 72.85 72.82

ShuffleNet-V2 72.58 72.75 73.54 73.11
RepVGG-A1 76.44 75.77 74.67 75.21

MobileNet-V2 74.29 74.41 74.67 75.21

C. Evaluation of Classification

In classification tasks with various topologies, it can be
observed that our method improves inference accuracy by up
to 0.81% or is comparable with the single model, as shown
in Table II.

In terms of uncertainty estimates in the OoD data, Fig. 4
shows the predictive uncertainty of the ResNet-32 model
trained on clean CIFAR-10. It can be observed that the
predictive entropy is low in clean CIFAR-10, that is, ID data.
However, if the model receives OoD data, e.g., rotated, SVHN,
or STL-10 data, the predictive entropy increases from baseline.
Importantly, the relative change in the predictive entropy is
significantly higher for our proposed Tiny-DE approach. Here,
the relative change in the uncertainty estimates signifies better
capabilities in the uncertainty estimates. Furthermore, the
change in predictive entropy becomes greater as the number
of ensembles increases, which is an ideal behavior.

In contrast, the CIFAR-100 model is evaluated on the max
disagreement metric, as shown in Fig. 5. In ID data, our
approach shows finer granularity in uncertainty estimates.
Specifically, the uncertainty is low for correctly classified
images and high for incorrectly classified images. On cor-
rupted (rotated and noisy) images, OoD data, the model can
still predict some images correctly. Our approach shows a
similar uncertainty distribution for correctly and incorrectly
predicted images. In addition, the relative change from the
baseline distribution is also high. In domain-changed data
(SVHN and STL-10), our approach shows high uncertainty
with distributions concentrated toward the right. Furthermore,
the distributions shift more toward the right as the number of
ensembles increases.
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Fig. 4. Uncertainty distributions for the Tiny-DE approach on CIFAR-
10, including ID CIFAR-10, and OOD datasets such as rotated CIFAR-10,
SVHN, and STL. Notably, larger ensembles show increased relative change
of uncertainty distribution from ID compared to a single model (M = 1).

a) Max-Disagreement on ID and OoD data with data distribution shift

b) Max-Disagreement on OoD domain shift

Fig. 5. ID and OoD Max Disagreement distributions for the Tiny-DE approach
trained on clean CIFAR-100 (ID). Notably, larger ensembles show increased
relative change of uncertainty distribution from ID.

D. Evaluation of Time-Series Prediction

The performance of our proposed approach on autoregres-
sive time series prediction is shown in Fig. 6. As can be
seen, the prediction curve is closer to the ground truth for
our approach compared to the single model. Furthermore, the
curve approaches ground truth as the number of ensemble
members increases. Specifically, the single model achieves an
RMSE score of 0.1119. In contrast, our proposed Tiny-DE
method achieves an RMSE score of 0.0943 for 5 ensemble
members, which is reduced to 0.0921 for 10 members. That
translates into a 17.7% reduction in the RMSE score. In
general, all models follow the same trend as the ground truth.

Fig. 6. Auto-regressive time series prediction of atmospheric CO2 of a single
model and our proposed Tiny-DE model with up to 10 ensemble members.
The shaded region shows the uncertainty around prediction.

TABLE III
PIXEL ACCURACY AND MEAN INTERSECTION OVER UNION (IOU) OF THE
SINGLE MODEL AND OUR PROPOSED TINY-DE (M = 5) WITH DIFFERENT

DATASETS AND SOTA MODELS.
Topology Dataset Single Model Proposed (M=5)

Pixel Acc mIoU Pixel Acc mIoU
UNet++ (ResNet-34) CamVid 91.65 63.95 91.52 63.99

FPN (ResNet-18) KvaSir 95.95 74.62 95.89 74.57
FCN (ResNet-50) CIFAR-10 87.78 69.63 87.71 68.58

E. Evaluation of Semantic Segmentation

Similarly, in semantic segmentation tasks with several chal-
lenging datasets and SOTA models, our approach performs
comparably or outperforms the baseline model, as shown in
Table III. Two qualitative examples of each dataset are shown
in Fig. 7. As can be seen, the predictions are close to the
ground truth, with only incorrect predictions around the edges
of segments or in uncommon classes. Here, uncommon classes
refer to classes that occur infrequently or are less represented
in the dataset.

In terms of uncertainty estimates, our proposed approach
can estimate uncertainty accurately. In an ideal case, mis-
classified pixels should have high uncertainty around them,
and correctly classified pixels should have low uncertainty.
As shown in Fig. 7 our approach captured this behavior
effectively.

F. Comparison with Related Works

In the presence of OoD data, the higher the relative change
in predictive entropy with respect to ID distribution, the better
the method. Compared to related uncertainty estimation meth-
ods with model ensemble [7], [8], [11], the relative predictive
entropy of our Tiny-DE approach is much higher, as shown in
Fig. 8. This further underscores the robustness of our approach.
Here, the validation is done on the ResNet-32 topology on the
CIFAR-10 dataset, but we found that this translates to other
topologies and datasets.

G. Improving Diversity

As mentioned in Section III-E, more diversity among the
prediction of the ensembling members can lead to better
performance and uncertainty estimates. Therefore, we have
performed another set of experiments in which each ensemble
member is trained with different data augmentations. We
found that by improving diversity with different random data
augmentation to train each ensemble member, the uncertainty
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Fig. 7. Qualitative results for several semantic segmentation tasks and
associated uncertainty estimates. The correctness map is a binary diagram
indicating correct and incorrect predictions in white and black, respectively.

Fig. 8. Relative change in predictive entropy on OoD data of Tiny-DE (ours)
in comparison to Deep Ensemble [7], MC-Dropout [11], and BatchEnsem-
ble [8].

estimates increase on OoD data. For example, as shown in
Fig. 9 the uncertainty maps around incorrect pixels become
stronger compared to Fig. 7 when each ensemble member
is trained using different data augmentations. Furthermore,
pixel accuracy and mIoU increased to 88.67% and 72.48%,
respectively.

H. Hardware Overhead

Figs. 10 show the relative cost in terms of memory and
latency of our approach and related approaches for the ResNet-

Fig. 9. Results for Pascal VOC with improved diversity in ensemble members
using different random data augmentation.
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Fig. 10. The inference cost in terms of memory and latency of our and related
approaches w.r.t the ensemble size. The results are relative to a single model
cost. The testing time cost and memory cost of the naive ensemble are plotted
in blue.
32 topology. In terms of memory overhead, our approach has
approximately the same overhead as the BatchEnsemble [8]
and MC-Dropout [11] methods but significantly outperforms
branch ensemble [14] and Deep Ensemble [7] methods. The
memory overhead of the deep ensemble increases linearly with
the size of the ensemble. In the branch ensemble method, the
last two convolutional and final classifier layers are ensembled.
Since the last two layers consume ∼ 75% of the total pa-
rameters, ensembling them leads to a high memory overhead.
Specifically, if batch normalization is used, our method has
slightly more overhead compared to BatchEnsemble due to
the requirements of running mean and variance vector storage.
However, for other normalization layers that do not calculate
running mean and variance, the memory overhead is the same.

In terms of latency, our approach has the same latency as the
single model, as no additional computation is required relative
to the single model. Therefore, the latency is the same as
the branch ensemble method. However, BatchEnsemble has
additional computation requirements in the input and output
of convolutional layers, leading to as much as 2× latency as
our method. The latency of the deep ensemble and the MC-
dropout increases linearly with the size of the ensembles.

In general, our approach provides a good balance between
memory and latency. In parallel mode, our approach requires
one forward-passes and has approximately the same memory
overhead relative to a single model (an ideal case). Conse-
quently, our approach has up to ∼M× reduction in overhead.

V. CONCLUSION

In this paper, we present a cost-effective ensembling method
for edge AI accelerators. We introduce the Tiny-DE topology,
where only normalization layers are ensembled and all ensem-
ble members share the weights and biases. Our approach is
scalable in terms of AI accelerators, datasets, NN topologies,
and tasks. With an expensive evaluation, we show that our
approach can estimate uncertainty effectively with up to ∼ 1%
improvement in accuracy, and a 17.7% reduction in RMSE
score on various tasks. Furthermore, our approach has up to
∼M× reduction in hardware overhead.
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